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An Enhanced and Robust Data Publishing
Scheme for Private and Useful 1:M Microdata

Muhammad Rizwan, Ammar Hawbani, Wang Xingfu, Adeel Anjum
Pelin Angin, Yigit Sever, Sanchuan Chen, Liang Zhao, and Ahmed Al-Dubai

Abstract—A data publishing deal conducted with anonymous microdata can preserve the privacy of people. However, anonymizing
data with multiple records of an individual (1:M dataset) is still a challenging problem. After anonymizing the 1:M microdata, the vertical
correlation can be exploited to launch privacy attacks. In this paper, a novel privacy preserving model lc, ls-ANGEL is proposed. To
validate the new model, two privacy attacks are presented, namely, a Vertical correlation attack (Vc0) and a Vulnerable sensitive
attribute attack (Vsa) on 1:M datasets, which breach the privacy of individuals. Furthermore, the proposed model is examined through
High-Level Petri Nets (HLPNs). Our experiments on three real-world datasets;“INFORMS”,“YOUTUBE”, and “IMDb” demonstrate that
the proposed model outperforms the state-of-the-art models. Our practices and lessons learned in this work can direct future concrete
steps towards Multiple Sensitive Attributes, where we can expand the proposed model to dynamic datasets.

Index Terms—Internet of Things, big data, electronic health records, privacy of data, k-anonymity, 1:M microdata
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1 INTRODUCTION

P RIVACY preserving data publishing techniques focus on
sharing a sanitized view of a private dataset to the

recipients such as government institutions, research organi-
zations, and statisticians. Private datasets contain sensitive
data about individuals. For instance, hospitals release data
about patients for research or funding purposes [1], [2], [3],
[4]. The data must be processed with certain privacy aspects
in mind to preserve an individual’s privacy before sharing
sensitive data that can include the following features:

• Personally identifiable information (ID, first name, last
name etc. – attributes that can uniquely identify an
individual);

• Quasi-identifiers (age, gender, material status, nation-
ality, zip code, etc. – the combination of which can
identify an individual);

• The private or sensitive attributes (medical history,
salary, etc. — must be kept confidential according to
individuals’ requirements) [3], [5], [6].

The primary challenge of processing the given features
is the trade-off between the privacy and the utility of the
collected data [7], [8]. The utility of data is maximized when
the data is not altered, while data privacy is maximized
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when the shared data does not resemble the actual data
at all. High utility is required in big data analytics, while
data privacy is important for the data owners. Therefore, the
utility and privacy of data are two highly desirable but in-
compatible concerns in Privacy-Preserving Data Publication
(PPDP) [5], [6]. For example, a previous study [9] revealed
that 87% of the US population could be identified using
linking attacks that matches three quasi-identifiers (QIDs):
gender, five-digit zip code and date of birth, using publicly
available information like census or voting data. The privacy
concerns of data owners are genuine and should be kept
in mind to implement privacy measures before publishing
the data, otherwise, there will be a loss of trust between
the data owner and the data publisher [10], [9]. However,
a reasonable balance should be maintained between the
data utility and privacy implementation which is an open
question in PPDP. Addressing this concern, a plethora of
anonymization models; k-anonymity [9], l-diversity [11], t-
closeness [12], p,-sensity [13], extended p-sensitivity [14],
balanced p+-sensitive k-anonymity [15] have been proposed
(see Section 2 for more details). However, the majority of
these privacy models are designed for anonymizing 1:1
records, cases where a person has a single record. A more
realistic and practical scenario is the case of 1:M datasets;
where a single person has more than one record. Refer to
the supplementary material for additional details.

The main contributions of this paper are as follows:

1) A novel privacy-preserving model (lc, ls)-ANGEL Al-
gorithm is proposed and we demonstrate its effec-
tiveness against “Vertical correlation attack (Vco)” and
“Vulnerable sensitive attribute attack (Vsa)” for 1:M
data publication.

2) The proposed (lc, ls)-ANGEL Algorithm’s privacy
model is formulated with the state-of-the-art pri-
vacy preserving technique 1:M Generalization through
High-Level Petri Nets (HLPNs). The formal modelling
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demonstrates the effectiveness of the proposed ap-
proach and the invalidation of the 1:M generalization
technique for the attacks mentioned above.

3) We provide a detailed analysis and present the privacy-
utility trade-off of our proposed approach with experi-
ments on real-world datasets.

The rest of the paper is organized as follows. Section 2
provides a detailed and systematic literature review of the
related work. The preliminaries and the problem setting
are discussed in Section 3. Section 4 revisits “1:M Gen-
eralization” and provides its formal analysis against pri-
vacy attacks. The proposed privacy model (lc, ls)-ANGEL
Algorithm and its formal definition and verification are
presented in Subsection 5.1. Section 6 provides experiment
results and analyses the results based on privacy-utility
evaluation parameters. Section 7 concludes the paper with
possible future work directions.

2 RELATED WORK

Privacy aware data publishing involves a trade-off be-
tween data privacy and data utility. Researchers proposed
anonymization techniques to optimize this trade-off in a
balanced manner [14], [16]. One such approach is the use
of cryptographic operations. Several privacy techniques
that had been built upon cryptographic functions have
been proposed [17], [18], [19]. However, such techniques
are computationally expensive [20]. In cryptography based
techniques, the data cannot be published to a larger and
unknown audience as the keys could only be shared with a
known audience. Thus, anonymization based privacy mod-
els and their underlying techniques perform well in data
publication since they are lightweight and easy to use. In the
context of health data privacy, various anonymization-based
privacy-preserving models and underlying techniques have
been proposed.

