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Abstract
Integral Hankel operators on vector-valued L2(R+,U )-function spaces are consid-
ered. Regularity (integrability) and compactness properties of the kernel are shown to
give rise to quantifiable regularity and compactness properties of the Hankel opera-
tor, and consequently of the associated singular vectors (also called Schmidt pairs),
which finds relevance in model order reduction schemes. As demonstrated, strong-
Lebesgue and Sobolev spaces naturally arise in the case thatU is infinite dimensional.
The theory is illustrated with examples.
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1 Introduction

Hankel operators are fundamental objects, and “one of the most important classes of
operators on spaces of analytic functions.” [23, Preface]. There are numerous defi-
nitions of Hankel operators, which generalise in certain senses the property that the
Hankel operator matrix

⎛
⎜⎜⎜⎝

a0 a1 a2 · · ·
a1 a2 . .

.

a2 . .
.

...

⎞
⎟⎟⎟⎠ , (1.1)
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has constant anti-diagonals. For instance, Hankel operators are often considered
as linear operators defined in terms of multiplication with a symbol and restric-
tion/projection on the Hardy space of analytic functions on the unit disc. Nehari’s
Theorem (see, for example [23, Theorems 2.1, 2.2]) characterises such operators
in terms of the Hankel operator matrix in (1.1) inducing a bounded linear opera-
tor on �2(Z+). Alternatively, for a Hilbert space K and a shift operator S ∈ B(K ), as
in [24, p.1], the bounded linear operator � : K → K is called S-Hankel if it satisfies
the entwining property S∗� = �S which is the approach is adopted in, for example,
[21]. The Hankel operator matrix (1.1) is evidently S-Hankel on �2(Z+) with respect
to the usual right shift S on �2(Z+) given by

(z0, z1, z2, . . . ) �→ Sz := (0, z0, z1, z2, . . . ) ∀ z = (z0, z1, z2, . . . ) ∈ �2(Z+).

Hankel operators naturally arise in mathematical systems and control theory in the
context of so-called realisations of linear control systems and model order reduction
[8, 9, 11, 26]. In the setting of linear control systems in continuous time, integral
operators of the form

(�u)(t) =
∫ ∞

0
h(t + s)u(s) ds u ∈ L2(R+,U ) t ≥ 0 , (1.2a)

or (�v)(t) =
∫ 0

−∞
h(t − s)v(s) ds v ∈ L2(R−,U ) t ≥ 0 , (1.2b)

are called Hankel operators (see, for example, [5, Section 8.2]). We postpone for now
assumptions on h appearing above, often called the impulse response, other than noting
that h is supported onR+, and the independent variable t denotes time. Here,U plays
the role of the space of values of the input- and output-variables, and presently we
allow for the situation whereinU is infinite dimensional. The above two operators are
equivalent up to a reflection t �→ −t , and the latter has the interpretation of past inputs
(controls) v being mapped to future outputs (measurements) �v. At least formally, �
in (1.2a) is S-Hankel when S denotes the Laguerre shift on L2(R+,U ). We refer the
reader to, for example, [22, Chapters 4–7] or [23, Chapter 11], for more details on
the connections between Hankel operators and control theory. We highlight, [6] and
[13], and the references therein, as a selection of evidence of the interest that Hankel
operators and their role in control theory has generated.

For our purposes, recall that the spectrum of T ∈ B(X), for a Hilbert space X , with
compact T ∗T comprises countably many nonnegative eigenvalues (point spectrum)
only. The square roots of these are called the singular or characteristic values of T ,
as in [16, p. 330]. The Schmidt pairs (vi , wi ) are normalised eigenvectors of T ∗T
and T T ∗, respectively, called singular vectors, and which consequently satisfy

T vi = σiwi and T ∗wi = σivi ∀ i ∈ N.

On the other hand, the above definition of singular values coincides with the definition
in terms of approximation by finite-rank operators, see [10, Theorem VI. 1.5], and is
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an essential ingredient in approximation theory. Indeed, the regularity of Schmidt pairs
of Hankel operators plays a role in the so-called “AAK theory” [1]— a suite of results
on Hankel operators by Adamjam, Arov and Kreı̆n — as well as model order reduc-
tion of infinite-dimensional linear control systems; see [9, 11], and certain Proper
Orthogonal Decomposition (POD) schemes [27]. In this short paper we show how
regularity/compactness properties of h in (1.2) ensure both boundedness/compactness
properties of � and regularity properties of its Schmidt pairs, presented as Proposi-
tion 2.1 and Theorem 2.3 below. The argumentation is mostly direct, with one key
technical ingredient being the results of Lax [15, Theorems I–III] on operators on
Banach spaces embedded in Hilbert spaces. In addition to the connection to model
order reduction, the work is partly inspired by [12] where additional regularity prop-
erties of certain convolution operators (input–output maps of linear control systems
in control theory) are ensured by that of the kernel. Examples are presented in Sect. 3.

