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A B S T R A C T

Although battery electric vehicles (EVs) are emission-free at the tailpipe, the energy mix that provides electricity
to charge EVs is generally not. Ideally, it is desired to charge EVs from a low- or no-carbon energy source to
ensure that the emissions avoided from driving EVs outweigh incremental emissions resulting from the power
sector. To that end, this paper quantifies the net carbon emissions associated with EV deployment in Saudi
Arabia by considering the energy mix. A model characterizing the Saudi Power System was built, and a total of
18 scenarios were simulated using the marginal generation emission method. The scenarios varied driving
ranges, EV efficiencies, and time of charging for passenger transportation. Situations representing best- and
worst-case scenarios were also run. On average, for each 1 % of EV deployed, emissions would reduce by 0.5 %,
while at the best-case scenario emissions reduce by 0.9 %. The worst-case scenario, however, results in a net
increase in emissions. Further, given that the marginal generator for the most part in the various regions of the
kingdom does not change, it was found that adopting a time-of-use pricing mechanism would not promote
emission reduction.

1. Introduction

Governments, globally, are resorting to renewable energy technol-
ogies to reduce power-sector related carbon emissions (Dogan and
Seker, 2016; Mittal et al., 2016; Squalli, 2017; Van Vuuren et al., 2017),
and resorting to electric vehicles (EV) to reduce carbon emissions in the
transportation sector (Glitman et al., 2019). However, with the excep-
tion of a few jurisdictions like Norway and Sweden for example, the
uptake of EVs globally has been modest. EVs are competing with an
incumbent technology, i.e. the internal combustion engine vehicle
(ICEV), which has been in existence for over a century. The main
challenges impeding rapid uptake of EVs thus far include (relative to
ICEVs): high retail cost and/or total cost of ownership (Letmathe and
Suares, 2017; Lévay et al., 2017; Weldon et al., 2018), lack of ubiqui-
tous infrastructure (i.e. charging stations) (Lorentzen et al., 2017; Lucas
et al., 2018), shorter driving range which results in the so called range
anxiety (Adepetu and Keshav, 2017; Jung et al., 2015), and long
charging times (Bonges III and Lusk, 2016; Richard and Petit, 2018).

While an EV on the road is carbon-free compared to an ICEV, it is
necessary to consider the energy generation mix present in the parti-
cular country to assess net carbon emissions (McLaren et al., 2016).
Ideally, it desired that the energy that will charge the EV is generated

by a low- or no-carbon source. However, if the energy mix is highly-
polluting, then it is possible that EV deployment would result in more
emissions compared with ICEV. Many studies have been conducted and
have considered the link between EVs and the energy mix, and it was
found that EV deployment does not necessarily translate in a reduction
in GHG emissions (Casals et al., 2016; Faria et al., 2013; Jochem et al.,
2015). In one study that was performed in the context of Taiwan, it was
found that EV deployment would reduce CO2 emissions but increase
SO2 emissions (Li et al., 2016). More examples will follow in the next
section.

In this paper, the effects of deploying EVs in Saudi Arabia on carbon
emissions is quantified by considering the power system (i.e. energy
mix) providing electricity to the kingdom. We develop a power model1

for Saudi Arabia, and analyze different EV adoption and charging sce-
narios. The scenarios were created in such a way that upper and lower
limits of carbon emitted would be quantified to provide policymakers
with realistic boundaries to manage expectations. Results indicate that
careful EV roll out policy is to be well-articulated to ensure that EVs
indeed attain the desired objectives (Rahman et al., 2017). Note also
that this paper is not a life cycle assessment (LCA) study (Hache et al.,
2019), and assumes that charging stations and infrastructure require-
ments that support EV deployment (Palomino and Parvania, 2019) are
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readily available.

2. Review and motivation

2.1. Quantifying emissions

At a first glance, the deployment of EVs seems as a plausible solu-
tion to reduce carbon emissions in the transportation sector. As men-
tioned, however, the net effect on the environment is directly linked to
the energy mix that provides the required electricity to charge the
batteries used by EVs. Ideally, it is desired that emissions avoided from
driving an EV outweigh incremental emissions stemming from the
power sector. Broadly, there are two ways that are used to estimate
carbon quantities that are emitted by the power sector: the first is based
on average emissions and the second is based on marginal emissions.

As the name suggests, the average emission estimation bases its
calculations on the overall carbon emitted (kg·CO2) by the sector nor-
malized by the total power generated (kWh). As such, an average
emission factor, possessing the units of kg·CO2/kWh, is used to quantify
how much carbon would be emitted from an additional kWh generated
by the sector. In the case of EV deployment, the power sector would
have to provide additional energy for EV charging purposes.

