

Strategic Integrated Research in Timber

Timber material properties

Dan Ridley-Ellis

Associate Professor Centre for Wood Science and Technology Edinburgh Napier University

THE QUEEN'S ANNIVERSARY PRIZES FOR HIGHER AND FURTHER EDUCATION 2015

Issues

- Water
- "Figure" and "Defects"
- Anisotropy
- Inhomogeneity
- Variation and uncertainty

2

Definition of a tree

- A tall land plant (except when not tall)
- Living more than a couple of years
 - Perennials
 - Trunk remains from year to year
 - e.g.Oak Proper trees" (for the purposes of today) Pine
 - Coconut
 - Bamboo
 - Tree fern
 - Tall herbaceous perennials
 - Trunk bit dies back each year
 - e.g. Banana

20th September 2016

- Conifers (and gingko biloba)
- e.g. pine, spruce, fir, larch, yew, cedar
- Typically evergreen (but not always)
- "Hardwoods" (broadleaves)
 - Angiosperms ("enclosed seeds")
 - e.g. oak, beech, birch, teak, mahogany, balsa

20th September 2016

Can be deciduous or evergreen

Trees (for the purposes of today)

- "Softwoods"
 - Gymnosperms ("naked seeds")

cones

flowers

sapwood

heartwood (might be more durable) arowth is outwards

AB16-N

16 17

14 15

abalation interimination where the last

12 13

18 19 20 21 22 23 24

pith

10

9

A816-5

5 - 6

bark

25 26 27 28 29 30

10

cambium

Edinburgh Napier

The tree rings

- Earlywood
 - Grown earlier in the season
 - Cells are wide with thin walls
- Latewood
 - Grown later in the season
 - Cells are narrow with thick walls

6

20th September 2016

FOR HIGHER AND FURTHER FORCATION 2015

Isotropy

Knots and grain

blogs.napier.ac.uk/cwst

20th September 2016

9

THE QUEEN'S ANNIVERSARY PRIZES For Higher and Further Education 2015

Directions

THE QUEEN'S

ANNIVERSARY PRIZES FOR HIGHER AND FURTHER EDUCATION 2015

blogs.napier.ac.uk/cwst

20th September 2016

Softwoods vs hardwoods

- Diversity
- Tree form
 - Sawn sizes
 - Knots

blogs.napier.ac.uk/cwst

20th September 2016

11

THE QUEEN'S ANNIVERSARY PRIZES For Higher and Further Education 2015

Constituents of wood

- Cellulose
 - A long polysaccharide molecule $(C_6H_{10}O_5)_n$
 - Analogous to reinforcing strand (main role tension)
- Lignin
 - A number of complex 3D biopolymers
 - Analogous to cement (main role compression)
- Hemicelluloses
 - Mixture of different sugar monomers
 - Links the cellulose and the lignin (giving flexibility)
- Extractives
- Water

How wood is made

- Elements are
 - Carbon (C), Hydrogen (H) and Oxygen (O)
- Photosynthesis

Earlywood tracheids

Cellulose microfibrils

- Cell wall layers

Cellulose microfibrils Inner layer of secondary wall Middle layer of secondary wall Outer layer of secondary wall Middle lamella ·

Primary wall

Water

- Mechanical properties depend on
 - Moisture content
 - Duration of loading
 - Temperature

Moisture content = Weight of water Weight of oven dry wood

THE QUEEN'S ANNIVERSARY PRIZES FOR HIGHER AND FURTHER EDUCATION 2015

16

Moisture content

blogs.napier.ac.uk/cwst

20th September 2016

THE QUEEN'S ANNIVERSARY PRIZES FOR HIGHER AND FURTHER EDUCATION 2015

Cellulose microfibrils "Free water" When mc > ~30% "Bound water" Water molecules in the cell wall Inner layer of secondary wall 0 Middle layer of secondary wall Outer layer of secondary wall Primary wall 0—Н Middle lamella H-0

Equilibrium moisture content

(wood not in contact with liquid water)

For practical purposes, applies to all species

Standard reference: 12%

blogs.napier.ac.uk/cwst

20th September 2016

19

THE QUEEN'S ANNIVERSARY PRIZES FOR HIGHER AND FURTHER EDUCATION 2015

Our work - quality & wastage

20th September 2016

THE QUEEN'S ANNIVERSARY PRIZES For Higher and Further Education 2015

British timber - misconception

- "No good for construction"
- "Because it grows too quickly"

THE QUEEN'S

ANNIVERSARY PRIZES FOR HIGHER AND FURTHER EDUCATION 2015

21

Density and bending strength

ANNIVERSARY PRIZES FOR HIGHER AND FURTHER FORCATION 2015

blogs.napier.ac.uk/cwst

Mechanical properties

- Amount of cell wall material
 - Wood density
- How that cell wall material is arranged
 - Grain, earlywood, latewood
 - Knots
- How that cell wall material is made up
 - Cellulose : lignin
 - Microfibril angle

23

Juvenile core (softwoods)

Figure 2.15 Radial profile of Sitka spruce wood density. The green lines show profiles for five individual trees sampled at Baronscourt in Northern Ireland, while the black line represents a model fitted to these data.

Figure 2.20 Example of the radial variation in modulus of elasticity for two specimens of Sitka spruce wood. Modulus of elasticity was estimated from data on density and microfibril angle obtained from SilviScan-3.

"Rate of growth"

Grew in ~11 years

Grew in ~15 years

blogs.napier.ac.uk/cwst

20th September 2016

25

THE QUEEN'S ANNIVERSARY PRIZES For Higher and Forther Education 2015

"Rate of growth"

Bigger tree – actually growing faster (more wood) at this point

THE QUEEN'S ANNIVERSARY PRIZES For Higher and Further Education 2015

26

blogs.napier.ac.uk/cwst

Factors \rightarrow softwood quality

- Position within the tree
 Radially & vertically
- Silviculture

- Spacing, thinning, rotation length etc
- Site
 - Exposure, temperature, rainfall, soil type etc
- Genetics
 - Species, variety and individual

Bending

Bending

Changing the cross-section

EN 14081-1 gives acceptable limits for cross-section change after grading

THE QUEEN'S ANNIVERSARY PRIZES For Higher and Further Education 2015

blogs.napier.ac.uk/cwst

blogs.napier.ac.uk/cwst

THE QUEEN'S ANNIVERSARY PRIZES For Higher and Forther Education 2015

Variation

- From species to species
- Within species / species group
 - Between countries
 - Within countries
 - Within a forest
 - Within a stand
 - Between trees in a stand
 - Within a tree
 - Within a board
 - Depending on how the board is loaded

20th September 2016

Variation of properties & correlation between properties

Figure 6.9 Effect of specific gravity on the longitudinal modulus of elasticity for over