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Abstract: Critical National Infrastructure includes large networks such as telecommuni-

cations, transportation, health services, police, nuclear power plants, and utilities like 

clean water, gas, and electricity. The protection of these infrastructures is crucial, as na-

tions depend on their operation and stability. However, cybera:acks on such systems ap-

pear to be increasing in both frequency and severity. Various machine learning ap-

proaches have been employed for anomaly detection in Critical National Infrastructure, 

given their success in identifying both known and unknown a:acks with high accuracy. 

Nevertheless, these systems are vulnerable to adversarial a:acks. Hackers can manipulate 

the system and deceive the models, causing them to misclassify malicious events as be-

nign, and vice versa. This paper evaluates the robustness of traditional machine learning 

techniques, such as Support Vector Machines (SVMs) and Logistic Regression (LR), as 

well as Artificial Neural Network (ANN) algorithms against adversarial a:acks, using a 

novel dataset captured from a model of a clean water treatment system. Our methodology 

includes four a:ack categories: random label flipping, targeted label flipping, the Fast 

Gradient Sign Method (FGSM), and Jacobian-based Saliency Map A:ack (JSMA). Our re-

sults show that, while some machine learning algorithms are more robust to adversarial 

a:acks than others, a hacker can manipulate the dataset using these a:ack categories to 

disturb the machine learning-based anomaly detection system, allowing the a:ack to 

evade detection. 

Keywords: adversarial a:acks; machine learning; critical national infrastructure  

protection; industrial control system security; clean water treatment systems; anomaly  

detection 

 

1. Introduction 

Critical National Infrastructure (CNI) refers to a group of systems, services, and as-

sets that are so essential that their continuous and uninterrupted operation is vital to en-

sure public health and safety, national security, the economy, and the functioning of daily 

activities and businesses. This includes systems such as transportation, telecommunica-

tions, national health services, police systems, commerce, and utilities like electricity, 

clean water, and gas. Every minute counts for CNI, so even minor disruptions can pose 

significant risks to the system. 

The emergence of Industry 4.0 [1] and the increasing connectivity of devices associ-

ated with Critical National Infrastructure (CNI), along with the integration of traditional 
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computer networks and CNI, has expanded the a:ack surface of these critical assets. De-

spite the tremendous importance of CNI, cybersecurity issues in this sector have often 

been inadequately addressed, resulting in an increase in both the frequency and impact 

of cybera:acks. 

Criminals and state-sponsored hackers—those who are directly or indirectly sup-

ported by states through their militaries and government agencies—are increasingly tar-

geting CNI to disrupt society. 

For instance, in 2016, Verizon Security Solutions reported that a control system in a 

water utility was hacked, leading to changes in the chemicals used to treat tap water. The 

incident was dubbed the Kemuri Water Company (KWC) hack, though its location was 

never disclosed [2]. In March 2019, the Post Rock Water District in Ellsworth, Kansas, was 

the target of a cybera:ack that threatened drinking water safety. The hacker, a former 

employee, used previously granted credentials to remotely access the company’s com-

puter system and disable the sterilizing procedures that make water drinkable, as his ac-

cess had not been revoked when he left the organization [3]. 

Machine Learning (ML) methods have proven effective in detecting both known and 

unknown a:acks with high accuracy, particularly when dealing with large datasets. These 

mathematical models are built by analyzing pa:erns in data, which are then used to make 

predictions on new input. ML approaches for anomaly detection have become a rapidly 

growing area of research in both academia and industry, applied in fields ranging from 

traditional computer networks, to wireless networks, the Internet of Things (IoT), and 

Critical National Infrastructure. This includes applications such as phishing detection [4], 

fake news detection [5], IoT a:ack detection [6], Android malware detection [7], wireless 

network a:ack detection [8], Industrial Control System (ICS) a:ack detection [9], and wa-

ter service a:ack detection [10]. 

However, ML techniques are known to be vulnerable to adversarial a:acks, where 

criminals exploit adversarial perturbations to manipulate a model, causing it to misclas-

sify data. For instance, they can trick a model into classifying malicious events as benign, 

and vice versa, leading to detection evasion and system disturbances that can cause the 

entire model to fail [11]. These exploitations can occur during both the training and testing 

phases. To develop robust ML models that are capable of detecting anomalies with high 

accuracy, it is essential to incorporate adversarial examples during both training and test-

ing. This approach has been validated by prior research in the field [12,13]. 

The research presented in this paper focuses on adversarial a:acks against a super-

vised, energy-based anomaly detection algorithm applied to a clean water treatment sys-

tem. In terms of the required testbed and dataset for this research, SWaT [14], a multistage 

water purification plant, and WADI [15], a consumer distribution network testbed, along 

with their associated datasets, are the closest existing systems to our work. The majority 

of studies in the field of cybersecurity analysis for clean water supply and treatment sys-

tems rely on these two testbeds, either by having direct access to them, or by using the 

datasets generated from them. 

However, since our focus is on the energy consumption of the system’s components 

for both anomaly detection and adversarial a:ack scenarios, these two testbeds and their 

associated datasets are not suitable for our research, as they do not include energy-based 

features. Consequently, in this study, we employ our previously developed testbed, the 

Virtual Napier Water Treatment System (VNWTS) [16], along with its associated energy-

based dataset. The VNWTS simulates the water chlorination process in a clean water treat-

ment system. The goal of this research is to assess the robustness of the previously cap-

tured dataset against adversarial examples. 

The contributions of this paper are as follows: 
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• We apply label noise adversarial a:acks (both random label flipping and targeted 

label flipping) against binary-class Logistic Regression (LR) and a Support Vector 

Machine (SVM). 

• We generate adversarial examples, using the Fast Gradient Sign Method (FGSM), 

against binary and multiclass Logistic Regression (LR) and Artificial Neural Net-

works (ANNs). 

• We employ the Jacobian-based Saliency Map A:ack (JSMA), which uses feature se-

lection to minimize the number of features modified while causing misclassification, 

against binary and multiclass Logistic Regression (LR) and Artificial Neural Net-

works (ANNs). 

The remainder of this paper is organized as follows. In Section 2, we review the re-

lated work in the field, followed by the methodology in Section 3. Section 4 presents the 

implementation and results. Finally, Section 5 concludes the paper and offers suggestions 

for future work. 

