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ABSTRACT
Persistency, stability and convergence properties are considered for
a class of nonlinear, forced, positive, scalar higher-order difference
equations. Sufficient conditions for these properties to hold are
derived, broadly in terms of the interplay of the linear and nonlinear
components of the difference equations. The convergence results
presented include asymptotic response properties when the system
is subject to (asymptotically) almost periodic forcing. The equations
under consideration arise in a number of ecological and biologi-
cal contexts, with the Allen-Clark population model appearing as
a special case. We illustrate our results by several examples from
population dynamics.
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1. Introduction

We consider the following class of scalar, forced, higher-order initial-value problems:

x(t + 1) =
k∑

j=0
αjx(t − j)+ βf

⎛
⎝u(t),

k∑
j=0

γjx(t − j)

⎞
⎠ + v(t), x(−j) = x(−j) ∈ R,

j = 0, . . . , k, t ∈ N0, (1)

where k is a nonnegative integer. The details of (1) are given in Section 2, although we
note here that f is a nonlinearity, αj, β and γj are real parameters, and the terms u and v
are exogenous forcing terms, and could model control actions or disturbances, depend-
ing on the context. The presence of the (generally time-varying) exogenous forcing terms
u and v renders (1) a non-autonomous, inhomogeneous difference equation. We study a
suite of relevant dynamical properties of (1), namely, boundedness, persistence, stability
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and convergence, in the situation wherein system (1) is positive, and provide sufficient
conditions for these properties to hold.

Positive dynamical systems are dynamical systems with the defining property that they
leave some positive cone invariant. They are well-studied objects, evidenced by a vast liter-
ature with texts including [3,4,28,36,37]. Their interest is not only mathematical, but also
practical as they arise in myriad application areas where state variables are constrained to
lie in some positive cone to be meaningful, such as the nonnegative orthant in Euclidean
space for necessarily nonnegative quantities.

One motivation for studying (1) is its occurrence in models in theoretical ecology, as
the higher-order nature of (1) may be interpreted as a delay structure. Time delays are an
important feature in this setting, for instance, a known plant survival strategy is to delay
the germination of dormant seeds post dispersal [17, Section 1.2]. Similarly, system (1) is
a generalization of

x(t + 1) = αx(t)+ βf (x(t − k)) t ∈ N0, (2)

known as the Allen-Clark, or Clark, model (after Allen [1] and Clark [10]), see also the
bibliographical notes in [7] for other early contributors. In population modelling, (2)
is a parsimonious extension of uncontrolled standard first-order difference equations
(discussed in a number of monographs, such as [9, Chapter 1] or [48, Chapter 2]) to
include age-structure, particularly delayed reproductive maturity. There has been much
subsequent interest in the role of delay-until-reproductive-maturation in age-structured
populationmodels, dating back at least to [40], and further studied and generalized across,
for example, [2,20,64,67]. Roughly speaking, these works generalize the Allen-Clarkmodel
to include explicit age-structure within a single populationmodel. Themodel (2) is known
to admit a unique positive equilibrium under mild assumptions on f, α and β . Stability
and attractivity properties of the nonzero equilibrium have been studied in several papers,
including [18,19,33,43].

The study of dynamical systems which interact with their wider environment via the
inclusion of input (control, forcing) and output (measurement) variables, and their feed-
back connections, is at the heart of control theory; see, for example [61]. The inclusion of
forcing terms in dynamical systems is essential in applied settings. Indeed, forcing terms
may represent control actions/interventions, (possibly unwanted or uncertain) variation in
the underlying model, and otherwise unmodelled terms which may be significant. When
considering the effects of forcing terms, typically one of two perspectives is adopted: their
use as controls to establish or maintain desirable dynamic behaviour, or, the robustness
of desirable properties of the model with respect to unwanted forcing terms. A strand of
control theory associates input and output variables to positive dynamical systems, lead-
ing to so-called positive control systems; see the recent review paper [49]. The model (1)
with appropriate nonnegativity assumptions is an instance of a positive control system.
Again, in a population dynamics context, the forcing function v in (1) may model immi-
gration, and u may capture environmental variation or harvesting (anthropogenic or
otherwise).

To connect to another body of literature, Equation (1) is an instance of a forced (pos-
itive, in this case) Lur’e difference equation, or simply Lur’e system, in control-theoretic
terminology; see, for example [65]. There are numerous studies of positive Lur’e systems
in state-space form, including [5,15,16,22–25,59], broadly motivated by their interesting
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dynamical behaviour and relevance in theoretical ecology, dating back to [50,63] where
‘trichotomies of stability’ were established for such systems.

Boundedness of solutions is an innate requirement for positive difference equations
motivated by real-world applications of size- or quantity-limited variables. Persistence con-
cepts, broadly referring to the property that certain internal variables (for example, the state
or certain linear combinations of state components) are ultimately bounded away from
zero, are highly relevant as well. This is particularly the case when f (w, 0) = 0 for all w, so
that zero is an equilibrium of system (1) when unforced (meaning u equal to a constant
nominal value, and v = 0). Persistence in dynamical systems is a well-established concept
with a number of variations including those presented in [21–24,54,58,66]. The persistence
properties we consider are ultimate in that they only apply after somefixed number of time-
steps, and are uniform with respect to certain initial conditions and forcing functions as
we shall describe. We contend that this concept of persistence is suitable for all practical
purposes. Moreover, mild assumptions on the model data ensure that there is a unique
positive equilibrium, denoted xe, at a constant forcing pair (ue, ve). The stability properties
we consider relate to xe, and account for the fact that (1) is inhomogeneous by appealing
to the input-to-state stability (ISS) framework from nonlinear control theory; see [45] for
a recent monograph. Roughly speaking, ISS ensures that ‖x(t)− xe‖ is bounded in terms
of (nonlinear functions of) the difference of the initial state to xe, which decays to 0 over
time, as well contributions from u − ue and v − ve. Here, we provide a range of bounded-
ness, persistence, and stability properties for system (1), presented as Proposition 3.3, and
Theorems 3.5 and 4.2, respectively.

As a consequence of our stability results we show that, under suitable assumptions,
the following convergence property holds: for all constant forcing pairs (ue, ve), there
is a unique constant xe such that, for all u and v converging to ue and ve, respectively,
and all non-zero initial conditions, the corresponding solution x(t) of (1) converges to xe
as t → ∞, see Corollary 4.4 for a precise statement. Finally, the stability properties we
derive are sufficiently strong to ensure that (1) admits a rather general entrainment-type
property (see, for example [34, Chapter 7] for a classical treatment of entrainment), specif-
ically here that for almost periodic forcing terms v = vap (in the sense of Bohr): (i) there is
a unique almost periodic solution xap of (1), and, (ii) all other solutions x of (1) converge
to xap, when subject to v converging to vap. Moreover, the sets of almost periods of vap and
xap are closely related, see Theorem 5.1 for a precise statement. The development of the
theoretical results is mostly based on a blend of techniques from control theory and posi-
tive systems. We highlight that the boundedness and persistence properties are key for our
stability arguments. Further, our results apply to general f specified in terms of qualitative
and quantitative properties which, in particular, do not necessitate that f is monotone or
unimodal. In particular, system (1) need not be amonotone control systemwhen unforced,
as in [31,57].

In terms of novelty and contribution, whilst the persistence and stability results
from [22,23] play a pivotal role in establishing the corresponding properties for (1), here
we are able to formulate conditions directly in terms of the model data in (1); moreover,
the convergence results in Sections 4 and 5 are new. Paper [24] considers related dynamic
properties for a class of positive vector Lur’e systems with unit delay in the nonlinear term
and highlights a number of surprising discrepancies as compared to the continuous-time
(delay-differential equation) case analysed in [21]. The overlap with the present work is
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minimal, however. We comment that our inclusion and treatment of forcing terms, and
consequent stability and convergence properties, separates our work from much of the
literature in this area.

The remainder of the paper is organized as follows. Section 2 contains preliminarymate-
rial. Ourmain results appear in Sections 3–5, which focus on boundedness and persistence,
stability and convergence properties, and the response to almost periodic additive forcing
terms, respectively. Four examples are presented in Section 6. In particular, we demon-
strate how the results in Sections 3–5 apply to forced versions of the Allen-Clarkmodel (2).
Section 7 contains a discussion of our results. An ancillary technical theorem appears in
the Appendix.

Notation: We setR+ := [0,∞),N := {1, 2, . . .},N0 := N ∪ {0} andZ stands for the set of
all integers. For n ∈ N, let R

n denote the space of column vectors with n real components.
We define R

n+ to be the subset of R
n consisting of all vectors in R

n with non-negative
components. For ξ ∈ R

n, we write ξ ≥ 0 if ξ ∈ R
n+, ξ > 0 if ξ ≥ 0 and ξ �= 0, and ξ 	 0

if all components of ξ are positive. If ξ 	 0, then we also say that ξ is strictly positive.
Furthermore, let ξ , ζ ∈ R

n. If ξ − ζ ≥ 0, ξ − ζ > 0 or ξ − ζ 	 0, then we write ξ ≥ ζ ,
ξ > ζ or ξ 	 ζ , respectively. Similar conventions apply to real matrices.

We will make use of the following classes of comparison functions:

K := {φ : R+ → R+ : φ(0) = 0, φ is continuous and strictly increasing}
and K∞ := {φ ∈ K : lims→∞ φ(s) = ∞}. Furthermore, we denote by KL the set of all
functions φ : R+ × N0 → R+ with the following properties: for each fixed t ∈ N0, the
function φ( · , t) is in K, and for each fixed s ∈ R+, the function φ(s, · ) is non-increasing
and φ(s, t) → 0 as t → ∞. The reader is referred to [35] for more details on comparison
functions.

Finally, for a function y : N0 → R
n and θ ∈ N0, we denote the θ-left translate by yθ ,

that is,

yθ (t) := y(t + θ) ∀ t ∈ N0. (3)

2. A class of nonlinear higher-order difference equations

Consider (1) where, throughout, x(0), . . . , x(−k) ≥ 0, and αj, γj and β satisfy the following
positivity condition.

(P1) αj, γj ≥ 0 for j = 0, . . . , k, β > 0,
∑k

j=0 γj > 0 and αk + γk > 0.

The functions u and v are assumed to take values in non-empty compact sets U ⊂ R
n

and V ⊂ R+, respectively, where V is such that 0 ∈ V . It is always assumed that the
nonlinearity f : U × R+ → R+ is continuous. For convenience, we set

α :=
k∑

j=0
αj and γ :=

k∑
j=0

γj.

Furthermore, we impose the following stability assumption.
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Figure 1. Application of the feedback laww = f (u, y) to system (6).

(S) The polynomial

a(ζ ) := ζ k+1 −
k∑

j=0
αjζ

k−j (4)

is Schur, that is, if a(ζ ) = 0, then |ζ | < 1.