Calculating net emissions via the average estimation method has the
advantage of being rather easy and practical, which is especially at-
tractive for high-level studies (Moro and Lonza, 2018). For example, the
average emissions method has been used to estimate emissions in the
Irish context, and it was found that 50–75 % of emissions from private
cars will continue to be outside the reach of electrification (Smith,
2010). Other studies also rely on average emissions for studying pol-
lutants and their effect on human health (Requia et al., 2018). Another
study used the average emission method to compare impacts of de-
ploying EVs on global warming within Europe (Casals et al., 2016).

Despite its practicality, the average method has limitations as it is
an oversimplification of the power system’s response to incremental
loads. In our context, the average method does not take into account a
number of factors that affect the actual emissions that would result
from deploying EV including temporal (Thomas, 2012) and geo-
graphical variations. In the USA, emissions may vary by as much as 22
% due to regional differences in the energy mix and ambient tem-
perature (Yuksel and Michalek, 2015). Similarly, one can easily ima-
gine how the time of charging also affects the emissions resulting from
the power sector (McLaren et al., 2016).

The marginal emission method, conversely, is capable of addressing
the emission implications of EV charging with more granularity.
Depending on how detailed the description of the power system is, the
spatial and temporal details can be captured. Given this advantage,
many researchers have adopted the marginal emission method to
quantify net emissions resulting from EV deployment in the US
(McLaren et al., 2016; Thomas, 2012), UK (Hawkes, 2010), Germany
(Jochem et al., 2015), and the Netherlands (Van Vliet et al., 2011).

Because the marginal emission method is more accurate, the GHG
Protocol requires that analysts should use it over the average emission
method (Broekhoff, 2005). However, a major challenge in adopting the
marginal emission method is that it requires significant data coupled
with complex modeling (Nealer and Hendrickson, 2015).

2.2. The Saudi context

According to the Saudi Electricity and Cogeneration Regulatory
Authority (ECRA), there are four operating regions: Eastern, Central,
Western, and Southern. As well known, the eastern region of the
kingdom is the oil-and-gas rich region. Hence, demand in the eastern
region is fully met by gas. Similarly, over 70 % of the demand in the
central region is met by gas. The western and southern regions, how-
ever, are heavily dependent on liquids.

In 2017, 54 % of demand was satisfied by gas. The remaining

portion was mainly met by crude oil and heavy fuel oil (HFO), and a
small portion of diesel. In terms of transmission line connectivity, the
eastern region is connected to the central region, the central region is
connected to the western region, and the western region is connected to
the southern region. The total available generation capacity was around
80 GW (ECRA, 2017), the total consumption was 300 TWh, and the
peak load was 62 GW.

It is worth mentioning that the peak loads in both the central and
southern regions are higher than the generation capacities available in
those regions (Table 1). From an operational viewpoint, this means that
the available capacity in other regions shoulders any capacity deficit.

Demographically, the central and western regions contain nearly
two-thirds of the population. However, the peak load and energy con-
sumption patterns do not fully correlate with these demographic pat-
terns. The eastern region, despite having only half as many people
compared with either the central or western regions, has a peak load of
20 GW (Table 1) and comparable energy consumption (Table 2). This
high energy consumption prevailing in the eastern region, relative to
the population, is because most of the industrial sector of the kingdom
is located in the eastern region.

Due to hot and arid summers, loads during the summer months
increase drastically to cater for air conditioning needs. The load during
summer months is around 60 GW compared with 35 GW during winter.
Clearly, this difference results in dispatch implications (i.e. defining the
marginal generator) and consequently carbon emission implications as
well.

The above observations about the Saudi power sector can be sum-
marized in four points: (1) the energy mix differs significantly between
regions, (2) sizable energy transfer occurs between regions, (3) the
demographic distribution is non-uniform, and (4) a large load variation
exists between summer and winter. Associating these observations with
the objective of this paper, it can be immediately concluded that using
the average emission method will skew results considerably. Hence,
based on the contrast that was provided above between the average and
marginal emission method calculations, and keeping in mind the intent
of this paper, the marginal emission method will be adopted.

3. Method and assumptions

3.1. The Saudi power model

A power model for Saudi Arabia was developed and calibrated for
the year 2017. The kingdom was divided into four operating regions as
per ECRA, and each region was represented by one node (Fig. 1). More
nodes in each region could have been used to represent the power

Table 1
A summary of peak loads and available generation capacity in Saudi Arabia for
2017 (ECRA, 2017).

Region Peak Load (GW) Available Capacity (GW)

Eastern 20 23
Central 20 16
Western 19 21
Southern 6 4

Table 2
Population (GASTAT, 2016) and energy consumption in Saudi Arabia (ECRA,
2017).

