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patter: particle algorithms for animal tracking in R and Julia 41 

 42 

Abstract 43 

 44 

1. In the field of movement ecology, state-space models have emerged as a powerful 45 

modelling framework that represents individual movements and the processes that 46 

connect movements to observations. However, fitting state-space models to animal 47 

tracking data is often difficult and computationally expensive. 48 

2. Here, we introduce patter, a package that provides particle filtering and smoothing 49 

algorithms that fit Bayesian state-space models to tracking data, with a focus on data 50 

from aquatic animals in autonomous receiver arrays. patter is written in R, with a 51 

high-performance Julia backend. Package functionality supports data simulation, 52 

preparation, filtering, smoothing and mapping.  53 

3. In two worked examples, we demonstrate how to implement patter to reconstruct the 54 

movements of a tagged animal in an acoustic telemetry system from acoustic detections 55 

and ancillary observations. With perfect information, the particle filter reconstructs the 56 

true (unobserved) movement path (Example One). More generally, particle-based 57 

methods represent an individual’s possible location probabilistically as a weighted 58 

series of samples (‘particles’). In our illustration, we resolve an individual’s 59 

(unobserved) location every two minutes during one month in minutes and use particles 60 

to visualise movements, map space use and quantify residency (Example Two). 61 

4. patter facilitates robust, flexible and efficient analyses of animal tracking data. The 62 

methods are widely applicable and enable refined analyses of home ranges, residency 63 

and habitat preferences.  64 

 65 
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1. INTRODUCTION 70 

 71 

The field of movement ecology has attracted huge interest in recent decades (Nathan et al., 72 

2008; Rafiq et al., 2021). An ever-increasing suite of electronic tagging and tracking 73 

technologies is used to track animals across the globe, providing a ‘panoramic window’ into 74 

their lives (Hussey et al., 2015). In aquatic environments, satellite tracking has reconstructed 75 

the migrations of air-breathing animals (Hays & Hawkes, 2018), archival geolocation has 76 

revealed the transoceanic movements of pelagic fish (Block et al., 2005) and autonomous 77 

receiver networks, known as passive acoustic telemetry arrays, have been established to track 78 

acoustically tagged benthic, demersal and pelagic taxa from local to continental scales (Matley 79 

et al., 2022). However, it is widely suggested that the accumulation of animal tracking data is 80 

outpacing the development of modelling methods and software packages for analysis (Rafiq et 81 

al., 2021).  82 

 83 

In the last two decades, state-space models (SSMs) have emerged as a powerful modelling 84 

framework for animal tracking data (Patterson et al., 2008). An SSM is a hierarchical 85 

representation of a process-observer system in which the evolution of an unobserved (‘latent’) 86 

state (𝒔) through time (𝑡 ∈ {1, … , 𝑇}) is imperfectly observed, generating ‘noisy’ observations 87 

(𝒚𝑡). In the context of animal tracking, SSMs model the movement process by which an 88 

animal’s location (𝒔) evolves in (discrete) time (that is, 𝑓(𝒔𝑡 | 𝒔𝑡−1)) and the observation 89 

processes that connect movements to observations (that is, 𝑓(𝒚𝑡 | 𝒔𝑡)). The SSM thus forms a 90 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 30, 2024. ; https://doi.org/10.1101/2024.07.30.605733doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.30.605733
http://creativecommons.org/licenses/by/4.0/


patter R package 

 5 

formal statistical framework within which it is possible to estimate the unobserved locations of 91 

an animal that are of interest, whilst accounting for properties of movement (including speeds 92 

and barriers) and observation processes (such as detectability). However, fitting SSMs can be 93 

challenging and computationally expensive (Patterson et al., 2008). 94 

 95 

Particle filters are flexible Monte Carlo algorithms used to fit state-space models (Doucet & 96 

Johansen, 2009). In the context of animal tracking, a particle filter approximates the 97 

distribution of possible locations of an individual with a set of weighted samples termed 98 

