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Abstract—As a promising vehicular communication technology, Cellular Vehicle-to-Everything (C-V2X) is expected to ensure
the safety and convenience of Intelligent Transportation Systems (ITS) by providing global road information. However, it is
difficult to obtain global road information in practical scenarios since there will still be many vehicles on the road without
onboard units (OBUs) in the near future. Specifically, although C-V2X vehicles have sensors that can perceive their surroundings
and broadcast their perceived information to the C-V2X system, their line-of-sight (LoS) is limited and obscured by the
environment, such as other vehicles and terrain. Besides, vehicles without OBUs cannot share their perceived information. These
two problems cause extensive areas with unperceived information in the C-V2X system, and whether vehicles are in these areas is
unknown. Thus, extending the perceivable range of the limited scenario for C-V2X applications that require global road
information is necessary. To this end, this paper pioneers investigating the scenario inpainting task problem in C-V2X. To solve
this challenging problem, we propose an effiCient trAffic Scenario inpainTing (CAST) solution consisting of a generative
architecture and knowledge distillation, simultaneously considering the inpainting precision and computation efficiency.
Extensive experiments have been conducted to demonstrate the effectiveness of CAST in terms of Precise Inpaint Rate (PIR),
Rough Inpaint Rate (RIR), Lane-Level Inpaint Rate (LLIR), and Inpaint Confidence Error (ICE), paving the way for novel
solutions for the inpainting problem in more complex road scenarios.

Index Terms—C-V2X Scenario Inpainting, Generative Architecture, Knowledge Distillation, Intelligent Transportation Systems.
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1 Introduction

W ith the development of Intelligent Transportation Sys-
tems (ITS), Cellular Vehicle-to-Everything (C-V2X)

has been garnering significant research interests due to its
potential to support ubiquitous communication services for
ITS [1, 2, 3]. C-V2X enables vehicles to communicate with
other devices in ITS by equipping the on-board unit (OBU),
which ensures vehicle safety and improves traffic efficiency,
as well as providing recreation applications [4, 5, 6]. Specif-
ically, ITS applications will greatly benefit from C-V2X by
integrating line-of-sight (LoS) and non-line-of-sight (NLoS)
range information so as to gain global road information, i.e.,
all vehicle states on the road.

The aforementioned visions, however, are all based on the
same premise that every vehicle on the road is equipped with
an OBU that works properly, allowing vehicles to broadcast
their states for building global road information for the C-
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V2X system. Nevertheless, vehicles without OBUs will ex-
ist on the road for a long time due to the slow penetration
rate of C-V2X vehicles. The coexistence of vehicles equipped
with/without OBUs on the road makes it unrealistic to ac-
quire global road information, namely, the Missing Informa-
tion problem in C-V2X. Specifically, the information about
vehicles without OBUs and not appearing in the LoS of ve-
hicles with OBUs is unobservable, i.e., missed information
in C-V2X, for the C-V2X system since these vehicles cannot
broadcast their information to others. Correspondingly, the in-
formation about parts of the environment in the surroundings
of these vehicles is also unobservable. The missing information
in these unperceived areas (UPAs) will lead to the unexpected
invalidation of a huge number of C-V2X applications. C-V2X
services, in particular, that need global road information will
be unavailable when the vehicle is unable to obtain compre-
hensive information about its surroundings [7]. For instance,
in the classic forward collision warning scenario [8], the vehicle
equipped with OBU also cannot perceive an obscured vehicle
ahead if neither vehicle in front is equipped with a C-V2X
device. Thus, the forward collision warning scenario would no
longer alarm the danger at the time in this situation. More-
over, when it comes to efficient cooperative lane changes for
C-V2X vehicles [9], the missing information in UPAs would
impede the C-V2X system from improving traffic congestion.
Therefore, it is crucial to eliminate the negative impact of the
missing information in UPAs to improve the reliability and
efficiency of the C-V2X system.

Unfortunately, the missing information problem in UPAs
of C-V2X scenarios is still unsolved in the existing works.
Thus, we place a great deal of emphasis on this problem in
this paper and we call it the C-V2X scenario inpainting task
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that aims to recover the missing information, especially the
position of vehicles located in UPAs, focused in this paper,
for C-V2X scenarios. Through analysis, there are two feasible
ways to settle this task, (1) deploying sufficient monitors on
the roadside to obtain timely road information that cannot
be collected by the sensors of vehicles with OBUs, which can
effectively supplement the information obtained by the vehicle
with OBU; (2) building a road information inpainting model
that generates overall information on the road by analyzing
the known information.

The aforementioned first method is feasible in some cases
by deploying enough monitors to cover the overall area on
the road. However, the high cost and easily affected sensing
distance of those monitors due to the uncontrollable weather
or environment limit the effectiveness of this method in
most cases. Specifically, in a heavy fog day or other extreme
weather, the range of sensors in both monitors and vehicles
is extraordinarily limited, making it difficult to effectively
perceive the information on the road. In contrast, the afore-
mentioned second method is more effective in the majority
of situations due to its economy and ability to adapt to the
environment. Therefore, we focus on the second method in
this paper, which builds an artificially intelligent algorithm to
infer information about UPAs in C-V2X by analyzing known
road information. However, it is challenging to effectively
inpaint the C-V2X scenario based on incomplete information.
Fortunately, the significant success of video inpainting [10]
and vehicle trajectory prediction [11] tasks, inferring unknown
information based on known information, inspires us to make
efforts in this C-V2X scenario inpainting. Nevertheless, it is
infeasible to directly utilize the existing methods from video
inpainting and vehicle trajectory prediction tasks in the C-
V2X scenario inpainting task due to two crucial disadvantages:
1) vehicle trajectory prediction methods do not consider the
UPAs, but only focus on the paradigm that generates the
future state of vehicles based on the historical state of vehicles;
2) the video inpainting methods ignore the impact of the
interaction between vehicles and the characteristics of the
unidirectional traffic flow on the road. Hence, it is necessary
to come up with a new method to adapt the features of the
C-V2X inpainting task.

As a pioneering work in C-V2X inpainting, we focus on
the recovery of the position of vehicles located in UPAs
because it is the most significant aim of this task. Given
there are some inherent correlations between the behavior
of vehicles and it is feasible to inpaint UPAs by learning these
relationships, we propose a generative adversarial network
and knowledge distillation-based effiCient trAffic Scenario
inpainTing (CAST) model to accurately inpaint the C-V2X
scenario as well as consider the computation efficiency, to
restore the position of vehicles in UPAs in real-time. The
main contributions of this paper are summarized as follows.

