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Abstract—The significant advancements in Al tools and systems’ capabilities, reasoning, and efficiency are evident. A few noteworthy
examples of such tools include Generative Al-based LLMs, such as ChatGPT-3.5, GPT-4, Gemini, and others. Foundational LLMs have
proven versatile and effective in various tasks, such as composing poetry, writing code, generating essays, and solving puzzles, as they
can effectively process text-based input. However, recent advancements have made them capable of handling multi-modal input such
as text, image, and audio, making them highly general-purpose tools. They have also shown decent performance for pattern
recognition tasks such as classification. Therefore, there is a curiosity about whether general-purpose LLMs can perform comparably
or even superior to specialized deep-learning models (trained specifically for a given task). In our current study, we have compared the
performance of fine-tuned deep-learning models with general-purpose LLM models for image-based content moderation. We trained
deep learning models, namely CNN, ResNet50, and VGG-16 models, on an image dataset for violence detection and then tested their
performance on a different test dataset. Subsequently, we subjected the same testing dataset to two vision-enabled LLMs (LLaVa and
GPT-4). The VGG16 model emerged as the top performer and exhibited the highest accuracy of 94%, while Llava produced the lowest
accuracy (66%,). In the category of Large Language Models, GPT-4 performed the best with an accuracy of 92.42%. LLava LLM
recorded the highest precision value among all models. The trend is similar to other performance metrics, such as recall and F1-score.

However, GPT-4 performed best when compared to deep learning models with reduced training datasets. Overall, the LLMs did not
surpass specialized models but achieved comparable performance, making them a good alternative when the available dataset is

small.

Index Terms—Large language models, Deep learning, Generative artificial intelligence, Content Moderation

1 INTRODUCTION

Artificial intelligence (AI) has advanced significantly in re-
cent years [1] with the development of large language mod-
els (LLMs) such as GPT-3.5 and GPT-4 from OpenAl, Gemini
from Google, and Llama from Meta. Other notable LLMs in-
clude BlenderBot [2], Galactica, LLaMA from FAIR, Alpaca
from Stanford, BloombergGPT, Chinchilla from DeepMind
[3], and Palm [4]. The LLMs can process various types of
data such as text, images, audio, and video [5], making
them significant language processors. They are also revolu-
tionizing the way machines interact with and comprehend
human-generated content.

The amount of research analyzing different facets of Al
technologies has increased dramatically since ChatGPT’s
launch [6]. As investigated in [7], a common pattern in
the existing research is to identify how well LLM works
in comparison to the state-of-the-art approaches on several
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issues including finance [8], medicine [9], healthcare [10],
academic writing [11], sustainability [12], education [13],
reasoning [14]and decision making [15]. In addition, the
LLMs are being used to evaluate their performance on pre-
diction tasks. For example, Patrinos et al. [16] used chatGPT
to anticipate the future of personalized medicine.

LLMs exhibit human-like language creation and under-
standing abilities due to their deep neural network based
architectures and extensive internet text training [17]. Chat-
GPT is widely used for tasks requiring contextual compre-
hension and excels at catching subtleties in language and
context [18], [19]. Recent advances in LLMs have improved
their capacity to handle many forms of input data, such as
text, picture, audio, and video [5], [20]. The increase in LLM
capabilities raises questions about their efficacy in vision-
based applications. This research gap prompted us to look
beyond language processing and analyze the proficiency of
foundational LLMs on image recognition tasks.

Social media platforms allow people to connect globally,
share opinions, and publish information. Their use has
grown significantly due to the quick and easy access to
information and the freedom to express in various formats.
However, social media is witnessing an increase in harmful
content. It includes hate speech, fake news, obscene and
violent images, cyberbullying, child abuse content, etc. [21].
Therefore, it has become crucial to detect and moderate
harmful content. It is also noteworthy that moderated con-
tent is not always provocative and inflammatory. If the
content does not meet the platform’s rules and policies, it
is also flagged as inappropriate (for example, LinkedIn is
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not a platform for sharing personal pictures and gossip).
Overall, content moderation involves systematically screen-
ing content on websites and online networks to decide if it
is suitable for a specific site, location, or jurisdiction [22].