‘particles’ (Lavender et al., in prep). A movement model simulates possible locations of the 99 

individual (that is, 𝒔𝑡 ∼ 𝑓(𝒔𝑡 | 𝒔𝑡−1)) and observation model(s) weight particles in line with 100 

the probability of the observations (that is, 𝑓(𝒚𝑡 | 𝒔𝑡)). By resampling particles in line with the 101 

weights, we duplicate particles that are compatible with the data and eliminate incompatible 102 

particles. The result is an approximation of the distribution of individual’s location at each time 103 

step, given the preceding data (i.e., the partial marginal distribution, 𝑓(𝒔𝑡 | 𝒚1:𝑡)). Particle 104 

smoothers and samplers are extensions that approximate the full marginal (𝑓(𝒔𝑡 | 𝒚1:𝑇)) and 105 

the joint (𝑓(𝒔1:𝑇 | 𝒚1:𝑇)), respectively (Doucet & Johansen, 2009). Compared to alternative 106 

SSM-fitting methods for animal-tracking data, advantages of particle-based methods include 107 

their flexibility, scalability and the ease with which they can be intuitively understood. In the 108 

ecological literature, a handful of particle filtering routines have been developed, including for 109 

demersal fish geolocation at coarse spatial scales (over hundreds of kilometres) (Liu et al., 110 

2019). However, existing routines are relatively specialised, computationally intensive and 111 

require significant user expertise.  112 

 113 

Here, we introduce patter, an package that provides advanced particle filtering and 114 

smoothing algorithms for animal tracking data, motivated by our research in acoustic telemetry 115 
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systems (Lavender, 2024a) (Lavender et al., in prep). The package is written in R (R Core 116 

Team, 2023) and integrates our high-performance Julia backend, Patter.jl (Lavender, 117 

2024b). Julia is a relatively new language that combines the ease-of-use of an interpreted 118 

language like R with the speed of a compiled language like C++ (Bezanson et al., 2017). 119 

patter includes routines for simulation, data preparation, particle filtering, smoothing and 120 

mapping. The package stands alongside generic SSM packages (King et al., 2016) but is 121 

designed for animal tracking—extending the R package ecosystem of this field (Joo et al., 2020) 122 

and that of the passive acoustic telemetry sub-field in particular (Kraft et al., 2023), with 123 

generic, flexible and fast particle algorithms. In the context of passive acoustic telemetry, 124 

patter is unique in the provision of routines that reconstruct individual movements and 125 

patterns of space use within a coherent probabilistic framework. The routines enable refined 126 

analyses of residency, home ranges and habitat preferences.  127 

 128 

2. METHODOLOGY 129 

 130 

2.1. Model formulation  131 

 132 

The statistical methodology is described in Lavender et al. (in prep). This section provides a 133 

summary. 134 

 135 

Posterior. We consider a Bayesian state-space model for the location of a tagged animal; that 136 

is, the joint distribution 𝑓(𝒔1:𝑇 | 𝒚1:𝑇), where in the simplest case 𝒔𝑡 = (𝑠𝑥, 𝑠𝑦) is a two-137 

dimensional vector that denotes location (in continuous, two-dimensional space), 𝒚𝑡 is the set 138 

of observations and 𝑡 ∈ {1, 2, … , 𝑇} indexes time steps. The joint distribution is proportional to 139 
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the product of a prior (the movement process) and the likelihood (the observation process), i.e., 140 

𝑓(𝒔1:𝑇 | 𝒚1:𝑇) ∝ 𝑓(𝒔𝑡=1) ∏ 𝑓(𝒔𝑡 | 𝒔𝑡−1) 𝑓(𝒚𝑡 | 𝒔𝑡)𝑇
𝑡=2 . 141 

 142 

Prior. The prior comprises a probability density distribution of the animal’s initial location 143 

(𝑓(𝒔𝑡=1)) and a movement model (𝑓(𝒔𝑡 | 𝒔𝑡−1)). A simple model for  𝑓(𝒔𝑡 | 𝒔𝑡−1) in the two-144 

dimensional case is an unrestricted, discrete-time random walk, where 𝒔𝑡 = (𝑠𝑥,𝑡−1 +145 

