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ABSTRACT
Brain-computer interfaces (BCI) and neurolinguistics have become vital areas of scientific 
inquiry, focusing on neural mechanisms in language acquisition. While studies have 
examined brain activity during language learning, there’s a need for validated data on 
cognitive and functional effects of acquiring new languages, especially Arabic and 
Hindi. This study addresses this gap by recording and analyzing EEG data related to 
learning Arabic and Hindi as second languages, comparing linguistic differences during 
the process. EEG signals were recorded from eight participants (four Indian, four Yemeni) 
as they learned words in Arabic and Hindi. The data was pre-processed, cleaned, and 
analyzed to extract language learning-related features. To validate the approach and 
demonstrate cognitive and functional differences in brain activity during second 
language acquisition, various machine learning classification models were applied: 
Random Forest, Support Vector Machine, Decision Tree, Xgboost, and Catboost. The 
classifiers were trained and tested on the extracted features, achieving the following 
accuracies: RF 71.62%, SVM 68.41%, DT 64.12%, Xgboost 72.17%, and Catboost 74.56%. 
These results provide insights into neural mechanisms underlying second language 
acquisition. By comparing brain activity patterns between Arabic and Hindi, this study 
contributes to neurolinguistics and offers data that can be used to develop more 
effective language learning strategies and interventions.

Introduction

Brain-computer interfaces (BCI) have emerged as one of the most critical areas of modern science, with 
researchers and developers working to create an interactive environment that implements all commands 
and instructions generated by the brain with no effort or muscle activity. This field depends entirely on 
advanced external hardware and software that simulates what the brain and the human body do to 
carry out specific tasks, such as movement, thinking, learning, practicing certain hobbies and many more 
(Lotte et  al., 2018; Millán et  al., 2010).

One of the sciences within this field is neurolinguistics, where researchers have been focusing in 
recent years to study and understand how languages are acquired and learned in the human brain. 
There are many techniques for recording and monitoring brain activity in both functional and cognitive 
states, including the electroencephalography (EEG) technique, which depends on placing a group of 
electrodes on the scalp (Aldhaheri et  al., 2020; Rashid et  al., 2020).

EEG is a non-invasive technique for monitoring and recording the functional and cognitive activity 
of the brain. It is a very old technique, but it remains highly effective in various fields, such as medi-
cine (most famously for patients with epilepsy), education, marketing and cognitive and motor control 
for people with special needs. It provides these individuals with external devices and equipment 
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related to their brain activity, and one of its fields is neurolinguistics (Jamil et  al., 2021; Parvizi & 
Kastner, 2018).

The importance of this technique lies in its effectiveness in studying and monitoring many neurolog-
ical disorders resulting from brain activity, such as epilepsy, Alzheimer’s, stuttering and aphasia of both 
kinds (Alexander et  al., 1990; Park et  al., 2015). However, the handling and analysis of this type of signal 
are very complex and inflexible. This is primarily because this type of signal is non-linear, unstable, and 
described as chaotic to a great extent. Additionally, the presence of several recording channels that cover 
the entire brain activity during recording makes focusing on one aspect for analysis more complicated 
(Bhise et  al., 2020; Tzimourta et  al., 2021).

To address these challenges, scientists have developed open-source tools and programs to deal with 
and analyze such types of signals recorded in the electroencephalogram device. The most famous and 
important of these is EEGLAB, an open-source tool that works with the MATLAB (R2022a) program 
(Delorme & Makeig, 2004). Another significant tool is MNE-Python version 1.4.0 (Boston, MA), which runs 
on the Python platform. These two tools are considered among the most important available for signal 
analysis to extract all the required features from brain signals with the necessary accuracy in various 
fields. Consequently, researchers and scholars often combine the output from these tools with algorithms 
and techniques from machine learning and deep learning (Alexandre et al., 2013; Vaid et  al., 2015). In 
this study, the research team utilized this software to conduct their experiments in a laboratory at the 
Department of Computer Science and Information Technology, Dr. Babasaheb Ambedkar Marathwada 
University, located in Aurangabad, Maharashtra, India.

The complexity of the human brain is staggering, with the number of neurons estimated to outnumber 
the stars in the universe. These neurons interact and communicate in several intricate ways to conduct 
brain activities or complete processes that science has not yet been able to decipher accurately. It is known 
that the brain makes more than a million actual connections every day between neurons to practice daily 
routine activities such as sleeping, thinking, eating, learning and many more, including learning or acquir-
ing a new language (Liao et  al., 2012; Ofner et  al., 2019; Rashid et  al., 2020; Rosenfeld & Wong, 2017).

The data resulting from the learning process is a mixture of several functions, like other routine func-
tions of the brain, which mix the resulting data with each other, such as thinking, listening, meditating, 
seeing, bodily movements and noise from the brain or from outside it. Given this complexity, researchers 
and scholars have focused on analyzing and reprocessing the resulting brain signals to obtain as much 
required and accurate data as possible for the subject of research or study in fields, such as neurolin-
guistics (Haufe et  al., 2014; Ryan et  al., 2017; Schultz et  al., 2017).

Many people in the world speak at least two or more languages fluently (Hebb & Ojemann, 2013). 
However, there is a lack of clear scientific studies that show how the vocabulary of each language is 
stored in the brain and how it is represented cognitively. Questions remain about the extent to which 
the mother tongue affects other acquired languages or vice versa, and whether it is easy to switch 
between the vocabulary of acquired languages in the brain equally or if there are functional and cogni-
tive representations that each language follows separately (Batterink & Neville, 2013; Moses et  al., 2021; 
Rabbani et  al., 2019).

This work is considered unique in studying and analyzing brain signals to learn or acquire one of the 
Arabic or Hindi languages. This study is regarded as the first of its kind among researchers and those 
interested in the field of neurolinguistics to study the extent of functional and cognitive effects and 
differences by EEG in attempting to learn and acquire one of two languages: Arabic or Hindi.

Our research focused on recording and collecting EEG signals from participants’ brains during the 
acquisition and learning of a second language, with a specific emphasis on Hindi and Arabic for 
non-native speakers. We aimed to pre-process and analyze the brain signals recorded in an electroen-
cephalogram device, cleaning and removing unwanted noise and traffic from the signals and extracting 
the relevant features of the study subject.