Deep learning, known for its hierarchical representation
learning, has been instrumental in managing complicated
patterns inside enormous datasets [23] that has led us to ad-
vances in image analysis [24], recognition [25], and compre-
hension [26]. Therefore, it has become vital to automatically
detect harmful content on social media platforms and help
human moderators flag problematic content. In the case of
image-based violent detection, the deep learning algorithms
excel in extracting features and recognizing patterns [27] to
facilitate automatic identification of violent behaviors using
body language and nonverbal [28]. However, incorporating
large language models brings an interesting perspective
since they have intrinsic language understanding skills that
can augment the contextual comprehension of visual data
[29].

While both LLMs and deep learning are quite competent
at identifying content moderation tasks based on images, a
full evaluation of their relative performances is necessary.
An analysis of the available literature finds a significant
gap in essential research into LLM performance on image
datasets. As a result, we conducted a thorough study of
the performance of two LLMs, Llava and ChatGPT-4, for
detecting violent scenarios inside image datasets. We also
performed comparative analysis with deep learning algo-
rithms such as CNN, VGG16, and ResNet-50. Our study’s
key contribution is testing LLMs for content moderation
and comparing deep learning algorithms comprehensively
with GPT-4 and Llava. Our study also provides significant
insights into their strengths and shortcomings, allowing
researchers to choose the best approach for specific tasks.
Moreover, understanding the trade-offs between LLMs and
deep learning models is critical for improving their perfor-
mance and successfully incorporating them into real-world
applications.

In this regard, our main contributions to the study can
be summarised as follows:

o Conducted a comparative analysis of deep learning
models and LLMs for content moderation.

e We investigated how smaller training dataset sizes
affected model performance.

o Investigated the interpretability of responses gener-
ated by LLMs.

The rest of the paper is organized as follows. Section
2 discusses the background of the study. Section 3 dis-
cusses all the models employed in the study, including
fine-tuned deep-learning models and foundational LLMs.
Section 4 describes the methodology followed to generate
and compare the results of LLMs and deep-learning models.
Section 5 presents the results and discussion of the current
work. Section 6 presents the concluding remarks and future
directions.

2 BACKGROUND

The proliferation of social media platforms and an increas-
ing number of users necessitates the use of automated
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systems for content moderation to ensure that harmful
materials such as hate speech, misinformation, and violent
content are effectively identified and addressed [30], [31].
Therefore, to maintain the integrity of posts and adhere
to legal standards, content moderation has attracted re-
searchers and policy makers greatly. A number of works in
this direction has been reported in the literature. Primarily,
we are aimed at focusing a) technology used and b) issues
addressed in the reported studies.

Up until recently, it’s been all hands on deck for human
moderators, who've been the go-to folks for dealing with
harmful content. In [28], authors have argued that for effec-
tively handling the social media contents for adequate mod-
erations, human moderation are better as human can better
deal with the requirements of contextual understanding and
addressing unique challenges posed by. However, the sheer
volume of content uploaded daily makes human modera-
tion a highly labor-intensive and resource-consuming task.
Additionally, human moderators are susceptible to biases,
inconsistencies, and challenges keeping pace with the ever-
evolving nature of online content [32].

To overcome these shortcomings, researchers have ac-
tively explored automating content moderation using ar-
tificial intelligence (AI). Traditional machine learning and
deep learning models have emerged as a powerful tool,
particularly adept at image and video classification tasks
valuable for content moderation [33]. These models are
trained on massive datasets labeled as containing harm-
ful or safe content [34]. Once trained, they can then be
used to automatically identify and flag potentially harmful
content for further review by human moderators. Authors
have achieved [35] state-of-the-art performance in detect-
ing inappropriate content on platforms like YouTube using
EfficientNet-BiLSTM architecture. Additionally, Moustafa
[36] has used convolutional neural networks for tasks like
pornography detection. These works set a benchmark that
an be used for comparing the effectiveness of specialized
deep learning models against any other models.

However, deep learning models also have limitations.
They often require vast amounts of labeled data for effective
training, which can be expensive and time-consuming to
acquire [37]. Additionally, these models may struggle to
generalize to new types of content not included in their
training data [38]. This limitation paves the way for large
language models (LLMs). LLMs can learn complex rela-
tionships between words and concepts, allowing them to
perform various tasks such as generating text [7], translat-
ing languages [39], and writing different kinds of creative
content [40]. Recent advancements have enabled LLMs to
handle not just text but also multi-modal input such as
images and audio, making them even more versatile [41].