𝑑𝑡 cos 𝜙𝑡 , 𝑠𝑦,𝑡−1 + 𝑑𝑡 sin 𝜙𝑡) and 𝑑 (step length) and 𝜙 (turning angle) are independently 146 

distributed random variables. 147 

  148 

Likelihood. The likelihood measures the probability of the observations given the latent 149 

locations (𝒔𝑡). In an acoustic telemetry system, observations include acoustic measurements at 150 

each of 𝑀 receivers (an 𝑀 × 𝑇 matrix, 𝒚(𝐴)), and/or ancillary data, such as depth measurements 151 

(a row vector, 𝒚(𝐷)). By way of example, here we consider a combined dataset 𝒚 = {𝒚(𝐴), 𝒚(𝐷)} 152 

and the likelihood 𝑓(𝒚𝑡 | 𝒔𝑡) = 𝑓 (𝒚𝑡
(𝐴)

 | 𝒔𝑡)  𝑓 (𝑦𝑡
(𝐷)

 | 𝒔𝑡).  153 

 154 

Acoustic measurements. The likelihood of the acoustic measurements at time 𝑡 (𝒚𝑡
(𝐴)

), which 155 

comprise detections (1) or non-detections (0) at each operational receiver (that is, 𝑦𝑘,𝑡
(𝐴)

∈ {0,156 

1}) is modelled using the Bernoulli probability mass function, 𝑓 (𝒚𝑡
(𝐴)

 | 𝒔𝑡) =157 

∏ 𝑝𝑘,𝑡(𝒔𝑡)𝑦𝑘,𝑡
(𝐴)

(1 − 𝑝𝑘,𝑡(𝒔𝑡))
1−𝑦𝑘,𝑡

(𝐴)

𝑘  (assuming independence). We typically model detection 158 

probability, 𝑝, as a function of the distance between the receiver (at location 𝒓𝑘) and transmitter 159 

(at 𝒔), such as 𝑝𝑘,𝑡(𝒔𝑡) = {(1 + e−(𝛼−𝛽×|𝒔𝑡−𝒓𝑘|))
−1

 if |𝒔𝑡 − 𝒓𝑘| < 𝛾

0 otherwise                                                 
, where α and 𝛽 are 160 

parameters and 𝛾 is the detection range.  161 

 162 
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Depth measurements. A simple model for the likelihood of a depth observation is: 163 

𝑓 (𝑦𝑡
(𝐷)

| 𝒔𝑡) = {𝑧𝑡 if 𝑏(𝒔𝑡) − 𝜀shallow(𝒔𝑡) ≤ 𝑦𝑡
(𝐷)

≤  𝑏(𝒔𝑡) + 𝜀deep(𝒔𝑡)

0 otherwise                                                                            
,  164 

where 𝑧𝑡 = (𝜀deep(𝒔𝑡) + 𝜀shallow(𝒔𝑡 ))
−1

. This requires 𝑦𝑡
(𝐷)

 to be within an envelope around 165 

the bathymetric depth 𝑏(𝒔𝑖) defined by shallow- and deep depth-adjustment functions, 166 

𝜀shallow(𝒔𝑡), 𝜀deep(𝒔𝑡) ≤ 𝑏(𝒔𝑡). These functions represent observational and spatially explicit 167 

bathymetric uncertainty and can be tailored for different species. For benthic species, small 168 

errors (𝜀shallow(𝒔𝑡), 𝜀deep(𝒔𝑡) ≪ 𝑏(𝒔𝑡)) only permit observations close to the seabed; for 169 

pelagic species larger 𝜀shallow(𝒔𝑡) values permit observations in the water column.  170 

 171 

2.2. Model inference  172 

 173 

Filter. For inference, we begin with the partial marginal distribution, 𝑓(𝒔𝑡 | 𝒚1:𝑡). Particle 174 

filters approximate 𝑓(𝒔𝑡 | 𝒚1:𝑡) as a sum of 𝑁 weighted particles, i.e., 𝑓(𝒔𝑡 | 𝒚1:𝑡) ≈175 

