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ABSTRACT Evolving transportation networks need seamless integration and effective infrastructure
utilisation to form the next-generation transportation networks. Also, they should be capable of capturing
the traffic flow data at the right time and promptly applying sustainable actions toward emission
reduction. However, traditional transportation networks cannot handle right-time updates and act upon
the requirements in dynamic conditions. Here, Digital Twin (DT) enables the development of enhanced
transportation management via robust modelling and intelligence capabilities. Therefore, we propose a DT-
empowered Eco-Regulation (DTER) framework with a novel twinning approach. We define a transport-
specific twin sampling rate to catch right-time data in a transportation network. Besides, we perform
emission prediction using Multi-Layer Perceptron (MLP), Bidirectional Long Short-Term Memory (Bi-
LSTM), and BANE embeddings. We perform Laplacian matrix analysis to cluster the risk zones regarding
the emissions. Thereafter, we recommend actions by setting the number of vehicle limits of junctions
for high-emission areas according to the outputs of Q-learning. In summary, DTER takes control of the
emission with its transport-specific twin sampling rate and automated management of transportation actions
by considering the emission predictions. We note DTER achieves 19% more successful right-time data
capturing, with 30% reduced query time. Moreover, our hybrid implementation of intelligent algorithms
for emission prediction resulted in higher accuracy when compared to baselines. Lastly, the autonomous
recommendations of DTER achieved ∼ 20% decrease in emissions by presenting an effective carbon
tracing framework.

INDEX TERMS autonomous traffic management, digital twin, reinforcement learning, twin sampling rate.

I. INTRODUCTION

IN recent years, various transportation issues are fre-
quently encountered stemming from the mobility of ve-

hicles and pedestrians. Besides, additional problems, such
as congestion, accidents, and inefficient service delivery,
appear due to the lack of proper planning and management
[1]. These problems become complicated due to grow-
ing traffic volume, thus leading to increasing operational
complexity and reduced efficiency in traffic management
[2]. Furthermore, there is a pressing need to reduce road
transportation emissions. The fact that 27% of UK-wide
emissions are caused by transportation urges us to make
immediate changes to be applied [3]. However, the current

transport management systems prioritize improving traffic
flow in the decision-making process rather than reducing
emission levels. Although route management schemes [4]–
[7] have been widely researched, they require significant
changes in the infrastructure of road networks, vehicles, and
existing communication infrastructure. Therefore, adopting
and integrating new technologies is the need of the hour
to present sustainable next-generation transportation systems
by hitting the emission reduction goal. Regarding that,
the efforts and implementation of Digital Twins (DTs) in
intelligent transportation have been started [8] especially
for traffic safety and mobility [9]–[11], and network traffic
prediction [12], [13]. In this context, the DTs present virtual
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FIGURE 1. Transport network traffic flow and emission trace
characteristics.

mirrors of the physical transportation network to perform
what-if analyses.

A. MAIN CHALLENGES IN TRANSPORTATION NETWORK
MANAGEMENT
• Right-time data capturing to ensure efficient manage-

ment: Right-time data balances the benefits of real-
time data and resource usage (processing time for data
querying, CPU usage, etc.) of a transport management
system when utilized in the DT context. As seen in
Fig. 1, the traffic flow, in other words, the number of
vehicles in a transportation network, is dynamic and
depends on the rush hours of the day. Within these
time slots, the traffic flow shows a sharp increase.
These changes, especially the peak points, result in
inaccurate and false representations of the physical
transport environment due to the inability to catch the
data at the right times, leading to invalid predictions
and unfit traffic regulations.

• Inadequacy of utilizing temporal and spatial features in
CO2 prediction: As seen in Fig. 1, the trace of the CO2
levels, shown by orange lines, increases with the pattern
of dynamical changes in traffic flow. At this point,
predicting emission levels in a transport network is
advantageous for efficient management and keeping the
emissions below the desired level (shown in the purple
dashed line in the figure). However, considering only
temporal features is insufficient for accurate emissions
prediction; location information is also necessary.

