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25
26 In the dynamic landscape of network security, where cyberattacks continu-
27 ously evolve, robust and adaptive detection mechanisms are essential, partic-
gg ularly for safeguarding Internet of Things (IoT) networks. This paper intro-
30 duces an advanced anomaly detection model that utilizes Artificial Intelli-
31 gence (Al) to identify network anomalies based on traffic features, explaining
32 the most influential factors behind each detected anomaly. The model inte-
gi grates domain knowledge stored in a knowledge graph to verify whether the
35 detected anomaly constitutes a legitimate attack. Upon validation, the model
36 identifies which core cybersecurity principles—Confidentiality, Integrity, or
g; Availability (CIA)—are violated by mapping influential feature values. This
39 is followed by an alignment with the MITRE ATT&CK framework to pro-
40 vide insights into potential attack tactics, techniques, and intelligence-driven
41 countermeasures.
fé By leveraging explainable Al (XAI) and incorporating expert domain
44 knowledge, our approach bridges the gap between complex Al predictions
45 and human-understandable decision-making, thereby enhancing both detec-
46 tion accuracy and result interpretability. This transparency facilitates faster
j; responses and real-time decision-making while improving adaptability to new,
49 unseen cyber threats. Our evaluation on network traffic datasets demon-
50 strates that the model not only excels in detecting and explaining anomalies
g% but also achieves an overall detection accuracy of 0.97 with the integration
53 of domain knowledge for attack legitimacy. Furthermore, it provides 100%
54 accuracy for threat intelligence based on the MITRE ATT&CK framework,
55 ensuring that security measures are verifiable, actionable, and ultimately
g? strengthen IoT environment defenses by delivering real-time threat intelli-
58
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gence and responses, thus minimizing human response time.

Keywords: Neurosymbolic learning, Attack detection, Explainable artificial
intelligence, Expert knowledge, Thraet intelligence.

1. Introduction

In the constantly evolving landscape of cybersecurity, the detection and
mitigation of network-based attacks, especially in the context of Internet of
Things (IoT) networks, has become a critical challenge. Traditional security
mechanisms, while effective for known threats, often fall short against so-
phisticated and adaptive cyberattacks. As IoT networks expand, the sheer
volume of connected devices, coupled with limited computational resources
and infrequent security updates, increases the risk of malicious activities.
Moreover, the diversity of attack vectors—from Denial of Service (DoS) to
Command and Control (C2)—necessitates adaptive, intelligent systems that
can not only detect but also explain the underlying causes of anomalies in
real time.

To address these challenges, we propose an enhanced anomaly detec-
tion model built on Neurosymbolic Learning within the Explainable Arti-
ficial Intelligence (XAI) framework, further extended with feature mapping
to cybersecurity components (CIA) and the MITRE ATT&CK framework.
Neurosymbolic Learning combines the strengths of neural networks and sym-
bolic reasoning, offering both the data-driven pattern recognition capabilities
of deep learning and the interpretability of symbolic AI. This integration en-
sures that the model remains transparent and explainable, a crucial factor
in building trust for security operations and facilitating quick, informed re-
sponses. Our model leverages SHAP (SHapley Additive exPlanations) values
to explain the most influential features responsible for detected anomalies.
These feature values are then mapped to Confidentiality, Integrity, and Avail-
ability (CIA) violations, ensuring that the model accurately identifies which
core cybersecurity principles are at risk. Subsequently, we extend this ap-
proach by integrating Large Language Models (LLMs) for feature mapping
to the MITRE ATT&CK framework, enabling automatic identification of
attack tactics, techniques, and corresponding mitigations. This innovative
use of LLMs allows for the real-time correlation of detected anomalies with
established attack vectors, significantly enhancing the detection process. By
combining expert knowledge embedded in a cybersecurity knowledge graph
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with the LLM’s capacity to map complex anomaly behaviors to the ATT&CK
framework, our approach provides a robust defense mechanism that not only
identifies attacks but also delivers actionable intelligence for response. This
dual-layered system—combining data-driven anomaly detection with sym-
bolic reasoning—ensures that the detection process is both accurate and in-
terpretable, offering a significant advancement over existing black-box mod-
els. Our model’s ability to deliver clear, context-driven explanations and
map detected anomalies to CIA violations and MITRE ATT&CK tactics
establishes a comprehensive system for defending loT environments against
increasingly sophisticated cyber threats. Through rigorous evaluation using
benchmark datasets and real-time IoT network traffic, our method demon-
strates superior performance in both detecting and explaining network at-
tacks, significantly reducing the rate of false positives. The integration of
LLM-generated threat intelligence and expert-augmented knowledge graphs
ensures that the model is adaptable to evolving threats, making it a powerful
tool in the dynamic field of IoT security.

Neurosymbolic artificial intelligence combines neural network-based tech-
niques with symbolic knowledge-based methods, leveraging the strengths of
both. Neural networks excel at processing large datasets and identifying
complex patterns from raw inputs, while symbolic approaches are known for
their proficiency in logical reasoning and structured decision-making. By in-
tegrating these two paradigms, neurosymbolic Al not only benefits from the
data-driven insights of neural networks but also overcomes their traditional
limitations by offering more transparent and interpretable explanations for
decision-making processes [1]. Despite the significant advancements in neural
networks since the mid-1980s, their adoption beyond academic and commer-
cial settings has been constrained by inherent challenges. On the other hand,
symbolic knowledge-based approaches, such as expert systems and rule-based
models, are grounded in logical reasoning and structured representation of
knowledge. These approaches excel at gathering domain-specific expertise
and delivering clear, interpretable explanations for their outcomes [1], [2].
These methods frequently encounter difficulties when dealing with ambigu-
ous or incomplete information and are generally not well-suited for extracting
insights from large-scale datasets [1]. In recent years, there has been grow-
ing interest in NeuroSymbolic Al, which combines neural and symbolic Al
techniques. Although this integration is gaining traction now, the concept
of "Neural-Symbolic’ Al actually dates back to the early 2000s [2]. During
the 1990s, numerous attempts were made to combine fuzzy rule systems with
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connectionist methods [3]. The concept of combining the intuitive and logical
components of Al was first suggested in the seminal work by McCulloch and
Pitts, titled ”A Logical Calculus of the Ideas Immanent in Nervous Activ-
ity.” [4]. The renewed interest in this method can be linked to various reasons,
which we will examine within the scope of cybersecurity. In this study, we in-
corporate neurosymbolic artificial intelligence with our previously established
explainable artificial intelligence (XAI) model [5, 6], enhancing the process by
extracting attack responses from the MITRE ATT&CK framework as threat
intelligence, thereby improving human-speed decision-making with more so-
phisticated insights. This combination incorporates expert knowledge to im-
prove the detection of cyberattacks while ensuring a clear explanation of the
decision-making process and detected attack. The main contributions of this
paper are as follows:

e Develop a data-driven cybersecurity knowledge graph to identify legit-
imate attacks from detected anomalous network behaviours.

e Develop a method for integrating expert knowledge into the existing
knowledge graph, thereby bridging the gap between data-driven models
and human expertise.

e Develop a main neurosymbolic model with integration of our previous
XAI model to enhance cyberattack detection.

e Define security rules based on traffic features (Threshold values for each
traffic feature for attack detection).

e Find the violated cyber-security components (CIA) using feature influ-
ence.

e Extract the threat intelligence and response from MITRE&CK using
AT for reduce the human response time.

e Evaluate the model’s performance by comparing it with existing re-
search in the field.