∑ 𝛿(𝒔𝑡 − 𝒔𝑖,𝑡)𝑁
𝑖 𝑤𝑖, where 𝛿 is the Dirac delta function, 𝑤 denotes normalised weights and 𝑖 176 

indexes particles. We assume static parameters are known. Starting with an initial set of 177 

particles sampled from the prior (i.e., 𝒔𝑖,𝑡=1 ∼ 𝑓(𝒔𝑡=1)), the filter iteratively simulates particles 178 

via the movement model (i.e., 𝒔𝑖,𝑡 ∼ 𝑓(𝒔𝑖,𝑡 | 𝒔𝑖,𝑡−1)), weights particles in line with the 179 

likelihood (via 𝑤𝑖,𝑡 ∝ 𝑤𝑖,𝑡−1𝑓(𝒚𝑡 | 𝒔𝑖,𝑡)) and resamples particles accordingly.  180 

 181 

Smoother. Particle smoothers re-weight filtered particles to approximate the full marginal, 182 

𝑓(𝒔𝑡 | 𝒚1:𝑇). The two-filter smoother uses 𝒔𝑖,…,𝑁,𝑡 particles from a forward filter (with weights 183 

𝑤𝑖,𝑡) and �̃�𝑗,…,𝑁,𝑡 particles from a backward filter (with weights �̃�𝑡,𝑗). The distribution 184 

𝑓(𝒔𝑡 | 𝒚1:𝑇) is approximated as a sum of re-weighted particles via 𝑓(𝒔𝑡 | 𝒚1:𝑇) ≈ ∑ 𝛿(𝒔𝑡 −𝑁
𝑗185 
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�̃�𝑗,𝑡) �̃�𝑗,𝑡|𝑇, where the smoothed weights for each particle �̃�𝑗,𝑡 represent a summation over all 186 

possible movements from preceding particles on the forward filter, that is, �̃�𝑗,𝑡|𝑇 ≈187 

�̃�𝑗,𝑡 ∑ 𝑓( �̃�𝑗,𝑡 ∣∣ 𝒔𝑖,𝑡−1 )𝑁
𝑖 𝑤𝑖,𝑡−1. We use samples from 𝑓(𝒔𝑡 | 𝒚1:𝑇) to map utilisation 188 

distributions (Lavender et al., in prep). Sampling efficiently from the joint distribution, 189 

𝑓(𝒔1:𝑇 | 𝒚1:𝑇), is more challenging and beyond the scope of this contribution.  190 

 191 

3. PACKAGE 192 

 193 

patter supports data input, algorithms and mapping (Fig. 1).  194 

 195 

For data input, patter provides sim_*() functions for de novo simulation or accepts real-196 

world datasets.  197 

 198 

Particle algorithms are implemented by pf_*() functions. Filtering and smoothing are 199 

implemented via pf_filter() and pf_smoother_two_filter(). We provide 200 

movement models and methods that evaluate the likelihood of acoustic and archival (depth) 201 

observations, but algorithm components can be customised as required.  The main output of 202 

particle routines is a data.table of particles. The core algorithm routines wrap our high-203 

performance Patter.jl package. JuliaCall implements the coupling between patter 204 

and Patter.jl (Li, 2019). Movement and observation models are multithreaded and 205 

designed for numerical stability. We anticipate that most users will prefer the R front-end, but 206 

Patter.jl can also be used directly.  207 

 208 

Mapping functions (map_*()) facilitate subsequent analysis, including the reconstruction of 209 

utilisation distributions.  210 
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 211 

Figure 1. Overview of the patter package.  212 

 213 

4. EXAMPLES 214 

 215 

4.1. Overview 216 

 217 

We provide two worked examples using simulated data. Simulation is a useful starting point 218 

for illustration and real-world analyses, where it informs algorithm implementation and 219 

interpretation. In both examples, we consider the movements of a benthic animal in a 220 

hypothetical acoustic array spanning a Marine Protected Area (MPA) in Scotland (Fig. 2). The 221 

study area is defined by a 100 x 100 m bathymetry grid. We base the grid on real-world data 222 

