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Catch-and-release angling is a popular recreational pastime and an essential component of many fish research programmes.
Marked physiological disturbances have been documented in elasmobranchs in response to angling and handling, but skates
and rays remain understudied. Here, we describe for the first time the physiological responses of the critically endangered
flapper skate (Dipturus intermedius) to angling, handling and tagging in Scotland. Sixty-one skate were captured by angling as
part of a tagging research programme. We assessed individual health, measured blood parameters at two time points (post-
capture and prior to release) and recorded heart and respiratory rates during handling and the surgical insertion of acoustic
tags. Injuries or infections were identified in 10% of individuals and attributed to prior angling in two cases. Skate generally
experienced a mild metabolic acidosis characterized by decreases in blood pH and bicarbonate and increases in lactate and
glucose. Respiratory acidosis characterized by limited increases in PCO, was also observed. The degree of acidosis was greater
with warmer sea temperatures and longer fight times, and worsened during the time that skate were handled on deck. Heart
rates during handling were negatively associated with body size, positively associated with temperature and also linked to
time on the line. Taken together, our results suggest that elevated fight times and temperatures increase the physiological
stress experienced by rod and reel-caught flapper skate. Efforts to reduce fight times and minimize heat exposure (including
shading, irrigation and reduced handling time) should be beneficial for skate.

Lay Summary

Critically endangered flapper skate are caught by rod and reel for both recreational and scientific purposes but little is known
about how they respond physiologically. Blood markers and heart and respiratory rates were measured after capture and
indicated that warmer sea temperatures and longer fishing times increased stress.
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Introduction

Catch and release angling of elasmobranchs is globally com-
mon (Freire et al., 2020) and popular in UK waters (Jones
et al., 2021; Thomas et al., 2023). Sport fisheries have socio-
economic benefits (Hyder et al., 2020) and support scientific
research in many systems (Brownscombe et al., 2019). How-
ever, angling can also cause physical injury and physiological
disturbances that affect behaviour (Knotek et al., 2022),
reproduction (Sutter et al., 2012) and survival (Skomal, 2007;
Mohan et al., 2020). These impacts are well studied in teleosts
(Arlinghaus et al., 2007), but have received less attention
in elasmobranchs (Horton et al., 2023), with much exist-
ing research focused on the survival of sharks captured by
commercial fisheries. Many taxa, especially batoids, remain
understudied (Skomal and Mandelman, 2012).

The capture and handling of elasmobranchs by various
fishing methods can induce profound physiological distur-
bances (Hoffmayer and Parsons, 2001; Hyatt et al., 2012;
Skomal and Mandelman, 2012). Capture is usually associ-
ated with bursts of muscular activity and exhaustive anaer-
obic exercise. Anaerobic respiration is a normal physiological
response to exercise demands such as burst swimming or
excitation (Kieffer, 2000). However, when exercise demands
are intense or prolonged, marked and potentially fatal acid—
base, ionic, osmotic and fluid balance alterations can occur.
Metabolic acidosis frequently occurs in captured elasmo-
branchs and is typically characterized by a decrease in blood
pH and buffers, and an increase in blood lactate (Skomal and
Mandelman, 2012). Lactate accumulation occurs as a result
of anaerobic respiration and is accompanied by the generation
of hydrogen ions and a lowering of the pH, with subsequent
depletion of bicarbonate ions (Richards ez al., 2003). Respi-
ratory acidosis occurs when ventilation is compromised, for
instance due to mouth hooking or gill compression, leading
to increased blood carbon dioxide levels and a decrease in
blood pH (Frick et al., 2012). Acidosis induced by capture
may be primarily metabolic or respiratory in origin or a
combination of both (Mandelman and Skomal, 2009; Frick
et al., 2012; Hyatt et al., 2018). Alterations in other blood
parameters, including increased glucose concentrations (due
to activation of the glucocorticoid response) and changes in
potassium and magnesium levels, have also been documented
in elasmobranchs in response to capture stress (Cliff and
Thurman, 1984; Moyes et al., 2006; Cicia et al., 2012).

Tolerance to capture and handling differs between species
(Mandelman and Skomal, 2009; Hyatt et al., 2012; Gal-
lagher ez al., 2014). Benthic elasmobranchs are generally
considered more tolerant to restraint than pelagic species
(Naples et al., 2012) due to their respiratory mode (buccal
pumping versus ram ventilation) (Manire ef al., 2001) and
differences in metabolic rate and aerobic scope (Molina et al.,
2020). However, responses vary even between closely related
species (Ellis et al., 2017; Knotek et al., 2018) and with
capture context (including capture method and duration),
individual characteristics (including size and sex) and envi-
ronmental conditions (especially temperature) (Danylchuk
et al., 2014; Ellis et al., 2017). For example, longer fight times
are commonly associated with metabolic acidosis (Skomal,
2007; Kneebone et al., 2013; Mohan et al., 2020). Warmer
temperatures have also been linked to exacerbated physi-
ological stress responses and increases in mortality (Cicia
et al., 2012; Hoffmayer et al., 2012; Hyatt et al., 2018).
Understanding how and why these effects vary within and
amongst systems is important for species’ conservation, espe-
cially for vulnerable species targeted by recreational angling
(Arostegui et al., 2021).