The remainder of the paper is structured as follows: Section 2 provides an
overview of the background and related work. Section 3 outlines the proposed
algorithm. Section 4 covers the experimental setup, followed by Section
5, which discusses the evaluation process and any necessary modifications.
Lastly, Section 6 concludes this work.

4
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2. Background and Related work
2.1. IoT Network Attacks

The Internet of Things (IoT) encompasses a wide range of interconnected
devices, from simple sensors to complex industrial tools. This connectivity,
while beneficial, exposes networks to various cyber threats. IoT network
attacks can be particularly insidious due to the diverse nature and widespread
deployment of these devices. Common types of attacks include [7]:

I. DDoS Attacks (Distributed Denial of Service): In these attacks, IoT
devices are hijacked to form a botnet that floods a target with over-
whelming traffic, causing service disruption.

II. Man-in-the-Middle (MitM) Attacks: Attackers intercept communica-
tions between IoT devices and the network to steal or manipulate data.

ITI. Ransomware and Malware Attacks: Malicious software is used to in-
fect IoT devices, leading to data theft, device malfunction, or ransom
demands.

IV. Data and Identity Theft: Attackers target sensitive personal informa-
tion stored or transmitted by IoT devices.

V. Device Hijacking: Unauthorized access to [oT devices allows attackers
to manipulate device functionality, often without the owner’s knowl-
edge.

VI. Side-channel Attacks: These exploit information gained from the phys-
ical implementation of a system, such as power consumption or elec-
tromagnetic leaks.

Detecting network attacks in the realm of the Internet of Things (IoT) is
fraught with various distinet challenges [7]. The sheer diversity and volume of
[oT devices, each with its own set of protocols and standards, make it hard to
establish uniform security across the board. Many of these devices are limited
in terms of processing power and memory, hindering the implementation of
advanced security algorithms [6]. As the IoT landscape continues to expand
rapidly, developing scalable security solutions that can keep pace with this
growth is becoming increasingly crucial. Another significant concern is the
privacy of data; there’s a delicate balance to be maintained between effective
security monitoring and the privacy of data collected from IoT devices. A
notable issue is that many IoT devices do not receive regular security up-
dates, leaving them vulnerable to known threats. The complexity of IoT
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ecosystems also presents a challenge, as the interconnected nature of these
devices and systems adds difficulty in identifying the source and nature of at-
tacks. Modern threat vectors, such as Distributed Denial-of-Service (DDoS)
attacks, exploit the distributed nature of IoT networks, making them increas-
ingly powerful and harder to mitigate effectively. Cirillo et al. [8] introduced
a botnet identification algorithm that leverages the concept of message in-
novation rates (MIR) to distinguish malicious bots from legitimate users,
addressing challenges posed by botnets using multiple emulation dictionar-
ies to mimic legitimate traffic patterns. Their proposed cluster expurgation
rule ensures high accuracy in isolating malicious traffic, even in complex sce-
narios. Building on this, Matta et al. [9] extended the approach to tackle
multi-clustered botnets, where distinct clusters operate with different por-
tions of emulation dictionaries. They proposed algorithms based on cluster
expurgation and union rules to effectively identify diverse botnet clusters,
demonstrating robust performance in real-world scenarios and showcasing the
scalability of their method. In addressing stealthier threats, Xiang et al. [10]
proposed new information-theoretic metrics, including generalized entropy
and information distance, to detect low-rate DDoS attacks. These metrics
enable earlier detection and reduce false positives, effectively addressing the
stealthy nature of such attacks. Additionally, their IP traceback scheme en-
hances the ability to locate and mitigate attack sources. Tang et al. [11] fur-
ther contributed to mitigating low-rate DDoS attacks in SDN environments
with LtRFT, a Learning-to-Rank-enabled framework that prioritizes mali-
cious flows for eviction. Achieving over 96% accuracy, LtRFT significantly
reduces attack durations while maintaining minimal latency, demonstrating
its effectiveness and practicality for SDN deployments. However these tech-
niques does not provide a realtime response while they are providing slow
datarate DDos detection accurately. Moreover, the necessity for real-time
detection and response mechanisms is paramount to maintaining the opera-
tional integrity of IoT networks. Unlike traditional cyber systems, many IoT
devices are located in public or easily accessible areas, which elevates the risk
of physical tampering. This unique set of challenges underscores the need for
innovative approaches in securing IoT networks against potential threats.
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2.2. MITRE ATTéCK framework

The MITRE ATT&CK framework ! is a widely recognized cybersecurity
knowledge base developed by the MITRE Corporation that categorizes ad-
versarial tactics, techniques, and procedures (TTPs) used in cyberattacks.
It provides a comprehensive structure to understand and defend against so-
phisticated threats by breaking down the various stages of an attack. The
framework is organized around three key elements: tactics, which represent
the adversary’s goals at different stages of the attack, such as initial access
or data exfiltration; techniques, which describe the specific methods used by
attackers to achieve their goals, such as phishing or credential dumping; and
procedures, which detail how these tactics and techniques are implemented
in real-world scenarios.

The MITRE ATT&CK framework plays a crucial role in enhancing cyber-
security by offering a standardized language for describing and understanding
attacks, making it easier for organizations to share threat intelligence. It also
supports security teams in detecting, analyzing, and responding to threats
by mapping observed behaviors to known attack methods. Additionally, the
framework is a key tool in threat modeling and adversary emulation, allow-
ing organizations to simulate real-world attacks to evaluate and improve their
defenses. As a result, the MITRE ATT&CK framework is an invaluable re-
source for cybersecurity professionals aiming to stay ahead of ever-evolving
cyber threats.

2.3. Neurosymbolic Al in Cybersecurity

Neurosymbolic Al seeks to combine the strengths of two approaches: the
ability of neural networks to learn and recognize patterns and the inter-
pretability and logical reasoning of symbolic Al. By integrating data-driven
techniques with symbolic reasoning, this approach allows for the tracing of
the steps or decisions that lead to a model’s conclusions. This combination
makes a strong argument for the use of neurosymbolic methods in enhancing
cybersecurity and privacy efforts [12]. These methods are especially use-
ful for tackling challenges such as threat detection and analysis, where it is
important to understand and contextualize patterns across various systems
over time, rather than simply identifying them in isolation [13]. Neurosym-
bolic approaches can address these challenges while preserving privacy by

Thttps://attack.mitre.org/mitigations /ics/
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incorporating policies, regulations, and compliance measures. For example,
a neurosymbolic model can use logical reasoning to regulate the handling
of sensitive network flow data by the neural network detector, ensuring it
follows defined privacy guidelines. Furthermore, compliance is maintained
through the use of privacy-preserving methods such as differential privacy
or secure multi-party computation [14]. Ensuring the security and safety of
AT systems is essential. Relying solely on data-driven models for automated
vulnerability assessments can be restrictive, as these models are limited to
the vulnerabilities they have been trained on. By utilizing a neurosymbolic
approach, safety can be improved. In this method, experts simulate adver-
sarial roles during the training of Al-based systems, allowing the model to
continuously learn and adapt by applying dynamic rules and policies, rather
than depending exclusively on pre-existing vulnerabilities [1]. Additionally,
an Al system’s reliability and security can be greatly improved by explicitly
encoding knowledge from security specification documents using symbolic
techniques and enforcing them as behavioral constraints. This approach is
particularly relevant to legislators and regulators in many countries. Without
the integration of human expertise, advanced Al systems are at considerable
risk of producing potentially harmful or dangerous information.