(Howe et al., 2014) but for the purposes of our first example add some random noise such that 223 

each cell’s depth is unique. Within this region, we tag an animal with an acoustic transmitter 224 

and an archival (depth) tag. We imagine that both tags operate at a resolution of two minutes 225 

and simulate a discrete-time random walk at this resolution over a one-month period (Fig. 2B–226 

C). We simulate acoustic and depth observations arising from the simulated path and apply our 227 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 30, 2024. ; https://doi.org/10.1101/2024.07.30.605733doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.30.605733
http://creativecommons.org/licenses/by/4.0/


patter R package 

 11 

algorithms to these data to reconstruct movements and patterns of space use. In the first 228 

example, we simulate observations in such a way that the depth observation exactly defines the 229 

location of the individual (which is situated on the seafloor) (Fig. 2D–F). This example will 230 

demonstrate that in the absence of uncertainty the particle filter reconstructs the true movement 231 

path. In the second example, we simulate observations probabilistically and demonstrate the 232 

representation of uncertainty in particle-based methods and the reconstruction of maps of space 233 

use (Fig. 2D–F). In the following sections, we showcase key functions and arguments (Fig. 1). 234 

Additional arguments are denoted by ellipses. Complete code is available online (Lavender et 235 

al., 2024). 236 

 237 

 238 

Figure 2. The components of a state-space model for animal tracking data. A shows the 239 

study area, including a simulated movement path (coloured by time) and acoustic receivers 240 

(sized by detection range and coloured by detection(s)/non-detection). B–C show the 241 

components of the random walk used to simulate and model movements. D–E show the 242 
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observation models used to simulate and model acoustic and depth observations arising from 243 

the simulated path in the two worked examples; the acoustic observation model is constant but 244 

the depth model differs (see §4.1). F shows the simulated time series for each example. 245 

 246 

4.2. Implementation  247 

 248 

4.2.1. Simulation  249 

 250 

We begin with essential initiation: 251 

library(patter) 252 

library(data.table) 253 

julia_connect() 254 

 255 

Next, we define the study system: 256 

# Define study period  257 

timeline <- seq(as.POSIXct("2023-01-01 12:00:00", tz = "UTC"), 258 

                as.POSIXct("2023-01-31 23:58:00", tz = "UTC"), 259 

                by = "2 mins") 260 

 261 

# Define study site (map: SpatRaster)  262 

set_map(map) 263 

 264 

We simulate an acoustic array (i.e., data.table of receivers). We include three receiver 265 

columns that represent observation model (detection probability) parameters: 266 

moorings <- sim_array(map, 267 

                      timeline, 268 
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                      .n_receiver = 100L, 269 

                      .arrangement = "regular",  270 

                      .receiver_alpha = 4, 271 

                      .receiver_beta = -0.01, 272 

                      .receiver_gamma = 750) 273 

 274 

We then simulate a two-dimensional random walk in this area: 275 

# Define state type for 2D walk 276 

# (s_t = (s_{x, t}, s_{y, t}), subject to boundary conditions) 277 

state <- "StateXY" 278 

 279 

# Define movement model that updates s_t 280 

# d_t ~ TruncatedGamma(k, theta, 0, mobility) 281 

# phi_t ~ Uniform(a, b) 282 

model_move <-  283 

  move_xy(dbn_length = "truncated(Gamma(1.0, 250.0), upper = 750.0)", 284 

          dbn_angle = "Uniform(-pi, pi)") 285 

 286 

# Simulate 2D path (data.table of states) 287 

# s_t = (s_{x, t-1} + d_t * cos(phi_t), s_{y, t-1} + d_t * sin(phi _t)),  288 

# subject to boundary conditions 289 

path <- sim_path_walk(map, 290 

                      timeline, 291 

                      state, 292 

                      model_move, ...) 293 

 294 
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Next, we simulate acoustic and archival observations. This requires defining a vector of 295 