Obviously, (S) is equivalent to the 0-equilibrium of the linear difference equation

x(t + 1) =
k∑

j=0
αjx(t − j)

being asymptotically stable. As a consequence, we have that

α =
k∑

j=0
αj < 1. (5)

The initial-value problem (1) has a unique solution x : {−k, . . . ,−1} ∪ N0 → R. As the
coefficients, initial data, the nonlinearity f , and the forcing function v are non-negative, it
is clear that the solution of (1) has values inR+. As is usual in control theory, the difference
equation in (1) is referred to as a Lur’e system (see, for example, [65]), more specifically, (1)
is an instance of a forced, positive, higher-order Lur’e system in discrete time. It can be
thought of as the interconnection of the linear controlled and observed system

x(t + 1) =
k∑

j=0
αjx(t − j)+ βw(t)+ v(t), y(t) =

k∑
j=0

γjx(t − j) (6)

and the nonlinearity f via the feedback law w(t) = f (u(t), y(t)), see Figure 1. Note that
in (6), v and w are inputs, controls or forcing functions, where w is available for feedback,
whereas y is the measurement, observation or output.

Associated with (6) is the rational function G defined by

G(ζ ) := β
∑k

j=0 γjζ
−j

ζ − ∑k
j=0 αjζ

−j
= β

∑k
j=0 γjζ

k−j

ζ k+1 − ∑k
j=0 αjζ

k−j
= βc(ζ )

a(ζ )
, where

c(ζ ) :=
k∑

j=0
γjζ

k−j, (7)



6 D. FRANCO ET AL.

and ζ is a complex variable. If x(−j) = 0 for j = 0, . . . , k and v = 0, then application of the
Z-transform Z to (6) yields that

(Zy)(ζ ) = G(ζ )(Zw)(ζ ).

The above identity shows that for zero initial conditions and v = 0, the effect of the inputw
on the output y of system (6) is described in the frequency domain by the product ofG and
the Z-transform of w. Therefore, G is called the transfer function of (6) with v = 0.

Assuming that (S) holds, we set

‖G‖H∞ := sup
|ζ |≥1

|G(ζ )| = sup
|ζ |=1

|G(ζ )| < ∞,

where H∞ refers to the space of all bounded holomorphic functions defined on the com-
plement of the closed unit disc. If x(−j) = 0 for j = 0, . . . , k and v = 0 in (6), then the
associated output y = yw depends only on w, and

sup{‖yw‖	2 : ‖w‖	2 = 1} = ‖G‖H∞ , where ‖w‖	2 :=
√√√√ ∞∑

t=0
|w(t)|2.

The above identity provides an appealing interpretation of ‖G‖H∞ in time-domain terms.
For ζ ∈ C such that |ζ | = 1, we have∣∣∣∣∣∣β

k∑
j=0

γjζ
k−j

∣∣∣∣∣∣ ≤ βγ and |a(ζ )| ≥ 1 − α > 0,

where the last inequality follows from (S) and (5). Consequently,

G(1) ≤ ‖G‖H∞ ≤ βγ

1 − α
= G(1),

showing that

‖G‖H∞ = G(1).

We define

p := 1
G(1)

= 1
‖G‖H∞

, where p := ∞ if G(1) = ‖G‖H∞ = 0. (8)

Note that G(1) > 0 if (P1) is satisfied. Setting x̃(t) := (x(t), . . . , x(t − k))
 and defining
b, c ∈ R

k+1 and A ∈ R
(k+1)×(k+1) by

b :=

⎛
⎜⎜⎜⎝
β

0
...
0

⎞
⎟⎟⎟⎠ , c :=

⎛
⎜⎜⎜⎝
γ0
γ1
...
γk

⎞
⎟⎟⎟⎠ , A :=

⎛
⎜⎜⎜⎜⎜⎝

α0 α1 · · · αk−1 αk
1 0 · · · 0 0
0 1 · · · 0 0
...

... · · · ...
...

0 0 · · · 1 0

⎞
⎟⎟⎟⎟⎟⎠ , (9)
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Equation (1) can be expressed in the form

x̃(t + 1) = Ax̃(t)+ bf (u(t), c
x̃(t))+ ṽ(t), t ∈ N0, x̃(0) = (x(0), . . . , x(−k))
, (10)

where ṽ(t) := (v(t), 0, . . . , 0)
 ∈ R
k+1. We note that b>0, c>0, and A is a companion

matrix, see, for example, [32, Section 3.3 and Problem 3.3 P11]. As det(ζ I − A) = a(ζ ), all
eigenvalues ofA havemodulus smaller than 1, that is, the matrixA is asymptotically stable.
It is straightforward to show that

G(ζ ) = c
(ζ I − A)−1b.

Throughout, let I be the set of positive integers defined by

I := {
i ∈ {1, . . . , k + 1} : αi−1 + γi−1 > 0

} = {
i ∈ {1, . . . , k + 1} : αi−1 + βγi−1 > 0

}
.

If (P1) is satisfied, then k + 1 ∈ I. The greatest common divisor of the elements of I is
denoted by gcd I. In the following proposition we explore certain positivity properties of
the linear part of system (10) which are essential for the developments in Sections 3–5.

Proposition 2.1: Assume that (P1) holds and let A, b and c as in (9). The following
statements hold.

(1) The matrix A + bc
 is primitive if, and only if, gcd I = 1.
(2) There exists τ ∈ N0 such that c
(A + bc
)τ 	 0 if, and only if, gcd I = 1.
(3) If gcd I = 1, then (A + bc
)(2+l)k−l 	 0, where l := min{j : αj + γj �= 0}.
(4) If α0 + γ0 > 0, then c
(A + bc
)k+m 	 0, where m := min{j : γj �= 0}.

We remark that for the ultimate c-persistency result in Section 3, see Theorem 3.5, the
strict positivity of c
(A + bc
)τ for some τ ∈ N0 plays a key role: the smallest τ such
that c
(A + bc
)τ 	 0 is the time at which c-persistency ‘kicks in’. Trivially, if (A +
bc
)τ 	 0, then c
(A + bc
)τ 	 0. The converse implication is obviously not true. In
particular, (A + bc
)τ may not be strictly positive for the minimal τ such that c
(A +
bc
)τ 	 0.

The proof of the implication ‘c
(A + bc
)τ 	 0 ⇒ gcd I = 1’ claimed in state-
ment (2) is facilitated by the following lemma.

Lemma 2.2: Let r := (r0, r1, . . . , rk)
 ∈ R
k+1+ and let e1, . . . , ek+1 be the canonical basis

of R
k+1. Assume that (P1) holds, d := gcd I > 1 and there exists i0 ∈ {0, . . . , d − 1} such

that r
ei = ri−1 = 0 for all i ∈ {1, . . . , k + 1} such that i �≡ i0 mod d. Then r
(A +
bc
)ei = 0 for all i ∈ {1, . . . , k + 1} such that i �≡ (i0 − 1) mod d.

Proof: Note that

r
(A + bc
) = (
r0(α0 + βγ0)+ r1, r0(α1 + βγ1)+ r2, . . . , r0(αk−1 + βγk−1)

+ rk, r0(αk + βγk)
)
. (11)

We distinguish between the cases r0 > 0 and r0 = 0.
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Case 1: r0 > 0. In this case, it follows from the hypothesis on r that 1 ≡ i0 mod d,
implying that i0 = 1. As αk + βγk > 0, we have that k + 1 ∈ I, and thus, k + 1 ≡ 0
mod d. Since i0 = 1, the condition k + 1 �≡ (i0 − 1) mod d is not satisfied (we note in
passing, that nevertheless, r
(A + bc
)ek+1 = 0). Let i ∈ {1, . . . , k} be such that i �≡ (i0 −
1) mod d, or equivalently

i + 1 �≡ 1 mod d. (12)

Invoking again the hypothesis on r, we have that ri = 0. Furthermore, (12) is equivalent
to i �≡ 0 mod d, showing that i �∈ I, whence αi−1 + βγi−1 = 0. It now follows from (11)
that

r
(A + bc
)ei = r0(αi−1 + βγi−1)+ ri = 0.

Case 2: r0 = 0. Invoking (11), we see that rT(A + bc
)ek+1 = r0(αk + βγk) = 0. Let
now i ∈ {1, . . . , k} be such that i + 1 �≡ i0 mod d. Then, by hypothesis, ri = 0, and thus,

r
(A + bc
)ei = r0(αi−1 + βγi−1)+ ri = 0,

completing the proof. �

We continue with the proof of Proposition 2.1.

Proof of Proposition 2.1.: (1) Note that A and A + bc
, as companion matrices, have
the structure of a Leslie matrix familiar from stage-structured population models. Thus,
irreducibility and primitivity results for Leslie matrices (see, for example [62]) can be
applied to A + bc
. As αk + γk > 0, [62, Theorem 6] yields that primitivity of A + bc
 is
equivalent to gcd I = 1.

(2) If gcd I = 1, then, by statement (1),A + bc
 is primitive, whence c
(A + bc
)τ 	 0
for some τ ∈ N0.

We prove the converse by contraposition. To this end assume that gcd I = d > 1 and
define cτ = (cτ ,0, . . . , cτ ,k)
 ∈ R

k+1+ by c
τ := c
(A + bc
)τ for every τ ∈ N0. It is suffi-
cient to show that, for every τ ∈ N0, there exists iτ ∈ {0, . . . , d − 1} such that cτ ,i−1 = 0
for all i ∈ {1, . . . , k + 1} satisfying i �≡ iτ mod d. We do this by induction on τ . We have
that c0,i−1 = γi−1 = 0 for all i ∈ {1, . . . , k + 1} such that i �≡ 0 mod d and the claim holds
for τ = 0 with i0 := 0. Let now τ ∈ N0 and assume that there exists iτ ∈ {0, . . . , d − 1}
such that cτ ,i−1 = 0 for all i ∈ {1, . . . , k + 1} satisfying i �≡ iτ mod d. Then

cτ+1,i−1 = c
τ+1ei = c
τ (A + bc
)ei ∀ i ∈ {1, . . . , k + 1}.
Setting

iτ+1 :=
{
iτ − 1, if iτ �= 0
d − 1, if iτ = 0,

we have that iτ+1 ∈ {0, . . . , d − 1}, and an application of Lemma 2.2 with r = cτ shows
that cτ+1,i−1 = 0 for all i ∈ {1, . . . , k + 1} such that i �≡ iτ+1 mod d, completing the
proof.

(3) Assume that gcd I = 1. By statement (1), A + bc
 is primitive. It follows from [32,
Theorem 8.5.7] that (A + bc
)(k+1)+	(k−1) 	 0, where 	 is the length of the shortest cycle
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in the directed graph associated with A + bc
. Exploiting the companion matrix structure
of A + bc
, it is straightforward to show that 	 = l + 1. Consequently, (k + 1)+ 	(k −
1) = (2 + l)k − l, and so, (A + bc
)(2+l)k−l 	 0, establishing the claim.