The main goal of anonymization based privacy models
and techniques is to publish individuals’ data for the sake of
medical and other research or analysis, without compromis-
ing individuals’ privacy. In the approaches proposed earlier,
personally identifiable attributes (e.g. name) were removed
from the data before publication. However, linking attacks;
matching QIDs with externally available datasets could then
be performed. Sweeney [9] was the first to propose a k-
anonymity privacy model to prevent linking attacks. The
model ensured every record in a particular QIDs-group

of the microdata table to be “indistinguishable” from the
other k − 1 records in terms of QIDs. Thus, k-anonymity
avoids identity-disclosure attacks, attacks where an adver-
sary identifies a particular individual’s identity. Sei et al.
proposed models like (l1, . . . , lq)-diversity and (t1, . . . , tq)-
closeness to enhance privacy-preserving data mining by
addressing the dual role of sensitive quasi-identifiers. These
models provide flexible anonymization methods for at-
tributes serving as both identifiers and sensitive information
[21]. Additionally, they introduced the (l1, . . . , lq)-diversity
model with an anonymization and reconstruction method,
evaluated on real datasets [22].

However, the model proposed by Sei et al. [22] cannot
protect against attribute disclosure, background knowledge
attacks (attacks where an adversary knows enough back-
ground knowledge about a particular individual), homo-
geneous attacks (attacks where all SAs are the same in a
particular group), as k-anonymity only deals with QIDs
and the adversary could easily get the SA of a particular
individual. Another privacy model, l-diversity [11] over-
came the attacks mentioned above by ensuring l distinct
sensitive attributes (SAs) in all the QIDs-groups of micro-
data. However, l-diversity cannot protect against similarity
attacks, attacks where all l distinct SAs belong to the same
genre. For instance, Flu, Chest Infection, and Bronchitis are
three distinct diseases, but they all belong to the same genre;
Respiratory Tract Infections. In that case, an adversary can
unmask the genre of a particular patient. Additional details
on privacy techniques and related work are provided in the
supplementary file, including a tabular summary.

3 PRELIMINARIES AND PROBLEM SETTING

In this section, we present the fundamental definitions and
notations used in this paper. Moreover, we demonstrate
the adversarial model with privacy attack scenarios in the
context of the 1:M Generalization privacy technique used in
(k, l)-diversity [16].

3.1 Adversary Model

To protect the sensitive records for the data publication, we
must assume a potential adversarial model and the possible
privacy attacks that the selected model entails. We identified
some possible privacy breaches in the context of the 1:M
Generalization model;
Scenario 1: The generalized sensitive attributes from the

(k, l)-diversity model can be used to identify the cur-
rent medical status of a patient (e.g. whether their
disease is progressing or recovering) using some back-
ground knowledge. For instance, Say an adversary has
background knowledge about Simon’s QIDs (age: 36,
sex: male, zip code: 18000) and the fact that he had vis-
ited the hospital previously for indigestion treatment,
and now he has recently been discharged from the
hospital after two days. The details are provided in the
supplementary file.

Scenario 2: The lowest common cut in the transactional
generalization hierarchy used in (k, l)-diversity model
along with some background knowledge can be used
to re-identify a particular data owner. For example, if
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TABLE 1: Privacy attacks on (k, l)-diversity with corre-
sponding scenarios

Privacy
Attacks

Attack Description Corresponding
Scenarios

Vertical
Correlation
Attacks (Vco)

An adversary can perform Vco

attacks to reveal an individual’s
current medical status (the type
and disease’s progression or
recovery) if they can correlate
SAs and background knowledge
about the individual

I

Vulnerable
Sensitive
Attribute
Attacks (Vsa)

An adversary can perform Vsa

attacks to re-identify an
individual if they can
successfully correlate the
vulnerable SA: left unprotected
by lowest common cut on
transaction generalization
hierarchy, with the background
knowledge about that individual

II

an adversary knows the background knowledge about
Daisy’s QIDs (age: 48, sex: F, zip code: 20000) and the
fact that she was admitted to the hospital a few months
ago because of her worsening condition due to Pneu-
monia. The details are provided in the supplementary
file.

4 REVISITING 1:M GENERALIZATION

In this section, we will review the “1-M Generalization”
algorithm’s privacy technique in detail. Then, in Subsec-
tion 4.2, we will present the formal modelling and analy-
sis of the algorithm to check the correctness and privacy
disclosures. The 1:M Generalization is the underlying tech-
nique of the (k, l)-diversity privacy model. The said model
provides protection for both QIDs and SAs against the
privacy leakages through attribute disclosure and linking
attacks [16]. As shown in Table 1, privacy attacks on (k, l)-
diversity are categorized into vertical correlation attacks
(Vco) and vulnerable sensitive attribute attacks (Vsa). The
formal definition of (k, l)-diversity is as follows:

Definition 1. (k, l)-diversity [16]. A 1:M microdata table T
satisfies (k, l)-diversity if an only if:

• For any SAFBT (See definition 9 in supplementary file),
there exist at-least k individuals.

• For any QIDs-group T , there exist at-least l “well-
represented” or “distinct” SA-fingerprints.

4.1 The 1:M Generalization Algorithms

There are three algorithms in 1:M Generalization;
Algorithm 1: Transformation. First perform transforma-

tion (See definition 10 in supplementary file)) on a 1:M
dataset, then convert it into a 1:1 dataset. The privacy
models designed for 1:1 datasets can now be applied.