Notation: Notation is kept to a minimum and we mention only a few items. We
use |·|U to denote the norm on U , and B(U ) and K(U ) denote the Banach spaces
of bounded and compact linear operators U → U , respectively, both equipped
with the uniform topology. For 1 ≤ p ≤ ∞, we let L p(R+,U ) denote the usual
Bochner-Lebesgue spaces of (equivalence classes of Bochner-measurable) functions
R+ → U which are p-integrable (p < ∞), or essentially bounded (p = ∞). We let
Wm,p(R+,U ) for m ∈ N denote the usual Sobolev spaces with norms

‖u‖Wm,p(R+) :=
(

m∑
k=0

‖u(k)‖p
L p(R+)

) 1
p

∀ u ∈ Wm,p(R+,U ),

and set Hm(R+,U ) := Wm,2(R+,U ). Here the symbol u( j) denotes the j-th (weak)
derivative of u for j ∈ Z+, with u(0) = u. If u has a j-th classical derivative, then this
is also denoted by u( j). Observe that we omit the space U from the norm notation for
L p(R+,U ) and Wm,p(R+,U ) for brevity.

The so-called strong L2-space, denoted L2
str(R+,B(U )), comprises all f : R+ →

B(U ) such that

f v ∈ L2(R+,U ) ∀ v ∈ U and ‖ f ‖L2
str(R+) := sup

‖v‖≤1
‖t �→ f (t)v‖L2(R+) < ∞.

Strong L p-spaces are studied in some generality in [17, Appendix F] and, as fol-
lows from [17, Lemma F.1.5, p.1003], L2

str(R+,B(U ))
.= L2(R+,B(U )) (equal with

equivalent norms) when U is finite dimensional. The corresponding strong Sobolev
spaces are defined by

Hm
str(R+,B(U )) := {

u ∈ L2
str(R+,B(U )) : u( j) ∈ L2

str(R+,B(U )),

∀ j ∈ {1, 2, . . . ,m}}.

We let L p(R+,C) ⊗ K(X) denote the tensor product of L p(R+) and K(X), defined
as usual as the vector space spanned by all finite linear combinations

∑n
j=1 f j ⊗ Mj ,
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where f j ∈ L p(R+,C), Mj ∈ K(X) and ( f j ⊗ Mj )( · ) := f j ( · )Mj . We identify
L p(R+,C) ⊗ K(X) as a subspace of L p(R+,K(X)).

Finally, we write � to mean less than or equal to up to a general multiplicative
constant, independent of the other terms appearing. Its use is intended to reduce the
number of constants appearing.

2 Regularity and Compactness Properties of Integral Hankel
Operators

Our first result characterises additional boundedness properties of an integral Hankel
operator in terms of its kernel.

Proposition 2.1 Let h ∈ L1(R+,B(U )), and let m ∈ N. The Hankel operator
� : L2(R+,U ) → L2(R+,U ) in (1.2a) restricts to a bounded linear operator
Hm(R+,U ) → Hm(R+,U ) if, and only if, h ∈ Hm−1

str (R+,B(U )).

Proof The proof is inspired by that of [11, Lemma 4.9] and [12, Proposition 3.10].
Observe that a change of variable in (1.2) gives

(�u)(t) =
∫ ∞

t
h(s)u(s − t) ds ∀ u ∈ W 1,1(R+,U ) ∪ Hm(R+,U ), ∀ t ≥ 0,

which is differentiable, with

(�u)′ = hu(0) − �(u′) ∀ u ∈ W 1,1(R+,U ) ∪ Hm(R+,U ). (2.1)

Repeated differentiation of (2.1) formally gives

(�u)(k) = h(k−1)u(0) − (
�(u′)

)(k−1) ∀ u ∈ Hk(R+,U ), k ∈ N. (2.2)

If h ∈ Hm−1
str (R+,B(U )), then h(k−1) ∈ L2

str(R+,B(U )) and

‖h(k−1)u(0)‖L2(R+) � |u(0)|U � ‖u‖Hm (R+) for k = 1, 2, . . . ,m − 1.