(4) As α0 + γ0 > 0, we have that 1 ∈ I, implying that gcd I = 1. Hence, by statement (3)
with l = 0, we obtain that c
(A + bc
)2k 	 0. To show that c
(A + bc
)k+m 	 0, we
proceed in two steps.

Step 1. Set ĉ := (γ0, 0, . . . , 0, γk)
, ĉm := (0, . . . , 0, γm, 0, . . . , 0)
 (where γm is in posi-
tionm+ 1), and

Â :=

⎛
⎜⎜⎜⎜⎜⎝

α0 0 · · · 0 αk
1 0 · · · 0 0
0 1 · · · 0 0
...

... · · · ...
...

0 0 · · · 1 0

⎞
⎟⎟⎟⎟⎟⎠ ∈ R

(k+1)×(k+1).

We claim that

ĉ
m(Â + bĉ
)k+m 	 0. (13)

Noting that

Â + bĉ
 =

⎛
⎜⎜⎜⎜⎜⎝

α0 + βγ0 0 · · · 0 αk + βγk
1 0 · · · 0 0
0 1 · · · 0 0
...

... · · · ...
...

0 0 · · · 1 0

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

+ 0 · · · 0 +
+ 0 · · · 0 0
0 + · · · 0 0
...

... · · · ...
...

0 0 · · · + 0

⎞
⎟⎟⎟⎟⎟⎠ ∈ R

(k+1)×(k+1),

where here, and in the following, + denotes a positive entry, the value of which is
immaterial. It is routine to check that, for every j = 0, . . . ,m,

ĉ
m(Â + bĉ
)j ≥ (0, . . . , 0,+, 0, . . . , 0), where + is in positionm + 1 − j.

Furthermore, for every j = 1, . . . , k, we have that

ĉ
m(Â + bĉ
)m+j ≥ (+, 0, . . . , 0,+, . . . ,+), where + is in the positions 1 and

k + 1 − i for all i = 0, . . . , j − 1.

In particular,

ĉ
m(Â + bĉ
)k+m = (+,+, . . . ,+) 	 0,

establishing (13).
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Step 2. As c ≥ max{̂c, ĉm} and A ≥ Â, we have that A + bc
 ≥ Â + bĉ
. Consequently,

c
(A + bc
)j ≥ ĉ
m(Â + bĉ
)j ∀ j ∈ N0,

and it follows from (13) that c
(A + bc
)k+m 	 0. �

3. Boundedness and persistence

In this section, we explore boundedness and persistence properties of the Lur’e system (1).
For which purpose, we require the following, not very restrictive, assumption on the linear
part of system (1).

(L) At least one of the following two conditions holds:

(i) min|ζ |=1
|G(ζ )| < ‖G‖H∞ , (ii) a and c are coprime,

where the polynomials a and c are defined in (4) and (7), respectively.

The above coprimeness condition can be characterized in terms of the linear observed
system

x(t + 1) = Ax(t), y(t) = c
x(t), (14)

where A and c are given by (9). Recall that system (14) (or the pair (c
,A)) is said to be
observable if the following implication holds:(

c
Atξ = 0 ∀ t ∈ N0
) ⇒ (

ξ = 0
)
.

It is well known that (14) is observable if, and only if, the so-called observability matrix

O(c
,A) :=

⎛
⎜⎜⎜⎝

c

c
A
...

c
Ak

⎞
⎟⎟⎟⎠ ∈ R

(k+1)×(k+1)

is invertible, see, for example, [38, Corollary 18.2] or [52, Theorem 25.12].

Lemma 3.1: The polynomials a and c are coprime if, and only if, the pair (c
,A) is
observable.

Proof: Invoking the so-called Hautus criterion for observability (see [42, Theorem 3.21]
or [52, Theorem 13.15]), we need to show the equivalence of the coprimeness of a and c
and the following full rank condition

rank
(
ζ I − A
c


)
= k + 1 ∀ ζ ∈ C. (15)

We prove the contrapositive, that is, we show that the existence of a common root of a and c
is equivalent to the failure of the rank condition (15). We start by assuming that (15) does
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not hold. Then there exists λ ∈ C such that

rank
(
λI − A
c


)
< k + 1.

Consequently, for suitable, a := (a0, . . . , ak)
 ∈ C
k+1, a �= 0,

(λI − A)a = 0 and c
a = 0. (16)

Thus, by the first of the above two identities,

a0 = λa1, a1 = λa2, . . . , ak−1 = λak,

and so, ak �= 0 and aj = λk−jak for j = 0, . . . , k. Using the first identity in (16) once more,
we obtain

a(λ)ak =
⎛
⎝λk+1 −

k∑
j=0

αjλ
k−j

⎞
⎠ ak = 0.

Hence, a(λ) = 0. The second identity in (16) yields

c(λ)ak =
⎛
⎝ k∑

j=0
γjλ

k−j

⎞
⎠ ak =

k∑
j=0

γjaj = c
a = 0,

showing that c(λ) = 0. We conclude that a and c are not coprime.
Conversely, assume that a and c are not coprime. Then a and c have a common root λ.

Setting a := ak(λk, λk−1, . . . , 1)
 for arbitrary ak �= 0, the above steps can be reversed to
arrive at (16) which in turn implies that (15) does not hold. �

Remark 3.2: It follows from Lemma 3.1 and basic linear control theory (see, for example,
[38,52]) that, if the stability assumption (S) holds, then (L) is equivalent to [22, Assump-
tion (A4)] and (L) is also equivalent to [53, Assumption (A)]. These equivalences allow
us to apply certain results in [22,53] in the current setting. In this paper, we prefer (L)
to [22, Assumption (A4)] because, in contrast to the latter, (L) is formulated more directly
in terms of the coefficients appearing in the higher-order system (1) and avoids control
theoretic concepts. ♦

We introduce the following assumptions on the nonlinearity f.

(N1) f (w, z) > 0 for all w ∈ U and z>0, p as in (8) satisfies p < ∞, and

lim
z→∞

(
pz − max

w∈U f (w, z)
) = ∞.

(N2) (N1) holds, and

lim inf
z↓0

(
min
w∈U

f (w, z)
z

)
> p. (17)
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The above requirements that p is finite are not restrictive insomuch as p < ∞ is a conse-
quence of the positivity assumption (P1) which is imposed in the main results. A sufficient
(but not necessary) condition for (N1) to hold is given by

(N1′) f (w, z) > 0 for all w ∈ U and z>0, p < ∞, and

lim sup
z→∞

(
max
w∈U

f (w, z)
z

)
< p. (18)

Certain versions of assumptions (N1) and (N2) were employed in [22] (in a somewhat
different setting), and, with (N1) replaced by (N1′), they also appear in [21,23,63]. The
interested reader can find a biological interpretation of (17) and (18) in [23, Remark 4.2].

The following proposition provides a sufficient condition for the solutions of (1) to be
bounded.

Proposition 3.3: Assume that (P1), (S), (L) and (N1) hold, and let � ⊂ R
k+1+ be compact.

Then there exists ρ > 0 such that the solution x of (1) satisfies

|x(t)| ≤ ρ ∀ t ∈ N0

for all u : N0 → U, v : N0 → V and all initial conditions (x(0), x(−1), . . . , x(−k))
 ∈ �.
Proof: Define a set-valued function F by F(z) := {f (w, z) : w ∈ U} for all z ∈ R+ and note
that if x is a solution of (1), then x̃ given by x̃(t) := (x(t), x(t − 1), . . . , x(t − k))
 satisfies
the difference inclusion

x̃(t + 1)− Ax̃(t)− ṽ(t) ∈ bF(c
x̃(t)) ∀ t ∈ N0, (19)

where ṽ(t) := (v(t), 0, . . . , 0)
. Invoking (N1), we conclude that there exists z0 ≥ 0
and θ ∈ K∞ such that

max F(z) = max
w∈U f (w, z) ≤ pz − θ(z) ∀ z ≥ z0.

Therefore, invoking Remark 3.2, it follows from the inclusion version of [53, Corollary 17]1

that, for compact � ⊂ R
k+1+ , there exists ρ > 0 such that the solution x̃ of (19) satisfies

‖x̃(t)‖ ≤ ρ ∀ t ∈ N0

for all initial conditions x̃(0) ∈ � and all v : N0 → V , establishing the claim. �

Next we introduce a persistency concept which will play a key role in this paper.

Definition 3.4: Let d = (d0, . . . , dk)
 ∈ R
k+1. We say that (1) is ultimately semi-

globally d-persistent if, for every compact subset � ⊂ R
k+1+ , 0 �∈ �, there exist τ ∈ N0

and η > 0 such that the solution x of (1) satisfies

k∑
j=0

djx(t + τ − j) ≥ η ∀ t ∈ N0 (20)

for all u : N0 → U, v : N0 → V and all initial conditions (x(0), x(−1), . . . , x(−k))
 ∈ �. ♦
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If (1) is ultimately semi-globally d-persistent for some d 	 0, then (1) is ultimately
semi-globally d-persistent for every d 	 0, and we simply say that (1) is ultimately semi-
globally persistent. In particular, if (1) is ultimately semi-globally persistent, then, for every
compact subset � ⊂ R

k+1+ , 0 �∈ �, there exist τ ∈ N0 and η > 0 such that

‖(x(t + τ), x(t + τ − 1), . . . , x(t + τ − k)
)
‖1 ≥ η ∀ t ∈ N0, (21)

where ‖ · ‖1 denotes the 1-norm on R
k+1. Obviously, ultimate semi-global d-persistency

for some d ≥ 0 implies ultimate semi-global persistency, but the converse is not true in
general. Furthermore, if (20) or (21) hold for τ = 0, then we drop the word ‘ultimately’
and say that (1) is semi-globally d-persistent or semi-globally persistent, respectively.

It is clear that the persistency concept in Definition 3.4 depends on the compact sets U
and V. However, as it is assumed that, in a given context, U and V are fixed, and in
order to avoid lengthy and awkward terminology, we do not make the dependency on U
and V explicit. Finally, it is straightforward to show that if z → f (w, z) is non-decreasing
for every w ∈ U, then (1) is ultimately semi-globally d-persistent if, for every compact
subset � ⊂ R

k+1+ , 0 �∈ �, there exist τ ∈ N0 and η > 0 such that the solution x of (1) satis-
fies (20) for all initial conditions (x(0), x(−1), . . . , x(−k))
 ∈ �, all u : N0 → U and v(t) ≡
0.

To investigate persistency properties of (1), we shall apply ideas from [23] for undelayed
difference equations to the augmented system (10). To this end, we introduce the following
condition.

(P2) (P1) holds and gcd I = 1.

By Proposition 2.1, if (P2) is satisfied, then there exists τ ∈ N0 such that c
(A +
bc
)τ 	 0.