The flapper skate (Dipturus intermedius) is a critically
endangered, benthic elasmobranch that was formerly dis-
tributed across northern Europe, but subsequently widely
extirpated by commercial fisheries (Brander, 1981; Ellis et al.,
2024). However, the species remains locally abundant off
the west coast of Scotland, where recreational catch-and-
release angling records, and electronic tagging and tracking,
supported the designation of the Loch Sunart to the Sound
of Jura Marine Protected Area (LStS] MPA) (Neat et al.,
2015; Dodd et al., 2022). Management in the MPA restricts
commercial fisheries but permits recreational angling. Angler-
derived data, alongside electronic tagging and tracking, in
collaboration with Scotland’s Nature Conservation Agency
(NatureScot), has informed our understanding of the ecology
and conservation of this species and supports ongoing moni-
toring (Thorburn ez al., 2021; Lavender et al., 2021a,2021b).
However, the impacts of angling on skate remain uncertain.
Although recapture statistics suggest high survivorship (Rég-
nier et al., 2024), behavioural disturbances have also been
documented (Lavender et al., 2022a). Further research on the
impacts of this practice, namely the nature and degree of the
physiological stress response, is required to inform mitigation
measures.
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In this study, we document physiological responses of flap-
per skate to rod and reel capture, handling and the surgical
implantation of acoustic tags. From 2018-20, we captured
skate in the LStS] MPA and measured blood parameters at
two time points (immediately after capture and immediately
prior to release) and recorded heart and respiratory rates
during handling. We investigated relationships between blood
parameters, heart/respiratory rates and aspects of the cap-
ture and handling process (such as fight time), individual
characteristics (such as size) and environmental conditions
(such as temperature) to examine whether captured skate
exhibited metabolic and respiratory acidosis. We discuss the
implications of our results for skate conservation.

Materials and Methods

Flapper skate were captured in the LStS] MPA at favoured
‘angling marks’ (Fig. S1). The bathymetric environment spans
shallow coastal waters alongside deep-water sections (up to
290 m in depth) (Howe et al., 2014). Water temperatures
vary from a winter minimum of ~6°C to a latesummer
maximum of ~16°C. Over the summer, a thermocline 1-2°C
in magnitude develops in the upper (<100 m) water layers. Air
temperatures vary from ~—2 to 22°C. Semi-diurnal tides and
seasonal wind variability dominate the current flow regime
(Aleynik et al., 2022).

Capture

Sixty-two skate captures were recorded (comprising 61 indi-
viduals, of which one individual was captured twice). Skate
were caught from a charter angling vessel between August
2018 and March 2020 (Fig. S1, Table S1). Bottom temper-
atures (£0.1°C) were recorded using a Star Oddi milli-TD
archival tag attached to the vessel’s anchor. Angling gear
was standardized and followed typical angling practices (see
Supporting Information §1.1). For all angling and veterinary
equipment, see Table S2. Captured skate were brought onto
the vessel either by sliding a sling under the skate or by using
a gaff hooked through the leading edge of the wing (as per
NatureScot, 2023). On the vessel, skate were placed onto a
closed-cell foam mat, in ventral recumbency, shaded and sup-
plied with seawater supplemented with medical oxygen via
the spiracles (using a hose). Skate were sexed (by the presence
or absence of claspers) and their total length (snout to tail tip)
and disc width (wing tip to wing tip) were measured. Individ-
ual ‘health status’ was classified from physical examination
and the presence/absence of injuries/infections (see Support-
ing Information §1.2). Healthy individuals (7 =353, including
one recaptured individual) were blood sampled at two time
points and surgically tagged with acoustic transmitters before
release. Heart and respiratory rates were recorded throughout
handling. Individuals with injury or infection (n=6) were
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assessed and treated by a veterinarian but excluded from all
analyses (see Supporting Information §1.2).

Blood sampling

Blood samples were taken from skate immediately after land-
ing (‘blood sample one’: BS1) and immediately prior to release
(‘blood sample two’: BS2). We obtained 51 samples at BS1
and 46 samples at BS2 from healthy individuals. (For two
individuals, we obtained BS2 but not BS1.) Blood was sam-
pled from the caudal vein (ventral coccygeal) using a 21G
needle and syringe (see Supporting Information §1.3). Blood
samples were considered predominantly venous; however, due
to the anatomical proximity of the caudal vein and artery
some samples may have been mixed (Mandelman and Sko-
mal,2009). Samples were immediately placed into a collection
tube containing lithium heparin and inverted. Whole blood
(95 1) was pipetted into a CG4+ cartridge within 10 min of
sampling (minimizing blood—air mixing) and analysed with
the i-STAT handheld analyser for pH, carbon dioxide partial
pressure (PCO;), oxygen partial pressure (PO>), bicarbonate
and lactate. Glucose was measured within 10 min using an
Accu-Check® mobile glucometer. Remaining blood samples
were placed into an insulated cooler with ice packs. Plasma
was separated by centrifugation within 10 h and stored,
initially at —20°C (for <5 days) and subsequently at —80°C
(until analysis). After defrosting at room temperature, plasma
potassium (K) and magnesium (Mg) were measured using
an AU480 chemistry analyser by the ion selective electrode
method and colorimetry, respectively. We measured these
parameters because of their elevation in response to capture
in several elasmobranch species, and their ability to predict
post-release survival in longline-captured blue sharks (Pri-
onace glauca) (Cliff and Thurman, 1984; Moyes et al., 2006;
Cicia et al., 2012). For each blood parameter, we successfully
obtained 28-50 measurements at BS1 and 18-43 at BS2.
Missing values were due to equipment failure and sample
quality (clotted or insufficient volumes of blood).

Tagging

Forty-one skate were surgically tagged (between BS1 and BS2)
with acoustic transmitters as part of a wider research project
(Table S1). Skate were not tagged in rough seas or if available
tags were not the appropriate size. Skate were placed in
dorsal recumbency for tagging and oxygenated seawater was
supplied via the mouth. A ventral mid-line incision (~3 cm)
was made into the coelomic cavity after local anaesthesia of
the incision site by infiltration with lidocaine. An Innovasea
V16 or V13 tag was placed in the coelomic cavity and the
incision closed in two layers (coelomic membranes and muscle
followed by skin) with a monofilament absorbable suture (see
Supporting Information §1.4 for additional details). Tagging
lasted ~5-10 min.