• This paper pioneers to address the Missing Information
problem in C-V2X scenarios due to the coexistence of
vehicles with/without OBUs and concludes this problem
as a C-V2X scenario inpainting task to facilitate other
researchers attending in solving this problem.

• This paper creates a local and global generative adver-
sarial model to realize the C-V2X scenario inpainting.
Given the different degrees of influence of diverse per-
ceived areas (PAs) on diverse UPAs, a sorting algorithm

is proposed for UPAs to guide the generating process
of the local generative adversarial model. Due to the
lag of interaction between vehicles, a group trajectory
prediction (GTP) model is proposed to further extract
the potential interaction between vehicles in PAs and
UPAs.

• Given the limited computation capacity of edge devices
deploying the inpainting model and the low latency
requirement of some C-V2X applications, the inpainting
efficiency is also a key factor for practical implementation.
Thus, an architecture based on cross-model distillation
and self-distillation is proposed to ensure inpainting
precision and efficiency simultaneously.

• To measure the performance of the proposed solution
for the C-V2X scenario inpainting task, this paper
proposes four metrics, including Precise Inpaint Rate
(PIR), Rough Inpaint Rate (RIR), Lane-Level Inpaint
Rate (LLIR), and Inpaint Confidence Error (ICE), re-
spectively.

The rest of this paper is organized as follows. Section
2 reviews the literature. The C-V2X scenario inpainting
problem is addressed in Section 3. In Section 4, we detail
the method of processing the dataset. In Section 5, we further
introduce the architecture of CAST. In Section 6, we evaluate
the performance of the CAST. Finally, Section 7 summarizes
this paper.

2 Related Work
Considering the fact that the C-V2X scenario inpainting is a
brand-new task first introduced in this paper, we discuss and
summarize the two crucial fields that inspired us to work out
this problem, including the video inpainting and the vehicle
trajectory prediction task, in this section.

2.1 Video Inpainting
In the past decades, image inpainting methods have achieved
great success[12, 13, 14]. However, it is difficult to directly ap-
ply the image inpainting method to the video frame inpainting
due to a lack of consideration of temporal consistency. Video
inpainting methods can be divided into two types, including
traditional methods and deep learning-based methods. The
patch-based single image inpainting method was extended to
the video inpainting task at the beginning [15, 16]. However,
traditional methods are confronted with the high computa-
tional cost problem. Thus, deep learning-based methods are
proposed to provide more efficient and effective ways. Wang
et al. [10] developed a method by merging 2D and 3D convolu-
tion to recover the unknown information of the video. Li et al.
[17] designed an end-to-end framework for flow-guided video
inpainting by designing an architecture with three modules.
Given the effectiveness of GAN in guiding image generation,
many works utilize GAN to improve the result of video in-
painting. Wu et al. [18] proposed a spatial-temporal Nested
GAN (STN-GAN) for video inpainting by comprehensively
considering the temporal and spatial information. Zou et al.
[19] designed an end-to-end deep network that contains a
new temporal shift-and-aligned module (TSAM), which uti-
lizes the GAN loss function to train the model. Ke et al.
[20] augmented the process for training the temporal patch-
based GAN by utilizing a novel multi-class discriminator that



XXXXXXXXX 3

Table 1
comparison of existing work

Related work
Feature Vehicle interaction UPAs Inferring unknown Unidirectional flow Global interaction Prediction priority

Vehicle trajectory prediction ✓ 5 ✓ ✓ 5 5
Video inpainting 5 ✓ ✓ 5 ✓ 5
CAST ✓ ✓ ✓ ✓ ✓ ✓

includes a spatiotemporal attention module (STAM). Nguyen
et al. [21] proposed an improved GAN-based method for image
inpainting by utilizing multiple generators and discrimina-
tors. Cha et al. [22] presented a GAN-based method that
uses a dynamic attention map (DAM-GAN) to reduce pixel
inconsistency disorder resulting from fake textures. On the
basis of SN-PatchGAN [23], Zhang et al. [24] proposed the
Adaptive Style Fusion Network (ASFN) for video inpainting.
This method significantly improves the model convergence
and the quality of inpainting.

2.2 Trajectory Prediction

The existing vehicle trajectory prediction methods can be
classified as physics-based methods, maneuver-based methods,
and interaction-aware-based methods [11, 25, 26], respectively.
The physics-based method can achieve fast vehicle trajectory
prediction. However, the physics-based method can merely
be used for short-time and low-precise vehicle trajectory
prediction because it only takes the physical regular of the
vehicle and the temporary vehicle state into account for
predicting the future vehicle trajectory but overlooks the
impact of the environment [27]. The maneuver-based method
regards each vehicle as an independent entity that contains a
series of maneuvers in each movement period. Wang et al. [28]
used a Bayesian inference network to determine the driving
behavior of the current vehicle and, at the same time, to judge
the predicted trajectory of the vehicle based on the physical
information. Mandalia et al. [29] proposed the method of
using a support vector machine to judge vehicle lane change
decisions and predict vehicle trajectory. Yoon et al. [30]
presented a method of realizing lateral motion prediction
(MLP) by using a multi-layer perceptron model. Although
both the physics-based method and the maneuver-based
method are efficient and interpretable, the precision of the
predicted vehicle trajectory in the two methods is not up to
expectations due to the neglect of the interactions between the
vehicle and its surroundings. Therefore, researchers gradually
turned their attention to the interaction-aware-based method,
which takes full advantage of the interaction between the
vehicle and its surroundings. In addition, recent works propose
to utilize deep learning to solve the above complex problem
thanks to the development of big data and hardware. Park et
al. [31] designed an encoder and decoder-based architecture
that uses a Long Short Term Memory (LSTM) encoder to
analyze past trajectory information, an LSTM decoder to
generate future trajectory information, and beam search to
search the final result on an occupancy grid graph. Cai et al.
[32] presented a model that can extract the deep relationships
of surrounding vehicles.

2.3 Summary
In light of the aforementioned related works, we can make
the following preliminary summary: (i) the major video
inpainting methods utilize the known temporal and spatial
information in the frame sequence of video for inpainting;
(ii) the prevailing vehicle trajectory prediction methods take
full advantage of the time series and the spatial interaction
between the target vehicle and its surroundings to predict the
future trajectory of the vehicle. As shown in Table 1, methods
for both domains are all able to infer unknown information by
the known information. In addition, we understand the C-V2X
scenario inpainting task based on the above insights. First, the
C-V2X scenario inpainting task aims to infer the position of
unperceived areas on the road based on known information,
which is similar to the video inpainting task. However, the
interaction between the objects in the C-V2X scenario is
global, which can impart one by one, and the movement of
the objects in the C-V2X scenario is directed. Furthermore,
the current state of the vehicles in the known areas is related
to their historical state, as well as the interaction between
the vehicles in the known and unperceived areas, which is
similar to the vehicle trajectory prediction task. Nevertheless,
the state of the vehicles in the unperceived areas is unknown.
In addition, the methods in both domains do not consider
the prediction priority caused by the diverse strength of
interaction between perceivable areas and unperceived areas.
Inspired by the aforementioned insights, we reach some
new ideas to solve the above problems, (i) a GAN-based
model will be proposed to extract the temporal and spatial
information for inpainting the C-V2X scenario; (ii) a priority
sort algorithm will be designed to enhance the effect of the
state of the known areas; (iii) the group vehicle trajectory
prediction model will be designed to extract the interaction
between the vehicles in the perceivable and unperceived areas.
Moreover, additional contributions will be made to improve
the performance and effectiveness of our solution.