The purpose of our study was to collect clear and specific data that can be built upon in the field of 
neurolinguistics, particularly in acquiring and learning a second language. We aimed to contribute to this 
field by recording and analyzing the EEG data of volunteers’ cues as they attempted to learn and acquire 
a language that was not their native language. To ensure the accuracy of our approach, we utilized 
several machine-learning techniques.



Cogent Arts & Humanities 3

The results of our study provide valuable insights into the neural mechanisms underlying the process 
of learning and acquiring a second language. These findings can be used to develop more effective 
language-learning strategies and interventions, ultimately benefiting both the scientific community and 
society at large.

The article is structured as follows: Section 2 reviews related works. Section 3 covers materials and 
methods, including participants, data recording, recording procedure and raw data reduction and seg-
mentation. Section 4 discusses EEG features extraction, encompassing distribution and primary spectros-
copy, separation of multi-signals into components and final analysis of the power spectrum. Section 5 
describes data splitting, while Section 6 details classification analysis. Section 7 outlines performance 
evaluation methods. Section 8 presents the results and discussion, and Section 9 concludes the article 
with a summary of the research and its implications.

Related works

Soman et  al. (2019) investigated the use of overt speech and EEG signals for speech recognition. They 
employed a BESS F-32 amplifier with 32 passive electrodes to collect data from 17 participants speaking 
Indian languages (English, Japanese and Hindi). The study applied Support Vector Machines (SVMs) with 
a linear kernel for classification, achieving an accuracy of 63.32%. This study highlighted the potential for 
using EEG signals in speech recognition across multiple languages.

Hashim et  al. (2018) focused on imagined speech recognition using EEG signals. They utilized an 
Emotiv Epoc sensor with 14 channels to collect data from 4 male participants. The study employed a 
k-Nearest Neighbors (k-NN) classifier for the recognition task, resulting in an accuracy of 58%. This study 
demonstrated the feasibility of using EEG signals for imagined speech recognition, although the accuracy 
is lower compared to overt speech recognition.

Sereshkeh et  al. (2017a) investigated the use of imagined speech and EEG signals for speech recogni-
tion. They used a BrainAmp EEG system with 64 electrodes and a DC amplifier to collect data from 12 
fluent English speakers. The study applied a Multi-Layer Perceptron Neural Network (MLPNN) classifier for 
the recognition task, achieving an accuracy of 54.1 ± 9.7%. This study highlights the challenges associated 
with imagined speech recognition using EEG signals.

In a subsequent study, Sereshkeh et  al. (2017b) used the same data collection method as their previ-
ous work but applied a linear SVMs classifier for the recognition task. This approach resulted in an 
improved accuracy of 69.27% compared to the MLPNN classifier used in their earlier study. This research 
demonstrated the importance of selecting an appropriate classifier for imagined speech recognition 
using EEG signals.

González-Castañeda et  al. (2017) studied imagined speech recognition using EEG signals. They 
employed an EEG system with 14 high-resolution channels to collect data from 27 native Spanish speak-
ers. The study compared the performance of SVM and Naive Bayes classifiers, with the latter achieving 
an accuracy of 83.34%. This study highlighted the potential for using high-resolution EEG channels and 
probabilistic classifiers for imagined speech recognition.

Nguyen et  al. (2018) investigated imagined speech recognition using EEG signals. They used a 
BrainProducts ActiCHamp EEG system with 64 electrodes and an amplifier to collect data on three dif-
ferent types of speech (long, short words, and vowels). The study applied a Relevance Vector Machines 
(RVM) classifier for the recognition task, achieving accuracies of 95% for 2 words and 70% for 3 words. 
This study demonstrated the potential for using EEG signals and RVM classifiers for imagined speech 
recognition, particularly for a limited set of words.

Kang et  al. (2015) studied imagined speech recognition using a combination of eye-tracking and EEG 
signals. They employed a Tobii 1750 eye-tracker and a Brainno device with 2 EEG channels to collect data 
from 63 English speakers. The study used an SVM classifier for the recognition task, achieving an accu-
racy of 80.16 ± 0.14%. This study showed the potential for using a multimodal approach, combining 
eye-tracking and EEG signals, for imagined speech recognition.

Kumar et al. (2018) focused on imagined speech recognition using EEG signals. They utilized an Emotiv 
EPOC+ with 14 electrodes to collect data from 23 participants on images, numbers and texts. The study 
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applied a Random Forest (RF) classifier for the recognition task, achieving accuracies ranging from 67.03% 
to 85.20%. This study demonstrates the potential for using EEG signals and RF classifiers for imagined 
speech recognition across different types of stimuli.

Prat et  al. (2016) investigated overt speech recognition using quantitative EEG (qEEG) signals. They 
employed a wireless 16-channel EPOC qEEG to collect data from 16 French-English speakers. The study 
applied the Mini-Mental State Examination (MMSE) for the recognition task, achieving an accuracy of 
60%. This study highlighted the potential for using qEEG signals and cognitive assessment tools for overt 
speech recognition in bilingual speakers.

Rahma and Nurhadi (2017) studied overt speech recognition using EEG signals. They used 4 EEG chan-
nels with a maximum impedance of 15 Ω to collect data from 16 English speakers using the openBCI 
platform. The study conducted Power Spectral Density (PSD) analysis and found that males had higher 
accuracies than females. This study demonstrates the potential for using a limited number of EEG chan-
nels and PSD analysis for overt speech recognition while highlighting gender differences in accuracy.

Dave et  al. (2018) investigated overt speech recognition using EEG signals. They employed a SCAN 
(Compumedics Neuroscan) EEG system with 29 tin electrodes and an elastic cap (ElectroCap International) 
to collect data from 60 young adults and 36 older adults speaking English. The study performed PSD 
analyses but did not report specific accuracy rates. This study highlights the potential for using EEG 
signals and PSD analysis for overt speech recognition across different age groups.