Algorithm 1: First perform partition. a local recording
and a fast top-down anonymization algorithm for set-
valued data publication efficiently [23]. The algorithm ef-
ficiently partitions the transformed microdata table into k
sized QIDs-groups using the SA fingerprints’ similarity. The

records are anonymized through a transaction generaliza-
tion technique. After partitioning, a QIDs-group becomes
SAFB in which each record is indistinguishable from the
other k − 1 records.

Algorithm 3: Mondrian. First perform Mondrian to
generalize the QIDs. The Mondrian is also a top-down
algorithm [24] that can be implemented directly like
Partition. It anonymizes the QIDs in such a manner that
each QIDs-group may satisfy the l-diversity on SAs.

An overview of the 1:M Generalization algorithms is
presented at Table 2.

4.2 Formal Modeling and Analysis of Attacks on 1:M
Generalization
We demonstrate that our identified privacy attacks - vertical
correlation attack (Vco) and vulnerable sensitive attribute
(Vsa) - can occur in 1:M Generalization. Formal verification
of 1:M Generalization involves formal modelling of the
privacy model through High Level Petri Nets (HLPNs), Z
language and an extensive analysis in terms of HLPNs’
mathematical properties. The mathematical properties are
translated into SMT-Lib and then checked with the Z3 solver
to determine whether they hold or not. Details are provided
in tabular form in the supplementary file, which shows the
mapping of data types in HLPNs.

To reiterate, 1:M Generalization has three steps;
Transformation, Partition and Mondrian.
Transformation maps 1:M records to 1:1 depending
on QIDs similarity. It adds different SAs of the same PID
to form SA fingerprints whereas PID is also transformed
to TID by QIDs similarity. The transformation process is
presented in Equation (1).

R(Transform) = ∀i2 ∈ x2, i3 ∈ x3 ∧ i3[1] := i2[1]

∧ i3[2] := Transform(i2[2], i2[1])

∧ i3[3] := Transform(i2[3], i2[1])

∧ x3′ := x3 ∪ {i3[1], i3[2], i3[3]}

(1)

Equation (2) checks transformed records for whether the
condition of k-anonymity for a given input value k is satis-
fied or not. Then, Equation (3) performs Generalization
to convert transformed sensitive identifiers (TSI) to Gener-
alized sensitive attributes (GSA).

R(ChckSplit) = ∀i4 ∈ x4, i6 ∈ x6, i7 ∈ x7

∨ Count(i4[1]) ≥ i5 → i7[1] := TRUE

∧ x7 := x7 ∪ {(i7)}
∨ Count(i4[1]) < i5 → i7[1] := FALSE

∨ x7 := x7 ∪ {(i7)}

(2)

R(PickNode) = ∀i8 ∈ x8,∀i9 ∈ x9,∀i10 ∈ x10

∨ i9 = TRUE → i10 := Generalize(i8[2])
∧ x10 := x10 ∪ {(i10)}

(3)

R(DistData) = ∀i11 ∈ x11,∀i12 ∈ x12,∀i13 ∈ x13

∨ i13[1] := i11[1] ∧ i13[2] := Dist− data(i11[2], i10)

∧ i13[3] := i11[3]

∧ x13′ := x13 ∪ {i13[1], i13[2], i13[3]}

(4)
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Algorithm 1: Trans-
formation

Input: T, k ∧ l
Output: T

1 1:M-Generalization(T)
2 T ′′ ← Transform T into 1:1

dataset
3 IT ← Partition(T ′, k)
4 T ∗ ←Modrian(IT, l)
5 return T

Algorithm 2: Partition for SA
fingerprint
1 Partition(partition, k)
2 if partition cannot be split then
3 Add partition to global return list
4 else
5 splitNode← picknode(partition)
6 end
/* pick a node with max.

information gain */
7 subPartitions
← distributedata(partition, splitNode)
/* handle subPartitions with

< k records */
8 balancepartitions(subPartitions)
9 for subPartition in subPartitions do

10 partition(subPartition)
11 end

Algorithm 3: Modrian for 1:M
data
1 Mondrian(partition, l)
2 if partition cannot be split then
3 Add partition to global return list
4 else

/* choose attribute with
the widest values range
*/

5 dim← ChooseAttribute(partition)
6 end
7 if dim is numeric then
8 threshold←

choose threshold(partition,dim)
9 lhs← {t ∈ partition | t[dim] ≤

threshold}
10 rhs← {t ∈ partition | t[dim] >

threshold}
11 subPartition← {lhs} ∪ {rhs}
12 else
13 splitNode← split(partition,dim)
14 subPartitions←

distribute data(partition, splitNode)

15 end
16 for subPartition in subPartitions do
17 Mondrian(subPartition, l)
18 end

TABLE 2: Overview of 1:M Generalization algorithms

Equation (4) distributes and balances the transformed
records to each sub-partition based on GSA fingerprint
similarity. Then, Equation (5) balances the GSA of the sub-
partition to BSA and stores the record values in place
IDT. Sub-partitions with less than k records are added to
place G in Equation (6). Now that both IDT and G have
single record partitions, they are merged into place CDT at
Equation (7).