• Lack of intelligent recommendations to control emission
levels via autonomous-driven actions: Updating traffic
actions to control transportation networks is an effective
remedy for sustainability. In this regard, traditional
transportation management is mostly driven by rule-
based systems. However, this is not sufficient to draw
conclusions about the transport network’s future CO2
levels and recommend potential actions.

B. MOTIVATION
As an actual blueprint of the physical environment with a
one-system-fits-all perspective, DTs become a key enabler to
meet the design requirements of sustainable next-generation
transportation networks. Thanks to its robust modelling and
cognitive capabilities, the transportation network is repli-
cated with real-time data and the risky zones can be identified
in a robust manner. Based on these, our motivation for this
work is three-fold:

Transport-specific twinning for right-time data cap-
turing: To hit the dynamic changes in DT-based transport
management at the right times while preserving the system
resources, the definition of use-case-specific data capturing is
required. This will highly improve the efficiency of transport
services and resource utilization. For instance, with a right-
time DT system, the transport management centre can use
the latest dynamic changes in information and be fully aware
of the information’s freshness [14] before making a critical
decision.

Mix of ML algorithms for spatio-temporal emission
prediction: Emissions prediction by using spatial and tem-
poral features is required to improve accuracy in DT-based
transport management. As traditional ML methods are in-
capable of maintaining this [15], effective hybrid methods
are required to achieve this and increase the accuracy of
predicted values.

Design of an autonomous engine for sustainable
and location-aware action recommendation: The next-
generation transport networks require location-aware au-
tonomous action recommendations for smooth and sustain-
able traffic flow. Such actions could be limiting the number
and type of vehicles at the entrance of a junction during
rush hours or putting speed limits at some proportion of the
motorways.

Based on these motivations, our study moves along the
research question, “How to design a sustainable mobility
framework in next-generation transportation networks (i)
by precisely capturing the right-time data while preserving
resources in querying, (ii) by concisely gaining insights on
CO2 levels for forthcoming situations, (iii) by autonomously
serving recommendations for the high-risk zones regarding
the total number of vehicles and emission levels?”. To
address this, we propose the DT-empowered Eco-Regulation
Framework with a novel twin sampling rate. In addition,
we perform CO2 prediction within the service layer of
DT to gain insight into future emission levels. Also, we
perform risk zone clustering via Laplacian analysis to decide
which locations need action recommendations to make them
safe zones. After that, we perform Q-learning-based action
recommendations to decrease emissions. As traffic dynamics
can be unpredictable depending on the environment where
multiple factors, like weather, accidents, or construction,
affect the flow, we chose the Q-learning method to produce
autonomous actions robustly.
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TABLE 1. Proposed DTER Framework and Current State of the Art Studies

Literature Data capturing Emission prediction Autonomy Recomm. alg. Context
[16], [17], [18], [19], [20], [21] real-time - - - -
[22], [23], [24], [15] historical LSTM, CNN, ANN - - -
[25], [26], [27], [28], [29] real-time, historical - ✓ RL route planning
[30], [31] [32] historical - ✓ DRL, Deep-GAN task scheduling, bus boarding

Our work right-time MLP, LSTM, Embedding ✓ Q-Learning emission reduction

C. CONTRIBUTIONS
The contributions of this study are summarized below:

• We introduce a novel twin sampling rate formula to
capture the right-time data according to the dynamics
of transport networks. In the formulation, we consider
incoming traffic flow, outgoing traffic flow, current
traffic flow, and maximum flow metrics.

• We jointly use MLP, BANE embeddings, and Bidirec-
tional LSTM to predict the future emission levels on
a transportation network. With this, we serve the low-
dimensional representation of spatial information of a
transportation network within the twin service layer
while increasing the prediction accuracy.

• We design an autonomous recommendation engine
within the twin service layer to manage traffic flows
by considering emissions. The engine is capable of
Laplacian matrix-based risk zone clustering and Q-
learning-based location-aware action recommendations.