Grundy et  al. (2019) focused on overt speech recognition using EEG signals. They utilized a 64-channel 
Biosemi ActiveTwo EEG system and E-prime version 2.0 software (Pittsburgh, PA) to collect data from 40 
participants (20 monolingual and 20 bilingual). The study applied Multi-scale Entropy Analysis (MSE) for 
the recognition task, achieving accuracies of 0.94 for monolinguals and 0.93 for bilinguals. This study 
demonstrated the potential for using high-density EEG signals and MSE analysis for overt speech recog-
nition in both monolingual and bilingual speakers.

Liu et  al. (2017) investigated overt speech recognition using EEG signals. They employed a 7-channel 
EEG headset called Muse to collect data from eleven English-speaking volunteers. The study used 
logistic regression (LR) with local and global models and multi-task learning for the recognition task, 
achieving accuracies ranging from 54.97% to 55.01%. This study highlighted the potential for using 
consumer-grade EEG headsets and advanced machine-learning techniques for overt speech recogni-
tion. More detail in Table 1.

This study extends previous research in EEG-based language processing by focusing on the neural 
mechanisms of language acquisition, specifically for Arabic and Hindi. Unlike prior studies that primarily 
examined speech recognition in established languages (e.g. Soman et  al., 2019; Hashim et  al., 2018), this 
research investigates brain activity during the active learning of new languages with distinct scripts and 
phonological systems.

Methodologically, this study employs a comprehensive approach, combining EEG data collection during 
word learning tasks, sophisticated signal processing using EEGLAB and multiple machine learning algo-
rithms for classification. The achieved classifier accuracies (64.12%–74.56%) are comparable to or exceed 
those reported in previous studies, despite the increased complexity of the language acquisition task.

Furthermore, this study provides novel insights into the formation and evolution of neural represen-
tations for newly learned words, offering a dynamic, longitudinal perspective on language acquisition. 
This contrasts with many previous studies that focused on single-session recordings (e.g. González-Castañeda 
et  al., 2017; Prat et  al., 2016).

By addressing these aspects, this study contributes significantly to the field of neurolinguistics and 
EEG-based language research, with potential implications for language education and cognitive rehabili-
tation. It advances our understanding of the neural processes underlying new language acquisition, an 
area not extensively explored in previous works.

Materials and methods

In this section, the data recorded and collected by us has been studied, analyzed and pre-processed in 
order to remove noise and traffic that weaken its value and accuracy. To eventually become standard 
data that can be relied upon by scholars and researchers in the field of neurolinguistics related to EEG. 



Cogent Arts & Humanities 5

Figure 1 represents the main steps of the research methodology. Each step leads to the next, showing 
the sequential process of the study from data collection through to final performance evaluation.

3.1.  Participants

The nine participants were five males and four females, aged 18–39 (mean: 29.87), equally holding Indian 
and Yemeni nationalities, and none of them suffered from any chronic diseases or neurological disorders 
as per the previous written consent they signed so that signals from their brains could be recorded. One 
participant’s data was ignored due to the loud noise within the signals recorded from his brain. This 
could be due to an error related to the recording device or a malfunction. Table 2 shows more details 
about the volunteers in this study. The subjects are the participants in our data recording, so each par-
ticipant is denoted by a letter (S) and a number (1, 2, … 8).

3.2.  Data recording

The data were collected and fully recorded in the Medicover Hospital in Aurangabad, India, for more 
than two months of training, preparation, and final registration. We used the Virgo EEG device pro-
duced by Allengers, which includes 40 active electrodes placed according to the 10–20 system with 

Table 1. S ummary of previous research studies on neurolinguistics by EEG.

Author and year
Type of 
speech

Recording 
technique

Data acquisition 
device Data collection Classifier Accuracy%

Soman et  al. (2019) Overt EEG BESS F-32 amplifier 
– 32 passive 
electrodes

17 Indian (English, 
Japanese and Hindi)

SVM and linear 
kernel

63.32

Hashim et  al. (2018) Imagined EEG Emotiv Epoc sensor 
−14 channels

4 Males k-NN 58

Sereshkeh et  al. (2017a) Imagined EEG BrainAmp – 64 
electrodes and DC 
amplifier

12 (Fluently English) MLPNN 54.1 ± 9.7

Sereshkeh et  al. 
(2017b)

Imagined EEG BrainAmp – 64 
electrodes and DC 
amplifier

12 (Fluently English) linear
SVM

69.27

González-Castañeda 
et  al. (2017)

Imagined EEG High-resolution 
channels (14 
electrodes)

27 (Native Spanish) - SVM
Naive Bayes is a 

probabilistic 
classifier

83.34

Nguyen et  al. (2018) Imagined EEG BrainProducts 
ActiCHamp 
Includes 64 
electrodes with 
amplifier

3 Different types 
(long, short words and 
vowels)

Relevance Vector 
Machines 
classifier (RVM)

(2 words 95)
(3 words 70)

Kang et  al. (2015) Imagined EEG Tobii 1750 
eye-tracker, 
Brainno device-2 
channels

63 (English) SVM 80.16 ± 0.14

Kumar et  al. (2018) Imagined EEG Emotiv EPOC+ 14 
electrodes

23 (Images, numbers, 
and texts).

RF 67.03–85.20

Prat et  al. (2016) Overt qEEG wireless
EPOC 16-channel

16 Speaking 
(French-English)

Mini-Mental State 
Examination 
(MMSE)

60

Rahma and Nurhadi 
(2019)

Overt EEG 4-EEG channels with 
a max impedance of 
15Ω.