Theorem 3.5: Assume that (S), (L), (N2) and (P2) hold. Then system (1) is semi-globally
persistent and ultimately semi-globally c-persistent, where c is given by (9). In particular,
if τ ∈ N0 is such that c
(A + bc
)τ 	 0, then, for every compact subset � ⊂ R

k+1+ not
containing 0, there exists η > 0 such that the solution x of (1) satisfies

k∑
j=0

γjx(t + τ − j) ≥ η ∀ t ∈ N0

for all u : N0 → U, v : N0 → V and all initial conditions (x(0), x(−1), . . . , x(−k))
 ∈ �.

Proof: Let � ⊂ R
k+1+ be compact and such that 0 �∈ �. It follows from Proposition 3.3

that there exists ρ > 0 such that the solution x of (1) satisfies supt∈N0
|x(t)| ≤ ρ for

all u : N0 → U, v : N0 → V and all initial conditions (x(0), x(−1), . . . , x(−k))
 ∈ �. More-
over, by Proposition 2.1, assumption (P2) implies that c
(A + bc
)τ 	 0 for some τ ∈ N0.
Therefore, the arguments in the proof of [23, Theorem 4.4]2 can be applied to establish
that the augmented system (10) is semi-globally persistent and ultimately semi-globally c-
persistent in the sense of [23], implying that (1) is semi-globally persistent and ultimately
semi-globally c-persistent in the above sense. �
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4. Stability and convergence

In the following, under suitable assumptions on the nonlinearity f, we are going to explore
certain stability and convergence properties of the forced system (1). To this end, we
introduce, for each w ∈ U, the function

Fw : R+ → R, z �→ z − G(1)f (w, z) = z − βγ

1 − α
f (w, z)

and investigate some of its properties. Of course, for Fw to be meaningful, 1 should not be
a pole of G. The latter is guaranteed by hypothesis (S).

Lemma 4.1: Assume that (P1), (S) and (N2) are satisfied. For every w ∈ U, the following
statements hold.

(1) There exists a unique zw ∈ F−1
w (0) such that zw > 0 and Fw(z) < 0 for all z ∈ (0, zw).

(2) R+ ⊂ Fw([zw,∞)), or, equivalently, F−1
w (z) ∩ [zw,∞) �= ∅ for all z ∈ R+.

(3) F−1
w (0)\{0} ⊂ [zw,∞) and F−1

w (z) ⊂ (zw,∞) for all z>0.
(4) Let ξ ∈ V and zw,ξ ∈ F−1

w (γ ξ/(1 − α)). Then xw,ξ := zw,ξ /γ satisfies

xw,ξ = αxw,ξ + βf (w, γ xw,ξ )+ ξ . (22)

Furthermore, pzw,ξ − ξ/β = f (w, zw,ξ ).
(5) Let ξ ∈ V and zw,ξ ∈ F−1

w (γ ξ/(1 − α))\{0}. If

|f (w, z)− f (w, zw,ξ )| < p|z − zw,ξ | ∀ z > 0, z �= zw,ξ (23)

then F−1
w (γ ξ/(1 − α))\{0} = {zw,ξ }. In particular, if (23) holds with ξ = 0,

then zw,0 = zw.

Proof: Let w ∈ U. As p := 1/G(1), the function Fw can be expressed as

Fw(z) = pz − f (w, z)
p

∀ z ∈ R+. (24)

(1) It follows from (24) and (N2) that there exist z− > 0 and z+ > z− such that Fw(z) <
0 for all z ∈ (0, z−) and Fw(z) > 0 for all z ∈ (z+,∞). The intermediate-value
theorem for continuous functions guarantees the existence of zw > 0with the stated
properties.

(2) By (24) and (N2), Fw(z) → ∞ as z → ∞. As Fw(zw) = 0, it follows from the
intermediate-value theorem for continuous functions that R+ ⊂ Fw([zw,∞)).

(3) By statement (1), Fw(z) < 0 for all z ∈ (0, zw). Hence, F−1
w (0)\{0} ⊂ [zw,∞)

and F−1
w (z) ⊂ (zw,∞) for all z>0.
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(4) Let ξ ∈ V and zw,ξ ∈ F−1
w (γ ξ/(1 − α)). Then

zw,ξ − βγ

1 − α
f (w, zw,ξ ) = γ ξ

1 − α
, (25)

and thus,

(1 − α)xw,ξ − βf (w, zw,ξ ) = ξ ,

from which (22) follows. Moreover, multiplying (25) by p = (1 − α)/(βγ ) leads
to pzw,ξ − ξ/β = f (w, zw,ξ ).

(5) Let ξ ∈ V and zw,ξ , y ∈ F−1
w (γ ξ/(1 − α))\{0}. By statement (4),

f (w, zw,ξ ) = pzw,ξ − ξ/β and f (w, y) = py − ξ/β ,

and so, |f (w, zw,ξ )− f (w, y)| = p|zw,ξ − y|. It follows from (23) that y = zw,ξ .

�

In the following, for given ue ∈ U and ve ∈ V , we shall identify equilibria of the
difference equation

x(t + 1) =
k∑

j=0
αjx(t − j)+ βf

⎛
⎝ue,

k∑
j=0

γjx(t − j)

⎞
⎠ + ve, (26)

that is, of system (1) with u(t) ≡ ue and v(t) ≡ ve, and investigate the stability properties
of these equilibria. As (1) is a forced system, this will require results from the so-called
input-to-state stability theory of nonlinear control theory which provides an extension of
Lyapunov theory to forced systems [14,45,60].

It follows from statement (4) of Lemma 4.1 that, for ze(ue, ve) ∈ F−1
ue (γ ve/(1 − α))

and xe(ue, ve) := ze(ue, ve)/γ , we have that

xe(ue, ve) = αxe(ue, ve)+ βf
(
ue, γ xe(ue, ve

) + ve and pze(ue, ve)− ve/β

= f (ue, ze(ue, ve)). (27)

In particular, xe(ue, ve) is an equilibrium of system (26). Moreover, by statement (5) of
Lemma 4.1, if

|f (ue, z)− f (ue, ze(ue, ve))| < p|z − ze(ue, ve)| ∀ z > 0, z �= ze(ue, ve), (28)

then xe(ue, ve) is the unique positive equilibrium of (26).
The following hypothesis (cf. [23, hypothesis (N3)]) will play a key role in the context

of the stability and convergence theory to be developed.

(N3) Hypothesis (N2) and inequality (28) hold.

The inequality (28) is a so-called sector condition. Appealing to (27), we see that the
graphical interpretation of (28) is as follows: the graph of z �→ f (z, ue) is strictly ‘sand-
wiched’ between the straight lines z �→ pz − ve/β and z �→ −pz + 2ze(ue, ve)− ve/β ,



16 D. FRANCO ET AL.

with the three graphs intersecting at the point (ze(ue, ve), pze(ue, ve)− ve/β). A number
of sufficient conditions on the nonlinearity f for (N3) to hold and classes of examples
satisfying (N3) can be found in [21–23], see, for example, [22, Lemma 5.4 and Table 5.1].

Statement (1) of the following theorem, provides a stability result which is very much
in the spirit of the input-to-state stability from nonlinear control theory, see the survey
articles [14,60], the book section [42, Section 5.8] and the recent monograph [45]. State-
ment (2) is reminiscent of control theoretic convergent-input convergent-state results [6].

Theorem 4.2: Let ue ∈ U, ve ∈ V and ze(ue, ve) ∈ F−1
ue (γ ve/(1 − α))\{0} and set

xe(ue, ve) := ze(ue, ve)/γ . If (P2), (S), (L) and (N3) hold and (1) is ultimately semi-
globally c-persistent, then the following statements hold.

(1) For every compact set � ⊂ R
k+1+ such that 0 �∈ �, there exist ψ ∈ KL, φ ∈

K and r>0 such that, for all initial conditions (x(0), x(−1), . . . , x(−k))
 ∈ �,
all u : N0 → U and all v : N0 → V, the solution x of (1) satisfies

|x(t)− xe(ue, ve)| ≤ ψ

⎛
⎝ k∑

j=0
|x(−j) − xe(ue, ve)|, t

⎞
⎠

+ φ
(‖v − ve‖	∞(0,t) + ‖βr ◦ u‖	∞(0,t)

) ∀ t ∈ N0, (29)

where ‖v − ve‖	∞(0,t) := max{‖v(s)− ve‖ : s = 0, 1, . . . , t} and

βr(w) := max
0≤z≤r

|f (ue, z)− f (w, z)| ∀ w ∈ U. (30)

(2) For all (x(0), x(−1), . . . , x(−k))
 ∈ R
k+1+ , all u : N0 → U, all v : N0 → V such

that
∑k

j=0 x
(−j) + ‖v‖	∞ > 0, u(t) → ue and v(t) → ve as t → ∞, the solution x

of (1) has the convergence property x(t) → xe(ue, ve) as t → ∞.

We remark that if (N1) is replaced by the stronger condition (N1′) and the additional
assumption

lim sup
z→ze(ue,ve)

∣∣f (ue, z)− f (ue, ze(ue, ve))
∣∣∣∣z − ze(ue, ve)

∣∣ < p (31)

is satisfied, then ψ and φ are of the form ψ(s, t) = λκ ts and φ(s) = νs, where λ, ν > 0
and κ ∈ (0, 1), as follows from arguments similar to those used in the proof of [23,
Theorem 5.2]. The condition (31) means that the graph of z �→ f (ue, z) is not tangential to
the lines z �→ pz − ve/β and z �→ −pz + 2ze(ue, ve)− ve/β at z = ze(ue, ve).

If, in Theorem 4.2, the nonlinearity f is globally Lipschitz in its first variable, that is,
there exists λ > 0 such that

|f (w1, z)− f (w2, z)| ≤ λ‖w1 − w2‖ ∀ z ∈ R+, ∀ w1,w2 ∈ U, (32)
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then the constant r becomes redundant and (29) simplifies to

|x(t)− xe(ue, ve)| ≤ ψ

⎛
⎝ k∑

j=0
|x(−j) − xe(ue, ve)|, t

⎞
⎠

+ φ
(‖v − ve‖	∞(0,t) + λ‖ue − u‖	∞(0,t)

) ∀ t ∈ N0.

The global Lipschitz property (32) is, for example, satisfied for the following nonlineari-
ties.

(a) Beverton-Holt nonlinearity:

f (w, z) := a1z
a2 + wz

, z ≥ 0, w ∈ U := [u0, u1],

where a1 > 0, a2 > 0 and 0 < u0 < u1. (33)

(b) Ricker nonlinearity [51]:

f (w, z) := ze−ρwz, z ≥ 0, w ∈ U := [u0, u1], where ρ > 0 and 0 < u0 < u1.

Proof of Theorem 4.2.: Throughout the proof, we shall write ze and xe for ze(ue, ve)
and xe(ue, ve), respectively, and make use of the notation for left translates defined in (3).