Region Population
(Million)

Population
percentage (%)

Energy Consumption
(TWh)

Eastern 5.637 17.8 82
Central 10.074 31.7 91
Western 11.297 35.6 97
Southern 4.734 14.9 28
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sector more accurately. However, for the purposes of this paper, a
single node per region strikes the right balance between model size/
complexity and accuracy.

Around 1000 generators were represented, aggregated by tech-
nology and fuel. The generation technologies that exist in the kingdom
are combined cycle plants (CC), gas turbines (GT), steam turbines (ST),
and diesel. The fuels used are natural gas, crude oil, heavy fuel oil
(HFO), and diesel. The heat rate for each generation technology is
summarized in Table 3.

As mentioned, the operating regions are connected with existing
transmission infrastructure as per Rioux et al. (2017). The fuel prices in
Saudi Arabia for the power sector in 2017 along with the emission
factors associated with each fuel are summarized in Table 4.

3.2. EV deployment and energy requirements

As EVs are deployed, the grid will have to supply additional energy
for battery charging purposes. This additional energy needed depends,
among several other factors, on the deployment rate and on distances
travelled. These two parameters in particular are deserving of a dedi-
cated research undertaking that considers consumer driving patterns
and habits (Dua et al., 2019). However, such an endeavor is beyond the
scope of this paper. Instead, different deployment scenarios and tra-
velled distance scenarios will be considered.

Globally, the share of EV sales varies widely. For example, around
30 % all vehicle sales in Norway are EVs, and nearly 18 % are hybrids.

Across the US states, EV sales varied also from below 1% to above 5% in
2018. Given that the retail price of EVs is still considered relatively high
compared with same-class ICEVs, it is not surprising to learn that these
sales numbers were policy-supported. In Saudi Arabia, the number of
vehicles on the road is around 15 million, and in 2017, there were
nearly 685,000 vehicle sold (Statista, 2019). Hence, three deployment
scenarios of 25,000, 50,000, and 100,000 EVs, representing roughly 3.5
%, 7%, and 14 % of annual car sales, were studied. While the 14 %
scenario can be viewed as aggressive, it was deliberately chosen to
assess how a high deployment level would impact carbon emissions.

EV-related emissions are heavily dependent on the distance tra-
velled by vehicles. Gasoline consumption in Saudi Arabia totaled
32.97×109 liters in 2017 (MAAAL, 2018). Based on this, average
upper and lower limits of kilometers driven could be calculated using
highest and lowest ICEV efficiency: a small 4-cylinder sedan ICEV re-
quires 0.06 L/km, whereas an 8-cylinder sport utility vehicle (SUV)
requires 0.15 L/km. The upper and lower limits of total kilometers
driven in the kingdom, then, is easily arrived at to be 549.5×109 km
and 219.8×109 km. Because there are 15 million cars in the kingdom,
the annual distance traveled per car would range between 36,633 km
and 14,653 km. To simplify the modeling, we assume here that EVs
perfectly substitute ICEVs.

Different EVs possess different efficiencies also. By consulting var-
ious specification sheets, a reasonable range to be used to describe high
and low efficiencies is between 0.09 kW h/km and 0.20 kW h/km re-
spectively. Using these efficiency values, coupled with the distance
traveled per car and the number of cars deployed, the additional energy
to be supplied by the grid can be calculated.

At a minimum, assuming 14,653 km are travelled annually by
25,000 EVs at an efficiency of 0.09 kW h/km, the grid will have to
provide an additional 32,970MWh. On the other extreme, deploying
100,000 EVs that travel 36,633 km with an efficiency of 0.20 kW h/km
translates to an additional 732,667MWh to be supplied by the grid.
The least additional energy required would stem from a scenario that
considers ICEVs that are least efficient (i.e. least kilometers driven) and
EVs that are most efficient (i.e. least kWh required). Conversely, the
maximum energy requirement would result from a scenario where
ICEVs are most efficient (most kilometers driven) and EVS are least
efficient (most kWh required).

The efficiencies reported by manufacturers for ICEVs and EVs serve
as typical values. City or highway driving conditions significantly affect
the driving range for both types of vehicles. Further, idling time, am-
bient temperature, and the use of air conditioning and/or heater while
driving also affects the driving range, but the effect is more pronounced
in the case of EVs. Because of the countless combinations of possible
driving behaviors and patterns, the use of the upper and lower ranges
provide insight to best and worst-case scenarios.

3.3. Charging and impact on load

EV charging points, with respect to speed, can be typically cate-
gorized to rapid, fast, and slow units, and are rated at ∼50 kW,
7 kW – 22 kW, and 3 kW, respectively. A super-charging point rated at
120 kW is offered by Tesla’s network. Nonetheless, rapid or super-

Fig. 1. The four operating regions of the kingdom. The eastern region (node 1),
the central region (node 2), the western region (node 3), and the southern re-
gion (node 4). The arrows depict transmission line connectivity and possible
power flows.