16 (English) by 
openBCI

PSD analysis Males higher 
than 
females

Dave et  al. (2017) Overt EEG SCAN (Compumedics 
Neuroscan) 
consists of 29 
tin-electrodes 
Included an elastic 
cap (ElectroCap 
International)

60 Young adults and 
36 older adults 
speaking (English).

PSD analyses –

Grundy et  al. (2019) Overt EEG 64-channel Biosemi 
ActiveTwo and 
E-prime 2.0

Forty (20 monolingual 
and 20 bilingual)

Multi-scale Entropy 
Analysis (MSE)

Mono/0.94 and 
bili/0.93

Liu et  al. (2017) Overt EEG headset called Muse 
has 7-channels

Eleven volunteer 
speaking (English)

LR (Local + Global 
models) And 
Multi-task 
Learning

54.97–55.01
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a resistance of less than 10 kOhm at a frequency of 256 Hz, confirming the presence of electrodes 
on both sides of the brain (Allengers Global, 2022). All data registration sessions were subject to all 
required procedures in accordance with the research and scientific standards followed (Kawala-Sterniuk 
et  al., 2020), whether in general or the procedures followed within the hospital under registration, 
as shown in Figure 2. The volunteers were placed in a closed environment free from noise or loud 
influences in order to prevent the largest amount of noise associated with brain signals (only the 
minimum limit associated with the recording device or generated from the brain itself ). The duration 
of recording and data collection took a long time due to the authors’ difficulty in acquiring an 
expensive EEG device. Each participant recorded twelve full recording sessions for the two languages 
under study. The best six sessions were adopted after taking the highest and best average for all 
sessions in terms of recording accuracy and the amount of noise and damage within the recorded 
signals.

The group of stimuli in each recording session included written and shown words associated with a 
picture that expresses the content of the word. where the words were chosen almost uniformly in the 
period, with 12 Arabic words (the language familiar to Yemenis) and 12 Hindi words (the language famil-
iar to Indians) as in Table 3, with an interval of 5 s for each word.

3.3.  Procedure of recording

After taking the written consent of all the volunteers and arranging the procedures used to record 
brain signals, each experiment was divided into several sessions, according to Figure 3. Each session 
consisted of three basic stages. In the first stage, the participant takes a rest period of 5 s, during 
which he is ready to focus on the words and start the recording. This is followed by the stage called 
the baseline, which marks the beginning of the actual time of the recording with a period of 2.5 s. The 
last stage, which is the longest in terms of time, is known as the stage of the actual recording of the 
words displayed on the computer screen in an equal number of Arabic and Hindi words as a language 
unfamiliar to the participants equally. At this stage, each word is displayed for an amount of time 
equal to 5 s. The total number of words presented for registration in each session was 24 for both 
languages. components of the experiments: a computer for displaying words, an EEG device for record-
ing brain signals and monitoring functional and cognitive activity, and a table and chair in an isolated 
environment.

Figure 1. O ur proposed methodology.

Table 2. I nformation of participants in detail note the number of sessions for each of the participant.
Subjects S1 S2 S3 S4 S5 S6 S7 S8

Nationality Indian Yemeni Yemeni Indian Indian Yemeni Indian Yemeni
Gender M M M F F M F F
Age 31 30 34 26 29 39 18 32
Native language Hindi Arabic Arabic Hindi Hindi Arabic Hindi Arabic
Recording device EEG EEG EEG EEG EEG EEG EEG EEG
Sessions 12 12 12 12 12 12 12 12
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3.4.  Reduction and segmentation of raw rata

The data generated after the recording stage is raw data represented by dynamic signals. In our study, 
we saved each session’s data for each participant in European Data Format (EDF) without any 
pre-processing (Kemp et  al., 2010). Using the EDFBROWSER application, it was then divided into several 
files with a predetermined time depending on the language to be studied (Gurumoorthy et  al., 2020). 
We then labeled each file associated with the participant with a specific number to distinguish between 
the data of the Arab and Indian participants. This stage, known as ‘labelling RAW EEG,’ is where the final 
separation occurs between all registration sessions regarding the participant’s language type and gender. 
All the previous steps are in preparation for the pre-processing of the recorded data using the MATLAB 

Figure 2. T hree of the participants in the recording sessions during the acquisition of data.

Table 3. T he set of recorded words in both languages.
Arabic Hindi English Duration (s)
سيارة गाड़ी Car 5.00
أم माां Mother 5.00
بيت मकान House 5.00
كتاب पुस्तक Book 5.00
معلم अध्यापक Teacher 5.00
الوالد पपता Father 5.00
يوم पिन Day 5.00
ينام सो रहा Sleeping 5.00
بحر समुद्र Sea 5.00
أسبوع सप्ताह Week 5.00
أخت बहन Sister 5.00
لا ना No 5.00

Arabic and Hindi are phonetic languages. English words to clarify the meaning.
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program, specifically the open-source program EEGLAB (Delorme & Makeig, 2004). We applied several 
sequential steps to clean and purify the signals (unprocessed raw data) from noise and traffic, as shown 
in Figure 4. The data went through two cases of internal and external purification using many available 
and proven techniques and methods for processing, such as Independent Component Analysis (ICA) 
(Bugli & Lambert, 2006; Subasi & Gursoy, 2010). The data was cleaned of signals with frequencies outside 
the required range to distinguish the spoken words in both languages at a given frequency (0.1 and 
0.75 Hz) and purify the flat channel signals that recorded zero voltage. Additionally, certain parts of the 
generated brain signals were cut off due to the intensity of the noise at specific time intervals.

The PSD of the EEG data was visualized for each channel, with the theta (4–8 Hz), alpha (8–12 Hz) and 
beta (13–30 Hz) bands highlighted. The red dashed line indicates the 50 Hz frequency, typically associated 
with power line noise. From Figure 5, we observed the distribution of power across frequencies for each 
channel. The highlighted areas help in identifying dominant power in the theta, alpha and Beta bands, 
which are consistent with signals relevant to language processing. The presence of a peak at or around 
50 Hz would indicate power line noise.

Given the presence of 50 Hz power line artifacts, we applied a narrow notch filter to remove this 
narrow-band noise and its harmonics. The notch filter successfully eliminated the 50 Hz peak with minimal 
effects on the broader EEG spectrum. A notch filter targeted 50 Hz to remove power line noise from the 
EEG data. The PSD of the filtered data showed reduced 50 Hz power, indicating the filter worked. The 
broader EEG spectrum remained unchanged aside from the filtered 50 Hz noise. A 50 Hz notch filter was 
applied to the EEG data to remove power line noise, evident in the PSD visualization of the filtered data. 
The PSD as shown in Figure 6 highlighted the theta (4–8 Hz), alpha (8–12 Hz) and beta (13–30 Hz) bands. A 
dashed line at 50 Hz indicated the notch filter’s target frequency. Compared to the unfiltered PSD, the 50 Hz 
power was markedly reduced, demonstrating effective attenuation of power line noise. The remaining EEG 
spectrum stayed largely intact, with the notch filter specifically targeting and removing the 50 Hz interference.