2. Related Work 

This section reviews related work on Adversarial Machine Learning (AML) a:acks 

targeting Critical National Infrastructure (CNI), with a particular focus on power grids 

and water systems. 

In [17], the authors examined the impact of adversarial a:acks, specifically Limited-

memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) and Jacobian-based Saliency Map 

A:ack (JSMA), against a machine learning approach: Multilayer Perceptron (MLP). They 

employed MLP to detect False Data Injection A:acks (FDIAs) in power systems. The re-

sults showed a significant reduction in accuracy in detecting FDIAs due to the implemen-

tation of these adversarial a:acks. 

In [18], the authors utilized a domain-specific deep learning and testing framework 

to analyze the resilience of ML-based prediction models in power distribution networks. 

They also integrated an anomaly detection model to identify adversarial machine learn-

ing, specifically stealthy adversarial a:acks targeting the predictor. The results showed a 

significant negative impact of such a:acks on smart grid predictions, even under partial 

network compromise. 

In [19], the authors proposed a general formulation of white-box a:acks, where ad-

versaries disturb the external time series observed by the controller in power grids, aiming 

to maximize any differentiable function, whether or not related to the control cost. They 

validated their technique using synthetic Autoregressive Integrated Moving Average 

(ARIMA) and real-world electricity demand pa:erns. The proposed a:ack increased the 

cost by an average of 8500%, which was not apparent to the human eye when observing 

the electricity pa:ern, and raised the energy constraints by 13% on real electricity demand 

time series. 

In [20], the authors systematically compared the effects of various adversarial a:acks, 

including the FGSM, One-Target Class Modification (OTCM), JSMA, and Limited-

memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS), on machine learning algorithms 

used for classification, forecasting, and control problems in power systems. They also ex-

amined various defense mechanisms to enhance the performance of machine learning al-

gorithms under different adversarial a:acks. Their results indicated that the proposed 

machine learning models for power systems were vulnerable to adversarial a:acks, with 

Generative Adversarial Networks (GANs) emerging as the most effective defense mech-

anism across all tested power systems. 

In [21], the authors proposed a framework for preparing adversarial a:acks targeting 

data-driven invariant checkers in water treatment systems by employing the SWaT phys-

ical testbed. Their a:acks successfully increased the system’s false alarms by up to 80%. 
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They developed nine axiomatic design-driven invariant checkers to detect adversarial at-

tacks. The results showed that these checkers did not raise false alarms (false positives), 

indicating robustness against adversarial a:acks. However, they were unable to detect the 

a:acks themselves. 

In [22], the authors proposed two algorithms for poisoning neural network-based 

cybera:ack detectors in clean water treatment systems. Using the SWaT testbed, they em-

ployed artificial and real testbed data to evaluate their proposed algorithms, which 

demonstrated successful poisoning of the neural network-based detectors. They also pre-

sented a method for applying their poisoning algorithms to dynamic systems. 

In [23], the authors proposed a Bayesian training method to protect deep learning-

based load forecasting models against adversarial a:acks in power systems. They theo-

retically proved that their approach enhances the robustness of load forecasting against 

adversarial a:acks without compromising prediction performance. They also employed 

an approximation-based training scheme to reduce computational burden, making the 

method more practical. 

In contrast, there is existing work on defenses against adversarial machine learning 

algorithms. We briefly address some of them here. The general approaches to defense 

against adversarial machine learning include adversarial training, input pre-processing, 

certified defenses, defensive distillation, and tensor factorization. For instance, in adver-

sarial training, the adversarial samples are generated using different techniques, and then 

these samples are used to train the model to learn and recognize potential a:acks, enhanc-

ing its robustness. Furthermore, in input pre-processing, transformations such as noise 

addition or dimensionality reduction are applied to input data to make the model more 

resilient against adversarial machine learning. 

The authors of [24] propose an analytical framework to describe the stochastic dy-

namics of cyber-threat propagation in a collection of heterogeneous sub-networks, each 

characterized by different a:ributes and involving two adversaries: an a:acker, who 

launches a:acks across the networks, and a defender, who tries to mitigate the a:acks by 

delivering suitable countermeasures. Similarly, the authors of [25] investigate the re-

sistance of a network under a Denial of Service (DoS) a:ack using a Stackelberg game 

approach, which characterizes the non-cooperative competition between the a:acker and 

the controller. The authors of [26] present a systematic adversarial machine learning threat 

analysis for the Open Radio Access Network (O-RAN). 

As the defense against adversarial machine learning is not the focus of this paper, we 

did not consider defense mechanisms in our experiments. Our focus is to assess the per-

formance of the chosen machine learning algorithm on an energy-based dataset against 

adversarial machine learning. The defense against such a:acks is one of the goals for our 

future research. 

In this paper, we study the impact of various adversarial machine learning a:acks on 

our proposed supervised, energy-based anomaly detection algorithm for a CNI applica-

tion: a clean water treatment system. The work in this paper differs from existing studies, 

particularly those focusing on water services, such as [21,22], for the following reasons: 

This paper examines the impact of adversarial machine learning a:acks for the first 

time on a supervised, energy-based anomaly detection algorithm in a clean water treat-

ment system. Although the model is proposed for a clean water treatment system, the 

concept of using a system’s energy profile for anomaly detection can be extended to other 

CNI applications (e.g., energy sector and transportation systems). Therefore, it is not lim-

ited to a single application. Additionally, the research is conducted on the authors’ imple-

mented testbed, the Virtual Napier Water Treatment System (VNWTS), which models the 

water chlorination process for a clean water treatment system, using a uniquely collected 

dataset. Existing datasets, such as those from SWaT [14] and WADI [15], are not suitable 
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for this work, as they do not include energy consumption metrics in benign and malicious 

scenarios. Furthermore, this paper studies the impact of four different adversarial a:acks: 

random label flipping, targeted label flipping, the Fast Gradient Sign Method (FGSM), and 

Jacobian-based Saliency Map A:ack (JSMA), on three popular machine learning algo-

rithms: Logistic Regression (LR), Support Vector Machines (SVMs), and Artificial Neural 

Networks (ANNs). In contrast, existing work typically implements only one or two at-

tacks/algorithms. 

Table 1 provides an overview of related work on adversarial machine learning tar-

geting CNI. 

Table 1. Review of related work on AML targeting CNI. 