Heart and respiratory rates

Throughout the capture process, respiratory and heart rates
were recorded (for 30-60 s) at ~5-min intervals, from obser-
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vation of buccal/spiracle movements and cardiac contrac-
tions. Heart rates were monitored via ultrasound with skate
in dorsal recumbency (Table S3).

Ethics

Data collection was reviewed and approved by the Ethics
Committees of the University of St Andrews (number
SEC21024) and the Royal Zoological Society of Scotland.
All regulated procedures involving animals were carried out
under Home Office Project Licence number POSE95CS50
according to The Animals (Scientific Procedures) Act 1986.

Capture events

Data were analysed in R, version 4.2.3, using the stats,
finalfit and mgcv packages (Wood, 2017; Harrison et al.,
2021; R Core Team, 2021). See Table S4 for a summary of
analyses. Since fight time is known to influence physiolog-
ical responses to capture, we first analysed the relationship
between fight time, individual characteristics (sex and body
size) and environmental variables (time of day, water tempera-
ture and depth), using a generalized linear model (GLM). This
model is described in the Supporting Information §2. Here, we
focus on the physiological analyses.

Blood parameters

We analysed physiological responses to capture, handling and
tagging using blood parameter measurements for pH, PCO»,
PO;, bicarbonate, lactate, glucose, potassium and magne-
sium. Prior to analysis, we applied temperature corrections to
pH, PCO; and PO, to account for the discrepancy between
ambient water temperature (assumed body temperature) and
measurement temperatures, as the i-STAT warms samples to
37°C for measurement (see Supporting Information §3.1).
Bicarbonate was calculated from temperature-corrected pH
and PCO; values (see Supporting Information §3.1). All sam-
ples that failed quality checks were excluded (see Supporting
Information §3.2). Following a three-step workflow, we then
investigated relationships between blood samples, individual
characteristics and aspects of the capture process.

Physiological state (Step 1). We analysed the physiological
state of individuals at BS1 and BS2 by visualizing distribution
of values for each blood parameter and modelling values
using GLMs. For BS1, we considered each blood parameter
(BS1D)in relation to sex (females, sexg, versus males, sexy),
body size (total length, centimetres), bottom temperature (°C),
the time (minutes) from hooking to the surface (i.e. fight time),
the time from the surface to the blood sample and a factor dis-
tinguishing non-gaffed/gaffed (gaffn/gaffy) individuals. An
interaction was included between bottom temperature and
fight time since exhaustive exercise is likely to have greater
impacts in warmer, less oxygenated water. Each model took
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the form:
BS1 ~ N (1, 0%) (1)
log (i) = Bo + Bisexm; + Basize; + P3temperature;

+ Batimepook—s surface;

+ Bstemperature;timep, ook surface;
+ ﬁ6timesurface~>B51i + ﬁ7gafin

where i indexes observations. At BS2, we also exploited
the fact that seven individuals were not tagged (due to tag
availability or sea state) to investigate putative effects of
tagging, by including a factor in the model that distinguished
untagged from tagged individuals (surgeryy). BS2 models
took the form:

B2 ~ N (;,0?) 2)
log (i) = Bo + Bisexm, + Pasize; + B3temperature;

+ B4timehookasurface,

+ Bstemperature;timepook—s surface;
+ B6timesurface~>B52i + B7gafin + ﬁSsurgeeri-

See Supporting Information §3.3 for a justification of the
model formulation.

Physiological changes (Step 2). We investigated the change
in blood parameter values from BS1 to BS2, in three stages.
First, we calculated and summarized the changes in blood
parameters from BS1 to BS2. Second, for the subset of indi-
viduals with observations at both BS1 and BS2, we tested
for significant differences between blood parameter values
at BS1 and BS2 using percentile bootstrap tests for paired
samples for (i) all individuals, (ii) tagged individuals and
(iii) untagged individuals (see Supporting Information §3.4
for implementation details). For the subset of variables that
changed significantly between BS1 and BS2, we modelled the
magnitude of the changes in relation to explanatory variables
by modifying Equation (2) as follows:

ABSY ~ N (i 0?) (3)
w; = Bo + Brsexny; + Pasize; + P3temperature;
+ B4timehook— surface;
+ Bstemperature;timep ook surface;
+ BetimegyrfaceBs1, + B7timepsips2; + Psgaffy;

+ Bosurgeryy;

where ABSE’) = BSZ;” - BSlf’); timegsq_ps2 denotes the time
between blood samples; and other terms are as previously

described.

Synthesis (Step 3). For the three GLMs, a bootstrapping
approach was used to compare the effects of each explanatory
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variable on blood parameters. For each variable, we defined
a standardized measure of effect size as the mean ratio
of the response between the second and the first factor
level or between the maximum and the minimum value for
that variable estimated from 5000 bootstrap simulations,
whilst holding other variables constant (see Supporting
Information §3.5). Effect ratios were visualized for each
blood parameter and explanatory variable to identify notable
associations.