observation model (ModelObs) structures (which hold model parameters) and a corresponding 296 

list of data.tables (with those parameters). For both examples, we simulate acoustic 297 

observations from a truncated logistic model (for which we provide the 298 

ModelObsAcousticLogisTrunc structure and the essential parameters are defined in 299 

moorings). To simulate depths, we consider a simple version of the uniform model described 300 

previously, as implemented by the ModelObsDepthUniform structure, where 𝜀shallow(𝒔𝑡) 301 

and 𝜀deep(𝒔𝑡) are the constants depth_shallow_eps and depth_deep_eps. 302 

 303 

In the first example, we imagine an animal found exclusively on the seabed, the depth of which 304 

is known exactly, giving parameters: 305 

data.table(sensor_id = 1L, 306 

           depth_shallow_eps = 0, 307 

           depth_deep_eps = 0) 308 

 309 

In the second example, we incorporate uncertainty: 310 

data.table(sensor_id = 1L, 311 

           depth_shallow_eps = 20, 312 

           depth_deep_eps = 20) 313 

 314 

For each example, sim_observations() simulates a list of observations: 315 

model_obs <- c("ModelObsAcousticLogisTrunc","ModelObsDepthUniform") 316 

obs <- sim_observations(timeline, 317 

                        model_obs, 318 

                        .model_obs_pars = list(...)) 319 

where list(...) denotes the parameter data.tables for the relevant example.  320 
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 321 

4.2.2. Particle filter 322 

 323 

The particle filter is implemented via: 324 

pf_filter( 325 

  map, 326 

  timeline, 327 

  state, 328 

  xinit, 329 

  .yobs = list(...), 330 

  .model_obs = model_obs, 331 

  .model_move = model_move, 332 

  .n_particle = 1e5L, 333 

  .direction = "forward", ... 334 

) 335 

where .xinit (optional) is the simulated tagging location and .yobs is the list of datasets 336 

for the relevant example. This returns a pf_particles-class object that includes a 337 

data.table of particles and diagnostic statistics. In the first example, the filter reconstructs 338 

the true (unobserved) path. In the second example, we generate a ‘cloud’ of particles at each 339 

time step, for which we examine particle diagnostics and proceed to smoothing.  340 

 341 

4.2.3. Particle smoother 342 

 343 

Particle smoothing is implemented using outputs from a forward and backward filter via: 344 

pf_smoother_two_filter(...) 345 

 346 
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For illustration, we reconstruct the utilisation distribution and home range from smoothed 347 

particles via map_dens() and map_hr(). We also compare time spent in the MPA, estimated 348 

from the proportion of particles inside the MPA, to the truth.  349 

 350 

This workflow is highly customisable. Users can define species-specific movement models (of 351 

any dimension), include diverse observation types and implement system-specific observation 352 

models. See the package documentation for details.  353 

 354 

4.3. Results  355 

 356 

In our first example, the particle filter reconstructs the simulated movement path perfectly (Fig. 357 

3A). In the second example, in which observations were simulated with error, the particle filter 358 

represents the individual’s possible locations at each time step with a series of weighted 359 

particles that approximate the partial marginal distribution, 𝑓(𝒔𝑡 | 𝒚1:𝑡) (Fig. 3B). The particle 360 

smoother re-weights filtered particles, approximating the full marginal, 𝑓(𝒔𝑡 | 𝒚1:𝑇) (Fig. 3C). 361 