After completing all the pre-processing stages, we obtained filtered data from most forms of noise. 
Additionally, we selected the data channels related to the areas of learning and language acquisition in 
the left hemisphere of the brain. This step reduced the number of recorded channels in the data and 
the size and number of data samples, preparing them for training and testing using machine learning 
techniques. Table 4 shows the channels used and the final samples. The data was converted and saved 
in.csv format after being processed from .edf and .mat formats to allow for accuracy training and testing.

EEG features extracting

Purification and filtering of signals from all forms of unwanted noise and frequencies is critical to initial-
izing an EEG signal to extract specific features about the subject of study. There are many techniques 
and algorithms for pre-processing and analysis to extract specific features. We are not here to discuss it 
in detail. To extract features from the EEG signals used in our study, we used some of them. Figure 7 
shows the steps involved in the feature extraction process.

Figure 3. E xperimental design used for data collection.
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4.1.  Distribution and primary spectroscopy

In the initial analysis or primary processing of the recorded signals by EEG technique, we note the 
contrast, difference and overlap for all power spectra between channels as in Figure 8. This discrep-
ancy results in difficulty in analyzing and inferring the constant frequencies of beta, alpha, theta and 
delta waves. with high-frequency spectral energies for some waves, such as delta and beta. The impact 
of this problem or difficulty can be reduced by using ICA, whereby the power spectrum of overlapping 
or dissimilar signals is separated into separate and individual components that facilitate analysis and 
processing.

Figure 4. R aw data Segmentation and Reduction: (a) Recording across 40 electrodes and data labelling; (b) Steps to 
remove extrinsic and Intrinsic artifacts; (c) EEG features extracting.
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Figure 5.  PSD for the original EEG data Theta, alpha and beta bands highlighted. Red dashed line indicates power line 
noise at 50 Hz.

Figure 6.  Power spectral density (PSD) of EEG data after applying notch filter at 50 Hz. The filtered data has attenuated 
50 Hz power while leaving the theta, alpha and beta bands intact, demonstrating effective removal of power line arti-
facts by the notch filter. A dashed line marks the 50 Hz target frequency.
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4.2.  Separation of multi-signals into components

The greater the number of electrodes or channels for recording brain signals, the more valuable and 
unhelpful information is generated, and this makes it difficult to study a specific functional or cognitive 
part of the brain, for example, diseases (such as epilepsy and Alzheimer’s), movement or stuttering, 
including learning and acquiring a second language, and many other functions resulting from the brain. 
Fourier analysis and wavelet transform are two methods that are commonly used and best suited for 
analyzing EEG data generated from each channel separately. Still, it is not appropriate or ideal for 

Table 4.  Data properties before and after processing.
During recording After processing

Subjects S1, S2, S3, S4, S5, S6, S7, S8 and S9 S1, S2, S3, S4, S5, S6, S7 and S8
Sessions 108 Sessions 48 Sessions
Number of samples 216 Files as raw data 96 Files as processing data
N/Name of channels ‘(40) PG1, FP1, FP2, PG2, F7, F3, FZ, F4, F8, 

A1, T3, C3, CZ, C4, T4, A2, T5, P3, PZ, P4, 
T6, O1, OZ, O2, X1, X2, X3, X4, BP1, BP2, 
BP3, BP4

BP5, BP6, BP7, BP8, DC1, DC2, DC3 & DC4’

(17) FP1, FP2, F7, F3, F4, F8, A1, T3, CZ, T4, 
A2, T5, P3, P4, T6, O1, O2

Brain regions Frontal, temporal, parietal and occipital lobes Frontal and temporal lobes
Data type Raw data (dynamic signals) Numeric data

Figure 7.  Diagram of the steps involved in the feature extraction.

Figure 8. O verlapping and dissimilar channels in the power spectra.
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predicting data from multi-channel recordings due to its random and non-stationary properties (Haufe 
et  al., 2014; Ryan et  al., 2017). Here, the ICA method emerges due to its distinctive statistical character-
istics, such as the statistical separation of the signals of independent sources from the multi-channel 
signals as shown in Figure 9(a).

It can also detect all subsequent changes in the brain by recording the electroencephalogram and 
estimating and distinguishing each signal separately, as shown in Figure 9(b). The extended ICA algo-
rithm or the logistic Infomax ICA algorithm with natural scaling feature is optionally used in the ICA 
process (Hebb & Ojemann, 2013).

4.3.  Final analysis of the power spectrum

EEG signals are passed into digital bandpass filters for analysis and separation into fixed and known 
frequencies, such as the delta-band (1–4 Hz), the theta-band (4.1–8 Hz), the alpha-band (8.1–13 Hz) and 
the beta-band (13.1–30 Hz) as in Figure 10.

When comparing the resulting energy levels for the same words in the two languages, we notice that 
there are different and varying frequency bands. This is evidence of functional and cognitive differences 
when trying to learn or acquire new language words, indicating that the learning and memorization 
mechanisms in the brain are not equal. In general, the results showed that the highest power range 
reached was 21 dB, and the lowest was −20 dB, as shown in Table 5.

When calculating the frequency domain characteristics of the signals, we applied the PSD, which is 
the basis for this purpose, as shown in Figure 8(a,b). We used non-parametric methods, such as Fourier 
transform, regularly computed through ‘Short Time Fourier-Transform (STFT)’ and the ‘Fast Fourier-Transform 
(FFT)’ algorithm for the signals, as shown in Figure 11(a,b). In general, spectrograms are the most effec-
tive tool for analyzing and processing speech signals.

Spectroscopy showed for random sample (S2 and S6) the highest brain activity occurred between 0 
and 700 ms, in Figure 12(a) within the frequency band of 10–26 Hz. And the highest brain activity 

Figure 9a.  By means of independent component analysis, multiple and intertwined signals at any frequency level were 
separated into their components by statistically independent sources. This example illustrates separation at 10 Hz, where 
we clearly notice a variation in the amount of power for each component.
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occurred between 0 and 700 ms, in Figure 12(b) within the frequency band of 10–30 Hz. These ranges of 
frequencies are the same as the alpha and beta bands, which oversee all language activity.