An induction argument invoking (2.2) now shows that � restricted to Hm(R+,U )

is continuous Hm(R+,U ) → Hm(R+,U ). Conversely, consider u(t) := e−tv for
v ∈ U , which belongs to Hr (R+,U ) and satisfies ‖u‖Hr (R+) � |v|U for every r ∈ N.
This choice of u in equation (2.2) yields

h(k−1)v = (�u)(k) + (
�(u′)

)(k−1) ∀ u ∈ Hk(R+,U ), k ∈ N. (2.3)

The conjunction of (2.3) and the assumed regularity of � entails that hk−1 ∈
L2
str(R+,B(U )) for k = 1, 2, . . . ,m, as required. ��
As a corollary of the above proposition and [12, Corollary 3.11] we obtain the

following equivalence.
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Corollary 2.2 Let h ∈ L1(R+,B(U )), and let m ∈ N. The Hankel operator� in (1.2a)
restricts to a bounded linear operator Hm(R+,U ) → Hm(R+,U ) if, and only if, the
convolution operator L2(R+,U ) → L2(R+,U ) given by u �→ h ∗ u does.

Convolution operators of the form u �→ h ∗ u are linear and right-shift invariant,
so arise as the input–output maps of time-invariant linear control systems. In words,
the above corollary states that the associated Hankel operator and input–output map
of a time-invariant linear control system admit the same regularity properties in terms
of restricting to bounded maps. Our next result considers compactness properties of
integral Hankel operators.

Theorem 2.3 Let h ∈ L1(R+,B(U )) and assume that h(t) ∈ K(U ) for almost all
t ≥ 0. Letm ∈ N, and consider the integralHankel operator� in (1.2a). The following
statements hold:

(1) � viewed as an operator Lq(R+,U ) → Lq(R+,U ) is compact for all 1 ≤ q <

∞ ;
(2) � viewed as an operator W 1,1(R+,U ) → W 1,1(R+,U ) is compact ;
(3) The singular vectors of � : L2(R+,U ) → L2(R+,U ) belong to L2(R+,U ) ∩

W 1,1(R+,U ) .

If, additionally, h ∈ Hm−1(R+,K(U )), then the following statements hold:

(4) �|Hm (R+,U ) : Hm(R+,U ) → Hm(R+,U ) is compact ;
(5) The singular vectors of � : L2(R+,U ) → L2(R+,U ) belong to Hm(R+,U ).

To connect to earlier work, Theorem 2.3 is a substantial generalisation of [11,
Lemma 4.9], ensuring additional compactness and regularity in terms of the parame-
term, and to the settingwhereinU is infinite dimensional. Proposition 2.1 indicates the
role of strong L2- and Hm-spaces in characterising additional boundedness properties
of integral Hankel operators. Here we note the requirement that the impulse response
takes values inK(U ) (almost everywhere) for compactness properties. This condition
is not so surprising in light of the vector-valued version of Hartman’s Theorem; see,
for instance [23, Theorem 4.1] which, roughly speaking, states that a symbol which
is continuous and takes values in K(U ) is a necessary and sufficient condition for a
Hankel operator to be compact. Apart from the above considerations, the setting that
U is infinite dimensional is treated with little additional difficulty.

By way of further commentary on our hypotheses, recall the right-shift semigroup
(Sτ )τ≥0 on L2(R+,U ) defined by

(Sτ f )(t) =
{
0 t < τ

f (t − τ) t ≥ τ
for all f ∈ L2(R+,U ) and almost all t ≥ 0.

A linear operator � : L2(R+,U ) → L2(R+,U ) is called if Sτ -Hankel if

S∗
τ � = �Sτ ∀ τ ≥ 0.

We note that, at least in the case that U is finite dimensional, a necessary condition
for a Sτ -Hankel operator to be nuclear is that it admits a representation as an integral
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operator of the form (1.2a) with kernel h ∈ L1(R+,B(U )), see [11, Proposition 3.4,
Remark 3.7]. The converse is known to be false from [9, Example 2.3]. A linear
operator is nuclear (or trace class) if its singular values form a summable sequence,
and is a natural requirement for non-trivial error bounds in terms of sums of singular
values, such as those in [11]. Nuclearity of integral Hankel operators has been studied
in [4].