3 Problem Formulation
Given the Information Missing problem in the C-V2X system
due to the limited penetration rate of OBUs, the vision
promised by C-V2X cannot be ensured. In order to tackle this
issue, we propose CAST for realizing the scenario inpainting of
the C-V2X system by taking advantage of the known informa-
tion of C-V2X, which jointly considers the inpainting accuracy
and computation efficiency. In this section, we introduce the
basic preliminaries of CAST. Firstly, we describe the scenario
without the global insight into the road in C-V2X. Then, a
comprehensive outline of CAST is given.

3.1 C-V2X Scenario
In this paper, we take into account that both vehicles with
OBU and without OBU co-exist on the road. As shown at the
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Figure 1. The architecture of CAST.

bottom of Fig. 1, black vehicles are equipped with OBUs,
and gray vehicles are without OBUs. It is assumed that
every vehicle with OBU can perceive the information of its
surroundings, such as the state of other vehicles, by using its
sensors that are limited by the environment and broadcast its
own and surrounding information to the C-V2X system. In
addition, we suppose that the LoS of each vehicle with OBU
is r, which varies depending on the environment. For example,
under foggy conditions, the LoS of the sensor must be shorter
than that under sunny conditions. Moreover, the LoS of
the vehicle can be obstructed by other vehicles or obstacles,
which further limits its perceived range. Thus, there are two
categories of areas on the road, unperceived area (UPA), and
perceived area (PA), respectively. This paper aims to inpaint
the UPAs, namely infer the position of unknown vehicles in
the UPAs, to extend the range of PAs by taking advantage of
the states of the vehicles in PAs.

It is obvious that the state of vehicles is affected by each
other. For example, vehicles would decelerate if there is a
vehicle in its front and the speed is lower than it. With the
important insight above, we fully utilize the states of vehicles
in PAs to extract the interaction between vehicles, so as to
inpaint the UPAs. The states of the vehicle are defined as
v = {x, y, s, a}, where x and y are the coordinates of vehicles,
s represents the velocity of the vehicle, and a denotes the
acceleration of the vehicle.

3.2 CAST Overview
CAST inpaints the C-V2X scenario by comprehensively ana-
lyzing the perceivable information in C-V2X. However, it is
difficult to directly utilize the road state in C-V2X due to the
sparsity of vehicles with OBU and inconsistent information
on the road. Therefore, it is necessary to preprocess the road
state, as shown in the top-left of Fig. 1, the preprocess section
is divided into two components, which are road gridding and
LoS inpainting, respectively. The first component divides the
road into occupied grids G that are filled with the states
of the road segment. Furthermore, the range of PAs can be
first extended to the area in the LoS of vehicles with OBU

Table 2
Notations

Notation Description
v States of the vehicle
O Sequence of UPAs
oi The i-th RUPA
Y Real state of the RUPAs
Ŷ Generated state of the RUPAs
G Occupied grids
gj Vector of j-th grid cell
gjr States of j-th grid cell
gjv Embedded vector of vehicle state of j-th grid cell
U Sequence of RUPAs in this road
ui The i-th RUPA
Vu Number of C-V2X vehicles in each RUPAs
X Temporal road state
XG Input of GTP
So Shallow output
Sh Hidden feature set of shallow output
do Output of the model trunk
dh Hidden features of the model trunk
To Output of the big teacher model

by broadcasting their sensing information. Thus, the second
component pre-inpaints the PAs based on the LoS of the
vehicles with OBU. This part will be detailed in Section 4.

The C-V2X scenario inpainting is carried out to recover
the states of vehicles in UPAs in the second section of CAST.
Considering inpainting the near UPAs to PAs is easier than
the further ones as the influence is more apparent in these
UPAs, it is necessary to inpaint UPAs according to their
importance one by one. UPAs, however, are irregular in their
shape normally, making it difficult to inpaint them sequen-
tially. To this end, we divide the road grid into some regions
of equal size, abbreviated as RUPAs, including PAs and UPAs,
which are the basic units in inpainting progress. The UPAs to
be inpaint in one RUPA would be marked. Then, RUPAs are
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sorted according to their importance to guide the inpainting
process; the RUPA with the highest priority is selected for
inpainting in each generation period. The order subsequence
of RUPAs is defined as O = {o1, ..., oi, ..., on}, where oi
represents the priority of the i-th RUPA and n denotes the
number of RUPA of the road. Then, the generative model is
utilized to inpaint the C-V2X scenario iteratively according to
O, as shown in Fig. 1, which will be detailed in Section 5. At
the end of each inpaint period, the inpainted RUPA is added
to the original road grids to help the inpainting of the next
period until all RUPAs have been inpainted. In a word, CAST
aims to inpaint all of the RUPAs of the road by the known
information and the priority sequence of RUPAs, which can be
defined as Ŷ = F({G}ti=t−w, O), where {G}ti=t−w represents
the temporal road state from time t− w to t, and Ŷ denotes
the generated state of the RUPAs at time t. The optimization
objective of CAST is to precisely inpaint the state of the
RUPAs, which can be defined as,

min
θF
L(F({G}ti=t−w, O), Y ), (1)

where θF represents the parameters of the model of CAST,
and Y denotes the real state of the RUPAs at time t. L
denotes the deviation between the real state of the RUPAs
and the inpainted result generated by CAST. Furthermore,
the main symbols are shown in Table 2.

4 Data Process
Considering the spatial complexity of UPAs on the road, it
is crucial to process data before inpainting the UPAs. In this
paper, the road is divided into occupied grids to normalize
the road state and transform the original problem into the
problem of generating the state of grids to recover the possible
vehicle position. In addition, the state of C-V2X vehicles that
can be directly sensed by them should be populated in the
occupied grids before using the inpainting model.

