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Abstract. It is well known that in open-ended evolution, the nature
of the environment plays in key role in directing evolution. However, in
Evolutionary Robotics, it is often unclear exactly how parameterisation
of a given environment might influence the emergence of particular be-
haviours. We consider environments in which the total amount of energy
is parameterised by availability and value, and use surface plots to ex-
plore the relationship between those environment parameters and emer-
gent behaviour using a variant of a well-known distributed evolutionary
algorithm (mEDEA). Analysis of the resulting landscape show that it
is crucial for a researcher to select appropriate parameterisations in or-
der that the environment provides the right balance between facilitating
survival and exerting sufficient pressure for new behaviours to emerge.
To the best of our knowledge, this is the first time such an analysis has
been undertaken.

Keywords: evolutionary robotics; parameter selection; environment-driven
evolution; distributed online adaptation

1 Introduction

Due to technological advances in both hardware and software, the vision of send-
ing swarms of robots into unchartered terrains to monitor and map environments
is becoming much closer to being realised. This brings significant new challenges
for evolutionary robotics, with the need for completely distributed evolutionary
algorithms to evolve controllers that enable robots to survive for long-periods of
time. The issue of survival is key if robots are to effectively accomplish any kind
of task: user-driven tasks cannot even be achieved if the integrity of the swarm
is compromised through lack of ability to survive.

A number of recent algorithms tackle this issue, notably mEDEA [1] and
its variations e.g. mEDEArf [7] and MONEE [6,4]. However, the emerging be-
haviours arising from the interactions of an open-ended evolutionary algorithm
with its environment are not well understood, perhaps in part due to the time-
consuming experimentation that needs to be done to conduct sweeps of the pa-
rameters that define the environment. It is common in optimisation to explore
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the relationship between algorithmic parameters and fitness. However, evolution-
ary robotics adds an additional dimension in that it is not only the algorithms
parameters that change but also the environmental parameters.

Given that it is the environment that provides the pressure to adapt in a
purely open-ended scenario, it is crucial to gain some understanding of these
landscapes. Particularly in simulation, it is easy to arbitrarily select environ-
mental parameters such as the number of available energy sources or their cor-
responding energy-values. However, arbitrary choices can inadvertently create
landscapes which have a major influence on the evolution of behaviour. For ex-
ample, assume a researcher wishes to investigate whether individual learning
speeds up environment-driven evolution: if an environment is created that has
too much energy available then it is unlikely to exert sufficient pressure for indi-
vidual learning to be beneficial or even emerge. Quantifying ‘too much’ (or ’too
little’) is of course difficult. In order to address this, we conduct an analysis of
an open-ended evolution algorithm operating in a variable environment. To the
best of our knowledge, this is the first time this has been attempted.

Using an open-ended evolutionary algorithm, mEDEArf [7], we consider
evolved behaviours in environments in which the total energy available is pa-
rameterised by two variables that determine the availability and value of energy
pellets within in the environment. Using a 3-dimensional visualisation of the
energy landscape for mEDEArf we show:

– the energy landscape contains three distinct regions: energy-poor, energy-
neutral and energy-rich, as well as a ‘dead-zone’ in which robots cannot
survive

– the energy-rich region is relatively large compared to other regions but is
very rugged

– that on the energy-neutral line, distinct behaviours evolve at different places
along the line

We propose that the energy-neutral region provides the most obvious settings
for conducting experimentation that aims to extend a robots ability to survive
or accomplish tasks.

2 Related Work

The completely distributed evolutionary algorithm for open-ended evolution
mEDEA was first proposed in [1]. It was tested using a scenario in which en-
vironmental pressure forces robots to compete for limited resources in order to
gain energy. The algorithm was demonstrated to be both efficient with regard
to providing distributed evolutionary adaptation in unknown environments, and
robust to unpredicted changes in the environment. The basic algorithm has been
extended in a number of ways.

Haasdijk et al [6] extended mEDEA so that in addition to surviving and op-
erating reliably in an environment, a robot could also perform user-defined tasks.
Their new framework MONEE (Multi-Objective aNd open-Ended Evolution al-
gorithm) showed initially that task-driven behaviour can be promoted without
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compromising environmental adaptation. More recently, they investigated the
trade-off between the survival and task-accomplishment that evolution must
establish when the task is detrimental to survival, finding that task-based se-
lection exerts a higher pressure than the environment. Fernandez et al [3] study
the impact of adding explicit selection methods to the mEDEA algorithm in a
task-driven scenario. They evaluate four selection methods that induce differ-
ent intensities of selection pressure, using tasks that include obstacle avoidance
and foraging, finding that higher selection pressure results in improved perfor-
mances, especially in more challenging tasks. Hart [7] also extended mEDEA by
including selection based on a fitness value that was calculated relative to those
robots in the immediate vicinity, thus maintaining the decentralised nature of
the algorithm, and additionally using this relative fitness value to control the
frequency and range of broadcasting. Parameter tuning of algorithmic parame-
ters to optimise algorithmic task-performance was investigated by [5]. However,
to the best of our knowledge, no methodical investigation of environment pa-
rameter settings has been conducted: researchers tend to select arbitrary values
or simply use those defined in previous papers.