Paper  ML Algorithm CNI Protection Attack Model Results 

[17] MLP 
Detects FDIAs in 

power systems 
L-BFGS 

Significant reduction 

in accuracy in detect-

ing FDIAs 

[18] 

Customized 

machine learn-

ing model  

Load forecasting 

predictors for 

power distribu-

tion network 

Stealthy adversarial 

attacks 

Significant negative 

impact on smart grid 

predictions 

[19] 
Model-based 

controllers 
Power grids 

White-box AML at-

tacks and ARIMA 

validation 

Proposed attack in-

creased cost by an av-

erage of 8500% and 

raised energy con-

straints by 13% 

[20] 

Proposed ma-

chine learning 

models 

Power systems 
FGSM, OTCM, JSMA, 

and L-BFGS 

Proposed machine 

learning models were 

vulnerable to adver-

sarial attacks 

[21] 

Design-driven 

invariant 

checkers; ML 

model for 

anomaly detec-

tion 

Water treatment 

systems 

Adversarial attack on 

actuator/sensor in 

one/multiple stages  

Successfully increased 

system’s false alarms 

by up to 80% 

[22] ANN  
Water treatment 

systems 
Poisoning attack 

Successful poisoning 

of ANN-based detec-

tors 

[23] 

Deep learning-

based load 

forecasting 

model 

Power systems 
White-box and black-

box AML 

Proposed machine 

learning models were 

vulnerable to adver-

sarial attacks 

This work LR, SVM, ANN 
Clean water 

treatment system 

Random label flip-

ping, targeted label 

flipping, FGSM, 

JSMA  

Significant reduction 

in accuracy, but it 

varied for different al-

gorithms against dif-

ferent attacks 

3. Methodology 

In this section, we explain the methodology that we have employed for the research con-

ducted in this paper. A summary of our methodological framework is depicted in Figure 1. 
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Figure 1. Our methodological framework. 

3.1. VNWTS Testbed Design and Implementation 

We employed the VNWTS testbed (Figure 2 [16]), which represents a clean water treat-

ment system that we previously designed, implemented, and evaluated during the UK 

COVID-19 lockdown, when access to our physical testbed was restricted. The testbed com-

prises sensors, actuators, a Programmable Logic Controller (PLC), a Supervisory Control and 

Data Acquisition (SCADA) system, a Human–Machine Interface (HMI), and Python 3.12.4 

code to facilitate communication between the system components. The virtual process of the 

testbed (Figure 3 [16]) was implemented in Simulink [27], a graphical programming environ-

ment in MATLAB (R2024b), and mirrors the characteristics and dynamics of the physical com-

ponents represented in the MPA PS Festo Rig (Figure 4 [28]). This virtual process emulates the 

chlorine treatment of drinking water, and includes components such as pipes, a pressure ves-

sel, two pumps, a proportional valve, a water reservoir tank, two flow sensors, and two water 

supplies. The MPA PS Festo Rig is a scaled-down version of a unique water treatment system, 

making it an ideal choice for this project. 
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Figure 2. VNWTS testbed architecture [16]. 

 

Figure 3. VNWTS virtual process [16]. 



Electronics 2025, 14, 639 8 of 34 
 

 

 

Figure 4. MPA PS Festo Rig [28]. 

In the VNWTS testbed, we utilized SIMATIC S7-PLCSIM Advanced V3.0 software to 

emulate the SIMATIC S7-1500 PLC and its internal components, including inputs, out-

puts, working memory, and network functionalities. The emulated PLC is connected to, 

and communicates with, the virtual clean water treatment system in the VNWTS testbed. 

Additionally, we implemented two PI controllers—a control mechanism based on me-

chanical and electronic controllers—and a Python communication module to facilitate 

data exchange between system components (e.g., between the PLC and Simulink). 

The VNWTS testbed simulates a water treatment system in general, with a specific 

focus on the water chlorination process. In the virtual process (Figure 3 [16]), a cold-water 

reservoir, equipped with a cold-water pump, represents a natural water tank requiring 

treatment before distribution to a client’s tap. Similarly, a hot-water reservoir, equipped 

with a hot-water pump, represents a chlorine tank used to treat the cold water. To simu-

late the chlorine dosing process, we employed a similar dosing ratio, replacing the chlo-

rine with hot water to ensure the simulation provided an adequate representation of clean 

water treatment. 

To enhance the realism of the testbed, we implemented a week-long water demand 

model for a small city, inspired by a real UK energy consumption model, as detailed in 

our previous work [29]. This demand model is integrated into the proportional valve of 

the VNWTS virtual process, and is regulated based on the simulated water demand. For 

instance, high water demand is represented by a fully open valve, which consumes more 

energy, while low water demand is represented by a partially open valve, consuming less 

energy. The pump speeds adjust accordingly—accelerating during high demand and de-

celerating during low demand—to maintain the reservoir tank’s water level. 

3.2. Dataset Overview 

In this paper, we focus on the energy consumption of a clean water treatment system 

model for two purposes: anomaly detection and adversarial machine learning. Therefore, 

existing datasets such as SWaT [14] and WADI [15] are not suitable for our work, as they 

do not include energy-related features. Furthermore, to the best of our knowledge, no ex-

isting studies utilize an energy consumption-based dataset to investigate adversarial ma-

chine learning a:acks on clean water treatment systems. 

For our dataset, we selected eight features to define the VNWTS testbed based on its 

energy consumption: (1) cold flow rate, (2) hot flow rate, (3) temperature, (4) tank level, 
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(5) voltage in the hot-water pump, (6) voltage in the cold-water pump, (7) current in the 

hot-water pump, and (8) current in the cold-water pump. In addition to these eight fea-

tures, the dataset includes two classification features: Class: A binary classification feature, 

where the label is 0 for benign events and 1 for a:ack events. All types of a:acks are la-

beled as 1. Type of a%ack: A multiclass classification feature with three categories: (1) a:ack 

on the level setpoint, (2) a:ack on the temperature setpoint, and (3) a:ack on multiple 

sensors. Benign events are labeled as 0 for this feature. The VNWTS features are described 

in detail in Table 2. 

Table 2. Energy feature descriptions for VNWTS dataset. 

Features Description 

Cold flow rate 

This feature represents the flow rate of cold fluid 

(measured per second) passing through the 

testbed pipes. The cold water simulates raw water 

that will undergo chlorination. 