4.1 Road Gridding
This paper represents the road state on occupied grids
inspired by image processing, where each grid cell represents
the local road state in this scenario, as shown in Fig. 2. It
is assumed that G represents the occupied grids with the
dimension of N ×M × H , where N denotes the number of
grids expanded horizontally by lanes, M is the number of the
lane, and H is the dimension of the high-dimensional vector
embedded in the grid. In addition, the size of each area of
a grid cell in spatial is consistent to normalize the occupied
grids, which is defined as Wgrid × Lgrid, where Wgrid and
Lgrid are the width of the grid cell and length of the grid cell,
respectively. In this paper, Wgrid is set to be the width of the
lane, and Lgrid is set to be the length of a normal vehicle.

In this paper, the grid cell is defined as gj = {gjv
∪
gjr},

where j indicates the j-th grid and gjv = {x, y, s, a} is the
embedded vector of vehicle state when there is a car in this
grid cell, otherwise gjv = {x, y, 0, 0}. The gjr = {c, e, q, l, f}
represents the state of the j-th grid cell, where c indicates
whether there is a car in this grid cell. e indicates whether
the grid cell is in UPAs. q represents whether the grid cell is
in the area to be inpainted in this inpainting period, which
is initially set to be 0. l and f are the congestion state of

�

�

�: Line of sight of the vehicleThe vehicle with OBU

The vehicle without OBU Sharing information

�

Figure 2. The C-V2X scenario.

the current lane and the traffic flow of this road, respectively.
Thereby, we normalize the road condition and transform the
complex brand-new problems into a similar form as the video
inpainting problem of GAN by representing the road state
with occupied grids.

4.2 LoS Inpainting
First, the states of C-V2X vehicles are filled in the occupied
grids for inpainting the UPAs. In this paper, the states
of a vehicle vx = {x, y, s, a} are added to the occupied
grids according to the coordinates of its center. Thereby,
the occupied grids of C-V2X vehicles are obtained. As the
sensors of C-V2X vehicles are able to perceive other vehicles
within their LoS, as shown in Fig. 2, and the states of these
perceived vehicles can be broadcasted to the C-V2X system,
these perceived vehicles vs = {x, y, s, a} can also be added to
the occupied grids. The LoS of the C-V2X vehicle, however,
is not immutable and frozen due to the range of sensors being
very vulnerable to the impact of the environment, such as
on a foggy day. Thus, we simulate the effect of different
weather conditions on the LoS of vehicles by setting various r
in the simulation experiment section. In this way, abundant
information is utilized in this paper for UPAs inpainting.

Figure 3. The outline model architecture of CAST.

5 Model Architecture
As shown in Fig. 3, CAST consists of the following five compo-
nents, RUPAs sorting algorithm, global generative adversarial
model, local generative adversarial model, group trajectory
prediction model, and knowledge distillation module, respec-
tively, to precisely and efficiently inpaint the C-V2X scenario.
More details about the outline model architecture of CAST
are provided in the supplementary file.
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Algorithm 1: RUPAs Sorting Algorithm
Input: Occupied grids G;

1 Divide G into RUPAs sequence
U = {u0, ..., ui, ..., un};

2 Initialize O ← [ ];
3 Initialize Vu = {vu0 , ..., vui , ..., vun}, ∀ vui ← 0;
4 for i← 0 to n do
5 vui ← the number of vehicles in ui

6 end
7 for i← 0 to n do
8 index← argmax(Vu)
9 if index > 1 then

10 vindex−1 ← vindex−1 + vuindex
11 end
12 else
13 vindex+1 ← vindex+1 + vuindex
14 end
15 vindex ← −100
16 Add uindex into O
17 end
18 return O

5.1 RUPAs Sorting Algorithm
CAST is used to inpaint the C-V2X scenario for extending the
perceivable range of the C-V2X system, namely generating
the likely state of UPAs. Inpainting the C-V2X scenario pre-
cisely, however, is a challenge due to the intricate interactions
of vehicles on the road. Fortunately, there are some intuitive
phenomena that can be utilized to simplify our problem. First,
the farther away the vehicle is, the less affected it will be by
the current vehicle from common sense and vice versa. Then,
the influence of the vehicle can be transmitted farther away
by the midst vehicle. Take the phenomenon of ghost traffic
jams, The influence caused by the deceleration behavior of
the vehicle in the front of the lane will be transferred by the
vehicle in the middle to the rear of the vehicle in turn. Based
on the aforementioned viewpoints, we propose a RUPAs
Sorting algorithm, which orders all RUPAs on the road in
terms of importance and selects the best UPA successively for
inpainting.

The detailed steps of the RUPAs Sorting algorithm are
shown in Algorithm 1. First, the road grid is divided into
some RUPAs of equal size, which contain some UPAs with
irregular shapes. The sequence of RUPAs is defined as
U = {u0, ..., ui, ..., un}, where ui represents the i-th RUPA,
and n is the number of RUPAs in the occupied grids. The
task of C-V2X scenario inpainting, thereby, is decomposed
into multiple sub-tasks of RUPA inpainting. After that, the
priority of each RUPA can be computed by its importance.
The importance of each unit in the occupied grids is inter-
related to the distance from other vehicles equipped with
OBU according to the previous point of view. Thus, we
suppose that the initial priority of each RUPA is represented
by the number of C-V2X vehicles in this RUPA, and then
dynamically adjust the priority of each RUPA to simplify the
computing process. The initial priority sequence of RUPAs is
set to be an empty list, as shown in Line 2 in Algorithm 1. The
list of the number of C-V2X vehicles in each RUPA is defined
as Vu = {vu0 , ..., vui , ..., vun}, where vui is the number of C-V2X

vehicle in ui. In each process of Lines 9-20, we always select the
RUPA with the highest vu, then the vu of its neighbor RUPA
is adjusted by its vu to transfer its importance. Finally, the
priority of each RUPA for inpainting O = {o1, ..., oi, ..., on}
is obtained.

Figure 4. The architecture of the global generator in CAST.

Fake

Scenario

Global

Generator
Global

Discriminator
S

×�

Optimize DOptimize G
Real

Scenario

Observation

Figure 5. The overall architecture of the global generative adversarial
model in CAST.