Table 3
Heat rates of thermal plants as used in the model (Matar and Anwer, 2017;
Rioux et al., 2017).

Generator Technologya Fuela Heat Rate (BTU/kWh)

CC GAS 9213
OIL 9676

GT GAS 13,237
OIL 13,860
DSL 12,150

ST GAS 8804
OIL 9446
DSL 8952

DSL DSL 13,000

a CC: Combined Cycle, GT: Gas Turbine, ST: Steam Turbine, DSL: Diesel,
GAS: Natural Gas, OIL: HFO or Crude.

Table 4
The carbon emission factors of fuels (Zijlema, 2018) and fuel prices (Elshurafa
and Matar, 2017) used in the model.

Fuel CO2 Emission Factor
(kg/GJ)a

Fuel Price ($/MMBTU)

GAS 56.1 1.250
CRD 75 1.144
HFO 75 0.600
DSL 74.1 2.410

a Emission factors vary between sources by a few percent.
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charging networks are not as available as the other types and can only
be used with vehicles that possess rapid charging capability (Morrissey
et al., 2016). Despite that, even at the extremely unlikely scenario that
all EVs, in the highest deployment rate scenario (i.e. 100,000), connect
to the grid to charge at a rate of 50 kW at the same time, the generation
capacity of the grid would still be able to cater for this additional load
(i.e. 100,000 cars x50 kW/car= 5GW), and reserve requirements
would still be met as well.

The previous section arrived at the incremental amount of energy
that would be needed during one year if EVs were deployed. Now, it is
necessary to know when the charging is taking place, the duration of the
charging session (it is not necessary to fully charge the battery), and the
charging point capacity.

But arriving at the charging patterns, akin to driving patterns, is a
problem that warrants a separate study given their stochastic nature
(Amini et al., 2016). Indeed, several research papers have examined the
topic of driving and charging patterns to arrive for example at optimal
charging strategies (Wei et al., 2016) or optimal charging station lo-
cation placements. The complexity of the problem grows quickly if
time-of-use pricing or incentives to charge at certain times is introduced
as a policy support mechanism to influence or somewhat control
charging times (Kim et al., 2017). Remember however, the intent of this
paper is not to analyze driving patterns or consumer attitudes towards
EV – the objective is to quantify net emissions from EV deployment.

Hence, similar to what was done in the deployment section, a
number of charging time scenarios (Sun et al., 2015) will be studied
keeping in mind the marginal emission method of calculation. Two
immediate scenarios pose themselves as pertinent to the study, namely
restricting all the charging to take place during peak-times, and re-
stricting all the charging to take place during off-peak times; These two
categories have been adopted previously (Mullan et al., 2011) because
they are representative of the extreme cases in terms of carbon emis-
sions that would result from EV deployment. A third scenario, which
lies between these two extremes, is one where the charging occurs at
random times (Islam et al., 2018).

Recall that there are four operating regions in the kingdom, each
with a load profile which we will refer to as a base case, i.e. no EV
deployment yet. Because three scenarios will be considered with respect
to charging, i.e. peak-charging, off-peak, and random charging, three
new load profiles will be examined and compared with the base case.
Further, the distribution of EV cars deployed will abide by the demo-
graphic distribution as shown in Table 2. Consequently, the additional
load that will be supplied by the grid will also follow the population
density. As an example, because 17.8 % of the Saudi population resides
in the eastern region, it is assumed that 17.8 % of the EVs deployed will
be in the eastern and, hence, equally the incremental load.

To explain the impact of EV deployment on the load profile more
clearly, Fig. 2 is provided, where a conceptual schematic is shown for
illustrative purposes to visually describe the three load profiles that will
be simulated. The base case load profile, i.e. the scenario where no EVs
are deployed, is shown in grey. The load profile for peak-charging is

shown in yellow, where the charging in this scenario was restricted to
occur between 9:00am to 1:00pm. Similarly, the blue shaded area
corresponds to the off-peak charging scenario, and was restricted to
take place between 9:00pm to 1:00am. Finally, the random charging
load profile is shown in green and as the name suggests, the charging
can occur at any time. Note that for the random charging scenario, it is
statistically possible to have no cars being charged in any given mo-
ment. In such a case, the load profile of the random charging scenario
and base case scenario would coincide. The plot in Fig. 2 is provided for
illustrative purposes and is not drawn to scale. Nonetheless, it is worth
mentioning that the yellow, blue, and green shaded areas should all
sum to the same amount. Further, the larger the number of EVs de-
ployed, the larger the area of these shaded regions would be.