R(BPartition) = ∀i14 ∈ x14,∀i15 ∈ x15

∨ i15[1] := i14[1]

∧ i15[2] := Bal − partition(i15[3] := i14[3])

∧ x15′ := x15 ∪ {x15[1], i15[2], i15[3]}

(5)

R(K ′) = ∀i16 ∈ x16,∀i17 ∈ x17

∨ i16 = FALSE → i18[1] := i17[1]

∧ i18[2] := i17[2]

∧ i18[3] := i17[3]

∧ x18′ := x18 ∪ {i18[1], i18[2], i18[3]}

(6)

R(Merge) = ∀i19 ∈ x19,∀i20 ∈ x20,∀i21 ∈ x21

∨ i21[1] := i19[1] ∧ i21[2] := combine(i21[3] := i19[3])

∧ x21′ := x21 ∪ {i21[1], i21[2], i21[3]}
(7)

To anonymize QID values, we start by checking whether
the dimension of the QID values is numerical in Equation (8)
or categorical in Equation (9). For numerical values of QID,
threshold is taken to form, arrange of values for generalized
QID in Equation (10) and Equation (11). Equation (12)
checks sub-partitions for l different SA fingerprint values.
If sub-partitions cannot be split further, then it returns those
records to place G.

R(ChoseAttrb) = ∀i25 ∈ x25,∀i26 ∈ x26

∨ i28[1] := Chos − Attrb
(8)

R(ChckDim) = ∀i27 ∈ x27,∀i28 ∈ x28

∨ i28[1] := Chck − Type
(9)

R(ChoseThreshold) = ∀i29 ∈ x29,∀i30 ∈ x30,∀i31 ∈ x31

∨ i31[1] := Threshold(i30[1])
∨ x′

31 := x18 ∪ {i31[1]}
(10)

R(ChckThrshld) = ∀i32 ∈ x32,∀i33 ∈ x33,∀i34 ∈ x34

∨ i34[1] := Thrshold(i32[1], i33[1])
∧ i34[2] := Thrshold(i32[2], i33[2])
∧ x′

34 := x34 ∪ {i34[1], i34[2]}

(11)

R(Mondrian) = ∀i41 ∈ x41,∀i42 ∈ x42,∀i43 ∈ x43

∨ i43[1] = FALSE → i44[2] := Mondrian(i41[2], i42[1])
∧ x′

44 := x44 ∪ {i44[1]i44[2], i44[3]}
(12)

SA fingerprint values can be used in Vco attacks to re-
identify the targeted person using background knowledge
and strong posterior belief. Lowest-cut transactional gener-
alization can help the adversary to exploit the vulnerable
sensitive attribute in Vsa attacks with the assistance of
background knowledge and posterior belief. Equation (13)
and Equation (14) illustrate Vco and Vsa attacks, respectively.

R(VcoAttacks) = ∀i48 ∈ x48,∀i49 ∈ x49,∀i50 ∈ x50

∨ VcoDis(i48[2], i49[3]) → i50[3] := i48[2] ∪ i49[3] := i1[3]
(13)
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Fig. 2: HLPNs for the identified attacks on 1:M Generalization

R(VsaAttacks) = ∀i51 ∈ x51,∀i52 ∈ x52,∀i53 ∈ x53

∨ VsaDis(i51[2], i52[3]) → i53[2] := (i51[2] ∪ i52[3]) := i1[2]
(14)

In the Vco attack given in Equation (13), the adver-
sary generates an attack using function VcoDis() on the
published data with background knowledge and externally
available information of an SA value. SA fingerprint val-
ues allow an individual to be uniquely identified and SA
correlation helps an adversary to perform such attacks.
In Equation (14), Vsa attacks are performed with function
VsaDis(). An adversary also uses the values of SA in the
published copy F-C and SAs background knowledge by

taking their union in such a way that it allows them to map
the original SA value.

5 (lc, ls)-ANGEL MODEL

As discussed in Section 2, few approaches have been pro-
posed to deal with the privacy of set-valued or transactional
data. The state-of-the-art privacy model (k, l)-diversity with
its underlying privacy technique “1:M Generalization” was
the earliest to tackle the 1:M privacy issues. In Section 4.2,
we demonstrated that the model and technique were vulner-
able to vertical correlation and vulnerable sensitive attribute
attacks through HLPNs. Moreover, the technique general-
ized SAs along with QIDs which caused huge information
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TABLE 3: Description of Categories and Severities of SAs

SA-Category SA-Category Sensitive Attributes (SA)

Respiratory
LOW Flu
MILD Bronchitis
SEVERE Pneumonia

Gastrointestinal
LOW Indigestion
MILD Gastritis
SEVERE Stomach cancer

Neurological
LOW Absence Seizures
MILD Epilepsy
SEVERE Multiple sclerosis

loss. Therefore, we present an improved privacy model,
“(lc, ls)-ANGEL” to overcome the limitations mentioned
above.

(lc, ls)-ANGEL is defined as:

Definition 2. (lc, ls)-ANGEL. Take a microdata table T ,
a batch partitioning A = {A1, A2, . . . , An} and a bucket
partitioning B = {B1, B2, . . . , Bn}. (lc, ls)-ANGEL of table
T outputs two tables;

• A sensitive table (ST) of the form: {S,BID,C} where S
represents a sensitive attribute for an individual, BID
represents Batch ID and c is the count. For every batch
Ai(1 ≤ i ≤ n) the ST consists of the row (S, i, c)
where S is the sensitive attribute and i is the batch ID
in such a manner that the sensitive attributes in every
batch obeys lc-diversity on category and ls-diversity on
severity where c is the count.

• A generalized table (GT) is of the form: {Q,BID},
where Q represents a set of quasi-identifiers attributes
for an individual and BID represents the Batch ID. For
every bucket Bi(1 ≤ i ≤ n), the GT consists of the row
(Q, i) where Q stores generalized QIDs with i as the
batch ID.