One key advantage of combining rule-based and data-driven approaches
is their ability to address the lack of high-quality data, which is often re-
quired for drawing reliable conclusions. This issue frequently arises in areas
where sensitive data is either limited or difficult to share for experimental
purposes. However, alternative sources, such as textual descriptions of sensi-
tive information, may be available. These can be leveraged to create general
rules. When the data itself is insufficient for making strong conclusions, these
established rules can help support and validate the insights derived from the
data [2]. Throughout the learning process, these rules can also be incorpo-
rated as input for data-driven models. Additionally, certain fields are highly
dynamic, with data accurately reflecting conditions for only a limited time.
As a result, conclusions derived from such data may have a short lifespan.
This is especially true in areas like fraud detection and cybersecurity. Pat-
terns detected in the current dataset might be effective against present cyber
threats but could lose relevance over time. In these cases, it can be bene-
ficial to combine deep network-based detection systems with explicit rules
that account for evolving data trends and the temporary applicability of
models [15].

Neurosymbolic AI, which integrates symbolic AI with neural networks, is
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becoming increasingly important in cybersecurity. It strengthens key areas
like threat intelligence, malware analysis, intrusion detection, and vulnerabil-
ity assessment, ultimately improving the overall efficiency and effectiveness
of security systems [13]. This approach is crucial for transforming Security
Operations Centers (SoCs) into next-generation facilities. By integrating Al
techniques with human oversight, a more sophisticated and efficient system
for managing and responding to security threats is created. For instance,
security analysts in SoCs play a key role in safeguarding an organization, re-
lying heavily on their expertise and knowledge of emerging and novel threats.
This knowledge becomes particularly valuable when interpreting results from
deep neural networks or machine learning systems that analyze incoming
data streams. Analysts’ familiarity with new attack patterns is essential
for accurately identifying potential security breaches. To support them, in-
formation from publicly available threat intelligence sources, such as threat
feeds or detailed cyberattack reports, can be gathered and organized into a
Cybersecurity Knowledge Graph (CKG). We propose two methods for uti-
lizing the structured data within CKGs: the first focuses on explainability
through reasoning and inference by creating complex rules using a knowledge
engine and real data, forming a rule-based framework. The second method
involves developing new cybersecurity strategies (knowledge-guided models)
by incorporating these rules into data-driven AI models.

The main objective of a rule-based framework is to create highly effec-
tive and resilient rules to safeguard target systems from various threats and
malicious activities. These rules, ranging from simple to complex, can be
applied across any system or subsystem requiring protection. The emphasis
on knowledge-guided models is to address emerging or evolving cyber threats
that are not captured in existing datasets for data-driven research. To detect
new adversaries and develop corresponding defense mechanisms, techniques
such as Reinforcement Learning (RL) and other exploratory modeling ap-
proaches are essential. Our experiments demonstrate that Cybersecurity
Knowledge Graphs (CKGs) can effectively guide these exploratory methods,
improving their efficiency, speed, and overall clarity.

2.4. Ezplainable Artificial Intelligence (XAI)

Research in Explainable Artificial Intelligence (XAI) is experiencing a
resurgence, building upon the earlier contributions of Chandrasekaran, Tan-
ner, and Josephson (1989) [16]. Earlier research primarily concentrated on
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explaining the decision-making process of knowledge-based and expert sys-
tems. The classical learning paradigm, Explanation-Based Learning (EBL),
introduced in the early 1980s, is often considered a forerunner of explain-
ability. EBL involves learning a problem-solving method by examining and
analyzing the solutions to specific problems [17]. The resurgence of interest
in XAl research is largely driven by recent advancements in Al and machine
learning (ML), which have been applied across a variety of fields. Addition-
ally, growing concerns about unethical practices and unintended biases in
AT models have further contributed to this renewed focus on explainability.
Yang and Shafto [18] employed Bayesian Teaching, where a smaller, carefully
selected subset of examples is used to train the model, rather than utilizing
the entire dataset. These examples are chosen by domain experts for their
relevance to the specific problem at hand. However, selecting the appropri-
ate subset of examples in real-world scenarios presents a significant challenge.
The convergence of IoT networks and Al technologies poses unique security
and interpretability challenges, as explored in [19, 20]. These works highlight
the interplay between the physical and cyber domains in IoT environments,
emphasizing the critical role of XAl for maintaining trust and security in such
systems. Li et al. [19] discuss how ethical Al principles and secure digital
twin technologies can enhance trustworthiness in IoT networks. Similarly,
Li et al. [20] address the integration of spatiotemporal data with semantic
technologies, underscoring the importance of context-aware decision-making
in enhancing the interpretability and security of IoT systems through XAI.

Al-based Intrusion Detection Systems (IDSs) have consistently demon-
strated strong performance Hodo et al [21]; Shone et al [22]; Kim et al [23].
Shone et al. [22] introduced a hybrid approach combining shallow learning
techniques like Random Forest with deep learning models such as Autoen-
coders. This method is capable of analyzing diverse network traffic and out-
performs traditional Deep Belief Networks (DBN). A survey by Dong and
Wang (2016) comparing traditional IDS with deep learning-based IDS high-
lighted that deep learning methods generally offer better accuracy across a
wide range of sample sizes and different types of network traffic or attacks.
Despite these advancements, challenges such as long training times and the
need for human oversight remain prevalent in existing approaches [22]. Offer-
ing explanations for outliers can greatly reduce the need for security analysts
to manually investigate false alarms. In the system developed by Goodal
et al. [24], designed for identifying and interpreting irregularities in com-
puter network traffic and logs, the visualization of contextual information