Heart and respiratory rates

Heart and respiratory rates were examined to investigate
the influences of individual variation, environmental condi-
tions, capture and handling. We modelled each rate? as a
function of sex, body size (total length), fight time, bottom
temperature, time spent at the water surface before being
pulled aboard and factors distinguishing gaffed/non-gaffed
individuals and tagged/untagged individuals. To account for
multiple (77 = 1-10) observations during time on deck for each
capture event, a generalized additive modelling framework
with random effects smoothers (s) for individual and time on
deck was used. Each model took the form:

0
it

rate;; ~ Negative Binomial (6;) (4)

0i: = Bo + B1sexy; + Posize; + P3temperature;

+ Batimep ook surface;

+ Bstemperature;timep ook surface;

+ Befimegyrface > deck; T B7gaffY, + Bgsurgeryy,

+ s (event;) +s (event,', tiMe ek observation;, t) .

See Supporting Information §4 for an alternative model
formulation we considered that was less supported by
the data.

Results

Of the 61 captured individuals, six (10%) had impaired
health (Table S5). Two individuals had acute (hooked through
body wall) or chronic (old gaffing wound) injuries. Three
individuals had evidence of one or more abscesses. One skate
had suspected coelomitis.

Fight times for healthy individuals ranged from 9 to 55
(median=20) min. The model of fight time revealed that
fight times were longer on average for larger individuals
and marginally shorter in warm water (Fig. S2). However,
there was substantial variability amongst individuals and
coefficient estimates overlapped with zero (Table S6).

Research Article

Blood sample one

For each blood parameter, we obtained 28-50 and 18-43
measurements for analysis at BS1 (post-capture) and BS2
(prior to release), respectively (Table S7). At BS1, most
explanatory variables were associated with one or more
blood parameters (Figs. 2 and S3-10, Table S8). In general,
uncertainty was high and in most GLMs coefficient estimates
overlapped with zero. However, the effect-ratio analysis
revealed that most effects were not distributed uniformly
around zero but broadly positive or negative.

Higher bottom temperatures were broadly associated with
lower pH (Figs. 2a and S3) and bicarbonate (Figs. 2a and S6)
and higher PCO, (Figs. 2b and S4), lactate (Figs. 2e and S7),
glucose (Figs. 2f and S8), potassium (Figs. 2g and S9) and
magnesium (Figs. 2h and S10). For these blood parameters,
the effect ratios were largely below/above one (Fig. 2), but
uncertainty was high, and in the GLMs estimated coefficients
were only statistically significant for potassium and mag-
nesium (Table S8). However, the result for potassium was
influenced by one individual with a high value.

Longer fight times were associated with lower pH and
bicarbonate and higher PCO,, lactate, glucose, potassium
and magnesium levels (Figs. 2 and S3-10). In the effect-ratio
analysis, the differences in predicted blood parameter values
between the lowest and highest fight times were broadly
negative or positive (whilst holding other variables constant).
However, the effect was only statistically significant in the
GLM for potassium.

There was mixed evidence for an interaction between
bottom temperature and fight time (Figs.2 and S3-S10,
Table S8). In general, we observed relatively lower values
for pH and bicarbonate, and higher values for lactate and
potassium, at jointly elevated temperatures and fight times
(Fig. 2). For pH, bicarbonate and lactate, interaction coeffi-
cients were non-significant (Table S8) and the distributions
of effect ratios for temperature (between short and long fight
times) and fight time (between cool and warm temperatures)
partially overlapped (Fig. 2). For potassium, the interaction
coefficient was significant (Fig. S9, Table S8) and effect ratios
were substantially different (albeit partially overlapping:
Fig. 2).

There was a clear negative effect of time from the surface
to BS1 on pH and bicarbonate (Fig. 2a and 2d, Table S8). The
effect of surface time on lactate was broadly positive (Fig. 2e).
There were no clear effects of surface time on other blood
parameters.

Gaffing was associated with somewhat lower bicarbonate
values (Fig.2d) and elevated lactate (Fig.2e) and glucose
(Fig. 2f) values. For bicarbonate and lactate, these effects were
uncertain and not statistically significant, but for glucose

20z 1oquaoaq /| uoisenb Aq 651Z16//..09€09/1/Z L /8101e/sAyduod/wod dno-ojwapese//:sdjiy woly papeojumoq


https://academic.oup.com/conphys/article-lookup/doi/10.1093/conphys/coae077#supplementary-data
https://academic.oup.com/conphys/article-lookup/doi/10.1093/conphys/coae077#supplementary-data
https://academic.oup.com/conphys/article-lookup/doi/10.1093/conphys/coae077#supplementary-data
https://academic.oup.com/conphys/article-lookup/doi/10.1093/conphys/coae077#supplementary-data
https://academic.oup.com/conphys/article-lookup/doi/10.1093/conphys/coae077#supplementary-data
https://academic.oup.com/conphys/article-lookup/doi/10.1093/conphys/coae077#supplementary-data
https://academic.oup.com/conphys/article-lookup/doi/10.1093/conphys/coae077#supplementary-data
https://academic.oup.com/conphys/article-lookup/doi/10.1093/conphys/coae077#supplementary-data
https://academic.oup.com/conphys/article-lookup/doi/10.1093/conphys/coae077#supplementary-data
https://academic.oup.com/conphys/article-lookup/doi/10.1093/conphys/coae077#supplementary-data
https://academic.oup.com/conphys/article-lookup/doi/10.1093/conphys/coae077#supplementary-data
https://academic.oup.com/conphys/article-lookup/doi/10.1093/conphys/coae077#supplementary-data
https://academic.oup.com/conphys/article-lookup/doi/10.1093/conphys/coae077#supplementary-data
https://academic.oup.com/conphys/article-lookup/doi/10.1093/conphys/coae077#supplementary-data
https://academic.oup.com/conphys/article-lookup/doi/10.1093/conphys/coae077#supplementary-data
https://academic.oup.com/conphys/article-lookup/doi/10.1093/conphys/coae077#supplementary-data
https://academic.oup.com/conphys/article-lookup/doi/10.1093/conphys/coae077#supplementary-data
https://academic.oup.com/conphys/article-lookup/doi/10.1093/conphys/coae077#supplementary-data
https://academic.oup.com/conphys/article-lookup/doi/10.1093/conphys/coae077#supplementary-data
https://academic.oup.com/conphys/article-lookup/doi/10.1093/conphys/coae077#supplementary-data
https://academic.oup.com/conphys/article-lookup/doi/10.1093/conphys/coae077#supplementary-data
https://academic.oup.com/conphys/article-lookup/doi/10.1093/conphys/coae077#supplementary-data

Research Article

the estimated coefficient and the distribution of effects were
positive (Fig. 2e, Table S8).