5.2 Global Generative Adversarial Model
The global generative adversarial model aims to pre-inpaint
the C-V2X scenario before inpaint each RUPA according
to its priority by providing a global sight. In this way,
CAST will not over-focus on RUPA with higher priority.
As shown in Fig. 4, the global generator does not take the
local features of a single RUPA into account, but the global
features are only considered to inpaint the whole gridded
road state. Thus, it does not consider the priority order of
RUPAs. First, the global observation X = {Gi}ti=t−w passes
the 3D convolution layers; its temporal-spatial interaction
information is extracted. Then, the extracted representation
is sent to the Gate Recurrent Unit (GRU) convolution layer to
further extract its temporal-spatial interaction information.
The expression functions of each GRU cell are defined as,

zt = σ(W (z)xt + U (z)ht−1), (2)

rt = σ(W (r)xt + U (r)ht−1), (3)

h
′

t = tanh(Wxt + rt ⊙ Uht−1), (4)

ht = zt ⊙ ht−1 + (1− zt)⊙ h
′

t, (5)

where zt denotes the update gate, and rt represents the reset
gate. h′

t is the current memory content, and ht is the final
memory at the current time step.
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The global generative adversarial architecture is shown in
Fig. 5. More details about this architecture are provided in
the supplementary file. In this paper, we adopt Wasserstein
GAN-gradient penalty (WGAN-GP) [33, 34] as the training
framework. In this way, the discriminator will score the sam-
ples of the unperceived RUPAs to express how real the input
sample is. Specifically, the score by the global discriminator
can be defined as bglobal = D(X,Yd), where Yd represents the
real or generated road state of the RUPAs. The objective loss
functions of the global inpainting module are defined as,

Lglobal
d = Ex∼P global

g
[bglobal]− Ex∼Pr [b

global]+

λEx∼χ[|| ▽x bglobal||p − 1],
(6)

Lglobal
g = −Ex∼P global

g
[bglobal]. (7)

In addition to the adversarial loss, we also design a
regularization term for the global generator to guide the
training process of the global generator. The regularization
term is defined as follows,

Lglobal
re = ||Y global − Ŷ global||22. (8)

Therefore, the overall loss function of the global generative
adversarial model is defined as,

Lglobal = Lglobal
d + Lglobal

g + Lglobal
re . (9)

5.3 Local Generative Adversarial Architecture

Figure 6. The architecture of the local generator in CAST.

Sort

Sample

Local

Generator

Local

Discriminator
S

×� ×�

Observation Real RUPAs

Optimize D
Optimize G

Iteration

Figure 7. The overall architecture of the local generative adversarial
model in CAST.

Considering that inpainting the UPAs closer to PAs is
easier than the further ones, this is due to the fact that
the interaction between the vehicles in the nearer UPAs and

PAs is more remarkable than in the more distant UPAs, it is
necessary to preferentially inpaint the near UPAs, namely, the
RUPAs with higher priority. In the local generator, we design
an iterative inpainting strategy according to the priority
sequence of the RUPAs to take full advantage of the inpainted
information of the RUPAs with higher priorities. First, the
pre-inapinted result from the global generator is also merged
into the input of the local generator as Step 1 in Fig. 3. In
the iterative inpainting strategy, the RUPA with the highest
priority will be inpainted first by the local generator, and then
the inpainted RUPA will be merged with the current input of
the local generator as Step 2 in Fig. 3. Finally, the inpainting
process will end when the RUPA with the lowest priority has
been inpainted, as shown in Step 3 in Fig. 3, and the inpainted
result will be output.

As shown in Fig. 6, the local generator uses 3D convolution
layers, GRU convolution layers, and 2D convolution layers
to extract the temporal-spatial interaction information. The
state of the target RUPA that needs to be inpainted in this
inpainting period is utilized to help the local generator focus
on this RUPA, and the features of this RUPA are extracted
by the 2D convolutions. Moreover, given that the influence
of interaction between vehicles has a certain hysteresis, re-
constructing the current C-V2X scenario by analyzing the his-
torical state of the C-V2X scenario is a feasible way to further
extract the interaction between PAs and UPAs. Therefore,
the group vehicle prediction-based check module is designed
to further extract this interaction. The details of the group
vehicle trajectory prediction model are discussed in the next
section. Then, all the extracted information is added. Finally,
the inpainted RUPA is obtained by the transport convolution
layers.

The local generative adversarial architecture is shown in
Fig. 7. More details of this architecture are provided in the
supplementary file. The objective loss functions of the local
inpainting module are defined as,

Llocal
d = Ex∼P local

g
[blocal]− Ex∼Pr

[blocal]+

λEx∼χ[|| ▽x blocal||p − 1],
(10)

Llocal
g = −Ex∼P local

g
[blocal]. (11)

Aside from the adversarial loss function, we also add
a regularization term for the local generator to guide the
training process of the local generator. The regularization
term is defined as follows,

Llocal
re =

1

n

n∑
i=1

||Y local
i − Ŷ local

i ||22. (12)

Thus, the overall loss function of the local generative
adversarial model is defined as,

Llocal = Llocal
d + Llocal

g + Llocal
re . (13)

5.4 Group Vehicle Trajectory Prediction Model
Given the lag nature of vehicular interactions, we propose a
group vehicle trajectory prediction model to further extract
this interaction between UPAs and PAs, namely GTP. More
details about GTP are provided in the supplementary file.



XXXXXXXXX 8

×4

Observation

3D Conv

Residual

Group Trajectory Preidctor

Flatten

Decoder

Road States

Figure 8. The architecture of the group trajectory prediction model
in CAST.

Figure 9. The architecture of self-distillation and cross-model distilla-
tion.

5.5 Knowledge Distillation

Although the above model can precisely inpaint the RU-
PAs, its low computation efficiency makes it unbearable
for some computation-limited C-V2X infrastructures when
deploying this model. Therefore, it is essential to ensure the
computation efficiency and the inpainting precision of the
model before deploying it to the real C-V2X scenario. To
date, the KD technology has been extensively verified in a
model compressor, and it can obtain an excellent tradeoff
between efficiency and precision. Thus, inspired by [35], we
design a KD-based architecture to simultaneously improve
computation efficiency and inpainting accuracy. As shown
in Fig. 9, we combine the self-distillation and cross-model
distillation frameworks to optimize the model ready for
deployment, which contains two shallow inpainting branches
for generating shallow inpainting output, an inpainting trunk
for generating deep inpainting output, and a big teacher model
for transferring its dark knowledge to the model ready for
deployment. This architecture is suitable for the promising
cloud-edge framework, in which the big teacher model can be
trained and deployed in the cloud equipped with sufficient
data and computation capability, and the tailored model that
will be deployed at the edge can be trained by the knowledge
from the big teacher model and the self-distillation. This
tailored model could be a personalized model for a specific
scenario. We suppose that the shallow output set is defined
as So = {s1o, ..., sKo }, where K = 2 in this architecture,
and the hidden feature set of shallow branches is defined
as Sh = {s1h, ..., sKh }. The output and hidden features of
the model trunk are defined as do and dh, respectively. The
output of the big teacher model is defined as To. As shown in
Fig. 9, we design some distillation paths to transfer knowledge
in this architecture. These distillation paths are divided into
two classes, the self-distillation path, and the cross-model

distillation path. The self-distillation loss is defined as,

Ls
dis =

1

K

K∑
k=1

(
(1− α)LBCE(s

k
o , r) + αLKL(s

k
o , do)+

λL2(s
k
h, dh)

)
,

(14)
where LBCE is the binary entropy loss, LKL is the Kullback-
Leibler divergence, L2 denotes the mean square error. The
cross-model distillation loss is defined as,

Lc
dis = LKL(do, To). (15)

A brief rationale for the effectiveness of the knowledge distil-
lation model in improving the training process of the C-V2X
scenario inpainting model is provided in the supplementary
file.