II. RELATED WORKS
A. DATA CAPTURING EFFORTS IN DIGITAL TWINS
Despite the increasing studies in the DT research area,
there is limited research on the main building block of DT,
proper data capturing and modelling. In this regard, [16]
studies the DT modelling and points out a data representation
technique capable of holding all related information. The
study also highlights that the flexibility of graphs and better
querying performance may assist this tendency. Moreover,
[17] presents a case study for the real-time situational anal-
ysis of the transportation system and maintaining informed
traffic simulation models. The results guarantee the real-
time delivery of traffic flow statistics and enhanced analysis.
Likewise, [18] deals with the real-time data serving in the
DT simulation of connected vehicles and pedestrians by
proposing a closed-loop data transmission scheme. Further-
more, the use-case-oriented DT studies, [19], [20], mainly
utilize Microsoft Digital Twin environment and utilized
graph-based modelling. Furthermore, [21] aims to solve the
timing problem in synchronising physical and virtual parts
and computation tasks by minimizing the delay. For this,
it proposes a mobile edge computing (MEC)-based load
balance model to present the timely delivery of data within
the DT. Even though these studies perform efficient data
modelling schemes, none of them proposes specific data-

capturing approaches to maintain right-time data within the
DT system.

B. EMISSION PREDICTION MODELS IN
TRANSPORTATION NETWORKS
In the current literature, multiple approaches exist for the
management of emissions. In this regard, [22] proposes an
eco-routing strategy by calculating the fuel consumption
and, thus, resulting emission values with user equilibrium
formulas. Even though the results contribute to decreasing
the emissions significantly, the statistical method presented
in this study cannot be applied directly to calculate future
emission levels due to the dynamic nature of transportation
networks. Moreover, [23] designs CO2 emission prediction
methods for vehicles using data generated by in-vehicle
sensors. They utilize LSTM models to capture the temporal
dependencies in the time domain in a forward manner and
predict future emissions. Likewise, [24] presents a CO2
modelling scheme by jointly using the physical and data-
driven models. In this study, the physical model utilizes
a cascaded architecture with the vehicles’ features, while
the data-driven models rely on a modified LSTM neural
network. Similarly, [15] proposes a prediction system based
on multiple 1D-Convolutional Neural Networks (CNN) and
Artificial Neural Networks (ANNs), which predicts exhaust
emissions based on speed, acceleration, and environmental
parameters. As summarized above, there are several ex-
amples of emission prediction for transportation networks.
Nevertheless, all of these studies consider either temporal
features or spatial features, but they do not utilize them
together within a DT system.

C. RECOMMENDATION FRAMEWORKS IN
TRANSPORTATION DIGITAL TWINS
The primary focus in this area is vehicle routing strategies.
For example, [25], [26] propose a route recommendation
scheme that can timely produce output. However, in this
proposed scheme, the emissions are not considered directly
in the decision-making process, making them prone to
favour the traffic flow. Moreover, [27] proposes a control
strategy to mitigate congestion and lower emissions by
actively controlling the lanes and speed limits. Nonetheless,
this study utilizes a rule-based management system rather
than an autonomous-driven one. In the study [28], an en-
hanced analysis of transportation systems is performed while
proposing effective regulations for traffic flow management.
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However, the decision-making process is not elaborated in
detail, and the sole use of a deterministic simulation to
generate actions may decrease the performance. Further-
more, [29] introduces an automatic transportation solution by
proposing a Transportation Internet (TI) concept. In the TI,
software-defined transportation (SDT) separates the control
and transport planes. Even though this study presents a
centralized intelligent control for transportation networks,
emission-oriented recommendations are not addressed. Fur-
thermore, the recommendation mechanism for task schedul-
ing problems in transportation has been addressed with dif-
ferent methodologies, such as Deep Reinforcement Learning
(DRL) [30], [31]. Recently, a generative adversarial network
(Deep-GAN) is proposed for the bus boarding prediction
and recommendation task [32]. Even though the results
highlight improved performance and promising alignment
with existing ridership information, this study does not target
managing the emission levels. As a result, these studies
primarily aim to improve traffic flow, with little consideration
given to emissions in decision-making processes, possibly
due to the limited resources and capabilities of traditional
transport management systems.