The increasing interest in LLMs for social media content
moderation is fueled by research demonstrating their poten-
tial in various aspects of this task. Research has indicated
their potential effectiveness in several moderation roles.
For example, LLMs have been shown to accelerate and
enhance the accuracy of creating content for adult learning
[41]. They also show promise in rule-based community
moderation with noteworthy accuracy and precision [42].
Moreover, LLMs can improve the interaction between users
and platforms, aiding in clearer communication [43].
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LLMs show promise in altering webpages when given
explicit directives, but they struggle with vague inputs
and complex web structures, highlighting the need for
further enhancements [41]. Research indicates that while
LLM-based strategies are promising for content moderation,
additional research and detailed implementation are neces-
sary to refine these models for specific moderation tasks
[44]. LLMs also perform well in analyzing social media
sentiment, though ethical issues must be carefully consid-
ered [45]. Transitioning from basic capabilities to targeted
applications, various studies have examined how LLMs can
be integrated into the content moderation framework. For
example, a study by [42] explores an initial approach to
rule-based community moderation with LLMs, achieving
median accuracy and precision rates of 64% and 83%, re-
spectively. Their work highlights both the potential and
the challenges of LLMs in comprehending and applying
community standards. This study marks a significant point,
illustrating the potential and limitations of LLMs in under-
standing and enforcing community guidelines.

Deep learning models have become valuable tools for
content moderation, but their limitations necessitate explor-
ing new approaches. Large language models (LLMs) offer
exciting possibilities for the next generation due to their abil-
ity to handle complex text and potentially multi-modal data.
However, concerns exist regarding the fairness of current
LLM-based systems for vulnerable groups and minorities
[3]. additionally, LLMs show promise, challenges such as
handling complex requests and the need for meticulous data
engineering for effective fine-tuning are major conerns to
be dealt with [46], [47]. A comprehensive study directly
comparing the performance of fine-tuned deep learning
models and general-purpose LLM models for image-based
classification, and consequently image content moderation,
remains unexplored. To that end, we have conducted this
study to address this gap by comparing the performance of
fine-tuned deep learning models with general-purpose LLM
models for image-based content moderation.

3 MODELS EMPLOYED

In this study, we used three deep-learning models and two
LLMs. Each of them is discussed briefly in the next section.

3.1 Fine-tuned deep learning models

Two of the deep learning models were pre-trained, notably
ResNet50 and VGG16. The remaining was a simple CNN-
based model.

3.1.1 ResNet50

The ResNet architecture came into existence in 2016 to tackle
the issue of vanishing gradients in deep neural networks
[48]. In our study, we used the ResNet-50 model with
pre-trained weights from the ImageNet dataset. We used
transfer learning to use the ResNet-50 model’s knowledge
and feature extraction skills obtained from training on a
large and varied dataset. We used the pre-trained ResNet-
50 model as a feature extractor. We then built new layers to
replace the final completely linked layer. Initially, a global
average pooling layer was added to the ResNet-50 to reduce

TABLE 1
Layered architecture of CNN

Layer (type) Output Shape #Parameters
Conv2D_0 (None, 126, 126, 32) 896
MaxPooling2D_0 (None, 63, 63, 32) 0
Conv2D 1 (None, 61, 61, 64) 18,496
MaxPooling2D_1 (None, 30, 30, 64) 0
Conv2D 2 (None, 28, 28, 128) 73,856
MaxPooling2D_2  (None, 14, 14, 128) 0
Flatten_0 (None, 25088) 0
Dense_0 (None, 128) 3,211,392
Dense_1 (None, 2) 258
Total parameters: 3,304,898

Trainable parameters: 3,304,898

Non-trainable parameters: 0

spatial dimensions and provide a more dense representation
of the features learned by previous layers. A dense layer was
added for the final classification with the number of units
equal to the number of classes in our dataset (two classes).
The activation function in the Dense layer used is 'sigmoid’.
The model used the Adam optimizer and a binary cross-
entropy loss function. Finally, the model was trained using
the training data for 100 epochs with a batch size of 32.