The proof of Theorem 2.3 relies on the following lemma.

Lemma 2.4 Let U be a separable Hilbert space, let h ∈ L p(R+,B(U )) with 1 ≤
p < ∞ and assume that h(t) ∈ K(U ) for almost all t ≥ 0. Then the linear map
T : U → L p(R+,U ) given by Tu := h(·)u for all u ∈ U is compact.

Proof It suffices to assume that h ∈ L p(R,K(U )), else choose g ∈ L p(R,K(U ))

with ‖h − g‖L p(R+,B(U )) = 0 and argue with g below.
The proof leverages that L p(R+,C) ⊗ K(U ) ⊆ L p(R,K(U )) is dense in

L p(R+,K(U )), as follows from [2, Theorem 1.3.6, (viii), p. 388]. Let hn ∈
L p(R+,C) ⊗ K(U ) be such that hn → h in L p(R+,K(U )) as n → ∞. It is clear
that Tn defined by Tnu := hn(·)u for all u ∈ U converges uniformly to T . Thus, it
suffices to prove that Tn is compact for each n. However, each Tn is of the form

Tn =
n∑

k=1

fk,n ⊗ Mk,n fk,n ∈ L p(R,C), Mk,n ∈ K(U )

and u �→ Su := f ⊗ Mu with f ∈ L p(R,C) and M ∈ K(U ), shown in the
commutative diagram below, is compact as the composition of a compact and bounded
operator.

U L p(R+,C) ⊗U

U

S

M
f ⊗

Hence, Tn is compact, as required. ��
Proof of Theorem 2.3 Statement (1) is known when U is finite dimensional, see [8,
Appendix 1, p.895]. In the case that U is infinite dimensional we essentially use
density arguments, particularly that

L1(R+,C)⊗̂πU = L1(R+,U ) with equal norms, (2.4)

as follows from [25, Example 2.19, p. 29]. Here the tensor product on the left-hand
side of (2.4) is the projective tensor product, cf. [25, Chapter 2]. It can be shown
that � = �h is the uniform limit of compact operators �hn , using that � f j⊗Mj =
� f j ⊗ Mj ∈ K(Lq(R+)) ⊗ K(U ) is compact for f ∈ L1(R+) and Mj ∈ K(U ),
along the lines of [14, Theorem 2]. For brevity, we do not give the details.



Regularity and compactness… Page 7 of 12     6 

The proof of statement (2) is inspired by that of [11, Lemma 4.9]. In particular,
the equality (2.1) yields that � defined by (1.2) is bounded onW 1,1(R+,U ). Here we
use that |u(0)|U � ‖u‖W 1,1(R+). To show compactness, let (un)n denote a bounded
sequence in W 1,1(R+,U ). We may extract subsequences (�un j ) j and (�(u′

n j
)) j

which converge in L1(R+,U ) by compactness of � ∈ B(L1(R+,U )) from state-
ment (1). An application of Lemma 2.4 with p = 1 ensures that there exists a
subsequence of (hun j (0)) j , also converging in L1(R+,U ). Extracting a single com-
mon subsequence, in light of (2.1), it follows that (�un j ) j is Cauchy inW

1,1(R+,U ),
and hence convergent.

Statement (3) follows from an application of the results of Lax [15, Theorems
I–III] applied to T := �∗� or ��∗ (here �∗ is the L2-adjoint of �) with, in the
former case, Banach space B := W 1,1(R+,U ), Hilbert space H := L2(R+,U ),
and bilinear form the usual inner-product on L2(R+,U ). Note that the completion
of W 1,1(R+,U ) in L2(R+,U ) is simply L2(R+,U ). Here we are additionally using
that a short calculation shows that �∗ : L2(R+,U ) → L2(R+,U ) is given by (1.2)
with h replaced by h∗, that is, h∗ ∈ L1(R+,K(U )) given by h∗(t) = (h(t))∗ which
takes compact values by Schauder’s Theorem. Consequently, �∗� is compact B → B
and H → H as the composition of a bounded and compact operator.