10
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surrounding these outliers serves as the foundation for explanation. Liu et
al. [25] introduced the Contextual Outlier Interpretation (COIN) technique,
which provides explanations for the outlier anomalies identified by detection
systems. Collaris at al. [26] utilized various cutting-edge explanation meth-
ods to develop two dashboards, helping domain experts better understand
the predictions. These explanations are derived from established techniques,
such as partial dependency plots, instance-level feature importance analy-
sis, and local rule mining, which is a modified version of the LIME method.
Other studies have proposed an SVM-based approach for malware detection
and explanation, focusing on identifying the features that most significantly
contribute to detection. This method also verifies whether the identified in-
fluential features align with commonly recognized vulnerabilities [27]. Valerio
La Gatta et al. [28] introduced a local explanation method called CASTLE
(Cluster-Aided Space Transformation for Local Explanations), which gener-
ates decision rules for applying model predictions to novel situations while
also providing localized insights into the importance of specific features. Ka-
lutharage et al. [29] propose an ensemble-based approach combining an Au-
toencoder and XGBoost to enhance IoT network attack detection. The study
demonstrates how XAI can be used to identify influential features, refine
datasets, and reduce computational overhead, enabling lightweight, efficient
detection models for resource-constrained IoT environments. Their approach
achieves 99.92% accuracy on the CICIDS2017 dataset, showcasing significant
advancements over traditional intrusion detection systems while maintaining
interpretability and scalability. To the best of our knowledge, no existing
models combine domain knowledge with a focus on improving explainability
and interpretability while integrating with neurosymbolic learning. Our pro-
posed conceptual model offers enhanced explainability, interpretability, and
scalability for large-scale data problems. It reduces false positives by provid-
ing legitimate results through domain knowledge, enabling more contextual
scenarios and enhancing the model’s generalization capability.

3. Proposed Model

3.1. Overview

This research presents an innovative neurosymbolic approach for detect-
ing anomalies in network data. The methodology integrates neural network-
based anomaly detection, utilizing autoencoders, with symbolic reasoning
through a knowledge graph. By combining the strengths of both neural and

11
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symbolic Al, the approach delivers robust anomaly detection while improv-
ing interpretability and decision-making. A data-driven method is employed
for developing the knowledge graph, with expert knowledge incorporated
to enhance it. The model also identifies violated cybersecurity components
(CIA) using a knowledge extractor and provides threat intelligence and rec-
ommended responses based on the MITRE ATT&CK framework, thereby
reducing human intervention and accelerating the process by leveraging Al
Figure 1 illustrates the model’s architecture, with each component described
in detail.

L.

IT.

I1I.

IV.

VL

VII.

VIII.

IoT Network Traffic: This represents the data flow within an IoT net-
work, which includes both normal operations and potential security
threats.

Anomaly Detection: A system or model that processes the IoT network
traffic to identify unusual patterns or activities that deviate from the
established norm, which could indicate potential security incidents.
Benign Traffic: This is the subset of network traffic that has been
identified as normal and safe by the anomaly detection system.
Explanation XAl (Explainable Artificial Intelligence): A component
that provides insights into the decision-making process of Al models,
making the outcomes understandable to humans. In the context of
anomaly detection, this would explain why certain traffic was flagged
as anomalous.

. Security Knowledge Graph: A structured representation of cybersecu-

rity knowledge, including concepts, relationships, and rules that define
and describe the security aspects of the IoT network.

Security Knowledge Graph Constructor: This is the process or the
tool that builds the security knowledge graph, possibly by integrating
various data sources and expert input to form a comprehensive security
model.

Security Expert: A human expert who provides additional insights and
validation to the reasoning model, ensuring that the system’s outputs
align with real-world cybersecurity knowledge and practices.
Knowledge Extractor: A tool or process that extracts relevant informa-
tion from the security knowledge graph to support the reasoning model,

providing context and detailed explanations for detected anomalies,
aligned with the MITRE ATT&CK framework.

12
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13

Figure 1: Proposed Neurosymbolic learning in the XAI framework architecture for IoT
attack detection.
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3.2. Neural Network-Based Anomaly Detection

The methodology relies on an autoencoder, a type of neural network
known for its ability to generate compact data representations. The autoen-
coder functions through two key stages: encoding and decoding. During the
encoding phase, it reduces the network data to a lower-dimensional form, pre-
serving the most important features. In the subsequent decoding phase, the
compressed data is reconstructed back to its original size. The effectiveness
of the autoencoder is measured by the reconstruction error, which calculates
the difference between the original input and the reconstructed output. A
frequently used metric for this evaluation is the Mean Absolute Error (MAE).
In the context of anomaly detection, MAE plays a crucial role in determining
whether the reconstruction error surpasses a predefined threshold, signaling
a potential anomaly. This threshold is typically based on the error distri-
bution observed in normal data. The underlying assumption is that normal
data will produce smaller reconstruction errors, while anomalous data will
result in larger errors due to significant deviations from the patterns learned
by the model.

3.3. Symbolic Reasoning with SHAP and Knowledge Graphs

To improve the model’s interpretability and decision-making capabili-
ties, we incorporate SHAP (SHapley Additive exPlanations) values, rooted
in game theory, to assign importance to individual features in anomaly de-
tection. SHAP values are crucial for identifying the contribution of each fea-
ture to the anomalies detected, thereby providing insights into the model’s
decision-making process. For each anomaly identified by the model, SHAP
values reveal which features play the most significant role in signaling the
anomaly, allowing for a detailed analysis of the model’s behavior. Along-
side this, we construct a domain-specific knowledge graph using real-world
attack data to map anomalous behaviors that indicate legitimate cybersecu-
rity threats, as outlined in Algorithm 1. This knowledge graph, designed for
network security, serves as a structured representation of expert knowledge
and heuristic rules. Each node represents individual network data features,
while the edges reflect the complex relationships and constraints between
them. The graph effectively captures the intricate network dynamics that
may indicate potential security breaches.

In the context of detected anomalies, the knowledge graph plays a critical
role by leveraging the Maximum Mean Absolute Error (Max MAE)—a met-
ric that reflects the model’s highest deviation in reconstruction error when it
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encounters an anomalous pattern. This metric helps distinguish between nor-
mal and abnormal behavior. By linking Max MAE with actual feature values
corresponding to known attack types stored in the knowledge graph, it be-
comes possible to determine whether a detected anomaly signifies a legitimate
attack or merely unusual but harmless network activity. The integration of
SHAP values and the knowledge graph serves two key purposes: first, SHAP
values offer a detailed explanation of why certain instances are classified as
anomalies by highlighting the contributions of specific features. Second, the
knowledge graph cross-references these anomalies with real-world attack pat-
terns to differentiate genuine threats from false positives. This dual approach
enhances the model’s accuracy in detecting attacks while providing a clear
understanding of each anomaly, ensuring a more robust and reliable network
security system.

3.4. Neurosymbolic Integration

Our methodology embodies the integration of neural network outputs and
symbolic reasoning, creating a unified framework for detecting anomalies in
IoT networks. The process begins by evaluating each data instance using
an autoencoder, which computes both the reconstruction error and SHAP
values. These SHAP values are essential as they highlight the influence of
individual features on the model’s predictions. In this framework, SHAP val-
ues play a critical role by being assessed against predefined thresholds and
rules within a custom-built knowledge graph. Initially developed from data-
driven insights, the knowledge graph encapsulates normal network behavior
and recognized anomaly patterns. When a SHAP value identifies a feature
as highly influential, the model cross-references the corresponding original
feature value with the maximum Mean Absolute Error (MAE). If this value
exceeds the feature’s threshold in the knowledge graph, the instance is clas-
sified as an attack.