(1) It follows from Proposition 3.3 and Theorem 3.5 that there exist r>0, a com-
pact set �̂ ⊂ R

k+1, τ ∈ N0 and η ∈ (0, ze) such that, for all (x(0), x(−1), . . . , x(−k))
 ∈ �,
all u : N0 → U and all v : N0 → V , the solution x of (1) satisfies

k∑
j=0

γjx(t − j) ≤ r, (x(t)− xe, . . . , x(t − k)− xe)
 ∈ �̂ and

k∑
j=0

γjxτ (t − j) ≥ η ∀ t ∈ N0.

Defining

f̂ : R → R, z �→
{
f (ue, z + ze)− f (ue, ze), z ≥ −ze + η

f (ue, η)− f (ue, ze), z < −ze + η
(34)

and invoking (27), we see that x satisfies

xτ (t + 1)− xe =
k∑

j=0
αj(xτ (t − j)− xe)+ β f̂

⎛
⎝ k∑

j=0
γj(xτ (t − j)− xe)

⎞
⎠

+ vτ (t)− ve + qτ (t) ∀ t ∈ N0, (35)

where

q(t) := f

⎛
⎝u(t),

k∑
j=0

γjx(t − j)

⎞
⎠ − f

⎛
⎝ue,

k∑
j=0

γjx(t − j)

⎞
⎠ . (36)
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We note that

|q(t)| ≤ βr(u(t)) = (βr ◦ u)(t) ∀ t ∈ N0. (37)

Noting that

|f̂ (z)| < p|z| ∀ z ∈ R, z �= 0 and
(
p|z| − |f̂ (z)|) → ∞ as |z| → ∞,

we conclude that there exists ρ ∈ K∞ such that

|f̂ (z)| ≤ p|z| − ρ(|z|) ∀ z ∈ R. (38)

An application of Theorem A.1 in the context of (35), with initial-value set given by �̂,
shows that there exist ψ̂ ∈ KL and φ̂ ∈ K such that

|xτ (t)− xe| ≤ ψ̂

⎛
⎝ k∑

j=0
|xτ (−j)− xe|, t

⎞
⎠ + φ̂

(‖vτ − ve‖	∞(0,t) + ‖qτ‖	∞(0,t)
) ∀ t ∈ N0.

(39)
As every solution x of (1) satisfies

x(t + 1)− xe =
k∑

j=0
αj(x(t − j)− xe)+ β f̃

⎛
⎝ k∑

j=0
γj(x(t − j)− xe)

⎞
⎠

+ v(t)− ve + q(t) ∀ t ∈ N0,

where

f̃ : R → R, z �→
{
f (ue, z + ze)− f (ue, ze), z ≥ −ze
f (ue, 0)− f (ue, ze), z < −ze,

it follows from the linear boundedness of f̃ 3 that there exist κ , λ > 0 such that

|x(t)− xe| ≤ κ

k∑
j=0

|x(−j)− xe| + λ
(‖v − ve‖	∞(0,t) + ‖q‖	∞(0,t)

) ∀ t ∈ {0, 1. . . . , τ }.

Combining this with (39), we conclude that there existψ ∈ KL,φ ∈ K and r>0 such that,
for all initial conditions (x(0), x(−1), . . . , x(−k))
 ∈ �, all u : N0 → U and all v : N0 → V ,
the solution x of (1) satisfies

|x(t)− xe, ve)| ≤ ψ

⎛
⎝ k∑

j=0
|x(−j) − xe|, t

⎞
⎠ + φ

(‖v − ve‖	∞(0,t) + ‖q‖	∞(0,t)
) ∀ t ∈ N0.

This, together with (37), yields (29).
(2) Let (x(0), x(−1), . . . , x(−k))
 ∈ R

k+1+ , u : N0 → U and v : N0 → V be such
that

∑k
j=0 x

(−j) + ‖v‖	∞ > 0, u(t) → ue and v(t) → ve as t → ∞, and let x be the
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corresponding solution of (1). We claim that there exist τ ∈ N0 and η > 0 such that

k∑
j=0

γjxτ (t − j) ≥ η ∀ t ∈ N0. (40)

If
∑k

j=0 x
(−j) > 0, then this is an immediate consequence of Theorem 3.5. Let us now

consider the case wherein
∑k

j=0 x
(−j) = 0. Then ‖v‖	∞ > 0, and so there exists σ ∈ N0

such that x(σ ) > 0. As xσ solves (1) with u and v replaced by uσ and vσ , respectively,
and (xσ (0), xσ (−1), . . . , xσ (−k))
 �= 0, Theorem 3.5 guarantees the existence of σ̃ ∈ N0
and η > 0 such that

k∑
j=0

γjxσ (t + σ̃ − j) ≥ η ∀ t ∈ N0.

Consequently, (40) holds with τ = σ + σ̃ .
Combining (40) with the fact that x is bounded (as follows from Proposition 3.3), we

see that

X := closure{(xτ (t), xτ (t − 1), . . . , xτ (t − k))
 : t ∈ N0} ⊂ R
k+1+

is compact and 0 �∈ X. Invoking statement (1) with� = X, shows that there existψ ∈ KL,
φ ∈ K and r>0 such that, for every θ ≥ τ ,

|xθ (t)− xe| ≤ ψ

⎛
⎝ k∑

j=0
|xθ (−j)− xe|, t

⎞
⎠

+ φ
(‖vθ − ve‖	∞(0,t) + ‖βr ◦ uθ‖	∞(0,t)

) ∀ t ∈ N0, (41)

where βr is defined by (30). Let ε > 0 be given. As u(t) → ue and v(t) → ve as t → ∞,
there exists θ0 ≥ τ such that

φ
(‖vθ0 − ve‖	∞(0,t) + ‖βr ◦ uθ0‖	∞(0,t)

) ≤ ε

2
∀ t ∈ N0.

Finally, choosing θ1 ∈ N0 such that

ψ

⎛
⎝ k∑

j=0
|xθ0(−j)− xe|, t

⎞
⎠ ≤ ε

2
∀ t ≥ θ1,

it follows from (41) (with θ = θ0) that |xθ0(t)− xe| ≤ ε for all t ≥ θ1. Hence, |x(t)− xe| ≤
ε for all t ≥ θ0 + θ1, completing the proof. �

The following corollary is an immediate consequence of Theorems 3.5 and 4.2.

Corollary 4.3: Let ue ∈ U, ve ∈ V and ze(ue, ve) ∈ F−1
ue (γ ve/(1 − α)) and set xe(ue, ve) :=

ze(ue, ve)/γ . If (S), (L), (P2) and (N3) are satisfied, then statements (1) and (2) of
Theorem 4.2 hold.
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The final result in this section provides a sufficient condition for the convergence
property in statement (2) of Theorem 4.2 to hold for every ve ∈ V .

Corollary 4.4: Assume that (S), (L), (P2) and (N2) are satisfied and let ue ∈ U be fixed,
but arbitrary. Then there exists zue := ze(ue, 0) ∈ F−1

ue (0) such that zue > 0 and (0, zue) ∩
F−1
ue (0) = ∅. If∣∣∣∣ f (ue, z)− f (ue, ξ)

z − ξ

∣∣∣∣ < p ∀ (z, ξ) ∈ (0,∞)× [zue ,∞), z �= ξ , (42)

then, for all (x(0), x(−1), . . . , x(−k))
 ∈ R
k+1+ , all ve ∈ V, all u : N0 → U, all v : N0 →

V such that
∑k

j=0 x
(−j) + ‖v‖	∞ > 0, u(t) → ue and v(t) → ve as t → ∞, the solu-

tion x of (1) has the convergence property x(t) → xe(ue, ve) as t → ∞, where xe(ue, ve) =
ze(ue, ve)/γ and {ze(ue, ve)} = F−1

ue (γ ve/(1 − α)).

Proof: The existence of zue ∈ F−1
ue (0) such that zue > 0 and (0, zue) ∩ F−1

ue (0) = ∅ is a
consequence of statement (1) of Lemma 4.1.

To prove the convergence property, assume that (42) holds and let ve ∈ V . By state-
ment (2) of Lemma 4.1,

F−1
ue

(
γ ve/(1 − α)

) ∩ [zue ,∞) �= ∅.
For ze(ue, ve) ∈ F−1

ue (γ ve/(1 − α)) ∩ [zue ,∞), condition (42) guarantees that (28), and
hence, (N3) is satisfied. The claim now follows from statement (2) of Theorem 4.2. �

In the following, we identify classes of nonlinearities which satisfy the relevant assump-
tions in Corollary 4.4. The next two lemmas are straightforward consequences of [6,
Lemma 6.8] and [6, Lemma 6.9], respectively.

Lemma 4.5: Assume that f : U × R+ → R+ is continuous, where U ⊂ R
n is com-

pact, and let p>0. Let ue ∈ U and assume that z �→ f (ue, z) is continuously differen-
tiable, f (ue, 0) = 0, f ′(ue, z) ≥ 0 for all z>0, f ′(ue, 0) > p, z �→ f ′(ue, z) is non-increasing
and limz→∞ f ′(ue, z) < p, where f ′ denotes the derivative of f with respect to the second
argument z. Then there exists zue > 0 such that f (ue, zue) = pzue and (42) holds.

As a specific example, consider the Beverton-Holt nonlinearity given by (33): for p>0
and ue ∈ U = [u0, u1], the conditions in Lemma 4.5 are satisfied, provided that p < a1/a2.
The latter condition is also sufficient for (N2) to hold for the Beverton-Holt nonlinearity.

The next lemma considers a class of Ricker nonlinearities.

Lemma 4.6: Let U := [u0, u1], where 0 < u0 < u1 and let f : U × R+ → R+ be given by

f (w, z) := ze−ρwz ∀ (w, z) ∈ U × R+,

where ρ is a positive parameter. Assume that

e−2 ≤ p < 1. (43)

Then (N2) is satisfied, and, for given ue ∈ U, the number zue := −(ln p)/(ρue) > 0 is the
unique positive solution of the equation f (ue, z) = pz and (42) holds.
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A further class of nonlinearities satisfying (42) is provided in Lemma 5.3, at the end of
the next section.

5. Response to almost periodic additive forcing

In this section, we will investigate the response of system (1) to non-negative almost peri-
odic additive forcing functions v under the assumption that u(t) → ue as t → ∞. The
theory of almost periodic functions defined on Z parallels that of functions defined on R

(see, for example, [11] as a general reference on almost periodicity). The basic theory of
almost periodic functions defined on Z was developed in [55], and further details can be
found, for example, in [11, Section I.6] and [29, Appendix B].

We begin by presenting some relevant background material on almost periodic func-
tions defined on the discrete-time domain Z. A set Z ⊂ Z is called relatively dense (in Z)
if there exists s ∈ N such that

{t, . . . , t + s} ∩ Z �= ∅ ∀ t ∈ Z.