The (lc, ls)-ANGEL model has four steps; transforma-
tion, making lc-diverse SA-categories, making ls-diverse
SA-severity of lc-diverse SA-categories, and Angelization.
(lc, ls)-diversity is used to break the vertical correlation
between multiple occurrences of an individual’s records.
In our identified attack scenarios, we assumed that the
disease is either progressing or recovering. Therefore, it was
necessary to deal with the categorization and severity of
diseases and having their distribution distinct in each QIDs-
table. In Table 4 we have merged all sensitive attributes of a
QIDs-group together so that the vulnerable SAs attack could
be mitigated. The details are discussed in the supplementary
file.

5.1 (lc, ls)-ANGEL Algorithm
We propose a novel privacy-preserving model, (lc, ls)-
ANGEL Algorithm for the anonymization of 1:M microdata
that has a correlation among multiple records of the same
individual. We have assumed an adversarial model where
the adversary has background knowledge of the individual
for at least one record or can unmask the category of the
individual’s diseases through personal observations. The
(lc, ls)-ANGEL algorithm effectively addresses these chal-
lenges by employing a sophisticated generalization tech-

Algorithm 4: (lc, ls)-ANGEL algorithm
Input: MDT: 1:M Microdata Table
k: Value anonymized QIDs ∈ CD
lc: value diverse SAs - categories ls: value diverse
SAs - severities
Output: GT : Generalized Table
ST : Sensitive Table

1 begin Procedure: lc, ls-ANGEL
2 Let k, lc, ls such that (lc ∧ k ≥ 2) ∧ (ls = 3)
3 Let C at be a set of SAs - Categories
4 Let Sev = {S1, S2, S3}
5 begin Step 1: transformation
6 TMDT := Transformation(MDT)
7 Let k ⊆ TMDT
8 end
9 begin Step 2: Making lc-diverse SA - categories

10 if k ≥ 2 then
11 foreach Gi : {QI × SA} ∈ k do
12 CT := Categorize(SA, Cat)
13 Gi′ := Gi ∪ CT ∧ (∀CT ∈ Gi,Gi+ 1)
14 Cn := ComputeCCount(Distinct(CT ))
15 if Cn < lc then
16 DCT := Diverse - C(CT, lc)
17 endif
18 endfor
19 endif
20 end
21 begin Step 3: Making ls-diverse SA - severity
22 SvT := Severitise(DCT, Sev)
23 Cs := ComputeScount(Distict(SvT ))
24 if Cs ̸= ls then
25 DST := Diverse − S(SvT, ls)
26 endif
27 end
28 begin Step 4: Angelization
29 GT := Angelize(DST )
30 ST := Angelize(DST )
31 return GT, ST
32 end
33 end

nique, which ensures the anonymization of sensitive data
while maintaining data utility. This approach not only en-
hances data privacy against potential adversarial attacks
but also preserves the integrity and usability of the data
for legitimate analytical purposes. The algorithm of our
proposed model that prevents such attacks is presented as
Algorithm 4. The details are provided into a supplementary
file.

5.2 Formal Modeling and Analysis of lc, ls-ANGEL Al-
gorithm using HLPNs

Now, we present the formal definition and analysis of our
model through HLPNs and then verify it against our iden-
tified attacks. The details are provided in tabular form in
the supplementary file. The symbols used in HLPNs of our
model and mapping of data types on places respectively.
Figure 2 depicts the formal verification through HLPNs. In
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TABLE 4: lc, ls-diverse table of 1:M Microdata

Personally Identifiable
Attributes

Quasi-Identifiers Attributes
(QID) Sensitive Attributes (SA)

Tuple ID PID Age Sex Zip Code Disease Category Severity

1-4(Bob) 1 21 M 12000

Flu Respiratory LOW
Bronchitis Respiratory MILD
Pneumonia Respiratory HIGH
Epilepsy Neurological MILD

6(Sara) 3 24 F 14000 Epilepsy Neurological MILD

12-13(Alice) 6 28 F 11000 Gastritis Gastrointestinal MILD
Stomach Ulcer Gastrointestinal HIGH

5(David) 2 32 M 17000 Multiple sclerosis Neurological HIGH

7-8(Simon) 4 36 M 18000 Indigestion Gastrointestinal LOW
Gastritis Gastrointestinal MILD

9-11(Daisy) 5 40 F 20000
Flu Respiratory LOW
Pneumonia Respiratory HIGH
Epilepsy Respiratory MILD

TABLE 5: Comparison between the Proposed Algorithm and
the Algorithm in [4]

Comparison
Criteria

Proposed lc, ls-
ANGEL Model

(p, l) Angelization
Model (Reference [4])

Objective Address Vco and
Vsa attacks, ensure
privacy in
1:M datasets

Mitigate Scor, Nmcor, and
Qcor attacks in multi-
sensitive datasets

Techniques 1:M Generaliza-
tion, HLPNs for
formal verification

Batch and sensitive batch
partitioning for
generalization

Privacy
Goals

Mitigates vertical
correlation and
protects vulnerable
attributes

Prevents specific correla-
tion attacks
(Scor, Nmcor, Qcor)

Data Utility Reduces informa-
tion through tar-
geted SA general-
ization

Balances utility with pri-
vacy via sensitive
batch tables

Experimental
Validation

Tested on real-
world datasets
(INFORMS,
YOUTUBE, IMDb)

Evaluated on synthetic
datasets for scalable
partitioning

Scalability Focus on static
datasets with
future work
towards Big Data
scalability