Data splitting

The pre-processed EEG data was divided into training and testing sets using an 80/20 split. In total, we 
get processed 96 files of data, as detailed in Table 4 of our manuscript. The 20% (8602 data points) 
testing set comprises approximately 19 files (calculated as 96 * 0.2 = 19.2, rounded down to 19). The 
remaining 80% (34,408 data points), amounting to 77 files, was utilized for training the model, while 20% 
was reserved for evaluating performance on unseen data. To ensure that the class distribution was pre-
served in both the training and testing sets, we employed stratified sampling during the splitting process.

Classification analysis

Our aim is to discover and identify the possible relationship between two languages through brain activity, 
whether functional or cognitive. We have developed a model to observe the potential correlation between 
the two language signals, depending on the training set used to train the proposed model. We prepared 
and tested different classifications in machine learning (Lotte et  al., 2018), such as RF, SVM, DT, XGBoost 
and CatBoost, to compare the accuracy of the proposed model for gathering as much information as pos-
sible about the brain during the process of learning and acquiring a second language. To optimize the 
performance of each classifier, we carefully tuned their respective hyperparameters. For the RF classifier,  

Figure 9b. S ignals recorded in several channels whose independent sources are statistically separated by the indepen-
dent components analysis.
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we set the number of trees (n_estimators) to 100 and the maximum depth of each tree (max_depth) to 
None, allowing the trees to grow until all leaves contain less than the minimum number of samples 
required to split an internal node (min_samples_split), which was set to 2. In the case of the SVM classifier, 
we employed the Radial Basis Function (RBF) kernel, which enables the model to capture non-linear rela-
tionships between the features. The regularization parameter (C) was set to 1.0, striking a balance between 

Figure 10.  Checking the popular spectra of powers: (a) delta frequency band, (b) theta frequency band, (c) alpha fre-
quency band and (d) beta frequency band.

Table 5. T he set of recorded words in both languages.
Frequency-bands DELTA (0.1–4.0) THETA (4.1–8.0) ALPHA (8.1–13.0) BETA (13.1–30.0)

Max. power (dB) 0–5 20 −1–0 −3 to −1
Min. power (dB) −18 to −20 −19 −20 −19 to −20
Max. power Freq (Hz) 0–1 5.8–6.2 12 17.5–18.5
Min. power Freq (Hz) 3–4 8 9 16

Arabic and Hindi are phonetic languages. English words to clarify the meaning.
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achieving low training error and maintaining model simplicity. The kernel coefficient (gamma) was set to 
0.1, determining the influence of individual training examples on the decision boundary. For the DT classi-
fier, we set the maximum depth (max_depth) to None, allowing the tree to grow until all leaves are pure 
or contain less than the minimum number of samples required to split a node (min_samples_split), which 

Figure 11a. T he power spectrum density (PSD) of Channel 2 by participant 3 when he pronounced Arabic words.

Figure 11b. T he power spectrum density (PSD) of Channel 19 by participant 3 when he pronounced Hindi words.
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Figure 12a. ST FT of Channel 2 by participant 3 when he pronounced Arabic words.

Figure 12b. ST FT of Channel 6 by participant 3 when he pronounced Hindi words.
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was set to 2. The minimum number of samples required to be at a leaf node (min_samples_leaf) was set 
to 1. Regarding the XGBoost classifier, we used a learning rate (eta) of 0.1, which controls the step size at 
each boosting iteration. The maximum depth of each tree (max_depth) was set to 6, limiting the complex-
ity of the model. The subsample ratio (subsample) was set to 1.0, indicating that all training instances were 
used for fitting each tree. Lastly, for the CatBoost classifier, we set the learning rate (learning rate) to 0.1, 
governing the step size at each boosting iteration. The maximum depth of each tree (max_depth) was set 
to 6, controlling the model’s complexity. The L2 regularization term (l2_leaf_reg) was set to 3, helping to 

Table 6.  Performance accuracy was measured for all models applied during the two recording sessions in Arabic and 
Hindi for all volunteers.
Model Multi-features S1 S2 S3 S4 S5 S6 S7 S8 Accuracy

RF PSD, STFT, ICA 65.00 66.00 85.00 73.00 68.00 69.00 75.00 72.00 71.63
SVM – 62.00 64.00 79.05 71.34 63.00 67.03 71.02 69.88 68.42
DT – 56.00 60.00 79.00 65.00 60.00 63.00 69.00 61.00 64.13
CatBoost – 63.99 65.89 85.99 73.33 79.51 70.41 79.89 77.52 74.57
XGBoost – 64.60 65.46 85.38 73.24 68.00 69.96 79.07 71.70 72.18

Figure 13a.  Confusion matrix for Cat boost.

Figure 13b.  Confusion matrix for XG boost.
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Figure 14. R eceiver operator characteristic curve for XG boost.

Table 7. R ecall results for each classifier on Arabic and Hindi language classification.
Classifier Recall (Arabic) Recall (Hindi)

RF 0.85 0.88
SVM 0.82 0.84
DT 0.79 0.81
XGBoost 0.87 0.89
CatBoost 0.89 0.91

prevent overfitting by adding a penalty term to the objective function. These hyperparameter settings were 
chosen based on a combination of domain knowledge, empirical results and best practices commonly 
employed in the field of machine learning. By carefully tuning these hyperparameters, we aimed to opti-
mize the performance of each classifier and ensure a fair comparison of their accuracy in capturing the 
relationship between brain activity and language learning.