Smoothed particles can be used to map patterns of space use, estimate home ranges and 362 

quantify residency (Fig. 3D). The quality of the smoothing depends on the filter. In this case, 363 

filter diagnostics are adequate (Fig. 3E). Total computation time ranged from 5–32 minutes for 364 

examples 1–2 on a 2023 MacBook Pro (Apple M2 Pro, 32 GB RAM, 12 CPUs).  365 

 366 
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367 

Figure 3. patter outputs for the first (A) and second (B–E) worked examples. A is the 368 

movement path reconstructed by the particle filter for the first example. The simulated path is 369 

recovered perfectly (at grid resolution) because the observations exactly define the individual’s 370 

location. B–C show particles and scaled probability densities from the forward filter and two-371 

filter smoother, respectively, at a selected time step. D maps the pattern of space use over the 372 

entire time series using smoothed particles. Core ranges contain 50 % of the probability mass 373 

volume. Estimated residency in the MPA is 37.0 % (the true value is 36.3 %). E shows 374 

diagnostics from the forward filter. The minimum value of each statistic is shown for every 100 375 

time steps. 376 

 377 

5. DISCUSSION  378 

 379 
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patter provides a robust, fast and accessible implementation of particle-based methods for 380 

animal tracking data (Lavender et al. in prep). In the context of passive acoustic telemetry, 381 

patter is unique in the provision of algorithms that represent the movement and observation 382 

processes that generate observations, including movement capacity, barriers to movement, 383 

detections and ancillary observations, within a biologically and statistically sound framework. 384 

The algorithms outperform standard heuristic analytical approaches (provided by packages 385 

such as VTrack and RSP) (Lavender et al., in prep). Furthermore, the movement and 386 

observation models are customisable, which makes the routines applicable in many real-world 387 

settings. However, understanding the settings in which different methods are more or less 388 

useful remains an important research area (Lavender et al., in prep).  389 

 390 

A key feature of patter is the speed provided by the Patter.jl backend  (Lavender, 2024b). 391 

Previous research has linked the underutilisation of particle algorithms in ecology to their 392 

computational requirements (Liu et al., 2019), which are typically 𝒪(𝑁𝑇) for filtering and 393 

𝒪(𝑁2𝑇) for smoothing (Doucet & Johansen, 2009). While adequate filtering is often possible 394 

with relatively few particles (𝑁 ≈ 1000), this imposes some practical constraints that can be 395 

limiting in situations where numerous particles are required to ensure convergence (namely, 396 

labyrinthine landscapes where a tiny fraction of possible routes are compatible with the data) 397 

(Lavender et al., in prep). The particle penalty is more severe for smoothing but mitigated via 398 

subsampling, since in general only a subset of the particles required for a successful filter run 399 

are ultimately required to approximate the distribution of latent locations (in two or three 400 

dimensions). In practice, our packages achieve speeds that compare favourably with other 401 

geolocation routines (even with ≤ 1 million particles). For example, Hostetter & Royle (2020) 402 

formulated a state-space model for acoustic detections (𝑇 = 150) alongside a bespoke Jags 403 

implementation that requires ~15 hours on a standard computer to run. With our particle 404 
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filtering–smoothing algorithm, the estimation of latent locations in this situation is soluble in 405 

seconds. Other geolocation packages developed for demersal fish that fit hidden Markov 406 

models using maximum likelihood typically require hours or days to derive daily geolocation 407 

estimates for a one-year period and even a novel Python particle filter that exploits GPU-408 

parallelisation takes up to an hour (Liu et al., 2019). While run times are not directly 409 

comparable, it is encouraging to see patter achieving speeds sufficient to make particle 410 

algorithms serious candidates for real-world analyses (Lavender et al., in prep).  411 

 412 

For applied studies, we suggest the use of simulations to guide method implementation and 413 

interpretation. Particle filters can be sensitive to model parameters and tuning settings (such as 414 

particle number) and system-specific simulations can inform input arguments and quantify 415 

sensitivity (Lavender et al., in prep). Joint estimation of model parameters and latent locations 416 

is a possible future development. As an example real-world analysis, we are currently analysing 417 

acoustic and archival data from the Critically Endangered flapper skate (Dipturus intermedius) 418 

to quantify patterns of space use and site affinity to a Scottish Marine Protected Area. There is 419 

much to be learnt from applications in other settings and we welcome community feedback as 420 

these developments are exploited.   421 
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