3 Algorithm Description

Evolution of robot controllers is performed by the mEDEArf , first introduced in
[7]. The algorithm is an extension of the original mEDEA algorithm of Bredeche
et al [1] with the addition of an explicit fitness measure. This influences the
spread of genomes through the population in order to increase survivability,
thus ensuring the integrity of the swarm.

mEDEArf utilises an agent driven by a control architecture whose parame-
ters are defined by the currently active genome. The genome defines the weights
of an Elman recurrent neural network (RNN) consisting of 16 sensory inputs,
one bias node (feeding into the hidden layer) and 2 motor outputs (translational
and rotational speeds). 8 ray-sensors are distributed around the robot’s body.
They detect the proximity to the nearest object and its type. The RNN has 1
hidden layer with 16 nodes, thus 322 weights are defined by the genome. This
setup is adapted from [1]. An overview of the algorithm is given in Algorithm 1
and reader is referred to [7] for more detail. In brief, for a fixed period, robots
move according to their control algorithm, broadcasting their genome that is
received and stored by any robot within range. At the end of this period, a
robot uses roulette-wheel selection to choose a genome from its list of collected
genomes according to a relative fitness value, and applies a variation operator.
This takes the form of a Gaussian random mutation operator, inspired from
Evolution Strategies. Robots that have not collected any genomes temporarily
become inactive, thus reducing the population size.

Each robot estimates its fitness in terms of its ability to survive based on the
balance between energy lost and energy gained, delta Energy (δE): this term is
initialised to 0 at t = 0 (when the current genome was activated) and is decreased
by 1 at each time-step, and increased by Etoken if it crosses an energy token.
Given δE , a robot calculates a fitness value which is relative to those robots in
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a range r according to equation 1, where f ′i is the relative fitness of robot i at
time t, meansubi is the mean δE of the robots within the subpopulation defined
by all robots in range r of robot i, and sdsubi is the standard deviation of the
δE of the subpopulation.

f ′i(t) =
δi(t) −meansubi(t)

sdsubi(t)
(1)

Note that evolution is asynchronous, in keeping with the paradigm of a dis-
tributed algorithm without central control. If a robot runs out of energy and has
an empty genome list, it remains stationary until it receives a new genome from
a passing robot at which point it starts a new lifetime. Thus at any time-step,
each robot potentially has a different ‘age’.

genome.randomInitialise();
agent.load(genome);
while forever do

if genome.isNotEmpty() then
while lifetime < maxLifetime and energy > 0 do

agent.move();
if neighbourhood.isNotEmpty() then

rf = agent.calculateRelativeFitness(neighbourhood); // eq. 1

broadcast(genome,rf);

end

end
genome.empty();

end
if genomeList.size() > 0 then

genome = applyVariation(selectrhoulette−wheel(genomeList));
agent.load(genome);
genomeList.empty();

end

end

Algorithm 1: Pseudo code of our adapted version of the mEDEA algo-
rithm based on vanilla mEDEA by Bredeche et al. [1]

4 Method

All experiments are conducted in simulation using Roborobo! by Bredeche et al.
from [2]. A static environment is created, using an arena previously described in
[3,6,4]. The robot cannot pass through the outer and inner walls, however, it is
possible to broadcast through an obstacle. Energy tokens are randomly scattered
in the environment. If a robot moves over a token, its energy is increased by an
amount Etoken. The energy token disappears when consumed and reappears after
a fixed amount of time later at a different random location. Fixed parameters
describing the simulation are given in table 1.



Understanding Env. Influence in an Open-Ended Evolutionary Algorithm 5

Energy is consumed in three ways. There is a fixed cost to ‘living’ of 0.5 units
per timestep, regardless of whether the robot moves or not. A robot moving
consumes an amount of energy Em that is related to its rotational speed vrot,
translational speed vtrans, and their respective maximum values vrotMAX

and
vtransMAX

, and is given by

Em = (vrot/vrotMAX
+ vtrans/vtransMAX

)/4 (2)

Finally, a robot consumes energy when communicating. This is an important
factor in the real-word but one that it is often overlooked in simulation models.
The model used is exactly as described in [10], with an energy cost of ERX =
0.082 units for receiving and a cost of ETX(r) = 0.075 units for transmitting.