There were limited effects of sex and size on blood param-
eters. There was some evidence for marginally lower pH
and bicarbonate values and marginally elevated lactate and
glucose values in males, but differences were uncertain and
spanned zero (Fig. 2, Table S8). Smaller individuals were sim-
ilarly associated with lower pH and bicarbonate and higher
glucose and magnesium values, but this size effect was also
uncertain (Table S8).

Blood sample two

Results from modelling blood parameters at BS2 were
broadly consistent with those from BS1 (Figs. 3 and S11-
S16, Table S9). In line with BS1, higher bottom temperatures
and longer fight times were generally associated with lower
values for pH and bicarbonate and higher values for PCO,,
lactate and glucose (Figs. 3 and S11-16). In contrast to BS1,
for pH, the temperature effect was significant in both the
GLM (Table S9) and effect-ratio analysis (Fig. 3a), but for
other variables the effects of temperature and fight time were
principally apparent in the latter, as for BS1 (Fig. 3). Similarly,
there was limited evidence for an interaction between temper-
ature and fight time in the effect-ratio analysis for some blood
parameters; namely, PCO,, bicarbonate and glucose (unlike
BS1, where effects on pH, lactate, bicarbonate and potassium
were clearest). Time from the surface to BS2 (which includes
handling and tagging) was linked with lower bicarbonate
values, as in BS1, but only in the effect-ratio analysis. In line
with BS1, gaffing was associated with lower pH (but not
bicarbonate) levels, and moderately higher PCO; and lactate
(but not glucose) levels in the effect-ratio analysis (Fig. 3).
Like BS1, smaller individuals continued to exhibit broadly
lower pH and bicarbonate values at BS2 (Fig. 3). There were
no clear effects of sex or tagging on any blood parameter.

Changes in blood parameters during handling and
tagging

Most blood parameters showed evidence of change between
BS1 and BS2 (Figs. 1 and S17-S21, Tables S10-S11). Declines
in pH and bicarbonate and increases in lactate and glucose
from BS1 to BS2 were statistically significant (Table S10). The
changes were broadly consistent between untagged/tagged
individuals (Fig. 1, Table S10). The main exception to this
was magnesium, which increased significantly in the small

group of untagged individuals but not tagged individuals
(Table S10).

In GLMs of the change in blood parameter values from BS1
to BS2, there was some evidence for effects of temperature and
gaffing (Figs. S17-520, Table S11). In the GLM, warmer tem-
peratures were associated with greater reductions in pH (prin-
cipally at shorter fight times: Fig. S17 and S21, Table S11)
and increases in lactate (Fig. S19, Table S11), although the
effect ratio of the latter was highly uncertain in line with
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large variation amongst capture events (Fig. S21). The GLM
also linked gaffing with greater reductions in pH and glucose
(Table S11), but simulated effect ratios were variable.

There was a moderate, positive correlation between heart
and respiratory rates in healthy individuals (Spearman’s rank
correlation S = 194086, p = 0.56, n = 135, P < 0.05).
Heart rates varied from 4-26 (median = 12) beats per minute.
Heart rates were significantly higher for smaller individuals
and in warmer water (Fig.4; Table S12). The temperature
effect was principally apparent at shorter fight times; at
longer fight times in warmer water, heart rates were generally
lower, although the interaction was not statistically significant
(P = 0.064). Respiratory rates varied between 2 and 28
(median=12) respirations per minute and were generally
higher for smaller individuals (B, = —0.05,P = 0.058)
and lower for those that spent more time at the surface
(Bs = —0.053,P = 0.037) (Figs. S23-4, Table S13). During
handling, no consistent changes in heart or respiratory rates
were observed (Fig. 4; Figs. S22 and S24). Total handling time
on deck ranged from 9 to 31 (median=20) min for healthy
individuals.

Discussion

This is the first study to document physiological responses
to capture, handling and tagging in the critically endangered
flapper skate. Skate generally experienced a mixed metabolic
and respiratory acidosis characterized by decreases in blood
pH and bicarbonate and increases in lactate, PCO; and
glucose. The degree of acidosis was greater with longer fight
times and warmer sea temperatures, and worsened during
time on deck. However, there was no evidence that capture
responses differed between tagged and untagged individuals.
Heart and respiratory rates were collectively associated with
time on the line, temperature and body size but remained
stable during time on deck. Collectively, these results sug-
gest that capture and handling in flapper skate leads to
physiological changes associated with the secondary stress
response. Where angling for flapper skate is permitted, we
recommend mitigation measures that minimize fight time,
handling time and air/heat exposure. Measures include the
use of appropriate gear, hook removal in water (where pos-
sible), and the provision of shade and irrigation. Guidelines
produced in collaboration with anglers, and angler partic-
ipation in monitoring schemes, may help to maintain best
practices and support the contribution of angling to skate
conservation (Lavender er al., 2022b; NatureScot, 2023).
Current management, which permits angling in some areas
but prohibits it in others, is consistent with our results,
given uncertainty in the duration, severity and long-term
consequences of physiological disturbances. However, further
research on the cumulative impacts of angling on survivorship
is warranted, given the species’ conservation status. This study
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Figure 1: The distribution of blood parameter values in angled flapper skate at BS1 (post-capture) and BS2 (pre-release). BS2 is split by
individuals that did (Y) or did not (N) undergo surgery (S) during handling. On boxplots, the thick black line marks the median, the box edges
mark the first (Q1) and third (Q3) quartiles and bar ends mark the range (excluding statistical outliers). The dashed line highlights the median at
BS1. Hollow points mark statistical outliers (values < Q1 — 1.5 x IQR or > O3 + 1.5 x IQR, where IQR is the interquartile range). Box width is

proportional to the number of observations.

adds to the limited evidence base on batoid responses to
capture and handling and calls for increased research on this
understudied taxon.