Performance evaluation

To determine the extent of second language acquisition or learning by the human brain of the volun-
teers in this study, we resorted to determining and choosing the optimal performance of the model, 
where we applied four practical sequential steps as criteria for evaluating the proposed model. Among 
these criteria were accuracy in evaluating the performance of the classifier in depth and accuracy in 
general, as well as specific measures to evaluate the performance of classifiers. Moderate machine learn-
ing was proposed. All these criteria played an effective role in proving and evaluating the results achieved 
by the techniques used in distinguishing and determining the brain’s ability to acquire and learn the two 
languages under study (Hindi and Arabic). Here, we review the general formulas for the criteria used in 
the evaluation as in the following formulas:

	 Accuracy =
+

+ + +
×

TP TN

FP FN TP TN
100	 (1)

	 Precision =
+

×
TP

TP FP
100	 (2)

	 Sensitivity=
TP

TP + FN
	  (3)
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	 Specificity(Spe)=
TN

TN+ FP
	 (4)

	 Recall TP TP FN= +( )/ 	 (5)

Results and discussion

It is widely recognized among researchers and those interested in the field of linguistics, particularly 
neurolinguistics, that there are differences in the phonetics associated with language learning. The 

Figure 15a. T he performance metric for machine learning models for all participants.

Figure 15b.  Preferential comparison of classification models The Cat Boost model is the best with an accuracy of 
74.57%, the XG Boost model comes in second with an accuracy of 72.18% and the DT model is the worst in terms of 
accuracy at 64.12%.
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pronunciation of the alphabet varies between languages, and information related to spoken or imagined 
speech cannot be perceived directly based on pronunciation. Processing the signals of spoken or imag-
ined speech is necessary to extract this information, and one method for doing so is to process electro-
encephalographic signals to recognize the characteristics of the language being learned or acquired. In 
our experiment, we utilized various classifiers to identify language from the features we extracted from 
the participants, as shown in Table 1. The performance of the classifiers is presented in Table 6, with 
CatBoost and XGBoost achieving the highest accuracy. The confusion matrix for the best model is 
depicted in Figure 13(a,b), and the ROC curves are shown in Figure 14.

The recall results demonstrate the ability of each classifier to correctly identify instances of Arabic and 
Hindi languages based on the brain activity patterns. CatBoost achieved the highest Recall for both 
Arabic (0.89) and Hindi (0.91) languages, indicating its superior performance in minimizing false negative 
predictions. XGBoost also exhibited strong performance, with Recall values of 0.87 for Arabic and 0.89 
for Hindi (Figure 15(a,b)). Table 7 presents the recall results for each classifier. Also, Table 8 presents all 
values of other performance metrics.

Many scientific studies and research in various fields related to neurolinguistics are gaining more inter-
est nowadays. Some of these studies have dealt with the stages of linguistic development (Brown, 1973a, 
1973b; Byers-Heinlein et  al., 2017; Culbertson & Newport, 2015; Fernald et  al., 2006; Gleason, 1958; Rosch, 
1978; Roy et  al., 2015), while others dealt with language disorders in all their forms, such as aphasia 
(Breitenstein et  al., 2017; Cherney & Patterson, 2017; Garcia & Alves, 2020; Van Ewijk et  al., 2017) and 
studies that dealt with changes associated with language in the brain (Goucha et  al., 2017; John W.& 
Michel, 2019; Sliwinska et  al., 2017; Tremblay & Dick, 2016; Xiang et  al., 2012). Furthermore, some studies 
focused on the stages of infant or child brain acquisition of the mother tongue or second language at 
a young age (Kuhl, 2004; Perani et  al., 2011; Werker & Hensch, 2015). There have not been adequate 
studies or standard data regarding human brain learning and second language acquisition in terms of 
function and cognition by adults, which is what this study is looking for. Table 9 summarizes the most 
important studies on the human brain’s ability to learn and acquire a second language. It is noticeable 

Table 8. T he performance metric for machine learning models for all participants during two recording sessions for 
both Arabic and Hindi.

SVM% RF% DT% XG BOOST% CAT BOOST%

S1 Sensitivity% 75 65 68 67 68
Specificity% 49 64 44 61 64
f1-score 57 65 50 63 62
f1-score 67 65 61 66 66

S2 Sensitivity% 50 63 44 58 59
Specificity% 77 69 75 72 73
f1-score 68 67 65 68 69
f1-score 59 65 52 63 66

S3 Sensitivity% 94 87 83 89 90
Specificity% 63 81 73 81 85
f1-score 75 84 77 85 85
f1-score 82 85 80 86 87

S4 Sensitivity% 83 75 74 78 78
Specificity% 59 69 56 68 73
f1-score 67 72 62 72 72
f1-score 75 74 68 75 75

S5 Sensitivity% 79 70 72 72 73
Specificity% 47 65 48 62 67
f1-score 56 67 54 66 65
f1-score 68 69 65 69 69

S6 Sensitivity% 45 64 55 62 62
Specificity% 89 75 70 77 70
f1-score 73 71 65 72 73
f1-score 58 68 60 68 68

S7 Sensitivity% 57 66 54 66 66
Specificity% 63 67 58 65 64
f1-score 61 67 57 65 65
f1-score 59 67 56 66 66

S8 Sensitivity% 80 72 58 69 78
Specificity% 53 69 70 65 73
f1-score 56 70 63 68 72
f1-score 71 75 60 62 75
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that the studies focusing on learning and acquiring a second language are still in their infancy. This is 
one of the reasons why we conducted this study, which focused in part on neurolinguistics and brain 
activity during the second language learning stage. This work shows better performance than previous 
studies.

Discussion

All participants have never learned or spoken both languages. This is restricted to their native languages, 
Arabic or Hindi. Figure 16 shows the extent of distances and differences over time for a Yemeni 

Figure 17. S ome of the most active and beat-frequency channels from the language area of the brain. Here the two 
channels (F4, FP2) are better when pronouncing the Arabic language.

Figure 16. S calp plots indicating the channels with higher difference for Arabic, Hindi and the difference between the 
mean inter-trial distance in EEG signals of the two languages.
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Figure 18a. T he neural representations when an Arabic participant pronounce a term in Arabic.

Figure 18b. T he neural representations when an Arabic participant pronounce a term with the identical meaning in Hindi.
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Figure 19a.  shows the Indian participant’s neural representations of brain activity during the pronunciation of a Hindi 
word.

Figure 19b.  shows the Indian participant’s neural representations of his brain activity during the pronunciation of a 
word with the same meaning by Arabic.
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participant who speaks Arabic and Hindi, where high brain activity is found on the left hemisphere 
(frontal region) in the pronunciation of the Arabic language due to his prior knowledge of the words 
under study. In contrast, at the same stimuli, the experiments show a semi-low brain effort in pronounc-
ing Hindi.