The goal of the experiments is to understand the energy landscape in terms
of the median δEnergy of a robot in the population as a function of the two envi-
ronmental parameters: count, the number of energy tokens available, and value,
the energy value of each token. Table 1 shows the ranges of values considered
for each parameter. Parameters are set before the beginning of the experiment
and remain fixed throughout. Each experiments was repeated for 5 independent
runs. This number is rather low for a noisy application of this type but was
chosen to speed up computation due to the high number of experiments that
had to be run in total.

Table 1: Simulation and Experimental Parameters for all experiments

Simulation parameters
Arena size 1024 pixel by 1024 pixel
Max. robot lifetime 2500 iterations
Token re-spawn time 500 iterations
Sensor range 196 pixel

Variable Parameters
Number of robots 50, 75, 100
Number of tokens (count) 0 - 1300 (in steps of 50)
Energy value per token (value) 0 - 1400 (in steps of 50)

Experimental parameters
Number of runs 5
Maximum iterations 375000 (= 150x2500)
Start energy 500
Maximum range rmax 128

Data is gathered from the robots every 2500 iterations. Recall from section
3 that each robot chooses a new genome once it has depleted all its energy
or reached the maximum lifetime, leading to asynchronous generation changes
throughout the population. Hence, the data gathered at each interval represents
a snapshot across robots of multiple ages and therefore does not necessarily
capture the peak performance of each robot (i.e. it may include very ‘young’
robots). However, given that the goal of the experiment is to understand the
interplay of the specific algorithm and environment under consideration, this is
not a relevant factor.
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5 Analysis

Figure 1 shows three rotated 3-dimensional plots of surface obtained using 100
robots after 375,000 iterations. The x and y axes represent the count and value
variables, while the z axis represent the median δE of the robot population over
the last 2500 iterations. The grey plane marks a value for δE of zero, at which
point robots have an energy balance of zero, i.e. the same amount of energy as
they started the experiment with. Three broad regions are noticeable: a large
region in which the robots have positive δE (green and blue value above the grey
plane), a region lying on the plane itself, and finally a region below the plane
in which robots are spending more energy than they are collecting, i.e. δE< 0.
In order to explore this in more detail, a 2-dimensional top-down projection is
shown in figure 2 obtained from populations of 50, 75 and 100 robots, and is
discussed in detail below.

(a) rotated 90◦ right (b) centred (c) rotated 90◦ left

Fig. 1: View on the resulting surface from different angles. The figure was created
by plotting the median δE of the last 2500 iterations of the experiment. The grey
plane marks a value for δE of zero, at which point robots in an experiment have
an energy balance of zero. In other words, the same amount of energy as they
started the experiment with. A 3D model can be found at [9]

5.1 Different performance regions

Figure 2 shows clearly that the landscape is defined by four different regions:

A) Dead Zone: In this region, the environment does not provide enough energy
for the algorithm to evolve controller that can survive a full run. Low values for
both parameters, count and value result in the extinction of the whole robot
population within a few generations. The random genomes that the controllers
are initialised with generally result in a random spinning behaviour, rather than
movement. This random behaviour, combined with the lack of energy tokens
in the immediate vicinity in which the robot is born, mean that robots cannot
survive given its inability to move.
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Fig. 2: Overview of landscape, as plot of the real data on the left and as a
cartoon version on the right. 4 different regions are shown: A) Dead Zone, B)
Lean Valley, C) Neutral Line, D) Excess Energy.

B) Lean Valley (negative δE): This region starts at the edge of the dead zone that
marks the point where there is just enough energy available that some robots
survive until the end of the experiment, i.e. it marks the point where a robot has
spent all its initial energy and started picking up tokens from the environment.
Moving down towards the bottom of the valley, an increasing number of robots
survive as there is more energy in environment, with the corollary that each robot
has less total energy — the energy available is shared between more robots. The
bottom of the valley marks the minimum δE that still enables survival. Moving
upwards out of the valley on the other side, robots gradually get better in both
harvesting energy from the environment and managing their residual energy
as a result of evolving better strategies. For example, good strategies optimise
movement, or avoid moving towards tokens in which there are other robots close
by.

C) Neutral Line (δE=0): This line marks the points in the environment where
the environment provides exactly enough energy to enable a robot to maintain
an energy balance of zero, i.e. the costs of moving and communicating are just
balanced by energy harvested.

D) Excess Energy (δE> 0): In the final region, in which both cost and value are
high, robots are able to locate more energy in the environment than is required
to maintain their initial energy E0, either due to the abundance of pucks or the
high energy value of pucks.