Temperature

Warmer sea temperatures were associated with acidosis, as
evidenced by increased lactate and reduced pH and bicar-

bonate at BS1 and BS2. In warmer water, greater changes in
pH and lactate during time on deck (between BS1 and BS2)
were also apparent. Warmer temperatures were additionally
associated with elevated potassium and magnesium concen-
trations at BS1, but data variability limits interpretation of
this result. As poikilotherms, the basal metabolic rate and
oxygen consumption of skate increases with temperature;
hence, in warmer water with less dissolved oxygen, skate
undergoing exhaustive exercise reach aerobic capacity faster,
resulting in a switch to anaerobic respiration, lactate produc-
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Figure 2: Effect ratios for (A) pH, (B) PCO;, (C) PO,, (D) bicarbonate, (E) lactate, (F) glucose, (G) potassium and (H) magnesium in angled flapper
skate at BS1. In each panel, points show the mean effect size of specific explanatory variable +£95% confidence intervals (vertical bars). Effect
ratios are defined as the ratio between simulated values of the blood parameter at the second, versus the first, factor level (for sex and gaffing),
or the highest, versus the lowest, value (for continuous explanatory variables), whilst holding other variables constant. An effect ratio < 1
implies a decrease in blood parameter values; ratio = 1 (highlighted by the dashed horizontal line) implies no change; and ratio > 1 implies an
increase. For example, values for Sexys represent the proportional change in blood parameter values for males versus females, with other
variables held constant at the first factor level or median. Subsequent labels are as follows: Size (total length), T (temperature), FT (fight time),
STs (time from surface to blood sample) and Gaffy (gaffed). Temperature and fight time effects are shown for the lowest (L) and highest (H)
values of the other variable, given the interaction between these terms in the model.

tion and a reduction in blood pH and bicarbonate (Butler
and Taylor, 1975; Di Santo and Bennett, 2011). Increased
physiological disturbance at higher temperatures in relation
to angling has been demonstrated in multiple shark species
(Hoffmayer et al., 2012; Danylchuk ez al., 2014; Knotek et al.,
2022). Temperature change during capture (from water to air)
can also worsen acidosis, as shown in little skate (Leucoraja
erinacea) (Cicia et al., 2012). In our study, we focused on
the effect of water temperature and made efforts to minimize
heat exposure during handling, including shade provision
and seawater irrigation. However, elevated air temperatures

may further worsen physiological changes in summer. Whilst
the impact of physiological changes at elevated temperatures
remain unclear for flapper skate, higher temperatures have
been linked to longer recovery times in blacknose sharks
(Carcharhinus acronotus) (Knotek et al., 2022) and reduced
survival of juvenile lemon sharks (Negaprion brevirostris)
(Danylchuk et al., 2014). Notwithstanding differences in
species’ biology and capture contexts, this suggests the dura-
tion and consequences of physiological disturbance in flapper
skate in response to increased temperatures warrant further
research.

202 Jaqueda /| uo1senb Aq 65121 6.2/..09€09/1/Z L /o1o1e/sAyduoo/wod dnoolwapeoe//:sdpy woly papeojumoq



Conservation Physiology - Volume 12 2024 Research Article

WSTTTTTTY A, L

0.90 T T T T T T T T T 0 T T T T T T T T T
Sexy Size T:FT. T:FTy FT:T_ FT: Ty STs Gaffy Tagy Sexy Size T:FT_. T:FTy FT:T_ FT: Ty STs Gaffy Tagy
C (POy) D (HCO;)
’O: 8 2.5 4
=
g 6 2.0
[0} 1.5
N 4+ I
) R e e ) e ey S i e ® =
S 2 WTE } i[ { I I 1
@ 7 0.5
w 0 T T T T T T T T T 0.0 T T T T T T T T T
Sexy Size T:FT, T:FTy FT:T_ FT: Ty STg Gaffy Tagy Sexy Size T:FT. T:FTy FT: T, FT: Ty STg Gaffy Tagy
E (Lac) F (Glu)
8 -
10 H
8 6
6 4
4 i I
2 -
) N S JRNY SR SR SR o B R . o T S
0 T T T T T T T T T 0 T T T T T T T T T
Sexy Size T:FTy T:FTy FT:T_ FT: Ty STs Gaffy Tagy Sexy Size T:FT. T:FTy FT:T_ FT: Ty STg Gaffy Tagy
Term

Figure 3: Effect ratios at BS2 for angled flapper skate, following Fig. 2. This analysis included the effect of tagging (Tagy). Surface time (STs) is
time from the surface to BS2 (and includes handling and tagging procedures). There were insufficient data to model potassium or magnesium
at BS2.
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Figure 4: Heart rates of angled flapper skate in relation to (A) sex, (B) body size (total length), (C) bottom temperature, (D) fight time (E) surface
time, (F) gaffing, (G) surgery and (H) deck time. Points mark observations for each capture event. In C and D these are coloured/sized by fight
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between these variables in the model. Confidence intervals include uncertainty in the effect of the explanatory variable and the mean.
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Fight time