Hot flow rate 

This feature represents the flow rate of hot fluid 

(measured per second) passing through the 

testbed pipes. The hot water simulates chlorine, 

which will be used to purify the raw water (i.e., the 

cold water described above). 

Temperature 

This feature represents the temperature of the wa-

ter in the reservoir tank, which is a mixture of raw 

water (cold water) and chlorine (hot water). 

Tank level 
This feature indicates the required water level to 

be maintained in the reservoir tank. 

Voltage in the hot-water pump 
This feature represents the voltage supplied to the 

hot-water pump. 

Voltage in the cold-water pump 
This feature represents the voltage supplied to the 

cold-water pump. 

Current in the hot-water pump 
This feature represents the current consumed by 

the hot-water pump. 

Current in the cold-water pump 
This feature represents the current consumed by 

the cold-water pump. 

Class feature Labels: 0 for benign and 1 for attack 

Type of attack 

Labels: 

• 0 for benign events  

• 1 for attack on the level setpoint 

• 2 for attack on the temperature setpoint  

• 3 for attack on multiple sensors 

We then ran the testbed based on our chosen water demand model, along with dif-

ferent episodes of malicious events, to collect an energy consumption-based dataset. 

These events targeted the fixed memory space vulnerabilities present in the Siemens S7-

1500 PLC. The fixed memory space, allocated to the input and output memory of the PLC, 

can be overwri:en by an a:acker. This allows an intruder to modify or rewrite values, 

such as the water temperature, leading to disturbances in the water chlorination process. 

Our implemented a:acks include a:acks on level and temperature sensors, a:acks 

on the hot and cold pump controllers, and a:acks on the PLC memory, including changes 

to the level and temperature setpoints in the working memory of the Siemens S7-1500 

PLC. These vulnerabilities are fully explained in our previous work [16]. For easier man-

agement of the VNWTS dataset, we categorized the malicious events into three types: (1) 
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a:acks on the level setpoint, (2) a:acks on the temperature setpoint, and (3) a:acks on 

multiple sensors. 

During the runtime of our experiments, we captured 3,132,651 events, including both 

malicious and benign cases, which formed a unique energy-based dataset for the clean 

water treatment system application. Given our limited resources, and to expedite the ex-

periments, we selected approximately 4% of the VNWTS dataset, resulting in a total of 

120,000 records of benign and malicious traffic. Of these 120,000 events, we used 80% 

(96,000 records) for training and 20% (24,000 records) for testing. Table 3 presents the 

overall values for each category, including both a:ack and benign events for the testing 

and training phases. 

Table 3. Values for 4% of VNWTS Dataset. 

Attack and Benign Events Full Amount Training Amount Testing Amount 

Benign events (0) 60,000 48,007 11,993 

Attack on the level setpoint (1) 20,000 16,038 3962 

Attack on the temperature set-

point (2) 
20,000 16,025 3975 

Attack on multiple sensors (3) 20,000 15,930 4070 

Total events 120,000 96,000 24,000 

3.3. Planning A%acks Against Machine Learning Models 

This phase has two stages: Stage (1): development of trusted models, and Stage (2): 

generation of adversarial examples. In order to assess the impact of adversarial machine 

learning a:acks on the selected performance metrics—accuracy, precision, recall, and F1-

scores—the first stage involves implementing base models. This stage is crucial, as it pro-

vides a valid performance comparison between trusted models and the manipulated ones 

resulting from the a:acks. Therefore, popular machine learning models, such as linear 

SVM, LR, and ANN, are selected. ANN is chosen for its ability to test, train, and evaluate 

data more efficiently compared to Long Short-Term Memory Networks (LSTMs) and Re-

current Neural Networks (RNNs). The second stage focuses on generating adversarial ex-

amples for the aforementioned models. 

For example, label noise adversarial a:acks (both random label flipping and targeted 

label flipping) are used against binary-class SVM and LR, as these traditional ML models 

are more vulnerable to label noise compared to feature noise a:acks. In random label flip-

ping, as the name suggests, a random portion of labels (or classes) is selected and reversed, 

and the SVM and LR models are then trained using these poisoned data. The random 

portion of data is gradually increased from 0% to 70%, in increments of ten, and is ex-

pected to demonstrate an incremental reduction in the models’ performance. However, 

given that label flipping might have a small impact, particularly in the lower ranges (e.g., 

10% and 20%), when it is random, targeted label flipping is also employed on the SVM 

and LR binary classification models. For targeted label flipping, the absolute distance be-

tween the two models and the datapoints (labels or classifications) is calculated. Labels 

with the longest absolute distance from the model are then selected and flipped (i.e., from 

0 to 1, and vice versa). The percentage of flipping is gradually increased from 0% to 70%, 

in increments of ten. The results should indicate an incremental reduction in the perfor-

mance of the models. It is expected that targeted label flipping will result in a more nega-

tive impact on the models’ performance, particularly in the lower ranges, compared to the 

random label flipping technique. 

Additionally, the FGSM and JSMA methods are used against binary and multiclass 

LR and ANNs. The label noise adversarial a:acks against SVM and LR models, explained 

above, assume that the a:ackers have access to the training data and can manipulate them. 
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However, the FGSM and JSMA methods assume that a:ackers have access to testing data, 

allowing them to evade the binary and multiclass LR and ANN models after deployment. 

An IBM-provided library called the Adversarial Robustness Toolbox (ART) [30] was used 

to create the adversaries for the testing data against the models, following the working 

principles of the FGSM described in [31], and of JSMA described in [32]. 

For the FGSM, the degree to which the test samples are perturbed, known as epsilon, 

is varied between 0.05 and 0.3. For each epsilon, a new testing set is created from the orig-

inal test set and used as a test set for the developed models. It is expected that higher 

epsilons will result in a greater decline in the models’ performance. For JSMA, unlike the 

FGSM, it is possible to select a fraction of the test features to be perturbed. In this research, 

a fixed fraction of 0.1 is used, while the perturbation rates of JSMAs vary between 0.02 

and 0.2. Therefore, for each perturbation rate, and with a fixed fraction of 0.1, a new test 

set is created from the original test set and used for testing the binary and multiclass LR 

and ANN models. 