Given the context-specific nature of IoT networks, generalizing models
poses a challenge. To address this, we augment the data-driven knowledge
graph with expert knowledge, which brings a deeper and more nuanced un-
derstanding of network behavior and threat landscapes—elements that may
not be fully captured by data alone. The integration of expert insights signif-
icantly enhances the model’s ability to detect and validate anomalies. When
an instance is flagged based on influential SHAP values, the model employs
symbolic reasoning, grounded not only in data-driven thresholds but also in
expert-derived rules. This comprehensive approach ensures more accurate,
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contextually relevant interpretations of anomalies and offers actionable rec-
ommendations for responding to potential threats. In summary, our approach
seamlessly combines data-driven analysis with expert knowledge. SHAP val-
ues highlight the most critical features for identifying anomalies, while the
enhanced knowledge graph, infused with expert insights, validates these find-
ings. This integration ensures that the model’s interpretations and responses
are accurately tailored to the complex and evolving landscape of IoT network
security.

Algorithm 1 Neurosymbolic Anomaly Detection with SHAP and Knowl-
edge Graph Integration

Require: X — Anomaly instance that needs to be explained, X; ; —
instances used by kernel SHAP, autoencoder model — trained au-
toencoder model for anomaly detection, expert_knowledge — expert
knowledge integrated into the knowledge graph, Feature thresholds
— thresholds for Feature values derived from the knowledge graph.

Ensure: shap top features — SHAP values for each feature within the
top R features, detected _anomalies — list of detected anomalies with
decision reasoning.

1: top_R_features < top value from Error List derived from reconstruction
€rTors

2: for each 7 in top_R_features do
explainer < shap.KernelExplainer (autoencoder model.predict,

X1..1)
shap_values[i] < explainer.shap values(X, i)

end for

knowledge_graph <— construct_knowledge _graph(expert_knowledge)

for each feature, Original value in shap top features do
if knowledge_graph.nodes|feature]['threshold| < Original value

then

9: detected_anomalies.append(feature)

10: symbolic_reasoning(feature, Original value,
knowledge graph)

11: end if

12: end for

13: return detected_anomalies

w
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3.5. Mapping Features to Violated Cybersecurity Components

To pinpoint the violated cybersecurity components, we apply the CIA
principles—confidentiality, integrity, and availability—as domain knowledge.
By analyzing different types of attacks within the dataset, we assess how each
one affects the individual components of the CIA triad as shown Table 1. DoS
and DDoS attacks primarily target the availability of services or data, aim-
ing to overwhelm systems and make them inaccessible to legitimate users.
Similarly, Port Scan attacks are associated with a compromise in confiden-
tiality, as attackers send probes to various ports to gather information about
available services and operating systems. SSH Patator and FTP Patator are
brute-force attacks that typically lead to a breach of confidentiality by at-
tempting to guess login credentials. Additionally, Heartbleed vulnerability is
linked to a breach of confidentiality, as it allows attackers to access sensitive
information stored in the memory of systems running a vulnerable version
of OpenSSL. In the case of Infiltration attacks, they usually exploit software
vulnerabilities, such as those in Adobe Acrobat Reader, to create backdoors
and exfiltrate confidential information like IP addresses, thus compromising
confidentiality. Web attacks, such as SQL injection, can affect all three com-
ponents of the CIA triad. They compromise confidentiality and integrity
by allowing unauthorized access to read and modify data, while also jeopar-
dizing availability by overwhelming databases with complex queries. Lastly,
Botnets—networks of compromised devices—pose a multifaceted threat, as
they can allow attackers to perform actions like remote shell access, file ma-
nipulation, screenshot capture, and keylogging. Consequently, botnets have
the potential to compromise confidentiality, integrity, and availability.

From the original dataset’s feature ranking, we identified the top three
most important features for each type of attack based on their significance us-
ing autoencoder and SHAP (Shapley Additive Explanations). These features
were then mapped to their associated compromises under the CIA principles
(as shown in Table 2)). For instance, the feature Average Packet Size is
denoted as Avg Packet Size - A, where A signifies its relevance to a com-
promise in availability (refer to Table 2). To establish this mapping between
features and associated compromises, we first determine the relationship be-
tween each attack and the related compromises (derived from Table 1) and
formulated in Equation 2). Essentially, Formula 1 identifies the attack for
which the feature ranks in the top three in terms of importance, while For-
mula 2 links the attack to the relevant compromises under confidentiality,
integrity, or availability. Using domain knowledge, we narrowed down the
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Table 1: Mapping of network attack with related component of CIA principles
Attack Related component of CIA

Heartbleed
SSH-Patator
FTP-Patator
Infiltration
PortScan
Web Attack
Bot

DoS GoldenEye
DoS Hulk
DoS Slowhttp
DoS Slowloris
DDoS

= EE0000000
-~

features to 22 (as displayed in Table 2) from an initial set of features, which
we now refer to as the domain features for CIA triads. Table 2) provides
detailed descriptions of these features.

f(feature) — attack (1)
f(attack) — C, I,orA (2)
18
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Table 2: Mapping of feature with related component of CIA principles

Feature

Description

Top features of attack

Domain
Knowledge
feature

Average Packet
Size
Flow Duration

Bwd IAT Mean

Fwd IAT Mean

Active Mean

Bwd Packet
Length Std

Flow IAT Std
Flow IAT Mean
Flow IAT Min
Active Min

Init Win Bytes
Forward

SYN Flag Count

Fwd Packet
Length Mean

Fwd Packets/s

Fwd PSH Flags

ACK Flag Count
Bwd Packets/s
PSH Flag Count

Subflow Fwd
Bytes

Total Length of
Fwd Packets

Average size of packet

Duration of the flow in
Microseconds

Mean time between
two packets sent in
backward direction
Mean time between
two packets in forward
direction

Mean time a flow was
active before idle
Standard deviation of
packet length in back-
ward direction
Standard deviation of
inter-arrival time
Mean inter-arrival time
of packet

Minimum inter-arrival
time of packet
Minimum time a flow
was active before idle
Total bytes sent in ini-
tial window in forward
direction

Number of packets
with SYN

Mean size of packet in
forward direction

Number of forward
packets per second
Number of times PSH
flag was set in forward
packets

Number of packets
with ACK

Number of backward
packets per second
Number of packets
with PSH

Average number of
packets in subflow in
forward direction
Total size of forward
packets