5.2 Environmental Influence on Behaviour

In order to properly understand the evolved behaviours that lead to the land-
scapes just described, a more detailed analysis is required. Figure 3 examines



8 Andreas Steyven? ? ?, Emma Hart, and Ben Paechter

pairings of (count, value) along the three dashed lines in 2, i.e. equivalent-value
(a-b), equivalent-count (c-d) and the diagonal in which count = value line (e-f).
The figure shows boxplots of the δE values at specific pairings of (count, value)
and the ratio of genome broadcasts made to unique genomes received over a
lifetime. The latter quantity leads to insights into behaviour as it relates to
the number of unique robots encountered by an individual robot: a robot will
broadcast indiscriminately to any robot in its range but will only collect unique
genomes. At the equivalent-count and equivalent-value lines, we fix the parame-
ter count and value respectively, and successively increase the other parameter
in steps of 50.

5 points are shown. The first point on a) corresponds to a total energy Etot

that is the same as the first points on graphs (c) and (e) below it etc.1. For a
specific value of Etot, then is clear that high value combined with low count
leads to robots that have increased δE when compared to robots with high
count but low value (graph (a) compared to graph (e)). Robots must therefore
evolve behaviours that enable them to seek out the rare but high-value pucks.
These robots also have high broadcast:genome ratios, suggesting the robots are
frequently coming into contact with the same robots. A possible explanation
lies in the fact that the robots appear travel in small groups, thus broadcasting
continually to the same robots; the rare occurrence of pucks leads to many robots
having to travel towards the same regions of the space. On the other hand, a
high count leads to robots that receive more unique genomes than in the high
value case: this is suggestive of a more random movement pattern that enables
each robot to encounter many unique robots during its lifetime. In this case there
is low selection pressure to evolve focused movement due to the abundance of
pucks.

5.3 Behaviours in the neutral region

We propose that the energy neutral region is of greatest interest for researchers
wishing to conduct research moving beyond genetic evolution of survival, for
example using individual or social learning [8] or task-driven research [4]. In
this region, on the one hand, robots are able to survive, while on the other, the
environment does not over-provide, thus ensuring that there is scope for robots
to learn novel behaviours. We further investigate three specific points within
this region there is approximately the same amount of energy available in the
environment (table 2). The table shows the median age increases with increas-
ing count — it is easier to maintain sufficient energy to survive as availability
increases. The lower median observed at low count reflects the fact that many
robots do not survive long. The time to find a new unique genome (age:genome)
is shortest at high count, reflecting frequent encounters with novel robots. Broad-
cast:genomes is highest at low count as observed in the previous section. All three
configurations lead to the same energy balance of 0, but diverse behaviours re-
sult in the gain in energy being offset by movement and broadcasting in each
case.
1 while this is exactly true for the first and third rows, in the middle row which

represents equal count/value it is necessary to approximate
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Fig. 3: Cuts through different parts of the landscape. Points towards different
behaviours in terms of exploration. a-b) value = 1150, vary count; c-d) count =
value; e-f) count =1150, vary value.

6 Conclusion

We have presented the first analysis of the fitness landscape (as a function of
environmental parameter) that results from running an open-ended evolutionary
algorithm (mEDEArf) in an environment that is parameterised by two values
that control the distribution of energy in the environment. Adjusting the avail-
ability and value of energy pucks results in the evolution of a range of different
behaviours. Rather than arbitrarily selecting parameters in which to study evo-
lution, we suggest that it is vital to understand how these choices will direct
evolution, by changing the selection pressure exerted by the environment.

Three distinct regions are observed in which the final energy balance can be
negative, neutral, or positive. A fourth region is found in which robots cannot
survive. We propose that the energy neutral region is a good region in which
to undertake experiments. It provides an environment in which robots are able
to survive, enabling experimentation, while at the same time, will reward new
behaviours which are able to more efficiently harness energy from the environ-
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Table 2: Results obtained at three configurations within the neutral region
Robots

50 75 100

Count Value Age Age
Genome

Brodcasts
Genome

Age Age
Genome

Brodcasts
Genome

Age Age
Genome

Brodcasts
Genome

200 1150 770 107.94 46.61 767.5 63.86 28.99 667 49.97 21.18
500 500 1026.5 86.12 39.11 1038.5 52.39 25.93 928.5 41.26 19.67

1150 200 1173.5 79.83 33.43 1093 47.39 21.95 1059 36.52 15.49

ment. It is clear that the environment plays a key role in influencing what kind
of behaviours emerge, in that it is not the total amount of energy available that
matters but also the manner in which it is spread. Future work should be aimed
at understanding the landscape in more detail, and in particular, explaining the
ruggedness of some regions.
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