Finally, the inpainting model trained by distillation ar-
chitecture also considers the adversarial loss. Therefore, the
overall objective loss function of CAST can be expressed as,

LCAST = Lglobal + Llocal + Ls
dis + Lc

dis. (16)

6 Simulation and Performance Evaluation
This section conducts the performance evaluation of our
proposed effiCient trAffic Scenario inpainTing (CAST). First,
we introduce the experimental environment. Second, the
evaluation metrics proposed in this paper for the brand-
new C-V2X scenario inpainting problem are detailed. Finally,
the experimental simulations are conducted to evaluate the
performance of CAST.

6.1 Parameter Settings
To validate the performance of inpainting the C-V2X scenario
of CAST, we implement the simulation based on the traffic
data of the HighD dataset (real-world data) [36] and SUMO-
DS (synthetic data). SUMO-DS generated from SUMO tool
[37]. More details on dataset are provided in the supplemen-
tary file. The size of the road network of SUMO-DS is set to
1500m× 1500m; this road network in a grid shape contains
16 junctions and 40 roads. There are 700 to 900 vehicles on
the road network in SUMO-DS on average per second. Then,
the C-V2X scenario is simulated by these road data. In this
simulation, the length of each road segment is set to be 300m,
and the probability of a vehicle equipped with an OBU device
and the maximum distance of the LoS of each C-V2X vehicle
are both variables.

We use Python 3.8 to implement CAST, and the model of
CAST is built by Pytorch 1.12.1. To optimize the proposed
model, we use Adam as the optimizer. The learning rate
and factor decay of training are assigned as 0.0004 and 0.5,
respectively. The batch size and trained epochs are set to
512 and 1000, respectively. All experiments are run on the
machine with Intel Xeon Gold 6226R CPU@2.90GHZ with
128GB memory. In addition, more simulation parameters are
shown in Table 3. The source code and the dataset of this
paper are available at link1.

1. https://github.com/NetworkCommunication/PEER
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Table 3
Simulation parameters

Parameter Value
Network size of SUMO 1500m× 1500m

Number of junctions of SUMO 16
Number of roads of SUMO 40
Number of vehicles of SUMO 700∼900
Vehicle speed of SUMO 0∼30m/s
Length of the road segment 300m
Learning rate 0.0004
Factor decay 0.5
Batch size 512
Epochs 250
Proportion of C-V2X vehicle 0.1, 0.2, 0.3, 0.4, 0.5
Distance of LoS of C-V2X vehicle 20, 30, 40, 50, 60, 80, 100

6.2 Evaluation Metrics
In light that the C-V2X scenario inpainting is a brand-new
initiative and the evaluation metrics of both the vehicle
trajectory prediction and video inpainting fields are unable
to measure the inpainting performance, we propose four
dedicated evaluation metrics to comprehensively evaluate the
performance of CAST for the C-V2X scenario inpainting.

1) Precise Inpaint Rate (PIR): PIR is the high-precise C-
V2X scenario inpainting rate, which represents the pro-
portions of perfectly inpainted vehicles to measure the
precise inpainting completeness. If the grid of an inpained
vehicle contains a real vehicle, it is called a perfect in-
painted case. The bigger the value, the better the result
is for safe applications. The PIR is defined as,

PIR =
Zo + Zp

Z
, (17)

where Z is the total number of vehicles, including ob-
served and unobserved vehicles, on the road. Zo denotes
the number of vehicles in PAs. Zp is the number of
vehicles that are perfectly inpainted.

2) Rough Inpaint Rate (RIR): Although PIR can measure
perfect inpainting completeness, the deviation between
the inpainted vehicular position and the real vehicular
position cannot be computed. Thus, we propose the RIR
to evaluate the rough performance of CAST, which mea-
sures the inpainting effectiveness by calculating the ratio
of the number of inpainted vehicles to the number of real
vehicles in each RUPA. The bigger the value, the better
the result is for the applications that require the number
of vehicles at the RUPA level. The RIR is defined as,

RIR =
1

n

n∑
i=1


s
′
i

si
,

s
′
i

si
≤ 1

si
s
′
i

,
s
′
i

si
> 1,

(18)

where n represents the number of RUPA on this road. s′

i

represent the number of vehicles in the inpainted UPAs
and PAs on the area of the i-th RUPA. si is the number
of both observed and unobserved vehicles on the area of
the i-th RUPA in the real scenario.

3) Inpaint Confidence Error (ICE): It is unrealistic to
guarantee that each grid in the inpainted C-V2X scenario
determines whether it contains a vehicle. Thus, ICE is

proposed to measure the confidence error of each grid as
to whether it contains vehicles. The smaller the values
are, the better the result is. The ICE is defined as,

ICE =
1

N ×M

N×M∑
i=1

√
(p̂i − pi)2, (19)

where p̂i and pi represent the confidence of whether
there exists a vehicle in the i-th inpainted and real grid,
respectively.

4) Lane Level Inpaint Rate (LLIR): Given that lane-level
inpainting is more necessary in some situations, e.g., mak-
ing a lane-changing strategy. Therefore, we propose the
LLIR to evaluate the performance of CAST at the lane
level by calculating the ratio of inpainted vehicle numbers
to real vehicle numbers in each lane in RUPAs. The bigger
the value, the better the result is for applications that
need lane-level vehicle information. The LLIR is defined
as,

LLIR =
1

n

n∑
i=1

1

M

M∑
j=1


s
′
i,j

si,j
,

s
′
i,j

si,j
≤ 1

si,j

s
′
i,j

,
s
′
i,j

si,j
> 1

(20)

where M represents the lane number on the road. s′

i,j

represent the number of vehicles in the j-th lane of in-
painted UPAs and PAs on the area of the i-th RUPA. si,j
is the number of both observed and unobserved vehicles
in the j-th lane on the area of the i-th RUPA in the real
scenario

In this way, the performance of CAST can be comprehen-
sively evaluated by utilizing the aforementioned evaluation
metrics to empower C-V2X applications.