DDoS

DDoS, DoS Slowloris, DoS
Hulk, DoS Slowhttp,
Infiltration, Heartbleed

DoS Hulk, DoS GoldenEye,
DDoS, Heartbleed, DoS Hulk

DoS Slowloris

DoS Slowhttp

DoS Slowloris, DoS
GoldenEye

DDoS, DoS Slowhttp, DoS
Hulk

DoS GoldenEye

DoS GoldenEye

DoS Slowhttp

Web Attack

FTP-Patator

Benign, Bot, FTP-Patator

FTP-Patator

FTP-Patator

SSH-Patator, DoS Slowhttp,
Infiltration
Bot, PortScan

PortScan

Benign, SSH-Patator, Web
Attack, Bot, Heartbleed,
Infiltration

FTP-Patator, Benign,
SSH-Patator, Web Attack,
Bot, Heartbleed, Infiltration

Avg Packet Size -
A

Flow Duration -
AC

Bwd TAT Mean -
A

Fwd TAT Mean - A

Active Mean - AC

Bwd Packet
Length Std - AC

Flow IAT Std - A

Flow IAT Mean -
A
Flow IAT Min - A

Active Min - A

Init Win Bytes
Fwd - C

SYN Flag Count -
C

Fwd Packet
Length Mean -
CIA

Fwd Packets/s - C

Fwd PSH Flags -
C

ACK Flag Count -
C

Bwd Packets/s -
CIA

PSH Flag Count -
C

Subflow Fwd
Bytes - CIA

Total Length of
Fwd Packets - CTA
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4. Experimental Setup
4.1. Dataset

The USBIDS dataset was not only chosen for its comprehensive feature
explanations but also served as the foundational data for model training in
our study. Comprising seventeen labelled CSV files, this dataset encapsu-
lates a breadth of network traffic information. It includes sixteen files that
detail a range of non-standard network conditions, with one file exclusively
documenting benign traffic flows that have not been subjected to attacks,
alongside records of combined defence modules and Denial of Service (DoS)
attack data. These network flows were meticulously measured using the CIC
FlowMeter2, ensuring precise data for analysis. Each of the sixteen non-
normative CSV files is named to provide immediate insight into the data col-
lection context. For instance, ' HULK-NoDefense.csv’ denotes network flows
captured during the HULK attack, conducted without the deployment of
defensive strategies. This dataset, with its explicit annotations and diverse
traffic scenarios, provided a robust platform for training our model, enabling
it to learn and adapt to a wide spectrum of network behaviours and potential
security threats.

4.2. Experimental Environment

Our experimental setup was designed to evaluate the model’s ability to
distinguish between normal and anomalous network traffic. The model was
trained solely on benign data, allowing it to learn the patterns of typical net-
work behavior. For testing, we used a combination of benign data and two
separate attack datasets, challenging the model to detect deviations indica-
tive of network intrusions. The model’s architecture was a fully connected
autoencoder with a Rectified Linear Unit (RELU) activation function. The
structure was intentionally kept simple, consisting of two hidden layers with
10 and 32 neurons, respectively, to capture essential data patterns while
maintaining a lightweight design. An anomaly detection threshold was es-
tablished by calculating the maximum Mean Absolute Error (MAE) during
the training phase with benign data. This threshold was key in differen-
tiating between normal traffic and potential threats during testing. The
implementation of our proposed algorithm was carried out in Python, uti-
lizing TensorFlow Lite and the Keras library for their efficiency and ease of
use. The Adam optimizer was employed for model optimization due to its
strong performance across a variety of conditions. The training and testing
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processes were conducted over 40 epochs, with a learning rate of 0.01 to
balance speed and accuracy.

The hardware used for our experiments included an ASUS ZenBook with
a 2.30 GHz Intel Core i7 processor and 16 GB of RAM, ensuring fast compu-
tation and high efficiency. Additionally, a Raspberry Pi Model B with 4 GB of
RAM was utilized, demonstrating the model’s adaptability and its potential
for deployment in resource-constrained IoT environments. The experiment
utilized a comprehensive dataset that included both benign and malicious
network traffic. The dataset was normalized before being processed by the
trained autoencoder. Anomaly thresholds were derived from the reconstruc-
tion error distribution of the benign samples. Concurrently, the knowledge
graph was populated with feature-specific thresholds and rules informed by
network security expertise.

5. Evaluation and Adjustment

5.1. Case 1 Ezxperiment with Data-driven Knowledge Graph

In the first case study, we conducted an evaluation of our model using
the USBIDS dataset, complemented by a data-driven knowledge graph. The
initial phase involved training the model with the dataset and subsequently
testing it to validate its performance. During testing, we determined the
most influential features for each anomalous instance, which served as a crit-
ical step in understanding the anomalies. Subsequently, we constructed a
knowledge graph. This construction process was based on identifying the
maximum Mean Absolute Error (MAE) from the benign data during the re-
construction error analysis. For each feature corresponding to this maximum
MAE, we recorded its original values.

After establishing the knowledge graph, we conducted tests on the model
using a distinct set of attack data. This step was crucial for assessing the
model’s practical effectiveness and its ability to differentiate between nor-
mal network operations and potential security threats. In our evaluations
of various models, the one described earlier stood out due to its exceptional
performance in diverse attack scenarios. Specifically, it achieved a 0.98 de-
tection rate for the ’Attack Hulk No Defense’, and it successfully identified
both the ’Attack Hulk Evasive’ and the ’Attack Hulk Reqtimeout’ scenarios
with perfect scores of 1.0. Notably, when tested against the combined dataset
comprising all 16 attack types, the model maintained an overall accuracy of
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96.8%Post detection, each instance marked anomalous undergoes a reason-
ing phase where decisions are assessed against the knowledge graph. This
phase aims not only to validate the anomalies but also to iteratively refine
the model by incorporating new insights and patterns observed in the data as
Table 3. This model significantly reduces the rate of false positives compared
to current state-of-the-art approaches by validating identified anomalies with
the knowledge graph. It distinguishes whether each anomaly represents a le-
gitimate attack or just normal, anomalous behaviour.

Table 3: Proposed model comparison with the current state of the art [30]

Detection Method Hulk No Defense Hulk Evasive Hulk Reqtimeout Overall

DT 0.97 0.06 0.97 -
RF 0.98 0.00 0.98 -
DNN 0.67 0.05 0.66 -
Proposed model 0.98 1.0 1.0 0.96

5.2. Case 2 Nurosymbolic integration

In the second experimental scenario, we utilized a dataset uniquely com-
piled by our team, which was gathered from various IoT environments, each
with its distinct context. In our experiment, we utilized a real-time IoT net-
work to gather network traffic data, focusing on the impact of various types
of attacks on a target device. The experiment spanned five days within a
smart home network environment, consisting of eight IoT devices and three
non-IoT devices.The IoT devices, procured from local stores, varied in types
and functions. This diversity was crucial to understanding how different
devices generate traffic and interact within the network. All IoT devices
were connected via Wi-Fi, while the router was categorized as a non-IoT
device. For network traffic capture, we employed Wireshark ? and the CI-
CFlowMeter 2 tools. When addressing the complexity of implementation,
we leveraged a distributed architecture tailored for scalability and practical
deployment. The anomaly detection component was deployed on a Rasp-
berry Pi 4 Model B within the smart home network, functioning as an edge
device, while computationally intensive tasks such as threat intelligence pro-
cessing, validation with a knowledge-graph-driven framework, and explain-

2https:/ /www.wireshark.org/
3https://github.com/ahlashkari/CICFlowMeter
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able Al reasoning were handled on an edge server. To optimize the anomaly
detection model for resource-constrained edge devices, we applied pruning
and quantization techniques to the autoencoder, significantly reducing its
memory and computational footprint without compromising detection accu-
racy. This optimization enables real-time anomaly detection on lightweight
devices, such as the Raspberry Pi, ensuring efficient performance in small-
scale IoT networks. This framework dynamically retrieves data from the
MITRE ATT&CK framework and other threat intelligence sources to con-
textualize detected anomalies. Pre-trained Large Language Models (LLMs)
were accessed via APIs to process the retrieved data and generate explana-
tions without requiring local hosting or fine-tuning. This approach signifi-
cantly reduces resource requirements, enabling broader adoption in resource-
constrained IoT environments.