In light of statement (4), for statement (5) it suffices to prove the compactness prop-
erty only. We use induction again. That the claim is true with m = 1 follows along
the lines of the proof of statement (2), now using that � : L2(R+,U ) → L2(R+,U )

is compact. For the inductive step, if (un)n is a bounded sequence in Hm(R+,U ),
then (�un)n has a Cauchy subsequence in Hm−1(R+,U ) and so, a fortiori, in
L2(R+,U ).Moreover, the induction hypothesis also yields that (�(u′

n))n has aCauchy
subsequence in Hm−1(R+,U ) by inductive hypothesis. Finally, the regularity of h
ensures that (h(m−1)un(0)) has a Cauchy subsequence in L2(R+,U ) by Lemma 2.4
with p = 2. Therefore, in light of (2.2) with k = m, it follows that

(
(�un)(m)

)
n

has a Cauchy subsequence in L2(R+,U ), the upshot being that (�un)n has a Cauchy
subsequence in Hm(R+,U ), as required.

The proof of statement (5) is the same as that of (3), mutatis mutandis. ��

3 Examples

For brevity in the sequel we write L2(R) for L2(R,C) where R = R+ or R, and
similarly for Sobolev spaces. The first two examples are based on [12, Example 4.3]
and [19, Example 18], respectively.

Example 3.1 Consider the ubiquitous finite-dimensional controlled and observed sys-
tem of linear ordinary differential equations

ẋ = Ax + Bu, x(0) = x0, y = Cx + Du, (3.1)

with input, state and output denoted u, x and y, respectively. The input, state and
output spaces are U = C

p, X = C
n and U , respectively, and A, B, C and D may

be identified with compatibly-sized complex matrices. Furthermore, K(U ) = B(U ).
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Let h : R+ → C
p×p be given by t �→ h(t) := CeAt B, and consider the Hankel

operator � as in (1.2a). If every eigenvalue of A has negative real part, then, evidently
h ∈ L1(R+,K(U )) and, in light of

t �→ h(k)(t) = CeAt Ak B ∈ L2(R+,K(U )) ∀ k ∈ Z+,

it follows from Proposition 2.1 and Theorem 2.3 that � restricts to a compact operator
Hm(R+,U ) → Hm(R+,U ) and the singular vectors of � belong to Hm(R+,U ),
both for every m ∈ N.

Consider now the case that (3.1) denotes (at least formally) an infinite-dimensional
linear control system, where A : X ⊇ D(A) → X generates an exponentially sta-
ble C0-semigroup (T(t))t≥0 = (eAt )t≥0. If C is bounded, meaning C ∈ B(X ,U ),
and Ak B ∈ B(U , X) for k ∈ Z+, then the restriction of � to Hm(R+,U ) maps
continuously into Hm(R+,U ) for m = k + 1. We refer the reader to [20] for a num-
ber of examples of controlled and observed partial differential equations where the
condition Ak B ∈ B(U , X) is satisfied. ��
Example 3.2 Consider the following first-order damped hyperbolic PDE on the unit
interval (0, 1) with dynamic boundary control u and observation y:

wt = −wξ − εw

wt (t, 0) + w(t, 0) = u(t)

zt (t) + z(t) = w(t, 1)

y(t) = z(t)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

t > 0,

where ε > 0. Here U = C. Routine calculations give that the associated integral
Hankel operator � has impulse response

h(t) = χ[1,∞)(t)(t − 1)e−(t−1)e−ε ∀ t ∈ R+,

where χJ is the indicator function on interval J ⊆ R. Evidently, h ∈ L1(R+) ∩
L2(R+). Moreover, h ∈ H1(R+), but the discontinuity in h′ at t = 1 gives that
h /∈ Hk(R+) for k ∈ N, k ≥ 2. Consequently, Theorem 2.3 yields that � restricts to a
compact operator H1(R+) → H1(R+) (and not to Hk(R+) for k ≥ 2) with Schmidt
vectors in H1(R+). ��

In the context of integral Hankel operators arising from controlled and observed
partial differential equations, infinite smoothness of the singular vectors typically
arises from parabolic problems, as indicated in the next example.

Example 3.3 Consider the controlled and observed damped heat equation on the real
line:

wt (t, ξ) = −εw(t, ξ) + wξξ (t, ξ) + δ0(ξ)u(t),

lim
ξ→∞ w(t, ξ) = 0,

y(t) = w(t, ξ0)

⎫⎪⎪⎬
⎪⎪⎭

t > 0, ξ ∈ R, (3.2)
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where ε ≥ 0 is a constant, δ0 is a Dirac-delta corresponding to point control at ξ = 0,
and ξ0 �= 0 is a measurement location. Here U = C.