3.1.2 VGG16

The VGG16 architecture, developed in 2014, is a well-
known deep convolutional neural network design [49]. It
employs a composition rule in which numerous identical
convolutional layers are stacked sequentially, followed by
a maximum pooling layer to reduce the input dimensions.
In our study, we used the pre-trained VGG16 model and
excluded its top layers. We froze the basic model’s layers
to keep their weights constant during training. In addition,
we introduced a flattened layer to prepare the data for final
predictions in the last dense layer. The activation function
used in the last dense layer was ’sigmoid’. Other hyper-
parameters used for training were the "Adam’ optimizer, a
binary cross-entropy loss function, a batch size of 32, and
100 epochs.

3.1.3 CNN

Convolutional neural networks (CNNs) are the prevailing
neural network topologies for image categorization prob-
lems. Their structure consists of convolutional, pooling,
flattening, and fully linked layers. Our CNN model consists
of nine layers with three convolutional layers. The first
convolutional layer used 32 filters to handle 128x128x3 input
images, followed by 64 filters for the second and 128 for
the third. Each convolutional layer used a 3x3 filter size
and a ReLU activation function, followed by three Max
Pooling layers, each with a pooling size 2x2. Following
the convolutional layers, a single flatten layer reduced the
final pooling layer’s 2D feature mappings to a 1D feature
vector. The flatten layer was followed by two dense layers.
The first dense layer included 128 neurons and used ReLU
activation. The second (output) dense layer had one neuron
and used the sigmoid activation function. Table 1 depicts
the architectural arrangement of CNN.
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3.2 Foundational LLMs

For this study, we sought multi-modal LLMs that can inter-
pret images and text (for query purposes). Considering the
prerequisites, we included two LLMs: LLava and GPT-4.

3.2.1 LlLava

LLaVA (Large Language and Vision Assistant) is an ad-
vanced multi-modal model published in December 2023
[50]. It combines visual processing features with a large lan-
guage model (LLM) that results in a unified system capable
of interpreting both visual and textual input. The LLaVA
architecture combines the expansive open-set visual encod-
ing capabilities of CLIP [51] with Vicuna’s [52] language
processing abilities. The model has been fine-tuned from
end to end using a proprietary dataset to combine visual
components with instructional language data. It showcased
sophisticated abilities on curated synthetic datasets in multi-
modal conversations when presented with novel visuals or
instructions.

3.22 GPT4

Generative Pre-trained Transformer 4, often known as GPT-
4, is the most recent model in OpenAl’s GPT family com-
prised of foundational models [20]. It is a flexible multi-
modal model capable of handling both textual and visual
inputs. GPT-4 produces a wide range of outputs, including
both textual and graphic information. While specific archi-
tectural elements of GPT-4 are unknown, one may expect
improvements in areas such as model size, training data,
training processes, and fine-tuning approaches. In compari-
son to GPT-3.5, GPT-4 has shown significant improvements
across a wide range of benchmarks, including national and
international exams such as the GRE and LSAT.

4 METHODOLOGY

The methodology adopted to compare the foundational
LLMs with fine-tuned deep-learning models is presented in
this section. It consists of several steps, each one of which is
elaborated next.

4.1 Dataset

In the current study, we have used real-life violence sit-
uations dataset [27]. The original dataset comprises 1000
videos each of violence and non-violence taken from
YouTube. The violent videos feature a variety of real street
fights in diverse environments and conditions. Similarly,
non-violent videos are a collection of various human activ-
ities, including sports, eating, walking, and more, and are
also collected from YouTube. However, we have considered
an image dataset of violent and non-violent scenarios for
the study. This dataset consists of images taken from the
video frames of the previously mentioned video data [27]. It
includes 11,063 images divided into two categories: Violence
(1) and Non-Violence (0). A sample of the two classes is
given in Figure 2.

4.2 Pre-processing steps

Out of the total images (11,063), we took out its 0.5%
as the test set (554 images). From the remaining images
(10,509 images), 90% were kept for training (9,458) and the
rest (1051 images) for validation. For testing, we have to
pass each image one by one to Llava and GPT-4, which
requires a significant amount of human effort. Therefore,
we considered the test size to be 554 images (262 images
for the "Non-violence’ class and 292 for the "Violence’ class).
The same test set (554 images) was used to test all deep-
learning models and LLMs. Moreover, the images were of
different resolutions and brought to the same pixel resolu-
tion (128x128x3) before being passed to models.

4.3 Response generation from LLMs

The process of inputting images into Large Language Mod-
els, obtaining their outputs, and then analyzing the results
involves several steps. The following sections provide an
elaborate description of each of these sub-stages.