Wireshark facilitated manual experiments, capturing live data traffic,
whereas the CICFlowMeter was instrumental in extracting features from the
PCAP files.To validate the robustness of our proposed model against real-
world attack scenarios, we employed modern and actively maintained open-
source tools. SlowHTTPTest was used to simulate low-rate and application-
layer DDoS attacks, testing the model’s ability to detect stealthy, low-traffic
threats. Hping3 was utilized to craft custom packets and simulate both
low-rate and volumetric DDoS attacks, providing comprehensive coverage of
network-based attack vectors. A specific device was designated to simulate
attack traffic towards the victim device, replicating several scenarios and con-
ditions akin to those in the USBIDS dataset. The generated attack data was
meticulously recorded and saved in CSV format for subsequent experimen-
tal analysis. Then we experimented with the above model without changing
knowledge graph values. It reduces the accuracy of the model significantly
and increases the false positives as shown in Table 3.

Then we consulted a few cybersecurity experts from academia and indus-
try and asked them to update the knowledge graph values based on their
expertise. They closely monitored the network traffic, and they updated
the values of the knowledge graph based on their expertise as shown in Al-
gorithm 2. For this, we gave another function to update features of the
existing data-driven knowledge graph as shown in algorithm. after updating
all the corresponding most influential features respective to detect legitimate
attacks and again we have done the experiment with this dataset with an up-
dated knowledge graph and model. It achieves higher accuracy for the overall
model as shown in comparison in Table 3. Our model’s accuracy is deter-
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mined through a systematic process. Firstly, we establish ground truth by
selecting a labelled dataset distinct from our training data and categorizing
instances as 'normal’ or anomalous.” Next, we deploy our trained autoen-
coder on this dataset to detect anomalies. During this phase, SHAP values
are calculated for each instance to pinpoint the most influential features. We
then consult our knowledge graph, which uses Max MAE values, to assess
whether the detected anomalies signify actual attacks. Finally, we compare
our model’s predictions against the dataset’s ground truth, identifying true
positives, false negatives, false positives, and true negatives. This method
provides a thorough evaluation of our model’s ability to accurately detect
anomalies.

Algorithm 2 Update Node Attributes in a Graph

1: function UPDATE NODE_ATTRIBUTES(graph, feature, new value)
2 if graph has a node with the given feature then

3 graph.nodes| feature|[ original value'] - new_value

4: else

5 print "Feature ’feature’ not found in the graph.”

6 end if

7. end function

*

Manually updating the graph with new values:
9: UPDATE_NODE_ATTRIBUTES(G, 'Flow Packets/s’, 21830)
10: UPDATE_NODE_ATTRIBUTES(G, 'PSH Flags’, 15)

Table 4 showcases the accuracy of our model, which integrates expert
knowledge, compared to the performance of a purely data-driven knowledge
graph in our IoT network setup. This comparison highlights that [oT net-
works are highly context-sensitive systems, making it challenging for data-
driven approaches to generalize across diverse IoT infrastructures effectively.
In such scenarios, our neuro symbolic approach demonstrates a higher attack
detection rate with a minimal false positive rate. This is primarily due to our
model’s ability to adapt system features by integrating expert knowledge per-
tinent to each specific context. In addition to enhancing detection accuracy,
the model also elucidates the underlying factors of each identified attack by
pinpointing the most influential features. This level of detailed explanation
proves invaluable for cybersecurity professionals, empowering them to make
informed decisions and take appropriate actions in response to the detected
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threats.

Table 4: Comparison of Model Accuracy: Data-Driven (DDKG) vs. Expert Knowledge
Integrated Knowledge Graph (EKIKG) on the real-time IoT data

Detection Method No Defense Evasive Reqtimeout Overall
DDKG 0.91 0.94 0.93 0.91
EKIKG 0.98 0.99 0.98 0.97

We acknowledge that reliance on a static knowledge graph may limit the
model’s ability to adapt to entirely novel threats that do not align with
predefined patterns. To address this limitation, we have implemented mech-
anisms for continuous updating of the knowledge graph, as detailed in Al-
gorithm 2. By integrating expert feedback and real-time threat intelligence,
the graph evolves dynamically to include emerging attack patterns and novel
vulnerabilities. Furthermore, our approach combines the knowledge graph
with SHAP-based feature importance ranking and anomaly detection. This
hybrid methodology enables the model to identify and highlight unknown
threats based on data-driven anomalies, even when the knowledge graph
lacks corresponding patterns. In future work, we plan to automate the up-
dating process of the knowledge graph by leveraging reinforcement learning
techniques and incorporating insights from network traffic features mapped
to the MITRE ATT&CK framework and open threat intelligence data. This
will enable the system to adapt dynamically to the evolving threat landscape,
reducing dependence on manual updates and ensuring its robustness against
novel threats.

5.3. Ezxpert knowledge based Treat Intelligence and Response

After the model identifies an anomaly, it validates the detected attack
using expert knowledge. As demonstrated in Table 4, the expert knowledge-
integrated model outperforms traditional models. Following this, the model’s
knowledge extractor identifies the domain-specific features and maps them
to the most influential features of the detected attack. It then determines
the violated cybersecurity components, such as confidentiality, integrity, or
availability, providing a detailed explanation of the compromised aspects of
the networks shown in Figure 2. In the next step of the model, we inte-
grate a Large Language Model (LLM) alongside the MITRE ATT&CK API
to generate natural language explanations for detected anomalies based on
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the mapped feature values and corresponding MITRE ATT&CK techniques.
This integration enhances the model’s interpretability by delivering human-
readable explanations (as shown Figure 2) that network security analysts
can easily understand. We use OpenAl’s API to generate these explana-
tions, where anomalous feature values—such as Flow packets per second
(PPS), SYN flags, and port activity—are fed into the GPT model, alongside
relevant MITRE ATT&CK techniques retrieved via the MITRE ATT&CK
APIL. The GPT model then generates a natural language explanation, de-
tailing the potential implications of the anomaly and its impact on network
security. For instance, detecting a high PPS rate and an abnormal number
of SYN flags may indicate a Denial of Service (DoS) attack, while unusual
port activity could point to Network Scanning, a common precursor to more
advanced attacks.After obtaining the results, we validated them against the
MITRE ATT&CK framework by manually (as shown in Figure 3 and Fig-
ure 4 ) verifying the findings as part of the experimental process and proof of
concept. The results were 100% accurate in identifying threats, as confirmed
through this manual validation process. However, further experimentation
and automated validation are necessary to ensure the model’s consistent per-
formance and scalability. Ongoing work will focus on refining the validation
process and improving overall accuracy.