Longer fight times were associated with metabolic and respi-
ratory acidosis, as shown by broadly elevated lactate, glucose
and PCO; levels and lower pH and bicarbonate concentra-
tions (especially at BS1). We anticipate that these effects will
continue to worsen with fight times longer than observed
here, such as prolonged recreational angling events, where
fight times >120 min are known (G. Cole, unpublished data).
In other systems, fight time has been linked to physiological
disturbances in elasmobranchs caught in recreational (Sko-
mal, 2007; Kneebone et al., 2013; Mohan et al., 2020) and
commercial gear (Dapp et al., 2016; Hyatt et al., 2018; but see
Shea et al., 2022), where fight time may predict post-release
mortality (Mohan et al., 2020; Whitney et al., 2021). Whilst
behavioural analyses for flapper skate indicate recovery after
a period of rest from the physiological disturbance associated
with prolonged capture fights (up to 1 h in duration), mini-
mizing fight times should help to reduce capture stress in this
species (Lavender ez al., 2022a).

Surface and handling time

Skate became more acidotic with increasing time at the sur-
face (from surface to BS1) and total handling time (from sur-
face to BS2). During time on deck (from BS1 to BS2), pH and
bicarbonate declined and lactate and glucose increased. There
was some evidence for worsening respiratory acidosis, with
limited increases in PCO3, during time on deck. Changes in
blood parameters between BS1 and BS2 were associated with
temperature and gaffing. Worsening acidosis here is likely due
to the combined effects of air exposure, handling and prior
exhaustive exercise (exacerbated at warmer temperatures).
Air exposure has been demonstrated to have a profound
negative effect on elasmobranchs (Cicia et al., 2012; Heard
et al., 2014; Lambert et al., 2018) with even brief periods of
exposure (35 s) causing marked increases in PCO; in blacktip
sharks (Carcharbinus limbatus) (Weber et al., 2021). Whilst
we irrigated the gills with seawater and supplemented oxygen,
some air exposure occurred as skate were brought on deck.
During recreational angling events, such air exposure periods
may be more prolonged, as gill irrigation is not commonly
practised, though total handling time should be shorter in the
absence of tagging and blood sampling. Blood biochemical
alterations in elasmobranchs induced by exhaustive exercise
may take hours to reach a peak (Cliff and Thurman, 1984;
Richards et al., 2003; Frick et al., 2010) and 12-24 h to
normalize (Kneebone et al., 2013). In flapper skate, a recovery
timescale of this magnitude is consistent with behavioural
analyses demonstrating that skate typically rest for several
hours following tagging and continue to show signatures
of behavioural disturbance in the 12 h following release
(Lavender et al., 2022a). However, estimation of recovery
time remains an important area for future work.

Gaffing

There was some evidence that gaffing was associated with aci-
dosis, with somewhat elevated glucose (at BS1) and reduced

Conservation Physiology - Volume 12 2024

pH (at BS2). Although angling guides typically advise against
gaffing (Carlson er al., 2019), it is still used as a method
of boarding. Yet few studies have measured its physiological
consequences (Otway, 2015) and the links between gaffing
and physiological disturbance remain uncertain. For large ani-
mals (such as flapper skate), carefully placed gaffs may reduce
handling times (NatureScot, 2023). However, gaffing causes
physical trauma and can affect survival in elasmobranchs
(Musyl and Gilman, 2019). The longer term consequences
of gaffing, such as infection, the energetic cost of healing
wounds, loss of function and fatal organ damage (for poorly
placed gaffs) will not be reflected in acute changes in blood
biochemistry but are likely to be important.

Tagging

Tagging did not appear to influence blood parameters or
heart and respiratory rates. However, sample size was limited
and any alterations in blood parameters due to surgery may
take time to occur. Additionally, we lack data on healing time,
post-operative discomfort and the incidence of complications
such as infection. A greater understanding of the effects of
tagging procedures on fish is needed to ensure that protocols
are developed that benefit welfare and science (Clemens
et al., 2023). Unfortunately, few reports describe the effects
of intra-coelomic tag placement and surgical wound healing
in elasmobranchs, despite the prevalence of this practice.
However, existing studies report minimal evidence of gross
pathology (Haulsee et al., 2016; Smukall et al., 2019). We
recaptured a mature female 340 days following tagging and
observed complete external healing of the surgical incision.
Whilst further research is required to elucidate the short-
and long-term impacts of tagging, especially in long-lived
species, these are encouraging findings given the importance
of electronic tagging and tracking for skate conservation
(Lavender et al., 2023).

Size

Smaller skate were generally more acidotic, with lower pH
and bicarbonate (at BS1 and BS2, respectively). Whilst our
sample size was limited, elevated sensitivity of smaller elas-
mobranchs to capture stress in commercial trawl fisheries has
been documented in skates (Depestele et al., 2014; Knotek
et al., 2020) and rays (Stobutzki et al., 2002), as well as blue
sharks caught in longlines (Diaz and Serafy, 2005; Coelho
et al., 2013) and recreational gear (Shea et al., 2022). Possible
explanations for these findings include increased suscepti-
bility to trauma and fewer energy reserves (Knotek et al.,
2020), increased susceptibility to temperature change (Spi-
garelli et al., 1977; Prohaska et al., 2021), a higher basal
metabolic rate (per unit mass) and reduced buffering capacity
in smaller individuals.