3.4. Summarizing scenarios

As discussed, the scenarios presented above serve as upper- and
lower-limit case studies. Three main factors contribute to the number of
scenarios that will be simulated; these factors are: (1) how many EVs
are deployed, and three scenarios were chosen; (2) when these EVs are
charged, and again three scenarios were chosen; (3) what the effi-
ciencies of the EVs and ICEVs are to arrive at the additional energy that
the gird needs to supply, and typical efficiencies representing high and
low efficiencies (i.e. two efficiencies) for both types of vehicles were
chosen. Hence, 18 different combinations are possible translating to 18
scenarios to be studied. Table 5 summarizes these scenarios.

4. Results and discussion

The results are discussed in this section for a single year using
exogenous hourly load profiles for each region. In the base case, as-
suming no EVs are deployed total carbon emissions from the power
sector were 252 million tons, translating to a rate of around 840 g·CO2/
kWh. These results are consistent with previous studies (Wogan et al.,
2019).

4.1. Results from scenarios – emissions

The deployment scenario, efficiency of vehicles, and time of char-
ging ultimately all translate to a unique profile for each region in each
of the scenarios created. In Table 6, the summary of the results are
shown for each scenario. Note that the results represent the incremental
emissions that have resulted from EV deployment, not total emissions.
As an example, at a medium EV deployment scenario of 50,000 cars,
with low incremental load (i.e. 65,940MWh), and assuming peak
charging, there will be an additional 56,976 tons of CO2 emitted com-
pared to the base case (i.e. no EVs deployed).

As can be seen, from Table 6, the incremental carbon emissions are
highest in the off-peak scenario, and are lowest in the random charging
scenario. These results can be explained by highlighting the role that
marginal generators play in each region. For the western and southern

Fig. 2. A conceptual schematic of the load profile for the base
case contrasted with the three other scenarios: peak charging
(yellow), off-peak charging (blue), and random charging
(green). The shaded regions in yellow, blue, and green re-
present the additional load required to meet EV charging re-
quirements. These three regions also possess the same area
because they all correspond to the same load (but met at
different times). As more EVs are deployed, the area of these
shaded regions increases. The figure is for illustrative purposes
only and is not drawn to scale. (For interpretation of the re-
ferences to colour in this figure legend, the reader is referred
to the web version of this article).
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regions, because their energy needs are virtually all met by liquid fuels,
the time of charging does not have an effect on carbon emissions as the
marginal generator will always be a liquid-fired. For the eastern region,
the marginal generator is always gas.

In the central region, however, 30 % of the energy is supplied by
liquids and hence the marginal generator could be either liquid- or gas-
fired depending on the load. At off-peak times, the marginal generator
would use liquid-fuel. At peak times, the additional energy required in
the central region will be met from gas-fired plants and/or through the
transmission connection with the eastern region. The energy trans-
mitted from the eastern region to the central region would have origi-
nated from gas. As such, the peak charging scenario (i.e. gas satisfying
the marginal kWh) would result in lower emissions in the central region
(and the kingdom as well) compared to the off-peak charging scenario.

While the marginal generator emissions method can explain why
the peak charging scenario results in lower emissions compared to the
off-peak scenario, it is noted that the differences between all scenarios,
as related to time of charging, is small. The reason for these close results
is due to (1) the nature of the energy mix and (2) the nature of EV
deployment as it was assumed. Note that 50 % of the population resides
in the eastern and central regions, and both regions are primarily
powered by gas, while the other 50 % of the population resides in the
western and southern regions, and both regions are powered by liquids.
In other words, 50 % of the EVs that are deployed are charged by gas
and the other half are charged by liquid fuels. Further, the flows of
energy between regions, as per the model, did not fundamentally
change the energy mix of any region. Moreover, the central region,
where the marginal generator role becomes pronounced, had 31 % of
the deployed EVs. The difference in carbon emissions would be bigger if
a larger number of EVs are to be deployed in the central regions.

Table 6 summarized the additional carbon emissions that result
from EV deployment. To assess net emissions, the avoided carbon
emissions have to be also quantified. According the European Union
Energy Portal2, smaller ICEVs emit around 0.1 kg/km of CO2, where
larger SUVs can emit 0.4 kg/km or even higher. In this paper, it is as-
sumed that the EVs deployed fully substitute ICEVs in number and
driving ranges. Because time of charging did not significantly affect the
incremental carbon emissions, the scenarios now can be reduced from

18 to six. These six scenarios represent best case and worst case sce-
narios with respect to carbon emissions. In the best-case scenario (i.e.
most reduction in carbon emission), the most emitting ICEVs are re-
moved from the road and replaced with the most efficient EVs. Con-
versely, the least emitting ICEVs are removed from the road and replace
with the least efficient EVs in the worst-case scenario (least reduction in
carbon emissions).