Table 4
Ablation study results

Measures PLGRM LRM LGRM GRM
PIR 0.80 0.77 0.78 0.75
RIR 0.97 0.91 0.96 0.79
LLIR 0.90 0.80 0.90 0.62
ICE 0.25 0.27 0.25 0.24

6.3 Experimental Results
CAST mainly consists of three components, RUPAs sorting
algorithm, generative adversarial construction, and knowledge
distillation, respectively. In this section, the performance of
the proposed generative model is evaluated first. The gen-
erative model consists of the group Prediction module, the
Local inpainting module, and the Global inpainting module,
respectively. So we call it PLGRM (PLG geneRative Model).
Thus, the ablation experiment of PLGRM is conducted first to
verify the effectiveness of each component in PLGRM. Then,
the performance of PLGRM in variable scenarios is demon-
strated. Moreover, the feasibility of the knowledge distillation
module is also evaluated. Thus, we finally evaluate the over-
all performance of CAST, including PLGRM and knowledge
distillation. To be more specific, we compared four models,
1) the small PLGRM with a small number of parameters,
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Figure 10. Inpainted results of RUPAs with different priorities, where
(a) represents the PIR of different RUPAs, (b) represents the RIR of
different RUPAs, (c) represents the LLIR of different RUPAs, and (d)
represents the ICE of different RUPAs.

which is denoted by the small model; 2) the big PLGRM
with enormous parameters, denoted by the self-distillation;
3) the small PLGRM with only self-distillation, denoted by
the teacher model; and 4) the small PLGRM with both self-
distillation and cross-model distillation from the big PLGRM,
namely CAST. In addition, we also discuss other benefits of
knowledge distillation in this part.

6.3.1 Ablation Experiment of PLGRM
PLGRM mainly consists of three components, the group
prediction module, the global inpainting module, and the
local inpainting module, respectively. In order to investigate
the performance of each component of PLGRM, this section
conducts the ablation experiment on the SUMO dataset. In
this section, we compare the performance of 1) the entire
generative adversarial model (PLGRM), 2) Local geneRative
Model (LRM), 3) Global geneRative Model (GRM), and 4)
Local-Global generative Model (LGRM), in terms of four mea-
sures introduced above. The result of the ablation experiment
can be seen in Table 4, the rate of the C-V2X vehicle is 10%
and the distance of the line of sight is 50m in this ablation
experiment.

As shown in Table 4, the GRM performs worst in PIR,
RIR, and LLIR, in which PIR is 75% near the performance of
other modules, however, RIR and LLIR of it are far less than
those of other modules, which indicates the global inpainting
model is weak in precise inpainting, leading to an inpainted
vehicle number that is higher than the real scenario. Moreover,
the best performance of GRM in ICE indicates that the
global inpainting module is more justice to different RUPAs
with diverse priorities. Compared with GRM, LRM performs

better in terms of PIR, RIR, and LLIR but worse in ICE,
which indicates the local inpainting model is better at precise
inpainting. However, the local inpainting is biased towards
the RUPAs with high priority due to the accumulated errors
of the RUPAs with lower priority. LGRM performs better in
all four metrics compared with LRM, especially in terms of
the RIR, LLIR, and ICE, which indicates that the local-global
inpainting architecture possesses the advantages of both the
local and global inpainting models, namely inpainting accu-
racy and justice for RUPAs with different priorities. PLGRM
simultaneously consists of the local and global inpainting
model and the group prediction model, which performs best
in terms of PIR, RIR, and LLIR compared with LRM, LGRM,
and GRM, which demonstrates that the predicted information
generated by the group prediction model is valuable for
inpainting a more accurate C-V2X scenario. Therefore, we can
conclude that each component in PLGRM is indispensable for
precisely inpainting C-V2X scenarios.

6.3.2 Inpainted Results of PLGRM
In this section, we utilize the proportion of C-V2X vehicles on
the road to represent the development stage of the C-V2X for
simulating the future practical C-V2X scenario. Meanwhile,
we represent the effect of climate by the distance of the LoS of
the sensor in the vehicle. Then, we comprehensively evaluate
the performance of PLGRM in these scenarios based on the
SUMO and HighD datasets, respectively, in terms of four
measures, namely PIR, RIR, LLIR, and ICE.

First, we explore the inpainting results of each RUPA with
different priorities based on PLGRM and GRM to further
discuss the limitations of our proposed method in the setting
that the rate of the C-V2X vehicle is 20% and the distance of
LoS is 80m. As shown in Fig. 10, in the original scenario that
only contains vehicles with OBUs and in the LoS of the C-V2X
system, the proportions of RUPAs with different priorities
in terms of PIR, RIR, and LLIR are only slightly different.
However, if only the global generative model were utilized, the
difference in the inpainting performance of different RUPAs
would increase. Fortunately, PLGRM mitigates the difference
in the inpainting outcome between different RUPAs, espe-
cially in terms of RIR and LLIR. Therefore, although the
precise inpainting results, PIR, of RUPAs with lower priorities
might be unable to meet the needs of applications requiring
high precision, the needs of applications with RUPA-level and
lane-level requirements are ensured.

Furthermore, as shown in Fig. 11, we test PLGRM in 15
scenarios based on SUMO datasets, in which the proportions
of C-V2X vehicles are set to 10%, 20%, 30%, 40%, and 50%,
respectively, and the distances of the LoS of the vehicle are
set to 20 m, 50 m, and 100 m, respectively. The proportions
of the original scenarios, only containing vehicles with OBUs
and other vehicles in the LoS of the C-V2X system, in terms
of PIR, RIR, and LLIR, are also offered to demonstrate
the effectiveness of the proposed method. We add −o to
denote these scenarios in Fig. 11. It can be seen that PIR
of PLGRM is close to 75% when the proportion of C-V2X
vehicles and the distance of the LoS of the vehicle are 10%
and 20 m, respectively, and PIR is over 96% when they are
respectively 50% and 100 m. The growth of PIR can be seen
when the C-V2X vehicle perceives a more extensive area, and
accordingly, ICE decreases, which means that the inpainted
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Figure 11. Inpainted results of PLGRM based on the SUMO dataset
for different measures, where (a) represents the PIR of PLGRM, (b)
represents the RIR of PLGRM, (c) represents the LLIR of PLGRM,
and (d) represents the ICE of PLGRM.

result is more credible. Furthermore, RIR and LLIR represent
the inpainting effect at the RUPA level and lane level, which
reflects the redrawing deviation degree of the model redrawing
to a certain extent. As shown in Fig. 11(b), RIR is over 90%
in each scenario and near 99% when the proportion of C-
V2X vehicles and the distance of the LoS of the vehicle are
50% and 100m, respectively. It illustrates that the majority of
the inpainted vehicles by PLGRM will not deviate from their
RUPA. Thus, the inpainted result of PLGRM can be used in
some applications that rely on global road information. As
shown in Fig. 11(c), the LLIR is over 86% in each scenario
and reaches 98% in the best scenario. It demonstrates that the
majority of the inpainted vehicles by PLGRM will not deviate
from their lane. Thus, the inpainted result of PLGRM can be
used in some applications that require lane-level global sight.