4.3.1 Preparing queries

We devised a direct query for the Large Language Model,
instructing it to choose the most appropriate category for the
provided image. We first included Google’s Gemini LLM
in our investigation, but it did not generate any answer,
stating “Sorry, I can’t help with that image.”. After testing
with many prompts, we opted for the question "In which
category will you put this image? Violent or Non-violent. Make
a guess and don’t supply further information.” We discovered
that LLMs occasionally contained extra information, such as
the reasoning behind picking a certain category. We asked
LLMs to limit their responses to a single category name to
maintain uniformity.

4.3.2 Collecting responses

After finalizing the query format described in the previous
section, we fed the images to the LLMs individually. To ad-
dress potential memory retention concerns with particular
LLMs when confronted with similar images, we opened a
new chat window after processing 10 images inside one
window. For each image, the specified text prompt was
presented to both LLava and GPT-4, and the LLM’s resultant
categorization was carefully documented.

4.3.3 Response cleaning

The LLM outputs require further processing due to possible
differences in answer patterns for each question. Despite
being instructed to offer replies only in the form of a cate-
gory, the tools frequently attached additional descriptions or
remarks to the response. Thus, post-processing actions were
required to segregate the class from the LLMs’ answers.

The overall mechanism for response generation can be
outlined algorithmically, as depicted in Algorithm 1.

Using Algorithm 1, we successfully determined a cate-
gory for each test image from both LLMs. These responses
were recorded and then compared to the outcomes from
fine-tuned deep-learning models for comparison.
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Algorithm 1 Response generation mechanism from LLMs

1: for each LLM do

2:  for each image in test set do

3: Upload the image.

4: Supply LLM the text query asking the category of
the uploaded image.

5: Record the response.
6: end for
7: end for

8: Clean up the responses, if required.

4.4 Overall Algorithm

In this part, we have encapsulated all the described com-
ponents into an algorithmic framework (see Algorithm 2).
It starts with developing deep learning models, which are
then trained and evaluated on a test dataset. The same test
dataset is then fed into each LLM, and the results are noted.
The performance measures are then generated for both the
specialized deep-learning models and the general-purpose
LLMs. Finally, the results of these models are put forward
for comparison.

Algorithm 2 Comparison of Deep learning models and
LLMs
1: Divide the violence detection dataset (D) into training
(DrR), validation (Dy), and test (Drg) sets.
2: for each deep learning model (M) do
Apply pre-processing steps on D, if required.
Develop the architecture of model M.
Train the model using D7 and Dy .
Obtain the set of performance measures Py by apply-
ing My on Drpg.
7: end for
8: for each Large Language Model (M;) do
9:  Apply Algorithm 1 to generate response Ryy;.
10:  Calculate the set of performance measures P, from
R
11: end for
12: Conduct a performance evaluation based on P; and P,
for each My and M;.

Figure 1 provides a visual depiction of the process.
The assessment metrics for each model were calculated
by comparing the responses to the actual categories. We
then created a confusion matrix for each model to ensure
the predictions matched the real label values. We then
calculated four conventional evaluation metrics: accuracy,
precision, recall, and the F1 score. These metrics serve as
widely accepted benchmarks for evaluating classification
tasks and are therefore not further elaborated here. Addi-
tional metrics, such as the AUC score, were not calculated
since the LLMs mentioned discrete categories rather than
prediction probabilities.

5 RESULTS AND DISCUSSION

This section presents the findings from the comparative
analysis between deep learning models and LLMs.

5.1 Deep learning models vs LLMs

The outcomes from both the deep learning models and
LLMs are displayed in Table 2, while the confusion matrices
for all the models can be observed in the accompanying
Figure 3.

Initially, we evaluated the accuracy of each model, which
is a crucial indicator of overall classification performance.
The findings highlighted significant variations in perfor-
mance across models. The VGG16 model emerged as the
top performer and exhibited the highest accuracy of 0.9422
while Llava produced the lowest accuracy (0.6657). In the
category of Large Language Models, GPT-4 performed the
best with an accuracy of 0.9242. ResNet50 had better ac-
curacy than CNN and Llava models. It is noteworthy that
Llava LLM performed worst in terms of accuracy; it was
the best for precision metric (0.9818), surpassing GPT-4 and
all deep learning models and reflecting its effectiveness in
minimizing false positives. In contrast, CNN model showed
the least precision, scoring 0.8996. Notably, both LLMs” lead
in precision was not just the highest but also significantly
greater compared to the deep learning models.