Sex

There was no effect of sex on blood parameters or heart and
respiratory rates. Previous studies in trawl fisheries suggest
that male mortality is elevated compared to females, which
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benefit from a thicker integument (Enever ez al., 2009; Man-
delman et al., 2013). This difference is less relevant in catch-
and-release angling settings, which may explain the lack of
sex difference in our study. However, sex-specific differences
in capture responses to angling would benefit from further
research, given the limited sample size in this study.

Physiological synthesis

Whilst baseline physiological values from flapper skate are
lacking, comparison of our measurements with available esti-
mates from other species suggests a mild to moderate degree
of acidosis. In general, elasmobranch resting blood lactate
concentrations are <1 mmoll™" (Cicia et al., 2012; Naples
et al., 2012; Speers-Roesch et al., 2012a). This is broadly
lower than values documented here, which averaged 1.31 and
1.93 mmoll~" at BST and BS2 (range: 0.41-4.59 mmoll™'),
especially in warmer temperatures and at longer fight times.
Similarly, approximate baseline pH estimates at comparable
temperatures range from 7.64 to 7.84 (Butler and Taylor,
1975; Cicia et al., 2012; Frick et al., 20125 Speers-Roesch
et al., 2012b), which broadly exceed the values we report
(6.96-7.66), especially at BS2.

Heart and respiratory rates were collectively associated with
body size, temperature and time on the line, but did not
change during time on deck. In both cases, smaller individuals
generally had higher rates. This size effect is expected and has
been documented in elasmobranchs (Lyon, 1926; Dowd et al.,
2006). Heart and respiratory rates are also known to increase
with temperature, in line with increases in metabolic rate and
oxygen consumption (Butler and Taylor, 1975; Dowd et al.,
2006). Heart rate also increases moderately in elasmobranchs
in response to exercise (Scharold ef al., 1989; Scharold and
Gruber, 1991), although (in contrast to endothermic species)
increases in cardiac output are modulated mainly by increases
in stroke volume (Brill and Lai, 2015). In the model of
heart rates, there was limited evidence for an interaction
between fight time and temperature, with increasing fight
times associated with slight increases in heart rates at cooler
temperatures but decreases at warmer temperatures. A possi-
ble explanation for this result is that progressive hypoxia is
occurring in warmer temperatures, as higher metabolic rates
combined with exhaustive exercise and impaired ventilation
in mouth-hooked skate result in oxygen demands exceeding
supply. Hypoxia-induced bradycardia has been experimen-
tally demonstrated in other elasmobranchs (Butler and Taylor,
1975; Speers-Roesch et al., 2012a; Stenslokken ez al., 2004)
and in dogfish was observed earlier (at higher critical oxy-
gen tension) with increasing temperature (Butler and Taylor,
1975). In waters at the upper end of their thermal tolerance,
elasmobranchs reach their maximum aerobic scope faster
than in cooler waters (Farrell ez al., 2009). There was limited
evidence for effects of temperature or fight time on respiration
rates but the apparent decline in rates for individuals held at
the surface for longer suggests a degree of recovery during
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this period. Collectively, these results suggest that skate may
be exceeding their aerobic scope when exposed to long fight
times in warmer water. Whilst oxygen supplementation has
the potential to depress respiratory rates, we observed no
change in rates during monitoring.

We documented injury or infection in 10% of individuals.
Two individuals had injuries directly attributable to angling—
one individual had been injured by a hook through the body
wall that penetrated the coelom and another exhibited an
unhealed wound consistent with previous gaffing. In other
systems, hooking injuries are relatively common and can
impact survival (Kneebone et al., 2013; Danylchuk ef al.,
2014; Cameron et al., 2023), but their wider prevalence and
consequences in flapper skate remain uncertain. Three skate
had one or more abscesses and one had suspected coelomitis.
Abscess formation has been reported in some captive elas-
mobranchs but not previously in free-ranging populations
(Clarke et al., 2013; Delaune and Anderson, 2020). It was
not possible to determine the aetiology of abscess formation
here, but penetrating injuries or impaired immunity due to
other stressors are plausible explanations. Little is known
about disease in wild elasmobranchs (Garner, 2013) and
these results suggest further investigation into the incidence,
aetiology and drivers of disease in flapper skate is warranted.

Physical trauma and physiological disturbance due to angling
is linked with post-release mortality in elasmobranchs
(Cameron et al., 2023). Whilst data are limited and differences
in capture contexts limit comparisons between systems,
it is noteworthy that our lactate measurements (0.41-
4.59 mmoll™") lie broadly within the range tolerated by
blue sharks on longlines (mean =5.80 £ 2.96 [standard error]
mmoll™) (Moyes et al., 2006) and in general are lower than
the values associated with mortality in other species (Dapp
et al., 2016; Mohan et al., 2020; Whitney et al., 2021). In
line with this result, short-term survival for all skate tagged in
this study was inferred from acoustic data (Thorburn et al.,
2022). Whilst flapper skate caught in other circumstances
may experience more significant physiological disturbances,
angler mark-recapture data demonstrate that flapper skate
in the MPA can survive multiple capture events, and annual
survival rates in the MPA are high (~90%) (Régnier et al.,
2024). That being said, other effects of fishing such as
premature abortion and reduced maternal/offspring fitness
are reported in batoids (Guida et al., 2017; Adams et al.,
2018; Wosnick et al., 2019). Egg release associated with
capture has been recorded in flapper skate (Benjamins ez al.,
2021), but sub-lethal effects on maternal/offspring health
and reproductive capacity are unknown. The circumstances
under which capture-induced physical and physiological
disturbance reduce survival probability, the frequency and
magnitude of these occurrences and their population-level
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consequences, therefore remain knowledge gaps for skate
conservation in areas where catch-and-release angling occurs.
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