This problem is naturally formulated on the state-space L2(R) and the PDE in (3.2)
can be viewed as an equality in the dual space H−1(R) = (H1(R))′ via the associated
weak form

〈wt , φ〉L2(R) = −ε〈w,φ〉L2(R) − 〈wξ , φξ 〉L2(R) + φ(0)u(t) ∀ φ ∈ H1(R).

Here, we indicate that the associated impulse response satisfies the hypotheses of our
main result. To that end, impose the initial conditionw(ξ, 0) = 0 onR, fixu(t) ≡ 1 and
let K (t, ξ) denote the heat kernel in one dimension. Inspired by Duhamel’s principle,
the solution to (3.2) is given by

w(t, ξ) =
∫ t

0
e−ε(t−s)K (t − s, ξ) ds =

∫ t

0
e−εs K (s, ξ) ds ξ ∈ R, t > 0.

Therefore, the impulse response is given by

h(t) = d

dt
y(t) = wt (t, ξ0) = e−εt K (t, ξ0) ∀ t > 0.

Since ξ0 �= 0, it follows from properties of K that:

(i) limt↘0 h(k)(t) = 0 for all k ∈ Z+
(ii) h ∈ L1

loc(R+)

(iii) If ε > 0, then h ∈ L1(R+) ∩ Hk(R+) for all k ∈ Z+.
Note the requirement that ε > 0 for (iii) above. In particular, when ε > 0 it follows
that h satisfies the hypotheses of Proposition 2.1 and Theorem 2.3 for all m ∈ N. ��
Finally, again in the context of controlled and observed partial differential equations,
infinite-dimensionalU arises in the setting of boundary control and observation, such
as the situations studied in [3]. Calculations involving multi-dimensional concrete
examples tend to be rather involved. Thus, our fourth example provides sufficient
conditions under which the compactness and integrability properties of h as in (1.2a)
are satisfied in the case thatU is infinite dimensional.We comment that the hypotheses
imposed below are typically satisfied by parabolic partial differential equations.

Example 3.4 Let X and U be separable Hilbert spaces. Suppose that A generates an
exponentially stable, analytic semigroup (T(t))t≥0 on X with compact resolvent.

Let B ∈ B(U , X−1) and C ∈ B(X1,U ), where X1 and X−1 are the usual interpo-
lation and extrapolation spaces associated with A and X , see for example [18] or [28,
Section 3.6]. Consider

h(t) := CT(t)B t > 0.

We claim that

(i) h(t) is well-defined for all t > 0 and h ∈ C∞((0,∞),B(U ));
(ii) h(t) ∈ K(U ) for all t > 0.
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Further, if B ∈ B(U , Xβ) and C ∈ B(Xα,U )with α, β ∈ R and such that α −β < 1,
then

(iii) h ∈ L1(R+,K(U ))

Here Xγ are the fractional spaces associated with A and X , as in [28, Section 3.9, p.
147].

Before establishing the above claims, observe that in the simplifying case that
U = X and C = B = I , we have h(t) = T(t) = I when t = 0, which is compact if,
and only if, X is finite dimensional. In particular, the requirement that h takes compact
values only almost everywhere in Lemma 2.4 is essential.

To establish (i), let t > 0 and choose ε > 0 such that t − 2ε > 0. As (T(t))t≥0
is analytic, it is differentiable and, therefore, it follows that T(ε) ∈ B(X1, X) ∩
B(X , X−1) (see, for example [7, p. 110]). We conclude that

CT(ε) : X → X1 → U and T(ε)B : U → X−1 → X ,

are bounded operators. Consequently, by the semigroup property

h(t) = CT(t)B = CT(ε)T(t − 2ε)T(ε)B, (3.3)

which is well-defined as the composition of bounded operators, and infinitely-
differentiable as T is analytic.

Compactness of h(t) follows from (3.3) once T(t − 2ε) is compact, as then h(t) is
expressed as the composition of compact and bounded operators. However, T(t − 2ε)
is compact from [7, Lemma 4.28] as T(t − 2ε) is norm continuous (as analytic) and
(T(t))t≥0 has compact resolvent by hypothesis.

The third claim follows from [28, Theorem 5.7.3]. The conclusion there is that h ∈
L1
loc(R+,B(U )), but the assumed exponential stability yields that h ∈ L1(R+,B(U )).
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