For ε > 0, we say that t0 ∈ Z is an ε-period of w : Z → R
m if ‖w(t)− w(t + t0)‖ ≤ ε for

all t ∈ Z. We denote by P(w, ε) ⊂ Z the set of ε-periods of w and we say that w : Z → R
m

is almost periodic if P(w, ε) is relatively dense in Z for every ε > 0. We denote the set of
almost periodic functions w : Z → W ⊂ R

m by AP(Z,W). The functions in AP(Z,W)

are bounded, and, if W is a linear subspace of R
m, then AP(Z,W) is a closed subspace

of 	∞(Z,W). It is convenient to set AP(Z) := AP(Z,R). Trivially, a periodic function is
almost periodic. An example of a function which is almost periodic, but not periodic, isw :
Z → R defined by w(t) := sin(π

√
2 t) for t ∈ Z.

The theorem below is the main result of this section.

Theorem 5.1: Assume that (S), (P2), (L) and (N2) are satisfied, let ue ∈ U be fixed and
let vap ∈ AP(Z,V). If∣∣∣∣ f (ue, z)− f (ue, ξ)

z − ξ

∣∣∣∣ < p ∀ (z, ξ) ∈ (0,∞)× (0,∞), z �= ξ , (44)

then the following statements hold.

(1) There exists xap ∈ AP(Z,R+) satisfying the bilateral equation

x(t + 1) =
k∑

j=0
αjx(t − j)+ βf

⎛
⎝ue,

k∑
j=0

γjx(t − j)

⎞
⎠ + vap(t) ∀ t ∈ Z, (45)

and xap is the unique bounded (on Z) solution of (45). Furthermore,

inf
t∈Z

⎛
⎝ k∑

j=0
γjxap(t − j)

⎞
⎠ > 0, (46)

and, for every ε > 0, there exists δ > 0 such that P(vap, δ) ⊂ P(xap, ε). In particular,
if vap is t0-periodic for some t0 ∈ N, then xap is t0-periodic.
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(2) Let u and v be functions from N0 to U and V respectively, and let x :
{−k, . . . ,−1} ∪ N0 be a solution of the initial-value problem (1). If limt→∞ u(t) =
ue and limt→∞(v(t)− vap(t)) = 0, then limt→∞(x(t)− xap(t)) = 0 and

lim inf
t→∞

⎛
⎝ k∑

j=0
γjx(t − j)

⎞
⎠ = inf

t∈Z

⎛
⎝ k∑

j=0
γjxap(t − j)

⎞
⎠ > 0. (47)

We remark that, by (N2), there exists ze > 0 such that f (ue, z) > pz for all z ∈ (0, ze)
and f (ue, ze) = pze. On the other hand, (44) implies |f (ue, 0)− f (ue, z)| ≤ pz for all z ≥ 0.
Consequently, if (N2) and (44) hold, then f (ue, 0) > 0. Note the difference between con-
ditions (42) and (44): the range of ξ for which the inequality is required to hold is [ze,∞)

in (42) as compared to (0,∞) in (44).
Almost periodicity can also be defined for functionswith domainN0 by simply replacing

Z with N0 in the above definitions of relative denseness, ε-period and almost periodic-
ity. Letting AP(N0,Rm) denote the space of almost periodic functions N0 → R

m, then,
as explained in [26], the restriction map AP(Z,Rm) → AP(N0,Rm), w �→ w|N0 is bijec-
tive. In particular, in Theorem 5.1, we could let vap be an almost periodic function defined
on N0, provided that, in (45), vap is replaced by its unique bilateral extension to Z.

The following simple lemma will be used in the proof of Theorem 5.1.

Lemma 5.2: Let w ∈ AP(Z,Rm). If limt→∞ inf{‖w(t)− ξ‖ : ξ ∈ R
m+} = 0, then w(t) ∈

R
m+ for all t ∈ Z.

The proof of the contrapositive statement is straightforward, using only the definition
of almost periodicity. For the sake of brevity, we leave the details to the reader.

Proof of Theorem 5.1.: The key idea is to apply [26, Theorem 4.3]. To this end, we need to
rewrite the higher-order system in first-order form and, in a second step, ‘transform’ the
nonlinearity in a suitable way, as the theory in [26] is developed for general (not necessarily
non-negative) state-space systems.

Let u and v be functions fromN0 toU andV such that u(t) → ue and v(t)− vap(t) → 0
as t → ∞, and let x be the solution of the initial-value problem (1). By (N2) and (44)
there exists a unique positive solution ze to the equation pz = f (ue, z). We claim that there
exist σ ∈ N0 and η ∈ (0, ze) such that

c
x̃(t + σ) =
k∑

j=0
γjx(t + σ − j) ≥ η ∀ t ∈ N0, (48)

where x̃(t) := (x(t), x(t − 1), . . . , x(t − k))
. If x̃(0) = (x(−k), . . . , x(0))
 �= 0, this is an
immediate consequence of Theorem 3.5. Let us now consider the case wherein x̃(0) =
(x(−k), . . . , x(0))
 = 0. As has been already pointed out, it follows from (N2) and (44)
that f (ue, 0) > 0. As f is continuous and u(t) → ue as t → ∞, it follows that x(t) �≡ 0,
whence x(θ) > 0 for some θ ∈ N0. It now follows as in the proof of statement (2) of
Theorem 4.2 that (48) holds with suitable σ ∈ N0 and η ∈ (0, ze).
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Proposition 3.3 guarantees that x is bounded. Consequently, as f is continuous (and
hence uniformly continuous on compact sets), and q(t) defined in (36) converges to 0
at t → ∞:

lim
t→∞ q(t) = 0.

We note that x satisfies

x(t + 1) =
k∑

j=0
αjx(t − j)+ βf

⎛
⎝ue,

k∑
j=0

γjx(t − j)

⎞
⎠ + w(t) ∀ t ∈ N0,

where w(t) := v(t)+ q(t), or, equivalently,

x̃(t + 1) = Ax̃(t)+ bf
(
ue, c
x̃(t)

) + w̃(t) ∀ t ∈ N0,

where w̃(t) := (w(t), 0, . . . , 0)
 for all t ∈ N0. Setting ṽap(t) := (vap(t), 0, . . . , 0)
 for
all t ∈ Z, we have that

lim
t→∞

(
w̃(t)− ṽap(t)

) = 0. (49)

Let f̂ be as in (34) and note that, by (44) and (N2),

∣∣∣∣∣ f̂ (z)− f̂ (ξ)
z − ξ

∣∣∣∣∣ < p ∀ (z, ξ) ∈ R × R z �= ξ and lim|z|→∞
(
p|z| − |f̂ (z)|) = ∞. (50)

For an arbitrary function ŵ : T → R
k+1, where T = N0 or T = Z, consider the system

y(t + 1) = Ay(t)+ bf̂
(
c
y(t)

) + ŵ(t) ∀ t ∈ T. (51)

It follows from (S), (L) and (50) that system (51) satisfies the hypotheses of [26,
Theorem 4.3], and therefore, [26, Theorem 4.3] guarantees that

(a) if, in (51), T = Z and ŵ = ṽap, then there exists a unique bounded solution yap :
Z → R

k+1 of (51), yap ∈ AP(Z,Rk+1), and, for all ε > 0, there exists δ > 0 such
that P(ṽap, δ) ⊂ P(yap, ε);

(b) if, in (51), T = N0 and ŵ = w̃, then, since w̃(t)− ṽap(t) → 0 as t → ∞ by (49),
y(t)− yap(t) → 0 as t → ∞ for every solution y of (51).

Using the notation for left translates defined in (3), we have that ṽapσ and yapσ are almost
periodic, and it is clear that statements (a) and (b) remain valid when ṽap, yap and w̃ are
replaced by ṽapσ , yapσ and w̃σ , respectively. Therefore, as yx : N0 → R

k+1 defined by yx(t) :=
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x̃(t + σ)− x̃e, where

x̃e :=
(
xe, . . . , xe

)
 = (
ze/γ , . . . , ze/γ

)
 ∈ (0,∞)k+1,

satisfies (51) with T = N0 and ŵ = w̃σ , we have that yx(t)− yapσ (t) → 0 as t → ∞.
Consequently,

x̃(t + σ)− (
yapσ (t)+ x̃e

) → 0 as t → ∞. (52)

As x̃(t) ≥ 0 for all t ∈ N0 and the function t �→ yapσ (t)+ x̃e is almost periodic, it follows
from Lemma 5.2 that yapσ (t)+ x̃e ≥ 0 for all t ∈ Z. Defining x̃ap ∈ AP(Z,Rk+1+ ) by

x̃ap(t) := yapσ (t − σ)+ x̃e = yap(t)+ x̃e ∀ t ∈ Z,

we have that

x̃ap(t + 1) = Ax̃ap(t)+ bf
(
ue, c
x̃ap(t)

) + ṽap(t) ∀ t ∈ Z.

Furthermore, by (a)

P(ṽap, δ) ⊂ P(yap, ε) = P(x̃ap, ε).

Invoking (52) yields

x̃(t)− x̃ap(t) = x̃(t)− (
yapσ (t − σ)+ x̃e

) → 0 as t → ∞. (53)

Denoting the first component of x̃ap(t) by xap(t), it is clear that xap is almost periodic, xap
satisfies (45), and, for every ε > 0, there exists δ > 0 such that P(vap, δ) ⊂ P(xap, ε). Also,
by (53),

x(t)− xap(t) → 0 as t → ∞. (54)

Combining (54) with (48), the almost periodicity of the function t �→ c
x̃ap(t) =∑k
j=0 γjx

ap(t − j) and Lemma 5.2 shows that (46) holds. Finally, by almost periodicity
of c
x̃ap, we have that inf t∈Z c
x̃ap(t) = lim inf t→∞ c
x̃ap(t), and thus, by (53) and (46),

lim inf
t→∞ c
x̃(t) = inf

t∈Z

c
x̃ap(t) > 0

establishing (47) and completing the proof. �

We close this section by specifying a class of nonlinearities which satisfy the condi-
tion (44) in Theorem 5.1. The lemma below follows from a straightforward application of
the mean-value theorem for differentiation.

Lemma 5.3: Let U ⊂ R
n be compact, ue ∈ U and p>0. Assume that z �→ f (ue, z) is

continuously differentiable, f (ue, 0) > 0 and

sup
z≥0

|f ′(ue, z)| < p, (55)

where f ′ denotes the derivative of f with respect to the second argument z. Then there exists a
unique ze > 0 such that f (ue, ze) = pze and (44) holds.

Note that if (55) holds, but f (ue, 0) = 0, then f (ue, z) < pz for all z>0, implying that
there does not exist ze > 0 such that f (ue, ze) = pze.

Finally, we note that if f satisfies the assumptions of Lemma 5.3, then condition (42) in
Corollary 4.4 holds.
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6. Examples

To illustrate the results in Sections 3–5, we discuss four examples.