The recall metric, also known as sensitivity, measures a
model’s effectiveness in correctly identifying all true pos-
itive cases. For this metric, ResNet50 performed the best
with a recall value of 0.9692, followed by VGG16 (0.9589).
On the other hand, Llava scored the lowest value at 0.3699,
indicating a tendency to generate more false negatives. The
Fl-score, a combination of precision and recall, offers a
holistic view of a model’s effectiveness. Here, VGG16 stood
out with the highest F1 score of 0.9459. Among the LLMs,
GPT-4 performed the best, with an F1-score of 0.9242.

It’s significant to note that while GPT-4 didn’t surpass
deep learning on all measures, it exhibited a decent perfor-
mance. Additionally, even LLava demonstrated better preci-
sion. In summary, the Large Language Model (LLM) GPT-4
proved more effective than a basic specialized deep-learning
model, yet it fell short of achieving the high-performance
level of a finely-tuned model like VGG16 and ResNet50.
However, with further advancements and a broader scope
in training for future LLMs, they may match the perfor-
mance levels of highly specialized deep learning models.

5.2 Reduced dataset

Deep learning models rely heavily on training data volume,
affecting their functionality, generalizability, and flexibility
[53]. Larger datasets allow the model to recognize and an-
alyze complex patterns and make them capable to perform
well on unseen data. The diversity in the dataset is also
important as it helps the model to perform well in real-
world circumstances where data might vary significantly.
Furthermore, the scalability of deep learning models is
strongly correlated with data size. To optimize the model’s
multiple parameters, a large dataset is required [54] as
inadequate data may result in insufficient information for
the model to fine-tune its extensive parameter space.

Large Language Models (LLMs) have been popular for
their capacity to provide meaningful replies across several
applications without needing special fine-tuning or targeted
training [55]. They are pre-trained on large, diversified
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TABLE 2
Results obtained from DLMs and LLMs on various metrics

Performance metrics
Category Model Accuracy | Precision | Recall | F1 Score
Large Language Model LLava 0.6657 0.9818 0.3699 0.5373
GPT4 0.9242 0.9771 0.8767 0.9242
ResNet50 0.9242 0.8955 0.9692 0.9309
Deep Learning Model VGGI6 0.9422 0.9333 0.9589 0.9459
CNN 0.8754 0.8996 0.8595 0.8791

datasets covering a wide range of images, topics and lan-
guages. When given a prompt and image, LLMs can create
appropriate replies for the given context. The versatility of
LLMs make them extremely adaptable and versatile since
they may be used across a range of jobs without requiring
fine-tuning or specialized adaption [7].

Therefore, it would be interesting to observe whether
specialized deep learning models retain their superiority in
our scenario even with a smaller amount of training data.
To carry out this analysis, we ran two sets of experiments.
In the first case, the original dataset was reduced to 50%
and 25% in the second case. The half (50%) of the overall
dataset comprised a total of 5,254 images, with 4,728 in the
training set and 526 in the validation set. For the second case
(one-fourth of the total dataset), the training set had 2,364
images and validation set had 263. The original test set of
554 images was used to test both scenarios. We adhered to
the same methodology outlined in Algorithm 2. The results
obtained are shown in Table 3.

As expected, Table 3 shows that the effectiveness of deep
learning models decreases which highlights their reliance on
the dataset size. Moreover, the degree of degradation in the
performance across all the evaluation criteria is significant
(see Figure 4). The accuracy of VGG16 model decreased
from 0.9422 to 0.9241 and 0.9097 for the two cases. A similar
trend can also be observed for other deep-learning models.
The requirement for extensive training highlights the ad-
vantage of LLMs over deep learning models, especially for
applications with limited training data.

5.3 Explainability

In recent times, researchers have been concentrating on
explainable artificial intelligence (XAI) [56], [57]. The in-
terpretability and explainability of models” decisions have
become crucial in comprehending their decision-making
processes, especially in sensitive applications such as dis-
tinguishing between violent and non-violent scenarios. Im-
plementing explainability in the deep learning models is a
difficult process and often, methods like attention scores are
utilized for the same [58].