Highly scalable for large,
static datasets

Future
Adaptability

Designed for ex-
tension to dynamic
datasets and Big
Data applications

Primarily applicable to cur-
rent static dataset
structures

Equation (15) the 1:M records from place MDT are trans-
formed to 1:1 depending on the QIDs similarity. Different
SAs with the same PID form a SA fingerprint whereas PID
is also transformed to TID by QIDs similarity in transition
Transform. In Equation (16), first we categorize the SAs
into appropriate categories with Catdisease(), then in
Equation (17), lc value is computed and condition is checked
on the SAs-category. If condition is false, then SAs with
category is swapped to make the group of SAs and category
l-diverse depending upon lc value. DiverseC() makes the
group lc-diverse and stores it in place of DCT in Equa-
tion (18). The (lc, ls)-ANGEL model in this paper targets
vertical correlation and vulnerable sensitive attribute attacks

in 1:M datasets, using 1:M Generalization and formal verifi-
cation through High-Level Petri Nets (HLPNs). Unlike the
(p, l)-Angelization algorithm in[4], which addresses correla-
tion attacks via batch partitioning, (lc, ls)-ANGEL provides
robust privacy with reduced information loss on real-world
datasets. While both models achieve privacy preservation,
(lc, ls)-ANGEL is poised for future extensions to handle
dynamic data and Big Data applications, positioning it as
a scalable solution for complex environments.

R(Transform) = ∀i2 ∈ x2, i3 ∈ x3

∨ i3[3] := i2[3]

∧ i3[1] := Transf(i2[1], i2[3])
∧ i3[2] := Transf(i2[2], i2[3])
∧ x′

3 := x3 ∪ {i3[1], i3[2], i3[3]}

(15)

R(Categorize) = ∀i4 ∈ x4, i5 ∈ x5, i6 ∈ x6

∨ i6[1] := Catdisease(i4[2], i5[1])
∧ i6[2] := Catdisease(i4[2], i5[1])
∧ i6 := x6 ∪ {(i6[1], i6[2])}

(16)

R(ComputeCCount) = ∀i7 ∈ x7,∀i8 ∈ x8

∨ i8[2] := Count(Distinct(i7[2]))
∧ x8 := x8 ∪ {i8[2]}

(17)

R(Diverse − C) = ∀i9 ∈ x9,∀i10 ∈ x10,∀i11 ∈ x11

∨ i10[1] > i10[2] = FALSE

→ ((i11[2], i11[3]) := DiverseC(i9[1], i10[2]))
∧ x11 := x11 ∪ {(i11[2], i11[3])}

(18)

R(Severities) = ∀i12 ∈ x12,∀i13 ∈ x13,∀i14 ∈ x14

∨ i14[1] := i12[1]

∧ (i14[2], i14[4]) = Sev − allotment(i12[2], i13[5])
∧ i14[3] := i12[3]

∧ x14 := x14 ∪ {(i14[1], i14[2], i14[3], i14[4])}
(19)
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R(ComputeSCount) = ∀i15 ∈ x15,∀i16 ∈ x16

∨ i6[4] := Count(Distinct(i5[5]))
∧ x16 := x16 ∪ (i16[4])

(20)

In transition Severities we classify the SAs of every
category according to their severity and the output tuples
are stored in SvT (Equation (19)). Then function Count()
computes the count of distinct category severity ls and the
diversity condition on the category severity is checked. If
the condition is false then DiverseS() makes the group
ls-diverse based on category severity and stored in DST
Equations (20),21). During the Angelize transition we split
DST into two different tables: a Generalized Table (GT) and
a Sensitive Table (ST). Both tables are stored in BDT. This
transition is applied to break any correlation between the
QIDs and SAs values (Equation (22)). The last transitions
present the Vco and Vsa attacks that we have shown with the
discussion on 1:M Generalization in Subsection 4.2. In the
proposed algorithm (lc, ls)-ANGEL verification, transitions
23, 24 show that privacy attacks Vco and Vsa are effectively
mitigated due to lc-diverse SAs categories, ls-diverse SAs
severities, and finally with the Angelization technique out-
putting separate GT and ST tables to break any link between
QIDs and SAs.

R(Diverse − S) = ∀i17 ∈ x17,∀i18 ∈ x18,∀i19 ∈ x19

∨ i18[4] > i18[3] = FALSE

→ (i19[3], i19[4]) := DiverseS(i17[3], i17[4])
∧ i19[1] := i17[1]

∧ i19[2] := i17[2]

∧ x19 := x19 ∪ {(i19[1], i19[2], i19[3], i19[4])}
(21)

R(Angelize) = ∀i20 ∈ x20,∀i21 ∈ x21

∨ i21[1] := Angle
∧ (i21[2]n∀i21[2]n ∈ x21)

:= Angle(i20[2], i20[3], i20[4])
∧ x22 := ∪{(i22[1], i22[2])}

(22)

R(VcoAttacks) = ∀i22 ∈ x22,∀i23 ∈ x23,∀i24 ∈ x24

∨ VcoDis(i22[2], i23[3]) ̸= i24[3]

∧ i22[2] ∩ ı23[3] = ϕ

(23)

R(VsaAttacks) = ∀i25 ∈ x25,∀i26 ∈ x26,∀i27 ∈ x27

∨ VsaDis(i25[2], i26[3]) ̸= i27[2]

∧ (i25[2] ∩ i26[3]) = ϕ

(24)

6 EXPERIMENTAL EVALUATION

In this section, we present the experimental evaluation of
our proposed model and illustrate the performance com-
parisons with 1:M generalization [16], and (p, l)-Angeliza-
tion[4] We have implemented the proposed model and
evaluated it on real-world datasets in terms of data utility,
privacy and computational efficiency. In Subsection 6.1, we
will present the experiment preparation and settings we
have used. The datasets and the evaluation parameters as

well as the measures for data utility and computational
efficiency are also presented here. Subsection 6.2 provides
an extensive discussion and analysis on the results ob-
tained through Normalized Certainty Penalty (NCP). Sub-
section 6.3 presents the query accuracy investigation and
Subsection 6.4 shows the comparisons of execution run-
times for 1:M Generalization, (p, l)- Angelization and the
proposed model (lc, ls)-ANGEL on the datasets.