3.4. Evaluation Criteria 

In general, accuracy, recall, precision, F1-score, and the confusion matrix are common 

metrics used to compare the performance of machine learning models. Using various met-

rics for performance evaluation and comparison is extremely important, as it can further 

improve a model during the testing phase, and provide an opportunity to choose the most 

suitable model for deployment. True positive (TP) is the number of positive events cor-

rectly classified as positive by the model. True negative (TN) is the number of negative 

events correctly classified as negative by the model. False positive (FP) is the number of 

negative events incorrectly classified as positive by the model. False negative (FN) is the 

number of positive events incorrectly classified as negative by the model. 

Accuracy is the ratio of the total number of true (positive and negative) predictions 

to the total number of true (positive and negative) and false (positive and negative) pre-

dictions. 

Accuracy =
�	 + ��

�	 + �� + �� + �	
 (1)

Recall is the ratio of the total number of true positive predictions to the total number 

of true positive and false negative predictions. 

Recall =
�	

�	 + ��
 (2)

Precision is the ratio of the total number of true positive predictions to the total num-

ber of true positive and false positive predictions. 

Precision =
�	

�	 + �	
 (3)

F1-score is the ratio of 2 times the precision times the recall, to the sum of precision 

and recall. 

F1 − score =
2 � ����� �!" � ���#$$

����� �!" + ���#$$
 (4)

The confusion matrix is a visual representation of true and false (positive and nega-

tive) predictions. 

In this paper, to evaluate the results, the adversarial examples are compared with the 

trusted models for binary and multiclass classifications. For example, this includes LR, 

SVM, and ANN trusted models, which contain no data manipulation, compared against 

the same models after adversarial a:acks. Accuracy, recall, precision, F1-scores, and the 

confusion matrix are used to evaluate all the models before and after the adversarial 
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impact. The recall metric is a key metric in comparison with precision in this research, 

given the sensitivity of clean water treatment systems, where false negatives are more 

costly than false positives. This means that a decrease in recall results from an increased 

number of false negatives, allowing hackers to launch a:acks against the system without 

being detected. Additionally, the confusion matrix is used to represent the incorrect clas-

sifications for both binary and multiclass categories for each trusted model. 

4. Implementation and Results 

This section focuses on the implementation and the analysis of results, which in-

cludes a reflection on the data preparation, the creation of the trusted models, and the 

adversarial examples. 

4.1. Data Pre-Processing 

Data pre-processing was employed to improve the quality of the data in the VNWTS 

dataset. This is a vital phase of any machine learning project. For instance, using feature 

reduction to identify redundant features and remove them from a dataset can decrease 

the computational costs of building a predictive model. This also increases the model’s 

overall performance and reduces the chance of overfi:ing. 

For the data pre-processing phase of the VNWTS dataset, normalization and three 

popular feature selection techniques—Information Gain, Chi-Square, and Pearson’s Cor-

relation—have been chosen in this paper. Employing these feature selection techniques 

reduced the total number of features from eight to four. The chosen features to remain 

were Temperature, Tank Level, Cold Flow Rate, and Voltage in the Cold-Water Pump, 

along with the Class Feature and the three types of a:ack. Therefore, Hot Flow Rate, Volt-

age in the Hot-Water Pump, Current in the Hot-Water Pump, and Current in the Cold-

Water Pump have been removed. All the features are fully explained in the previous sec-

tion. As clarified earlier, nearly 4% of the original VNWTS dataset was selected for the 

experiments, with a split of 80% for training and 20% for testing. 

The VNWTS data are all numerical, so no encoding is needed. However, the data 

types differ between the features. For example, the Class Feature is binary (either 0 for 

benign or 1 for a:ack), while the Type of A:ack is an integer (either 0 for benign events, 

1 for a:acks on the level setpoint, 2 for a:acks on the temperature setpoint, or 3 for a:acks 

on multiple sensors). Additionally, Temperature, Tank Level, Cold Flow Rate, and Volt-

age in the Cold-Water Pump are floating-point numbers distributed between 0 and 1. 

Therefore, normalization is required, as the data have variable scales (i.e., binary, integer, 

and float). Normalization gives equal weight to the data, so that no feature skews the 

model’s performance simply because it has a larger value. For this, MinMaxScaler was 

used to scale the data between 0 and 1. 

After applying pre-processing techniques (i.e., feature selection and normalization) 

to the original dataset, the machine learning algorithms, SVM, LR, and ANN, were 

trained. The pre-processed dataset is called the trusted dataset, as it has not been manip-

ulated during training or testing, allowing the models to perform at their best. The per-

formance of these models was then compared with those whose datasets were manipu-

lated using techniques such as random and targeted label flipping, the FGSM, and JSMA. 

4.2. Trusted and Untrusted Models 

In this paper, accuracy, recall, precision, F1-score, and confusion matrix are used to 

evaluate and compare the performance of all implemented scenarios, including those with 

and without adversarial examples, for both binary and multiclass classifications. Label 

noise adversarial a:acks, such as random label flipping and targeted label flipping, were 

applied against Logistic Regression (LR) and a Support Vector Machines (SVM) in binary 
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classification. Additionally, FGSM and JSMA a:acks were performed on LR and artificial 

neural networks (ANN) for both binary and multiclass classifications. 

We first analyze the impact of the implemented adversarial a:acks on the confusion 

matrix and Receiver Operating Characteristic (ROC) curve for the LR, SVM, and ANN 

models by assessing their performance before and after the a:acks. We then compare the 

performance of these models under various adversarial a:ack scenarios to determine 

which model demonstrates greater resilience against adversaries. For this analysis, we use 

evaluation metrics such as accuracy, recall, precision, and F1-score. 

4.2.1. LR Trusted Models vs. Adversarial Examples 

For the Logistic Regression (LR) trusted model, the default LR implementation and 

parameters from the Scikit-Learn package were used, except for the maximum iteration 

parameter (max_iter), which was set to 1000 instead of the default value of 100. 

The confusion matrix and ROC curve for the LR trusted model in binary classifica-

tion, where no adversarial a:ack is present, are shown in Figure 5. The corresponding 

figures for the LR model under random and targeted label flipping a:acks are presented 

in Figures 6 and 7, respectively. 

  
(a) (b) 

Figure 5. (a) Confusion matrix; (b) ROC curve for LR binary classification without adversarial at-

tacks. 