On the other hand, LLMs explain their results clearly
when asked to predict the class of events depicted in images.
For example, when we supplied Figure 2 (a) (a "Violence’
class image) to GPT-4, it provided the following explanation:
The image you've uploaded depicts a woman lying on the street
with people standing around her, some of whom are recording
the scene on their phones. This scene could be interpreted as
potentially distressing or violent depending on the context, which
isn’t entirely clear just from the image. Therefore, it could be
placed in the “violent” category as a cautious classification,

especially if the circumstances imply harm or distress. Moreover,
we got the following response when we uploaded Figure 2
(d):I categorize the image as non-violent based on its content. The
image shows two individuals playing a game of chess, which is
a strategic and non-physical board game. The surroundings and
the expressions of people in the image are calm and focused on the
game, indicating a peaceful setting. There are no elements of phys-
ical aggression, conflict, or anything that suggests violence. Chess
is typically recognized as a game of mental skill and strategy, not
physical confrontation. Thus, the context and activity depicted in
the photo are inherently non-violent.

We also analyzed the explanations supplied by two
LLMs, GPT-4 and Llava, and find that they use distinct ways
of explanation. When asked to explain their responses, Llava
responds concisely, such as ”Violent” or "Non-Violent,”
without providing additional details. It provides expla-
nations for its responses when specifically asked. GPT-4,
on the other hand, provides more complex responses that
justify the category it chooses. Furthermore, we note that
Llava only provides thorough explanations when explicitly
requested, but GPT-4 does so on a constant basis. GPT-
4’s openness is critical in developing user confidence and
comprehension of its conclusions and reducing response bi-
ases. We also recommend conducting more research on this
topic to compare LLMs and their future use in situational
assessments.

Overall, easy and text-based explanations by LLMs give
them a definite advantage over deep learning models, espe-
cially for applications where the interpretability of results is
critical.

5.4 Limitations

The proposed study has the following shortcomings. First,
the test set size was limited to 554 images, which limits
the generalizability of the results. The dataset used may not
adequately represent the many ways in which violent and
non-violent events are portrayed. Using several datasets fo-
cused on violence detection might provide a more thorough
foundation for comparing specialized deep-learning models
against LLMs. Furthermore, as LLMs are upgraded and
new variations are available, the conclusions of the study
may become obsolete. The assessment is limited to violence
detection only. Another limitation is the restricted amount
of assessment metrics available due to the nature of the LLM
responses. Since LLMs do not generate probabilistic predic-
tions, measures such as the AUC score are not applicable.

6 CONCLUSION

The current study presents an approach for comparing the
efficacy of fine-tuned deep-learning models to foundational
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TABLE 3
Results obtained from deep learning models with reduced training dataset

. Performance metrics
Dataset Portion Model Accuracy | Precision | Recall | F1 Score
50 % ResNet50 | 0.9205 0.9 0.9554 | 0.9269
(Training dataset size = 4,728) | VGGI16 0.9241 0.9401 0.9143 | 0.9270
(Validation dataset size = 526) | CNN 0.8790 0.8975 0.8698 | 0.8834
25 % ResNet50 | 0.7021 0.7953 0.5856 | 0.6745
(Training dataset size = 2,364) | VGGI16 0.9097 0.9260 0.9006 | 0.9131
(Validation dataset size = 263) | CNN 0.8104 0.8191 0.8219 | 0.8205
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Fig. 4. Change in performance for deep learning models and LLMs

LLMs in image-based content moderation. Three deep-
learning models were built and compared to two LLMs.
The results show that LLMs perform well on the dataset
used for content moderation across a variety of assessment
measures without specialized training. GPT-4 outperformed
Llava and other deep learning models, but the VGG16
model demonstrated the most superior overall performance.
Notably, when the dataset size decreased, the performance
of deep learning models decreased relative to LLMs. It
highlights LLMs’ advantage and potentially eliminates the
need for task-specific datasets. However, when plenty of
data is available, fine-tuned models outperform LLMs. It
is important to note that future variations of LLMs, which
are trained on broader and diverse data, could surpass
specialized models in efficacy.

There are various approaches for extending the scope
of the current study. Future research might focus on as-

sessing the effectiveness of the suggested technique with
more complex multi-modal datasets. Furthermore, it should
be applied in a variety of areas, such as natural language
processing, computer vision, and audio recognition to un-
derstand its significance and adaptability better.
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