In order to validate the effectiveness of our proposed
method in the real road scenario, we evaluate PLGRM once
again in the real road dataset. As shown in Fig. 12, we test
PLGRM in 15 scenarios based on the HighD datasets, in
which the proportions of C-V2X vehicles are set to 10%,
30%, and 50%, respectively, and the distances of the LoS
of the vehicle are set to 20 m, 40 m, 60 m, 80 m, and 100
m, respectively. The proportions of the original scenarios, in
terms of PIR, RIR, and LLIR, are also offered in this setting.
We add −o to denote these scenarios in Fig. 12. As shown
in Fig. 12(a), the performance of PLGRM in terms of PIR
is not excellent as its performance in the SUMO dataset in
the worst situation. This is because the road condition in the
HighD dataset is more complex and diverse than that in the
SUMO dataset. For all that, PIR of PLGRM is over 90%
when the proportion of C-V2X vehicles and the distance of
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Figure 12. Inpainted results of PLGRM based on the HighD dataset
for different measures, where (a) represents the PIR of PLGRM, (b)
represents the RIR of PLGRM, (c) represents the LLIR of PLGRM,
and (d) represents the Con of PLGRM.

the LoS are over 50% and 60 m, respectively. In addition, ICE
is higher when the range of perception of the C-V2X system
is larger, as shown in Fig. 12(d). Although the performance
of PLGRM is not always good in each scenario in the HighD
dataset, the performance of PLGRM in terms of RIR and
LLIR is excellent in each scenario. As shown in Fig. 12(b)
and (c), RIR and LLIR of PLGRM all exceed 95% in the
worst situation and exceed 99% when the proportion of C-
V2X vehicles and the distance of the LoS are 50% and 100
m, respectively, which indicate the superior performance of
PLGRM in the inpainting task at RUPA-level or lane-level.

We verify the effectiveness of PLGRM in the C-V2X
scenario inpainting task by experimenting with our simulation
platform based on the SUMO and HighD datasets. Given
the aforementioned analysis of the experiment results, we
found that the PLGRM performs excellently at the inpainting
task at RUPA-level and lane-level in each scenario, but the
inpainting performance at a precise level is susceptible to
the complexity of the road environment. Thus, the inpainted
result is useful for some C-V2X applications that require
RUPA-level or lane-level global information, even if only 10%
of vehicles are equipped with C-V2X devices. As for some C-
V2X applications that require precise global information, the
inpainted result by PLGRM is useful when the proportion of
C-V2X reaches 50%.

6.3.3 Inpainted Results of Overall CAST
In this section, we assess the overall performance of CAST,
including both PLGRM and the knowledge distillation archi-
tecture, to verify the effectiveness of the knowledge distillation
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Figure 13. Inpainted results of different models based on the SUMO
dataset for different measures, where (a) represents the performance
in terms of PIR, (b) represents the performance in terms of RIR, (c)
represents the performance in terms of LLIR, and (d) represents the
performance in terms of ICE.

architecture in increasing computation efficiency and adapt-
ing to various computation-limited C-V2X infrastructures.
As shown in Fig. 13, we compare the performance of four
models, 1) a small PLGRM with 0.55 million parameters,
called the Small Model; 2) a small PLGRM with 0.55 million
parameters only using self-distillation, which is denoted by
self-distillation; 3) a small PLGRM with 0.55 million parame-
ters using both self-distillation and cross-model distillation,
namely CAST; and 4) a big PLGRM with 1.55 million
parameters, namely the Teacher Model, in the scenario where
the proportion of vehicles with OBUs is set to 20%.

Figure 14. The training process.

As shown in Fig. 13, the small model performs the worst in
each measure due to its low learning ability. The performance

of the small model based on self-distillation is much better
than the small model and sometimes even higher than the
performance of the big teacher model, which proves that the
self-distillation module greatly improves learning ability. In
most cases, the performance of the CAST is near or exceeds
the performance of the big-teacher model, and it is better than
the small model based on self-distillation, which indicates the
effectiveness of combining self-distillation and cross-model
distillation to further increase the learning ability of the C-
V2X scenario inpainting model. Furthermore, the training
errors of the small model, the small model based on self-
distillation, and CAST are shown in Fig. 14, in which CAST
has the fastest convergence speed than the small model and
the small model based on self-distillation, and the small model
has the slowest convergence. Thus, the knowledge distillation
architecture remarkably accelerates the convergence speed
when training the C-V2X scenario inpainting model.

Table 5
Self-distillation results

Measures 0.55M 0.86M 0.98M 1.55M(PLGRM)
PIR 86 86.2 86.8 86.8
RIR 96.1 97.4 97.2 97.2
LLIR 93.7 94.5 95 95.7
ICE 20.5 20.7 19.8 19.9

In the absence of the teacher model, the self-distillation ar-
chitecture can be used to simultaneously ensure the inpainting
precision and efficiency. Thus, we investigate the performance
of different sizes of models based on self-distillation on the
setting that the rate of C-V2X vehicle is 20% and the distance
of LoS is 80m. As shown in Table 5, the performance of the
model with 0.98 million parameters is near the performance
of the big model. Therefore, the compression efficiency of
CAST is 63% even without the knowledge from the big teacher
model, and it will reach 35% if it utilizes the knowledge from
the big teacher model. Thus, CAST is useful to guarantee
inpainting precision and computation efficiency when taking
diverse computation-limited devices into account when de-
ploying the C-V2X inpainting model.

7 Conclusion

This paper pionners to tackle the challenging inpainting
problem in the C-V2X scenario. Specifically, we propose an
efficient C-V2X scenario inpainting method, CAST, which
aims to generate the state of the unperceived area on the
road. Extensive experiments are conducted to verify the
outstanding performance of CAST in the inpainting task of
the C-V2X scenario. In our future work, we plan to continue
our research further on inpainting to study the directions, e.g.,
generating more diverse information about the vehicle with
considering more complex road scenarios. As a concluding
remark, we expect that the proposed method can also be
extended to solve the inpainting problem in different vehicular
communication scenarios under a wide range of applications.
This will be a concrete step towards interesting research lines
and horizons.
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