- Jupyter with violated CIA Last Checkpoint: a few seconds ago (unsaved changes) [ o Logout
File Edit View Insert Cell Kernel Widgets Help Trusted \ Python 3 (ipykernel) O
+ < @ B 4 % PRn B C » Code =]
4 »

1. T1499 - Denial of Service (DoS)

Mapping with PPS: An unusually high PPS value could indicate a Denial of Service (DoS) or Distributed Denial of Service (DDo
S) attack, where the attacker floods a target system with an excessive number of packets to overwhelm it and disrupt its ser
vice.

Behavior: In this context, a spike in the PPS value can signify network flooding, especially when combined with large packet
sizes or specific types of protocols (e.g., ICMP, SYN packets).

Detection: Monitoring for significant deviations in PPS from normal levels can help identify DoS attempts, which can be mapp
ed to T1499 under the MITRE ATT&CK framework

Violated Security Components: Availability

1. T1e71 - Application Layer Protocol (Command and Control

Mapping with PPS: When combined with other indicators, an unusually low or consistent PPS (especially if the protocol is HTT
P, HTTPS, or DNS) could indicate Command and Control (C2) traffic

Behavior: In the case of a persistent backdoor or C2 channel, the attacker may send very small amounts of data at a steady r
ate to avoid detection. A very steady, consistent PPS rate might be a sign of low-volume C2 traffic

Detection: You could correlate low PPS values, especially over unusual ports or IP addresses, with C2 activity. This can be

mapped to T1671 in MITRE ATT&CK

Violated Security Components: Confidentiality

1. T1046 - Network Service Scanning

Mapping with PPS: Network scanning, such as port scans or service enumeration, often leads to a burst of packets across many
destinations in a short time frame. This can lead to brief spikes in PPS.

Behavior: A high but short-lived increase in PPS, especially when directed to multiple ports or IP addresses, can indicate t
hat an attacker is scanning the network to discover open services.

Detection: Monitoring for such spikes in PPS, especially in conjunction with other features like the number of destination p

Figure 2: Automated Threat Inteligence and Response.
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This step significantly improves the system by enabling it not only to
detect and map anomalies but also to explain them in a manner accessi-
ble to non-experts. The Al-driven explanations, combined with the MITRE
ATT&CK framework, help reduce the workload on security analysts by pro-
viding immediate, context-aware insights, allowing them to better under-
stand potential threats and respond more efficiently. By incorporating GPT-
generated explanations and leveraging the MITRE ATT&CK API, the sys-
tem bridges the gap between machine-driven anomaly detection and human
interpretation, enhancing its capability to provide actionable intelligence in
dynamic cybersecurity environments.

5.4. Results Discussion

Our evaluation of the proposed neurosymbolic learning model clearly
demonstrates its superiority over traditional models in both accuracy and
interpretability. Notably, the model achieved an overall detection accuracy
of 0.97 by integrating domain knowledge, which significantly enhanced its
ability to verify the legitimacy of detected attacks. Furthermore, the inte-
gration with the MITRE ATT&CK framework enabled 100% accuracy for
threat intelligence, validating each detected anomaly with corresponding tac-
tics, techniques, and mitigations.

Compared to state-of-the-art detection models such as deep learning-
based IDS (e.g., Autoencoder, Random Forest, and Decision Tree classifiers),
our model not only excelled in detection rates but also substantially reduced
false positives. The combined use of SHAP values for feature importance
ranking and the knowledge graph for attack legitimacy validation ensures
that security measures are both verifiable and actionable. This approach
bridges the gap between anomaly detection and real-time threat intelligence
by providing contextual explanations that are aligned with cybersecurity
standards like CIA (Confidentiality, Integrity, and Availability).

Moreover, the capability to map detected anomalies to the MITRE ATT&CK

framework provides deeper insights into potential attack patterns, allow-
ing for faster and more accurate threat responses. This dual-layered sys-
tem—comprising neural anomaly detection with symbolic reasoning—ensures
that IoT environments are protected against evolving threats while minimiz-
ing human intervention.

To address the scalability challenges inherent in IoT networks, we de-
ployed the detection component of our model on a Raspberry Pi 4 B model
as an edge device using TensorFlow Lite. Experimental results demonstrated
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Figure 3: This image shows the MITRE ATT&CK T1499 details, which match the re-
sponse generated by our model.

that the model could effectively operate on resource-constrained environ-
ments, including Microcontroller Processor Units (MCUs), while maintain-
ing real-time detection capabilities. The intelligence components, such as ex-
plainable AI processing, knowledge graph mapping, and MITRE ATT&CK
framework integration, were hosted on an edge server with higher compu-
tational resources. This distributed architecture reduced communication
overhead and computational bottlenecks while ensuring low-latency threat
detection and response.

In future work, we aim to deploy the detection model on ESP32 devices as
edge IoT devices, leveraging Real-Time Operating System (RTOS)-enabled
machine learning techniques. This step will extend the applicability of our
approach to ultra-resource-constrained environments, further enhancing its
scalability and practicality in diverse IoT scenarios.

By achieving real-time threat intelligence and response, our model outper-
forms existing solutions by enabling quicker, more efficient decision-making
processes, as well as better adaptability to new and unseen attack vectors.
This advance significantly strengthens [oT network defenses, as demonstrated
through rigorous experimental validation
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Figure 4: This image shows the MITRE ATT&CK T1071 details, which match the re-
sponse generated by our model.

6. Conclusion

This study presents an innovative neurosymbolic approach for detecting
attacks in IoT networks by integrating neural network-based autoencoders
with SHAP explanations and expert-enhanced knowledge graphs. This method
outperformed traditional models by accurately identifying and explaining at-
tacks, leveraging SHAP values and expert knowledge to effectively distinguish
between genuine threats and benign activities. By focusing on key features
for anomaly detection, the model delivered detailed, context-aware explana-
tions, essential for navigating the complexity and diversity of [oT networks.

The experimental validation, conducted using the USBIDS dataset and
real IoT network data, showcased the model’s superior accuracy and reduced
false positive rate, highlighting its adaptability and deep understanding of
network security. The success of this neurosymbolic model in real-world ap-
plications underscores its potential for advancing cybersecurity, especially in
improving the interpretability and reliability of anomaly detection systems.
As ToT networks continue to expand, such innovative solutions are crucial for
defending against increasingly sophisticated cyber threats. Future work will
apply this model to various IoT environments, including critical infrastruc-
ture, to further enhance its applicability. This research marks a significant
advancement in IoT security and sets the stage for continued exploration of
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neurosymbolic Al, offering promising prospects for reducing human involve-
ment and accelerating threat intelligence and response processes.
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