 
 

(a) (b) 

Figure 6. (a) Confusion matrix; (b) ROC curve for LR binary classification with random label flip-

ping a�ack. 
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(a) (b) 

Figure 7. (a) Confusion matrix; (b) ROC curve for LR binary classification with targeted label flip-

ping a�ack. 

Figure 5a shows that the LR trusted model misclassified 12 a:ack events as benign. 

However, Figures 6a and 7a reveal that this number increases to 11,993 under random 

label flipping a:acks and 9683 under targeted label flipping a:acks, respectively. Further-

more, Figure 6a demonstrates that under the random label flipping a:ack, the LR model 

fails to correctly classify any a:ack events, resulting in zero correct a:ack classifications. 

These observations indicate that the random label flipping a:ack has a more significant 

impact on the LR model by increasing the false negative rate compared to the targeted 

label flipping a:ack. 

The ROC curve and Area Under the Curve (AUC) score further highlight the model’s 

performance. The LR trusted model achieves an average AUC score of 0.755, indicating 

its ability to distinguish between a:ack and benign events, as shown in Figure 5b. In con-

trast, the AUC scores drop to 0.49 and 0.655 under random and targeted label flipping 

a:acks, as shown in Figures 6b and 7b, respectively. 

The confusion matrix and ROC curve for the LR model in binary classification under 

JSMA and FGSM a:acks are presented in Figures 8 and 9, respectively. Analyzing both 

figures reveals that, for the LR binary classification model, the FGSM a:ack has a slightly 

greater impact on reducing the model’s true positive rate and increasing its false positive 

rate compared to the JSMA. 

  

(a) (b) 

Figure 8. (a) Confusion matrix; (b) ROC curve for LR binary classification with JSMA. 
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(a) (b) 

Figure 9. (a) Confusion matrix; (b) ROC curve for LR binary classification with FGSM a�ack. 

However, compared to the trusted model, both a:acks significantly reduce the true 

positive rate and considerably increase the false negative rate for the a:ack events. Addi-

tionally, the ROC curve and AUC score decrease from 0.755 in the LR trusted model (Fig-

ure 5b) to 0.7025 under the JSMA (Figure 8b), and further drop to 0.4225 under the FGSM 

a:ack (Figure 9b). 

The confusion matrix and ROC curve for the LR multiclass classification model are 

presented in Figure 10. In the confusion matrix, the highest misclassifications, where the 

model incorrectly classifies true a:acks as benign events, occur for a:acks on the level 

setpoint and temperature setpoint, respectively. 

  

(a) (b) 

Figure 10. (a) Confusion matrix; (b) ROC curve for LR multiclass classification without adversarial 

a:acks. [Note: ‘Temp A:ack’ represents a:ack on temperature setpoint, and ‘SP A:ack’ represents 

a:ack on level setpoint.]. 

Regarding the ROC curve and AUC score, the LR trusted model for multiclass clas-

sification demonstrates the ability to distinguish a:ack events from benign events, achiev-

ing an average AUC score of 0.843. 

4.2.2. SVM Trusted Models vs. Adversarial Examples 

For the Support Vector Machine (SVM) trusted model, due to speed limitations, a 

Keras Quasi-SVM model [33] was developed. This model incorporates a Random Fourier 

Features layer, configured with a Gaussian kernel, to kernelize linear models by applying 

a non-linear transformation to the input features, followed by training a linear model on 

the transformed features. 
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The confusion matrix and ROC curve for SVM binary classification without adver-

sarial a:acks are presented in Figure 11. Compared to the LR trusted model (Figure 5), 

the SVM model demonstrates superior performance, with a higher number of true posi-

tives and true negatives, and a lower number of false positives and false negatives. This 

improvement is reflected in the ROC curve and AUC score, which increases from 0.755 in 

the LR binary classification model (Figure 5b) to 0.802 in the SVM binary classification 

model (Figure 11b). 

 
(a) (b) 

Figure 11. (a) Confusion matrix; (b) ROC curve for SVM binary classification without adversarial 

a:acks. 

Similarly to the LR model, the highest misclassification in the SVM model involves 

benign events being incorrectly classified as malicious. However, unlike the LR model, 

the SVM model achieves zero misclassifications of a:ack events as benign. The confusion 

matrix and ROC curve for SVM binary classification under random and targeted label 

flipping a:acks are shown in Figures 12 and 13, respectively. Compared to the confusion 

matrix of the SVM trusted model (Figure 11a), both random and targeted label flipping 

a:acks significantly reduce the true positive rate and substantially increase the false neg-

ative rate for a:ack events (Figures 12a and 13a). 

The random label flipping attack has a more severe impact, reducing the true positive 

rate for attack events to zero. In contrast, under the targeted label flipping attack, the number 

of correctly predicted attack events decreases by 9274. Similarly, these attacks reduce the ROC 

curve and AUC score from 0.802 for the SVM trusted model to 0.4925 and 0.6525 under ran-

dom and targeted label flipping attacks, respectively, as shown in Figures 12b and 13b. 

 
 

(a) (b) 

Figure 12. (a) Confusion matrix; (b) ROC curve for SVM binary classification with random label 

flipping a�ack. 
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(a) (b) 

Figure 13. (a) Confusion matrix; (b) ROC curve for SVM binary classification with targeted label 

flipping a�ack. 

The confusion matrix and ROC curve for SVM multiclass classification are presented 

in Figure 14. The results indicate that the model can distinguish a:ack events from benign 

events, with an average AUC score of 0.81. However, this is slightly lower than the LR 

equivalent, which achieves an AUC score of 0.843. Overall, the SVM multiclass classifica-

tion model performs be:er in terms of fewer misclassifications, with most categories hav-

ing zero misclassifications, except for a:acks on the temperature setpoint. 

  
(a) (b) 

Figure 14. (a) Confusion matrix; (b) ROC curve for SVM multiclass classification without adversar-

ial a:acks. [Note: ‘Temp A:ack’ represents a:ack on temperature setpoint, and ‘SP A:ack’ repre-

sents a:ack on level setpoint.]. 