6.1 Preparation and Setting

We have implemented 1:M Generalization and (lc, ls)-
ANGEL in Python. All experiments have been conducted
on a computer with an 8th generation Intel Core i7 pro-
cessor, 8 GB RAM and Windows 10. We used three real-
world datasets, INFORMS, YOUTUBE and IMDB. All of these
datasets are well-known and have been widely used in
numerous related works [16], [25], [26], [27].

See Table 6 for an overview of the datasets. The details
are provided in the supplementary file.

6.2 Normalized Certainty Penalty

We used NCP [16], [28] to evaluate the information loss of
our proposed model. The obtained results have been com-
pared and critically analysed with NCP in 1:M Generaliza-
tion. NCP evaluates the level of accuracy for all equivalence
classes and assigns penalties for information loss caused by
the generalization process. Given a microdata table take the
value of an attribute A as v. Then, the basic formula for
measuring NCP is as follows:

NCP(v) =

{
0 |v| = 1
|v|
|A| otherwise

(25)

In Equation (25), |v| represents the total number of
leaf-nodes covered in value v according to generalization
hierarchies while |A| is the total number of leaf-nodes in
attribute A [16]. Gong et. al. have used two types of NCPs
to measure information loss on both QIDs and SAs in 1:M
Generalization [12]. For example, if the “epilepsy” in record
1 in the supplementary file is generalized to “Neurological”,
the information loss would be:

NCP(Neurological) =
2

6
=

1

3
= 0.33

Similarly, if the age value 16 is generalized to [16-20] and
we assume age range [1, 100] and zip-code range [10001-
30000], same as assumed in [12], then the information loss
would be:

NCP([16− 20]) =
5

100
= 5%

The Equation (25) represents information loss from gen-
eralizing an attribute. For a whole table T , the information
loss on both QIDs and SAs generalization is calculated using
Equation (26) and (27) respectively.

QIDs − NCP(T ) =

n∑
i=1

QIDs − NCP(ri)

n
(26)
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TABLE 6: Descriptions of the datasets used

Dataset n QIDs SAs SA
Domain

IN-
FORMS

58
.5
68

Month of Birth
Year of Birth

Race
Years of Education

Income

Diagnosis
Code 632

YOUTUBE
85
.6
07

Age
Rate

Ratings
Related
Videos

117.75
2

IMDb 1000 Year
Genre

Director
Rating
Gross

7.95
21

Here, T represents the microdata table that has r records
in it. ri is the ith record in T . The QIDs-NCP [16] for table T
would be the aggregated QIDs-NCP for all the records of T
over total number of records n. For aggregation, QIDs-NCP
for a record r can be calculated as follows in Equation (27).

QIDs − NCP(r) =

d∑
j=1

NCP(r.qj)

d
(27)

In the above equation, the values of QIDs for record r
would be r.q1, r.q2, . . . , r.qd. The QIDs-NCP for record r
would be aggregated NCP on all QIDs values of r. For
instance, the QIDs-NCP of details are provided in tabular
form in the supplementary file:[{

3× 10
100 + 5000

30000

}
+

{
3× 10

100 + 5000
30000

}]
6

= 15.6%

On the other hand, the SAs-NCP[16] for the table T can
be calculated by the Equation (28).

SA − NCP(T ) =

n∑
i=1

C(ri[d+1])∑
j=1

NCP(j)

n∑
i=1

C (ri[d+ 1])

(28)

Here, C (ri[d+ 1]) represents the number of distinct
SAs in SA-fingerprints for record ri and s be a SA value in
ri[d+ 1]. 1:M Generalization has generalized the sensitive
attributes into SA-fingerprints. The generalization of SAs
caused huge information loss for sensitive attributes accu-
racy. Therefore, we have not applied any sort of anonymiza-
tion on SAs in our proposed model; (lc, ls)-ANGEL. That is
the main reason that the SAs-NCP on anonymized datasets
by our model is zero, regardless of varying k, l, and n
parameters on both datasets. In Figure 3, we have plotted re-
sults of QIDs-NCP and SA-NCP of 1:M Generalization and
(lc, ls)-ANGEL with varying k on all datasets; INFORMS,
YOUTUBE and IMDB. We have taken different values k on
x-axis and QIDs-NCP and SAs-NCP on y-axis. The figure
shows that more utility was preserved on both QIDs and
SAs by (lc, ls)-ANGEL. In our model we have incorporated
Angelization [29]; which is a utility preserving privacy
technique and l-diversity on SAs’ categories and their un-
derlying severities gave well represented values but with
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Fig. 3: Information loss with varying values of k

higher utility. The results have been calculated with l = 5
and l = 10. In Figures 3a and 3c, both 1:M Generalization
and (lc, ls)-ANGEL has shown a gradual increase in QIDs-
NCP on increasing l size. The reason is; a larger l needs
to produce larger QIDs groups and consequently, greater
QIDs-NCP. We have used different values for lc while ls = 3
as we have assumed three severities/intensities for our
model. It is to be noted that both QIDs-NCP and SAs-
NCP in 1:M Generalization increase when k is increased.
The reason is the nature of the partition algorithm. The
Partition algorithm distorts more information in achieving
the k-anonymity on SA-fingerprints. As Mondrian does not
change SAs and partition is unrelated to l, therefore the both
SAs-NCP with l = 5 and l = 10 are same and equal in
Figures 3b and 3d.