Example 6.1 (The forced Allen-Clark model): Here we consider the nonlinear, scalar,
higher-order (or delayed) difference equation

x(t + 1) = αx(t)+ βf (u(t), x(t − k))+ v(t) t ∈ N0, (56)

where α ≥ 0, β > 0 and k ∈ N0 are constants, and f = f (w, z) is a nonlinearity. Obvi-
ously, (56) is itself a forced (or controlled) version of the Allen-Clark model (2), both of
which are special cases of the general higher-order difference Equation (1) with

α0 = α, α1 = . . . = αk = 0, γk = 1, γ0 = . . . = γk−1 = 0.

Equation (56) will be referred to as the forced Allen-Clark model. We will see below that
the theoretical results of Sections 3–5 apply if α > 0, but they do not apply if α = 0. As
has been already indicated, the term v facilitates modelling immigration into a population,
and the term u may capture environmental variation or harvesting, either anthropogenic
or otherwise. For example, the model [22, Equation (6.7)] is of the form (56) and expresses
the juvenile-only harvesting situation of a population presented in [68], and further studied
in [41], with harvesting rates assumed constant in [41,68].

In accordance with Section 2, the rational functionG, the number p and the polynomi-
als a and c associated with (56) are given by

G(ζ ) = β

ζ k(ζ − α)
, p := 1

G(1)
= 1 − α

β
, a(ζ ) = ζ k(ζ − α), c(ζ ) ≡ 1. (57)

We investigate under which conditions the key hypotheses of this paper are satisfied. It is
clear that (L) holds because the comprimeness condition (ii) in (L) is trivially satisfied. The
linear stability condition (S) holds if, and only if, α < 1. Furthermore, if α > 0, then I =
{1, k + 1}, implying that (P2) is satisfied. We note that if α = 0, then I = {k + 1}, and so,
(P2) fails to hold whenever k �= 0. Throughout the rest of this example, it will be assumed
that α ∈ (0, 1).

Hypotheses (N1)–(N3), as well as the inequality (42), depend on the nonlinearity f, and
its relation to the positive parameter p, and require f to enjoy certain qualitative properties.
As a specific example, we consider (56) with

f (w, z) = ze−κwz z ≥ 0, w ∈ U, whereU ⊂ (0,∞) is compact,

that is,

x(t + 1) = αx(t)+ βx(t − k)e−κu(t)x(t−k) + v(t) t ∈ N0. (58)

We remark that (58) is a forced version of the model [56, Equation (6)] for biomass of
mature fish, recorded here for convenience (in the notation of [56]):

Bt = Bt−1e−Z + αBt−τ e−βBt−τ .

Table 1 relates the notation used presently to that in [56, Equation (6)]. The cases of α = 0
or α > 0 correspond to semelparous and iteroparous species, respectively, although recall
that we consider α > 0 here only.
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Table 1. Comparison of notation used in model (58).

Symbol Symbol in [56] Interpretation

x(t) Bt biomass of mature fish in the population at time t
α e−Z Z = Mp + F > 0 is the overall instantaneous mortality rate, and is the

sum of natural mortalityMp and fishing mortality F
β α maximum per capita reproduction rate (at low population abundance)
κ β density-dependent mortality near equilibrium abundance parameter

In the idealized situation in which reproduction in (56) is density-independent, mean-
ing f (w, z) = f (z) = z, the quantity β/(1 − α) = 1/p = G(1) is readily shown to equal
the inherent net reproductive number [13, pp. 7–9, Definition 1] of the linear model (58).
Adapting the conclusion in [13, p. 9], β/(1 − α) equals the expected amount of biomass
produced, per unit of biomass, over the course of its lifetime. Therefore, the existence of a
non-trivial equilibrium of the density-dependent model (58) requires that

β

1 − α
> 1 ⇐⇒ p < 1.

In the following numerical simulations we fix the model data

k = 2, α = 0.1, β = 6, κ = 1.5, x(0) = 1, x(−1) = 1.5,

x(−2) = 0, U = [0.9, 1.1], ue = 1, V = [0, 10].

}
(59)

Then p = 0.15<1, and as already discussed, (P2), (S) and (L) are satisfied. A graph of the
nonlinearity f (ue, ·) = f (1, ·) is shown in Figure 2(a), along with the straight lines z �→ pz
and z �→ −pz + 2ze(1, 0) determining the sector condition (28). Furthermore, as e−2 <

p = 0.15 < 1, Lemma 4.6 yields that (N2) and (42) hold with model data as in (59),
whence the hypotheses of Theorem 3.5, Theorem 4.2 and Corollary 4.4, our main per-
sistence, stability and convergence results, are satisfied. In the context of (58), the key
condition ze = ze(ue, ve) ∈ F−1

ue (γ ve/(1 − α))\{0} from Section 4 becomes

ze − β

1 − α
zee−κueze = ve

1 − α
. (60)

As γ = 1, we have that xe = xe(ue, ve) = ze(ue, ve) = ze.
To illustrate statement (1) of Theorem 4.2, let ve = 0 and consider

u(t) = 1 + θ sin(t/4) and v(t) = θr(t) t ∈ N0, (61)

where r(t) is equal to a uniform (pseudo)random number in [0, 1] for each t ∈
N0, and θ ∈ [0, 0.1] is an amplitude parameter. Figures 2(b)–2(d) shows plots
of x(t; x(0), x(−1), x(−2), 1, v), x(t; x(0), x(−1), x(−2), u, 0) and x(t; x(0), x(−1), x(−2), u, v)4
against t, respectively, in each case for θ = 0.05 and θ = 0.1. For comparison, in each
plot a graph of the unforced solution x(t; x(0), x(−1), x(−2), 1, 0) is displayed and is seen
to converge to xe(1, 0) as t increases. As predicted by the estimate (29) in Theorem 4.2,
the deviation of x(t) from xe(1, 0) decreases as θ decreases. Observe that despite v taking
only nonnegative values, the values of x(t; x(0), x(−1), x(−2), 1, v) are occasionally smaller
than those of the unforced solution, a consequence of the non-monotonicity of the Ricker
nonlinearity, capturing so-called overcompensatory recruitment.
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Figure 2. Simulations of the forced Allen-Clark model (58) with model data (59). In panels (b)–(d) the
blue curves show the solution of the unforced model (u(t) ≡ 1 and v(t) ≡ 0). Panel (e) displays graphs
of the solutions corresponding to the forcing functions given in (62). Panel (f ) contains simulations
with β = 12 and forcing term (61) with θ = 0.1.

To illustrate Corollary 4.4, we consider the convergent additive forcing functions

v1(t) = ve,1(1 + (−0.9)t), v2(t) = ve,2 + te−t , v3(t) = ve,3 t ∈ N0, (62)
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with ve,i = 0.5i for i = 1, 2, 3. Figure 2(e) shows graphs of x(t; x(0), x(−1), x(−2), 1, vi)
against t, for i ∈ {1, 2, 3}. In each case, convergence x(t) → xe(1, ve,i) as t → ∞ is
observed, in accordance with Corollary 4.4. The limits xe(1, ve,i) agree with the solutions
of (60), obtained numerically by using the Matlab command fsolve, here giving

xe,1 = 1.5586, xe,2 = 1.8674, xe,3 = 2.2049.

System (58) is known to admit oscillatory solutions, even in the unforced case, if condi-
tion (43) fails. This occurs, for instance, when β in (59) is replaced by β = 12, in which
case e−2 > p = 0.075. However, system (58) still satisfies the hypotheses of Theorem 3.5
and exhibits the ultimate semi-global persistence property of Definition 3.4. As a numer-
ical illustration, Figure 2(f) plots in grayscale 40 solutions of (58) with (pseudo)random
initial conditions such that

x(0) ∈ [0.1, 5] and x(−1) = x(−2) = 0, (63)

and u and v as in (61) with θ = 0.1. The inset shows a plot of x(t) against t for 0 ≤ t ≤
5 with a logarithmic scale on the vertical axis. We comment that the purpose of Figure
2(f) is not to follow individual solutions, but rather to visualize a system-level property.
The simulations shown in Figure 2(f) are in accordance with Theorem 3.5: indeed, τ = 4
is the minimal τ ∈ N0 such that c
(A + bc
)τ 	 0, and thus, Theorem 3.5 guarantees
the existence of a number η > 0 such that, for all initial conditions satisfying (63) and all
forcing functions u and vwith values inU andV, respectively, the corresponding solution x
satisfies x(t + 2) ≥ η for all t ∈ N0. ♦

Example 6.2 (A plant populationmodel with seed bank): Many plants grow from seeds,
and it is a known plant survival strategy that not all seeds germinate in the year following
their dispersal. Seeds which remain dormant underground comprise what is often termed
the seed bank. Thus, mathematical models for seed banks inherently contain delays (and
hence, in discrete-time, higher-order terms). A nice review of mathematical models of
plant species with seed banks appears in [46], and a comprehensive construction of amodel
for single local plant populations with linear growth appears in [17, Section 1.2, p. 8]. Here,
we show how certain plant models inspired by those in [17] and [46] are of the form (1).
We assume that seedsmay survive k+ 1 years in the seed bank, and that older seeds are not
viable. In particular, the present framework allows for any fixed dormancy period. Similar
to [46, Section 2], we let s(t) and a(t) denote the number of germinating seeds and adult
plants of generation t, respectively, which are assumed to satisfy the following difference
equations

s(t + 1) =
k∑

j=0
γja(t − j), a(t + 1) = f (s(t + 1)), t ∈ N0. (64)

Here γj ≥ 0 are constants which capture the combination of the survival of seeds, the
fraction that delay their germination, and the number of seeds produced per plant. Con-
sequently, the first equation determines the number of new seedlings, and the second
equationmodels the density-dependent growth of germinating seeds into adult plants over
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the course of a season, captured by the nonlinearity f : R+ → R+. Eliminating s(t + 1)
from (64), we obtain

a(t + 1) = f

⎛
⎝ k∑

j=0
γja(t − j)

⎞
⎠ t ∈ N0,

which is of the form (1) with β = 1 and αj = 0 for every j ∈ {0, 1, . . . k}. In particular, the
above model fits the scope of the current work. Hypothesis (P1) holds, provided that γk >
0, which we shall assume, and hypothesis (S) is always satisfied. In this example

a(ζ ) := ζ k+1 and c(ζ ) := γ0ζ
k + γ1ζ

k−1 + · · · + γk,

which are coprime as γk > 0, implying that hypothesis (L) is satisfied. Furthermore, as I =
{i ∈ {1, . . . , k + 1} : γi−1 > 0}, a sufficient condition for (P2) to hold is the existence of
an integer i ∈ {1, . . . , k + 1} such that γi−1 > 0 and i and k+ 1 are coprime (for example,
if γ0 > 0). As usual, properties (N1)–(N3) depend on the nonlinearity f and its interplay
with the positive parameter p = 1/G(1) = 1/(