4.2.3. ANN Trusted Models vs. Adversarial Examples 

For the Artificial Neural Network (ANN) trusted model, four layers were used. The 

first three layers utilize ReLU activation, while the final layer uses softmax activation. The 

four layers consist of 32, 16, 8, and 4 neurons, respectively. The ANN model was compiled 

with the Adam optimizer, binary_crossentropy for loss calculation, and accuracy as the 

evaluation metric, as shown in Figure 15. The model was trained for 30 epochs. 
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Figure 15. ANN trusted model configurations. 

The confusion matrix and ROC curve for the ANN trusted model in binary classifi-

cation are presented in Figure 16. Compared to the LR model (Figure 5a) and the SVM 

model (Figure 11a), the ANN binary classification model performs be:er, particularly in 

terms of a lower number of benign events misclassified as malicious. This number is ap-

proximately six times higher in the SVM model and nine times higher in the LR model. 

Consequently, the ANN model achieves an improved ROC curve and AUC score of 0.99 

(Figure 16b), compared to 0.755 (Figure 5b) for LR and 0.802 (Figure 11b) for SVM. 

  
(a) (b) 

Figure 16. (a) Confusion matrix; (b) ROC curve for ANN binary classification without adversarial 

a:acks. 

The confusion matrices and ROC curves for the ANN model under JSMA and FGSM 

a:acks are shown in Figures 17a and 18a, respectively. Compared to the ANN trusted 

model, both a:acks significantly reduce the true positive and true negative rates, while 

drastically increasing the false positive and false negative rates for both malicious and 

benign events. 

However, JSMA has a greater impact on reducing the true positive rate for malicious 

events and increasing the false positive rate for benign events. In contrast, the FGSM has 

a more substantial impact on increasing the false negative rate for malicious events and 

reducing the true positive rate for benign events. The ANN model’s ROC curve and AUC 

score decrease from 0.99 (Figure 16b) to 0.72 (Figure 17b) under the JSMA, and to 0.7425 

(Figure 18b) under the FGSM a:ack. 
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(a) (b) 

Figure 17. (a) Confusion matrix; (b) ROC curve for ANN binary classification with JSMA. 

 
(a) (b) 

Figure 18. (a) Confusion matrix; (b) ROC curve for ANN binary classification with FGSM a�ack. 

The confusion matrix and ROC curve for the ANN multiclass classification model are 

presented in Figure 19. These results demonstrate that the model is highly capable of detecting 

attacks over benign events, with an average AUC score of 0.993, compared to 0.843 for LR and 

0.81 for SVM, respectively. The biggest improvement with the ANN multiclass classification 

model is seen in the true classification of level setpoint attacks, which is approximately six 

times higher than in the LR model, and four times higher than in the SVM model. 

  
(a) (b) 

Figure 19. (a) Confusion matrix; (b) ROC curve for ANN multiclass classification without adversar-

ial a:acks. [Note: ‘Temp A:ack’ represents a:ack on temperature setpoint, and ‘SP A:ack’ 

represents a:ack on level setpoint]. 
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4.3. LR vs. SVM vs. ANN Against Adversarial Examples 

In this section, we compare the performance of the LR, SVM, and ANN models across 

various adversarial a:ack scenarios, which include the following: (1) label noise adversar-

ial a:acks (e.g., random label flipping and targeted label flipping a:acks) performed 

against LR and SVM for binary classification; and (2) FGSM and JSMA a:acks performed 

against LR and ANN for both binary and multiclass classifications. For this comparison, 

we use evaluation metrics such as accuracy, recall, precision, and F1-score. 

As discussed earlier, in the random label flipping a:ack, an arbitrary portion of the 

labels is selected and reversed (i.e., a label of 0, representing a benign event, is flipped to 

1, representing a malicious event, and vice versa). In the targeted label flipping a:ack, the 

labels with the longest absolute distance from the model’s predictions are selected and 

flipped. The flipped percentage for both random and targeted a:acks starts at 0% and 

increases to 70%, in increments of 10%. It is expected that this incremental increase will 

result in a gradual reduction in the model’s performance. Additionally, the performance 

reduction is expected to be less in the lower ranges (e.g., 10% and 20%) compared to the 

higher ranges (e.g., 60% and 70%). Furthermore, a greater negative impact on the model’s 

performance (i.e., higher performance reduction) is expected in the targeted label flipping 

a:ack compared to the random label flipping a:ack. 

Figure 20 illustrates the accuracy, recall, precision, and F1-score for LR vs. SVM bi-

nary classification after random and targeted label flipping a:acks. The False Negative 

(FN) rate is proportional to the recall score, meaning that as the number of FNs increases, 

the recall score decreases, and vice versa. In the case of random label flipping, the accuracy 

decreases more rapidly than the recall. This indicates that the number of False Positives 

(FPs), which is proportional to the accuracy score, is increasing faster than the number of 

FNs. The increased FP rate will create more overhead for a system or security administra-

tor within an organization. However, the opposite is true in the case of targeted label flip-

ping, where recall decreases more rapidly and remains lower than accuracy, meaning the 

number of FNs increases faster than the number of FPs. The increased FN rate is the most 

dangerous scenario for an organization’s Intrusion Detection System (IDS), as it misiden-

tifies an a:ack as benign. This leads to the IDS failing to detect a:acks, with the FN rate 

rising gradually as the flipped percentage increases. 
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Figure 20. Accuracy, recall, precision, and F1-score for LR vs. SVM binary classification after random 

and targeted label flipping a:acks. [Note: red solid line is SVC/SVM algorithm under random_flip 

a:ack. Red dashed line is SVC/SVM algorithm under target_flip a:ack. Purple solid line is LR algo-

rithm under random_flip a:ack. Purple dashed line is LR algorithm under target_flip a:ack.] 

Therefore, in the binary classification scenario, hackers are more likely to succeed 

with a targeted label flipping a:ack compared to a random label flipping a:ack. This is 
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because the former enables evasion, while the la:er increases the number of system lock-

outs for legitimate users. Additionally, on average, the SVM demonstrates a longer re-

sistance to the targeted label flipping a:ack compared to LR. However, both algorithms 

show almost identical performance against the random label flipping a:ack. It was ex-

pected that the gradual increase in the flipped percentage would result in a progressive 

decrease in model performance. This trend is only observed in the case of the targeted 

label flipping a:ack. Furthermore, for this a:ack, the performance reduction begins at 

lower percentages (i.e., before flipping 50% of the data), while in the random label flipping 

a:ack, it starts later. This indicates that, despite the random label flipping a:ack, hackers 

can significantly reduce the IDS’s performance by flipping a relatively low percentage of 

the data when performing the targeted label flipping a:ack. This demonstrates that the 

targeted label flipping a:ack is more effective from a hacker’s perspective (e.g., it takes 

less time). 