Similarly, Figure 5 depicts the results of QIDs-NCP and
SA-NCP of both approaches with varying l on INFORMS,
YOUTUBE and IMDB. We have taken different values l on the
x-axis and QIDs-NCP and SAs-NCP on the y-axis. Due to
almost the same reasons mentioned above, (lc, ls)-ANGEL
has preserved more utility on both QIDs and SAs than 1:M
Generalization. To evaluate data utility in terms of total
number of records in the dataset (n), we have followed the
same sample-sets formation steps carried out in evaluation
of 1:M Generalization.

The Figure 5 shows the results of QIDs-NCP and SAs-
NCP of both approaches with varying n both datasets. We
have taken a number of records n on the x-axis and QIDs-
NCP and SAs-NCP on the y-axis. It can be observed from
the figure that (lc, ls)-ANGEL has preserved more utility on
both QIDs and SAs as compared to 1:M Generalization.In
QIDs-NCP evaluation, NCP for both approaches raised with
the different sizes of k. In 1:M Generalization, both QIDs-
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Fig. 4: Query Errors

NCP and SAs-NCP reduce as the dataset grows because of
the sensitivity of both partition and Mondrian to the size of
datasets.

6.3 Query Accuracy
Apart from NCP, the data utility of the anonymized or
published datasets is measured in query accuracy as well.
The estimation is carried out by answering the aggregated
queries throughout the datasets. “COUNT” is used to re-
spond to aggregated queries. The QIDs are regarded as the
query-predicates. If Q represents the set of quasi-identifiers
as, Q = {q1, q2, . . . , qn} and the domain of quasi-identifiers
as D(qi), then the aggregated query can be written as in
Equation (29) (30), (31) below.

SQL Query =

SELECTCOUNT() table T

WHERE qi ∈ D(qi) ∧ . . . ∧ qn ∈ D(qn)

(29)

The query predicate holds two major parameters:
(i): q: the query-dimensionality

(ii): θ: the query selectivity
The query-dimensionality parameter is specified by the

number of QIDs used in the predicate while the query-
selectivity represents the number of values for each at-
tribute. The query-selectivity is calculated as in Equa-
tion (30).

θ =
|TQ|
|T |

(30)
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Fig. 7: Execution time for different sizes of k, l, and n on different datasets

The |T | represents the count of tuples in the datasets
while the result-set generated from query Q on table T
includes the number of tuples. The result of query error is
represented by Relative Error; Error(R). The Relative error
is a normalized-divergence between the resultant dataset.
The relative error is calculated using Equation (31).

Relative Error =
(Estimated Value − Actual Value)

Actual Value
(31)

In the formula above, the actual value is the result
obtained from the COUNT query on the raw dataset and
the estimated count results from the count queries. The
Figure 6 shows the query errors results obtained from both
approaches over INFORMS, YOUTUBE and IMDB. We have
calculated the query error on two parameters; different sizes
of k and number of QIDs. The query errors have been
taken on the y-axis and two parameters have been taken
on the x-axis. The results show that 1:M Generalization
has greater query errors than our proposed model (lc, ls)-
ANGEL on all parameters and datasets. The reason is;
1:M generalization has generalized the sensitive attributes;
a1, a2 > to A. However, our approach has not generalized
the sensitive attributes, rather published them as they are,
in the angelized sensitive table.

6.4 Execution Time
The computational efficiency of a model is expressed in
terms of its total execution time, and it is considered a sig-
nificant parameter to evaluate the computational efficiency
of an algorithm.

The execution time is calculated with respect to several
parameters; size of k, l or n etc. Several research works
[30], [26] have used execution time in the context of privacy
preserving data publication for evaluating the computa-
tional efficiency of proposed models. We have calculated
and compared the execution time of both 1:M Generaliza-
tion and (lc, ls)-ANGEL on different values of k and l (in
our case l = lc). Figure 7 shows the results obtained in
this regard. 1:M Generalization includes three steps while
(lc, ls)-ANGEL is a four step algorithm. (lc, ls)-ANGEL also
performs Angelization to break any possible connection
between QIDs and SAs so that linking attacks can be
mitigated. Therefore, the execution time of our proposed
model is higher than 1:M Generalization’s execution time in
terms of seconds. However, considering the results of both
approaches in terms of preserving privacy and utility, the
execution time difference is negligible. Figure 7a shows the
execution time results obtained on varying sizes of k, l and
n on datasets INFORMS, YOUTUBE and IMDB.

7 CONCLUSION AND FUTURE DIRECTIONS

In this paper, we introduced a novel privacy-preserving
model lc, ls-ANGEL. The proposed model mitigates the ver-
tical correlation and vulnerable sensitive attribute privacy
attacks with a state-of-the-art 1:M Generalization technique.
Furthermore, we identified and reported on the information
loss due to the generalization of sensitive attributes in the
previous models. The main contribution of the paper has
been the formal modelling, verification and analysis of the
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proposed and prior privacy models in the context of the
privacy attacks we have identified. We have also tested
the proposed algorithm on datasets commonly used by the
literature for a fair comparison. The algorithm we have
proposed has been tested on static datasets. However, the
work is poised for extension to handle Multiple Sensitive
Attributes and is particularly adaptable for Big Data appli-
cation scenarios. For future work, we aim to enhance the
scalability and efficiency, making it suitable for dynamic and
large-scale data environments. This adaptation is a critical
step towards addressing the complexities and challenges
inherent in Big Data applications, thus, making a concrete
step towards a number of interesting research directions
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