The process of learning a new language can be hard for a number of reasons. Here, we’ll talk about 
the most important ones. First, the brain tends to construct a neural representation of unfamiliar stimuli, 
such as Hindi or Arabic words, which can take time and effort to establish. This can be particularly chal-
lenging for non-native speakers who are attempting to learn a second language. Second, the letters used 
in the two languages, such as Hindi and Arabic, are almost entirely different. This can make it difficult 
for learners to recognize and remember the new letters and their corresponding sounds, which can fur-
ther slowdown the process of language acquisition. Third, the length of words in different languages can 
vary significantly, which can affect the neural representation of words in the brain as detected through 
EEG. This difference in neural representation can contribute to difficulties when language learning and 
acquisition.

Figure 21. T he magnitude of the difference in brain activity when an Indian participant pronounced the same word in 
Arabic and Hindi.

Figure 20. T he magnitude of the difference in brain activity when a Yemeni pronounced the same word in Arabic and 
Hindi.
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In general, the study finds that through repetition and practice, the human brain creates a distinct 
neural representation for each word it learns. The neural representation of words in a native language is 
well-established and familiar to the brain, which makes it easier to process. On the other hand, learning 
new words in a different language requires building a new and unfamiliar neural representation. This 
makes the brain less precise and less active in the beginning stages of learning.

The experiment conducted an analysis to discover the channels that are most accurate in capturing 
the signals responsible for language. The following channels (FP1, F7, F3, T3, A1, P3, T5 and O1) were 
identified in the brain’s frontal region, where they showed the highest difference compared to the other 
channels, as depicted in Figure 17.

The Broca region and the Wernicke region of the brain, located in both the left frontal and the temporal 
lobes, are involved in language formation and learning. Figure 18(a,b) shows neural representations of brain 
activation when the Arabic participant spoke a word meaning the same in Hindi and Arabic (independent 
components analysis). Arabic is his mother tongue and the language he learned at an early age. Arabic has 
a high energy level in his pronunciation. On the other hand, as shown in Figure 18(b), brain activity 
decreases or disappears in several areas of the brain after learning and mastering a word in Hindi.

In Figure 19(a,b), ICA-based neural representations are obtained when the Hindi participant repeated 
the same phrase to convey the same meaning in both Arabic and Hindi. Since Hindi is his native lan-
guage and something he was taught at an early age, he displays a high level of vitality when speaking 
it. Brain activity decreases or is almost non-existent in some regions of the brain when trying to learn 
and understand the same term in Arabic, as shown in Figure 19(b).

To estimate the PSD of the signal, we used Welch’s method after dividing it into overlapping segments. 
Using this method, we were able to identify and compare with high precision the spectral characteristics 
of each signal of the Yemeni or Indian participant and learn the difference in the energy distribution of 
different frequency components between them when acquiring new words. In Figure 20, we notice differ-
ences in the power distribution between different frequency components when a Yemeni pronounces the 
same word in Arabic and Hindi. If it shows a clear difference in the amount of energy produced across the 
frequency and this is proof of the difference in the nervous system of the same word in the human brain.

Conversely, Figure 21 also shows differences in power distribution between different frequency com-
ponents when an Indian participant pronounces the same word in both Hindi and Arabic. If the amount 
of energy produced over the frequency is clearly different and this is proof of the difference in the 
nervous system of the same word in the human brain.

Figure 22. T he most distinct difference between the Arabic and Hindi data in power at 10 Hz in the ‘F7’ channel which 
is the closest to the Broca’s area.
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Figure 22 illuminates a prominent contrast between the Arabic and Hindi datasets regarding power 
at 10 Hz in the ‘F7’ channel, nearest to Broca’s area. The first row represents the Arabic data. The initial 
sub-figure exhibits the ‘F7’ channel’s power at 10 Hz over time, with PSD in dB/Hz on the y-axis and time 
in seconds on the x-axis. The succeeding sub-figure portrays the channel’s topographic map, where color 
denotes average PSD at 10 Hz across the 20-s interval. The second row displays the Hindi data. The first 
sub-figure illustrates power at 10 Hz over time for the ‘F7’ channel, with PSD on the y-axis and time in 
seconds on the x-axis. In sum up here the most distinct difference between the Arabic and Hindi data 
in power at 10 Hz in the ‘F7’ channel which is the closest to the Broca’s area.

Conclusions

Due to the scarcity of studies on brain activity during learning and acquiring a new language, espe-
cially the Arabic language. This study covers various studies on EEG data and explains the different 
methods used to record EEG signals during language learning and processing. We provide a detailed 
description of the EEG data we collected and processed in order to investigate the effects of learning 
a foreign language on the brain and to demonstrate the activity, specifically for Hindi and Arabic lan-
guage learning. We analyzed the brain signals using the EEGLAB software tool and extracted charac-
teristics associated with learning some words before thoroughly comparing the brain signals when 
acquiring new words in both languages. We also explored the relationship between the potential data 
vector resulting from the recorded brain signals during language acquisition and various classifiers 
through the implementation of multiple machines used to record EEG signals during language learn-
ing and processing. We provide a detailed description of the EEG data we collected and processed in 
order to investigate the effects of learning a foreign language on the brain and to demonstrate the 
activity, specifically for Hindi and Arabic language learning. We analyzed the brain signals using the 
EEGLAB software tool and extracted characteristics associated with learning some words before thor-
oughly comparing the brain signals when acquiring new words in both languages. We also explored 
the relationship between the potential data vector resulting from the recorded brain signals during 
language acquisition and various classifiers through the implementation of multiple machine-learning 
algorithms. The obtained classifier accuracy ranged from 64.12% to 74.56%. The study found that 
through repetition and practice, the human brain creates a distinct neural representation for each 
word it learns. The neural representation of words in a native language is well-established and familiar 
to the brain, which makes it easier to process. On the other hand, learning or acquiring new words in 
a different language requires building a new and unfamiliar neural representation, leading to less pre-
cise and less active brain function at the initial stages of learning, as illustrated in this work. In the 
future, we hope to identify the brain activity centers involved in learning more than just languages.
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