In this paper, the random and targeted label flipping a:acks are implemented under 

the assumption that hackers have access to the training data and can manipulate it. How-

ever, as previously explained, for the FGSM and JSMA, it is assumed that hackers have 

access to the testing data in order to evade detection in both binary and multiclass classi-

fication scenarios. In the FGSM, the degree of perturbation applied to the testing data 

ranges from 0.05 to 0.3, while in JSMA, the fraction of test features to be perturbed varies 

between 0.02 and 0.2. The expectation is that a higher perturbation rate in the FGSM (i.e., 

epsilon) and a larger fraction size in JSMA will result in a greater decline in the model’s 

performance, and that the ANN will demonstrate greater resistance to FGSM and JSMA 

a:acks compared to LR. 

Figure 21 shows the accuracy, recall, precision, and F1-score for LR vs. ANN binary 

classification after the FGSM a:ack, while Figure 22 presents these comparison metrics 

for the JSMA. As expected, LR performs weaker than the ANN against both FGSM and 

JSMA a:acks, as its accuracy drops more quickly. However, in the case of the FGSM, recall 

decreases faster than accuracy, in contrast to the JSMA. This indicates that the FN rate 

increases faster than the FP rate during the FGSM a:ack. Therefore, an a:acker is likely 

to have more success by performing the FGSM a:ack on the testing data in the binary 

classification scenario. 
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Figure 21. Accuracy, Recall, Precision, and F1-score for LR vs. ANN binary classification after FGSM 

a:ack. 
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Figure 22. Accuracy, recall, precision, and F1-score for LR vs. ANN binary classification after JSMA. 

Figures 23 and 24 show the accuracy, recall, precision, and F1-score for LR vs. ANN 

multiclass classification after the FGSM and JSMA a:acks, respectively. As with the pre-

vious experiments, LR demonstrates weaker resistance to both a:acks compared to the 

ANN. 
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Figure 23. Accuracy, recall, precision, and F1-score for LR vs. ANN multiclass classification after 

FGSM a:ack. 
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Figure 24. Accuracy, recall, precision, and F1-score for LR vs. ANN multiclass classification after 

JSMA. 

5. Conclusions 

The work in this paper aims to provide a deeper understanding of adversarial a:acks 

against both traditional and state-of-the-art machine learning algorithms, such as Support 

Vector Machines (SVMs), Logistic Regression (LR), and Deep Learning techniques such 
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as Artificial Neural Networks (ANNs). It focuses on Industry 4.0 applications, with par-

ticular interest in Critical National Infrastructure (CNI), specifically a clean water treat-

ment system. The study considers four popular adversarial a:ack categories: random la-

bel flipping, targeted label flipping, the Fast Gradient Sign Method (FGSM), and Jacobian-

based Saliency Map A:ack, targeting either training or testing data. 

The paper then evaluates the robustness of a novel, energy-based dataset, captured 

from a model of a clean water treatment system, against these four a:acks, taking into 

account both binary and multiclass classifications. For instance, random and targeted la-

bel flipping are applied to binary-class Logistic Regression (LR) and a Support Vector Ma-

chine (SVM), while the Fast Gradient Sign Method (FGSM) is applied to binary and mul-

ticlass Logistic Regression (LR) and Artificial Neural Networks (ANNs). Similarly, Jaco-

bian-based Saliency Map A:ack (JSMA) is evaluated against binary and multiclass Lo-

gistic Regression (LR) and Artificial Neural Networks (ANNs). 

The paper employs four comparison metrics: F1-score, accuracy, recall, and preci-

sion, to assess the impact of adversarial a:acks on the performance of the chosen machine 

learning algorithms. 

Regarding the binary classification results, the targeted label flipping a:ack has a 

more significant impact on performance reduction compared to the random label flipping 

a:ack. The observed outcome is a:ributed to the nature of the a:ack. As the name sug-

gests, the targeted flipping a:ack selects events that have the most significant impact on 

the outcome of the machine learning algorithm. By choosing these events and flipping 

their labels, the a:ack exerts a greater negative effect on the final outcome. This contrasts 

with random label flipping, where events are selected arbitrarily, and their labels are 

flipped without considering the overall importance of each event for the predicted out-

come. 

Additionally, the SVM and ANN demonstrate greater resilience against targeted la-

bel flipping, the FGSM, and JSMA when compared to Logistic Regression. However, the 

SVM and LR show almost identical performance against the random label flipping a:ack. 

In multiclass classification, the ANN shows more resistance against the FGSM and JSMA 

compared to LR. In general, this observation aligns with what we expected from the SVM 

and ANN when they are under targeted label flipping, FGSM, and JSMA a:acks. The SVM 

and ANN outperform LR due to their non-linear nature, robust feature representation, 

and strength in integrating advanced defense mechanisms. For example, the model com-

plexity and non-linearity of SVM and ANN, compared to LR, provide greater resilience. 

LR is a linear model, and this lack of complexity makes it easier for adversarial a:acks to 

shift predictions, making it more susceptible to adversarial manipulations. Other factors 

include a lack of margin and robustness, as well as limited capacity to generalize when 

adversarial noise is present. 

The novelty of the research in this paper lies in evaluating the robustness of a novel 

energy-based machine learning mechanism, derived from a model of a clean water treat-

ment system, to detect anomalies in such systems. This approach has the potential to be 

expanded to other domains, such as transportation and energy sectors. Future work will 

focus on using a physical testbed modeling a clean water treatment system, as opposed to 

a simulation, along with the implementation and evaluation of potential countermeasures 

against adversarial machine learning a:acks. The effectiveness of these countermeasures 

will also be studied on the aforementioned testbed. Our third goal is to consider additional 

metrics beyond energy consumption to identify how we could strengthen anomaly detec-

tion by combining energy consumption with other important metrics, such as network 

and communication metrics, system performance metrics, user behavior metrics, sensor 

data metrics, time series metrics, event-based metrics, and application-specific metrics. 
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This may require eliminating some energy features during the feature reduction stage, 

and broadening the feature set. 
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