The best and worst case scenarios are summarized in Table 7. Note
how the best case scenarios result in a reduction in overall emissions
(numbers shown in green). These cases correspond to situations where
all the ICEV fleet to be retired is SUVs, and was replaced by the most
efficient EVs. On the other hand, the worst case scenarios result in an
overall increase in emissions (numbers shown in red). The latter cor-
responds to a situation where only small ICEVs were taken off the road
and replaced by the least efficient EVs. With these two categories
analyzed, the upper and lower limits of carbon emissions helps pol-
icymakers set realistic targets now that the potential of EVs in reducing
emissions has been quantified.

Although informative, the best- and worst-case scenarios are un-
likely to occur given that they lie at two extremes. A more realistic
scenario is provided in Table 7, where the median incremental loads
and an ICEVs emission factor of 0.25 kg·CO2/km were used. At this
median scenario, a reduction in net emissions would be achieved. For
example, if 25,000 EVs were deployed, and replaced ICEVs, then
around 67,000 tons of emissions would be avoided. One advantage of
summarizing the results as shown in Table 7 is that it implicitly pro-
vides a sensitivity analysis. The upper and lower limits provide
boundaries of what EVs can contribute with respect to reducing emis-
sions. Further, even if a lower average emission factor for ICEVs was
used (say 0.2 kg·CO2/km), the net result would still be a net reduction
in emissions.

4.2. Results from scenarios – costs

Similar to what was performed above, we summarize here the net
revenues that would result in each scenario from the additional energy
sold due to EV deployment. The costs mentioned herein do not include
capacity costs, transmission costs, or any other costs – they only re-
present the fuel component. The fuel cost for the base case was found to
be $3.773 billion.

In Table 8, 2017 electricity prices were used, and as shown, EV
deployment will always result in a positive net revenue for the grid,
despite the relatively low energy prices that were prevalent in Saudi
Arabia at the time. Electricity prices are currently higher compared to
2017, which means that revenues are expected to be even higher. Ex-
plicitly, an additional median annual revenue of $3.2 million would be
garnered in the low deployment scenario, and this revenue can reach as
high $22 million in the best-case scenario. All things equal, it is argued
the EV deployment would result in a higher capacity utilization of the
generation units, especially if charging is to occur during off-peak
times. The latter means that the unit operating cost for the industry
would decrease.

Table 5
Summary of scenarios to be simulated.

Factor to be Varied Number of Scenarios Overview of Scenario Total Number of Scenarios

EV deployment levels 3 Low: 25,000 18
Med:50,000
High:100,000

Load profiles, i.e. when charging occurs 3 Peak
Off-peak
Random

Incremental load to be satisfied based on EV and ICEV efficiency 2 Low: EV at 0.09 kW h/km and ICEV at 0.15 L/km
High: EV at 0.20 kW h/km and ICEV at 0.06 L/km

Table 6
Incremental CO2 emissions in tons resulting from the 18 scenarios simulated.

Deployment
Scenario

Incremental Load (based on
ICEV and EV efficiency
scenarios)

Time of Charging Scenario

Peak Off-peak Random

Low (25,000
EVs)

Low(32,970MWh) 28,480 28,689 28,403
High (183,166MWh) 158,399 159,515 157,976

Med (50,000
EVs)

Low (65,940MWh) 56,976 57,388 56,948
High (366,333MWh) 316,799 319,018 316,306

High (100,000
EVs)

Low (131,880MWh) 114,021 114,821 113,886
High (732,667MWh) 634,222 638,278 632,977

2 Available at: https://www.energy.eu/car-co2-emissions/
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4.3. Discussion

The analysis shows that deploying EVs would result in a net re-
duction in carbon emissions. However, recall that there were 32.97
billion liters of gasoline consumed in 2017. At an average tailpipe
emission factor of 2.29 kg/L, then the total CO2 emissions resulting
from passenger transportation was around 75×106 tons. While the net
emissions compared to the total emissions may be viewed as small, it is
important to view these numbers with respect to the number of EVs
deployed which have replaced ICEVs.

At 25,000 EVs deployed for example, the median case shows that a
net 67,000 tons of carbon would be avoided as shown in Table 7; this
amount translates to a 0.0.9 % emission reduction. At a first glance, this
number may seem small. However, it is important to note that 25,000
vehicles represent around 0.17 % only of the 15 million ICEVs on the
road. In other words, replacing 0.17 % of the fleet resulted in a 0.0.9 %.

The same calculation can be performed for the rest of the scenarios to
conclude that: (1) on average, deploying 1 % of EVs would result in a
0.5 % carbon emission reduction, (2) in the best case scenario, de-
ploying 1 % of EVs would result in a 0.9 % carbon emission reduction,
and (3) the worst case scenario would result in a net increase in
emissions.