∑k
j=0 γj). In closing, we comment that the

inclusion of forcing terms in model (64) seems very natural. It is clear that the main results
of Sections 3–5 would apply in this setting. ♦

Example 6.3 (Delay independent stability): Here we demonstrate that there exist scenar-
ios in which the Allen-Clark model (56) has delay-independent global stability properties.
To this end, consider (56) and assume thatα ∈ (0, 1),β > 0 and f : U × R+ → R+ is con-
tinuous. Moreover, fix ue ∈ U and let ve = 0. As shown in Example 6.1, the constant p is
given by p = (1 − α)/β (not depending on k) and hypotheses (S), (P2) and (L) are satisfied
for every k ∈ N0. Consequently, an application of Corollary 4.3 shows that if f satisfies (N3)
(a condition which is independent of k as p does not depend on k), then, for every k ∈ N0,
the unique positive number xe := xe(ue, 0) satisfying pxe = f (ue, xe) is an equilibrium
of (56) with v(t) ≡ 0, and furthermore, given an arbitrary compact set � ⊂ R

k+1+ \{0},
there existsψ ∈ KL and φ ∈ K such that, for all initial conditions (x(0), . . . , x(−k))
 ∈ �,
all u : N0 → U and all V : N0 → V the solution x of (56) satisfies (29) (with ve = 0). In
particular, if u(t) ≡ ue and v(t) ≡ 0, then

|x(t)− xe| ≤ ψ

⎛
⎝ k∑

j=0
|x(−j) − xe|, t

⎞
⎠ ∀ t ∈ N0,

showing that xe is a globally asymptotically stable equilibrium of the unforced Allen-Clark
model (here considered on the domainR

k+1+ \{0}).We conclude that, in the context of (56),
condition (N3) guarantees delay-independent global asymptotic stability.

These findings contrast with those of [43] which show that conditions under which
the positive equilibrium xe of (2) is globally asymptotically stable in the undelayed case
(k = 0) are not sufficient for global asymptotic stability when k ≥ 3. In other words, global
asymptotic stability in these settings depends on the delay. ♦
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Example 6.4 (Blood cell model): The Allen-Clarkmodel (2) also arises as a discretisation
of the delay-differential equation

ẋ(t) = −μx(t)+ f (x(t − δ)) t ∈ R+ where δ,μ > 0, (65)

see [39]. We remark that (65) is sometimes referred to as Nicholson or Mackey-Glass
equation [27,44]. In the special case wherein f (z) = e−κz for all z ≥ 0, (65) is the so-called
(reduced) Lasota-Wazewska haematology model [47, Equation (5.24)]. Here we consider
the following forced discrete-time version of this model, namely

x(t + 1) = αx(t)+ βf (u(t), x(t − k))+ v(t) t ∈ N0, (66)

with k ∈ N0, α ∈ (0, 1), β , κ > 0, u and v taking values in non-empty compact sets U ⊂
(0,∞) and V ⊂ R+, respectively, and f (w, z) = e−κwz for all (w, z) ∈ U × R+. The forc-
ing terms u and v could, for example, model the intake of drugs affecting blood cell pro-
duction and transfusions, respectively. In the unforced case (u(t) ≡ 1 and v(t) ≡ 0), (66)
has been studied, for example, in [30], whilst in [8], Equation (66) is analysed in the special
case wherein k = 0, u(t) ≡ 1 and v(t) ≡ const ≥ 0.

Since (66) is a forced Allen-Clarkmodel, conditions (S), (L) and (P2) hold, and p associ-
atedwith (66) is given by (57), see Example 6.1. It is clear that (N2) is satisfied. Furthermore,
for any ue ∈ U, we have that

f (ue, 0) = 1 > 0 and sup
z≥0

|f ′(ue, z)| = ueκ ,

and thus, Lemma 5.3 guarantees that (44) is satisfied whenever

0 < ue <
1 − α

βκ
. (67)

As a consequence, if the inequality (67) holds, then Theorem 5.1 is applicable.
For numerical simulations, we fix the model data

k = 1, α = 0.3, β = 0.6, κ = 1.5, U = [0.05, 4], ue = 1, V = [0, 4], (68)

in which case inequality (67) is satisfied. Therefore, Theorem 5.1 guarantees that the
response of the system is asymptotically (almost) periodic if u(t) → ue and v : N0 → V
is (almost) periodic. Let v be given by

v(t) = 0.5 + 0.2
(
cos(0.4π t)+ 0.5 sin(0.3π t)

) ∀ t ∈ N0, (69)

a periodic function with period 20. The graphs in Figure 3 show the solutions of (66)
corresponding to v as in (69) and u, x(0) and x(−1) as specified below:

I : u = ue, x(0) = 1, x(−1) = 1 (70a)

II : u = u∗, x(0) = 0.75, x(−1) = 0 (70b)

III : u = 2ue − u∗, x(0) = 0, x(−1) = 1.5, (70c)

where u∗(t) := ue(1 + (−0.95)t) for all t ∈ N0. We observe that, in accordance with
Theorem 5.1, each solution tends asymptotically to the same periodic function. ♦
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Figure 3. Simulations of the forced Allen-Clark model (66) with model data (68) and forcing functions
and initial conditions given by (69) and (70a).

7. Discussion

The dynamic properties of boundedness, persistency, stability and convergence have been
considered for the class of nonlinear, positive, scalar, higher-order difference Equations (1).
Sufficient conditions for these properties have been provided across our main results of
Proposition 3.3, Theorems 3.5, 4.2 and 5.1, and Corollary 4.4. Persistency plays a piv-
otal role throughout and the key hypothesis (P2) is an easily checkable condition which,
together with (S), (L) and (N2), guarantees that (1) is persistent. Our work traces its inspi-
ration to [63], complements related work of the authors [21–24], and enhances aspects of
these papers.

The application of our results to a range of models arising in theoretical biology
and ecology – the Allen-Clark model in population dynamics, plant models with seed
banks, and haematology models – has been presented across Examples 6.1, 6.2 and 6.4,
respectively. For the Allen-Clark model (2), our results, when applicable, ensure delay-
independent stability as described in Example 6.3. A distinguishing feature, as compared
to the literature, is the inclusion of forcing terms. The stability and convergence results
in Sections 4 and 5, based on control-theoretic input-to-state stability ideas and which go
beyond standard Lyapunov theory and apply to the forced system (1), are not restricted to
the analysis of the stability properties of the equilibrium of the unforced version of (1).

In terms of open problems, we have made essential use of the sector condition (N3) to
ensure stability. Careful analyses such as [25] have identified classes of unforced higher-
order scalar difference equations, which are special cases of (1) and where (N3) is violated,
yet global asymptotic stability of a non-zero equilibrium is still ensured. The work [25]
exploits that the dynamics of a certain higher-order difference equation may be domi-
nated by the dynamics of a first-order difference equation with a positive global attractor.
The extent to which these methods, or the use of envelopments by linear fractional
functions [12], may be applicable to forced problems are interesting topics for future
research.
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Notes

1. Whilst [53, Corollary 17] applies to difference equations, an inspection of the proof of [53,
Corollary 17] shows that it extends in straightforward way to set-valued nonlinearities.

2. Here it is important to recall that (N1) forms part of the condition (N2). Whilst in [23,
Theorem 4.4] it is imposed that (N1′) holds (an assumption more restrictive than (N1)), in
the proof of [23, Theorem 4.4] condition (18) is used to establish uniform boundedness of
the state trajectories generated by initial conditions in � and forcing functions u : N0 → U
and v : N0 → V . As we have seen, in the current setting, this uniform boundedness property is
guaranteed by Proposition 3.3 which only assumes that (N1) holds.

3. Whilst the definition of f̃ is identical to that of f̂ with η = 0, we remark that in the case
wherein ve = 0 and f (ue, 0) = 0, we have that f (ue, ze) = pze, and thus |f̃ (ue,−ze)| = p| − ze|.
Consequently, there does not exist ρ ∈ K∞ such that (38) holds with f̂ replaced by f̃ .

4. Here and in Example 6.4, this notation is used to emphasize the dependence of solutions on
the initial conditions and forcing functions, and to distinguish notationally between several
solutions.
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Appendix

Consider the following higher-order Lur’e difference equation, which is of the same form as (1), but
without any non-negativity constraints and the nonlinearity is independent of any external forcing:

x(t + 1) =
k∑

j=0
αjx(t − j)+ βh

⎛
⎝ k∑

j=0
γjx(t − j)

⎞
⎠ + v(t), x(−j) = x(−j) ∈ R,

j = 0, . . . , k, t ∈ N0, (A1)

where k ∈ N0, αj, γj,β ∈ R for j = 0, . . . , k, β �= 0,
∑k

j=0 |γj| > 0 and |αk| + |γk| > 0. The nonlin-
earity h : R → R is assumed to be continuous and the function v takes values in R. As in Section 2,
set a(ζ ) := ζ k+1 − ∑k

j=0 αjζ
k−j, c(ζ ) := ∑k

j=0 γjζ
k−j and

G(ζ ) := β
∑k

j=0 γjζ
k−j

ζ k+1 − ∑k
j=0 αjζ

k−j
= βc(ζ )

a(ζ )
, where ζ ∈ C.

Let A ∈ R
(k+1)×(k+1) and b, c ∈ R

k+1 be given by (9) and set ṽ(t) := (v(t), 0, . . . , 0)
. Then
Equation (A1) can be expressed in the form

x̃(t + 1) = Ax(t)+ bh(c
x̃(t))+ ṽ(t), x̃(0) = (x(0), . . . , x(−k))
, t ∈ N0. (A2)

Furthermore, G(ζ ) = c
(ζ I − A)−1b.
The following theorem is a special case of [53, Theorem 13].

Theorem A.1: Assume that (S) and (L) hold. If there there exists ρ ∈ K∞ such that

|h(z)| ≤ (1/‖G‖H∞)|z| − ρ(|z|) ∀ z ∈ R,

then there exist ψ ∈ KL and φ ∈ K such that, for all (x(0), x(−1), . . . , x(−k))
 ∈ R
k+1 and all v :

N0 → R, the solution x of (A1) satisfies

|x(t)| ≤ ψ

⎛
⎝ k∑

j=0
|x(−j)|, t

⎞
⎠ + φ

(‖v‖	∞(0,t)) ∀ t ∈ N0.

Proof: Consider the first-order (or state-space) formulation (A2) of the higher-order system (A1)
and note that, by the special structure of A and b, the linear system

x(t + 1) = Ax(t)+ bu(t), y(t) = c
x(t)

is controllable. Trivially, by the linear stability assumption (S), this system is also stabilizable and
detectable. Consequently, invoking (L) and Lemma 3.1, we conclude that [53, Assumption A] is
satisfied. Exploiting the linear stability assumption (S) once more, it follows that [53, Theorem 13]
applies to (A2) (with, in the notation of [53], linear stabilizing feedback K = 0), establishing the
claim. �
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