4.3.1. Focus EV deployment on Eastern region initially
Saudi Arabia has embarked on an energy transition journey as part

of its Vision 2030. In alignment with this vision, significant changes are
occurring and challenging the status quo. One of these changes is the
introduction of the Saudi Corporate Fuel Efficiency (CAFE) Standard,
which intends to improve the overall fuel efficiency of the kingdom
with respect to passenger vehicles to 19 km/L by 2025 (AAWSAT,
2019). The main driver behind the CAFE standard is to reduce fuel
consumption and simultaneously carbon emissions (Zirogiannis et al.,
2019). As with most transition policies, they require time to be im-
plemented. Saudi Arabia may choose to start building EV infrastructure
in the eastern region in the initial stages of deployment since the
eastern region is powered by gas, which is considerably less carbon-
emitting compared to liquid fuels. This is not to say that other regions
should not deploy EVs. Rather, it suggests a gradual roll-out program
for infrastructure. As the fuel mix in other regions evolves to become
more environmentally-friendly in the near future, more aggressive EV
deployment can occur in the remaining regions.

4.3.2. Synergize deployment of renewables and EV
The kingdom has announced that it intends to build nearly 60 GW of

renewables by 2030 (40 GW of which will be solar photovoltaics), and
this capacity will be deployed throughout the kingdom. Rolling out an
EV deployment strategy in the western and southern regions in parti-
cular that is aligned with the renewable deployment plan can ensure
that EVs provide maximum benefit in terms of reducing carbon emis-
sions. As discussed earlier, the western and southern regions are reliant
on liquid fuels, which dilutes the desired impact that EVs can have. If,
however, a reasonable amount of renewables is deployed in the
southern and western regions, the marginal generation in these regions
will transform from being highly polluting to being carbon-free. With
such a coordinated policy view, renewables can provide two distinct
advantages: reduce reliance on liquid fuels and maximize attained
benefits from EV deployment.

4.3.3. Time-of-use pricing implications
Charging customers different rates at different times of the day,

known as time-of-use pricing (TOUP), has been a common practice in
many countries well before the advent of EVs. The rationale behind

Table 7
Net emissions in tons calculated as the difference between incremental CO2 emitted due to additional power generation caused by EV deployment and avoided
emissions resulting from ICEV taken off the road.

Deployment Scenario Incremental load scenario (based on ICEV and EV
efficiency scenarios)a

Incremental CO2 emitted from
power sectorb

Avoided CO2 emissions from retiring ICEVs
and deploying EVsc

Net Emissionsd

Low (25,000 EVs) Low (best case scenario) 28,524 −146,530 –118,006
Median 93,577 −160,269 –66,692
High (worst case scenario) 158,630 −91,583 67,692

Medium (50,000 EVs) Low (best case scenario) 57,104 −293,060 –235,956
Median 187,239 −320,538 –133,299
High (worst case scenario) 317,374 −183,165 134,209

High (100,000 EVs) Low (best case scenario) 114,243 −586,120 –471,877
Median 374,701 −641,075 –266,374
High (worst case scenario) 635,159 −366,330 268,829

a ‘Low’ represents the best case scenario; ‘High’ represents the worst case scenario; ‘Median’ is represents a realistic midpoint.
b Average values were calculated from Table 6.
c Parameters used for ‘Low’: 14,653 km for kilometers driven and 0.4 kg·CO2/km for ICEV emission factor. Parameters used for ‘High’: 36,633 km for kilometers

driven and 0.1 kg·CO2/km for ICEV emission factor. Parameters used for ‘Median’: 25,643 km for kilometers driven and 0.25 kg·CO2/km for ICEV emission factor.
d Numbers in green represent net reduction in emissions, while numbers in red represent net increase in emissions.

Table 8
Net revenues in US dollars calculated as the difference between incremental
fuel costs that the grid will incur and the incremental revenue that the grid will
collect from additional energy sales for EV charging.

Deployment
Scenario

Incremental
load borne by
gird (based on
ICEV and EV
efficiency
scenarios)a

Incremental
fuel costb

Incremental
revenuec

Net Revenue

Low (25,000
EVs)

Low 595,505 1,582,560 987,055
Median 1,948,676 5,187,264 3,238,589
High 3,301,846 8,791,968 5,490,122

Medium
(50,000
EVs)

Low 1,188,397 3,165,120 1,976,723
Median 3,897,226 10,374,552 6,477,326
High 6,606,055 17,583,984 10,977,929

High (100,000
EVs)

Low 2,378,074 6,330,240 3,952,166
Median 7,804,758 20,749,128 12,944,371
High 13,231,441 35,168,016 21,936,575

a ‘Low’ represents the best case scenario; ‘High’ represents the worst case
scenario; ‘Median’ is represents a realistic midpoint.

b Results as calculated from the energy model.
c Sales of energy assumed at a conservative price of 0.18 SAR/kWh, which is

equivalent to 0.048 $/kWh. This value was deduced based on the tariff prices in
Saudi Arabia during 2017. Explicitly: Governmental tariff: 0.32 SAR/kWh;
Industrial tariff: 0.18 SAR/kWh; Residential tariff: tiered at 0.05, 0.10, 0.20,
0.30 SAR/kWh for 1–2000, 2001–4000, 4001–6000, 6001+ kWh consumption
levels, respectively. Residential customers owning EVs will likely be paying bills
at the higher tiers; Commercial tariff: tiered at 0.16, 0.24, 0.30 SAR/kWh for
1–4000, 4001–8000, 8000+ kWh consumption levels, respectively.
Commercial customers will likely be paying bills at the higher tiers.
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adopting TOUP is to essentially incentivize consumers to shift some of
their activities from peak times to off-peak times thereby economizing
on the use of electricity, reducing cost, and reducing stress on the
electrical grid (Levin, 2019). For EV purposes, in addition to relieving
stress on the grid, TOUP incentivizes customers to charge their EVs
during times where the marginal generator is least polluting (Nilsson
et al., 2017). But these two goals may be competing in some countries.
In the Saudi context, the marginal generator in the eastern region is
always gas, whereas the marginal generator in the western and
southern regions is always liquid-fired. Hence, in these regions, even if
the EV owner shifts the time of charging to off-peak times due to a
TOUP implementation, that will not contribute to reducing carbon
emissions, but would aid in promoting charging of EVs to off-peak times
to benefit the grid. However, the TOUP in the central region has the
potential to both reduce emissions and relieve stress on the grid - this is
because of the underlying energy mix during peak and peak hours in
the central region. TOU pricing policies should be designed to reflect
the underlying cost structure of the energy supply mix while also taking
into account the emissions reduction objectives of the pricing scheme.

4.3.4. Effect of temperature on EV driving ranges
EV manufacturers provide the driving specifications at typical

temperatures. However, at high or low temperatures, the battery ca-
pacity and dis/charging behavior changes which translates to affecting
the driving range, i.e. efficiency (Yuksel and Michalek, 2015) and the
expected lifetime of the battery. Further, high or low temperature
triggers the use of heating or air conditioning to control the cabin
temperature which once again results in reducing the driving range
(Kambly and Bradley, 2015). In Saudi Arabia, the temperatures rise
well above 40 degrees Celsius for most of the summer months. As such,
it is important, from a policy and power generation perspective, to
correct for the environment that EVs will be operating in so that the
energy requirements are not significantly over- or underestimated. The
analysis conducted herein accounted for such consideration by using a
worst-case scenario efficiency for EVs.

5. Conclusion

It was found that deploying EVs in the kingdom would, on average,
result in a net decrease in carbon emissions. Given the energy mix (as of
2017), if 100,000 ICEVs (i.e. 0.667 % of 15 million cars on the road) for
example were replaced by 100,000 EVs, then carbon emissions would
decrease, on average, by around 0.35 %, or 266×103 tons. As a rule of
thumb, and at low levels of deployment only, one can assume that each
1% of EV deployed can reduce emissions by 0.5 %. In other words, if the
complete passenger car fleet was changed to EVs, then the emissions
would reduce, on average, to half, i.e. reduce by 35 million tons. If not
done carefully, however, introducing EVs in the kingdom may actually
result in a net increase in emissions if the most efficient ICEVs are re-
placed with the least efficient EVs.

In Saudi Arabia, there is a push to increase the efficiency of the
power system and to rely less on liquid fuels (Timmerberg et al., 2019).
Further, the kingdom plans to deploy a large amount of renewables. If
renewable energy policies are considered simultaneously with EV de-
ployment policies, the social and economic returns may be amplified. In
particular, renewable deployment in the western and southern regions
of the kingdom would result in transforming the marginal generator for
EV charging purposes to becoming carbon-free. Such a transition
achieves two objectives: replacing liquid fuels and hence reducing
carbon emissions, and augmenting the role that EVs would play in
emission reduction even further.

Finally, and keeping in mind the energy mix and energy flows be-
tween regions within the kingdom, it was found that the time in which
EVs would be charged does not have a material effect on emissions
reduction. Although the load profiles are affected because additional
energy is to be generated to charge batteries, the marginal generator for

the most part remains the same in all regions. In other words, time-of-
use pricing cannot be deemed as an effective tool to promote reducing
emissions, though it can still be used to release some stress on the
power system by shifting charging to off-peak times.
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