We give the summary of the current state of the art in Table
1. According to this table, we note that the existing data cap-
turing methods focus on real-time data and historical data.
Our study is the first to propose right-time data capturing
within a DT system for transportation networks. For emission
prediction, the current studies perform traditional AI/ML
algorithms with temporal features; they do not consider
hybrid methods. To surpass this, we utilize hybrid methods
with spatial and temporal features. Furthermore, we can
also highlight that our study is the first to propose a traffic
regulation scheme to decrease emissions. The remainder of
the article is arranged as follows: Section III details the
proposed Digital Twin-empowered regulation architecture.
Section VI gives details about the experimental analysis.
Lastly, the conclusion is given in Section V.

III. DIGITAL TWIN-EMPOWERED ECO-REGULATION
FRAMEWORK
The proposed DT-empowered Eco-Regulation Framework is
shown in Fig. 2. It comprises a Physical Twin Layer, a
Digital Twin Layer, and a Twin Service Layer. In addition,
the key notations are given in Table 2. Through our theoret-
ical modelling and derivations, we use a bold font to show
matrices.

A. PHYSICAL TWIN LAYER
This layer consists of the road infrastructure and vehicles.
In this study, we discuss data-driven modelling, emission
predictions and eco-regulations; therefore, we assume that
any data regarding the traffic and infrastructure can be
acquired. In this scope, the measured data on the junctions
regarding the traffic flow, such as incoming flow value to
the junction and outgoing flow value from the junction, is

utilized. More specifically, for each vehicle travelling on the
road, we take the source junction road name, destination
junction road name, record timestamp, and direction of travel
information. In addition, we take latitude and longitude
records to use in the spatial analysis.

TABLE 2. Nomenclature

Notation Explanation

G Knowledge graph of transport topology
G′ Predicted graph of transport topology
G Base knowledge graph
MS Spatial attributes
MT Temporal attributes
X′ Predicted CO2 signals
B Embedding Matrix
Zi ith risk zone
ei Average CO2 value in the ith risk zone
n Number of nodes in graph G’
r Total number of risk zones in G’
k Total number of nodes in the ith zone
α̂ Twin sampling rate
ρi Utilization of the node i
ζi Dynamicity factor for node i
Ci Maximum current flow for node i

B. DIGITAL TWIN LAYER
1) Right-time Data Capturing
We introduce a twin sampling rate specific to the nature of a
transport topology to hit the dynamical changes and ensure
physical-to-virtual convergence. We explain the details of
this metric below.

Twin Sampling Rate, α̂: It refers to the synchronisation
frequency between the physical object and its digital coun-
terpart. Therefore, we define the twin sampling rate for a
transport network to ensure physical-to-virtual convergence
while catching the dynamic flow variations and avoiding loss
of information. We first define the utilization and dynamicity
factors for a junction in a transport network. We calculate
the utilization (ρ) of a junction i in a transportation network
as:

ρi =
flowCuri + flowIni − flowOuti

Ci
, ∀i (1)

where, ρi ∈ [0, 1]. In (1), we consider the current flow
value within the junction flowCur, the incoming flow
value to the junction flowIn, and the outgoing flow value
from the junction flowOut. All these flow values are in
vehicles/min. Also, the term Ci stands for the maximum
current flow of the junction i for vehicles. Then, we define
the dynamicity factor (ζ) to measure the traffic flow changes.
This is because we need a trigger from the physical envi-
ronment to decide the synchronization time, which depends
on the behavioural pattern of the transport topology. As the
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FIGURE 2. DT-empowered Eco-Regulation (DTER) framework.

main dynamicity stems from the traffic flow, we form the
dynamicity factor of a junction i as given below:

ζi =
flowIni + flowOuti + |∆flowCuri|

2(Ci + flowIni)
, ∀i (2)

where, ζi ∈ [0, 1]. In (2), we consider the metrics apper-
taining to the traffic change. Regarding this, we use incoming
traffic flow, outgoing traffic flow, and maximum current flow
as we did in the utilization. In addition, we use the current
traffic flow change that is ∆flowCuri, implying the total
change in the traffic flow when compared to the previous
time step. When forming (1), and (2) we use two upper
bounds:

• Upper bound-1: This is to ensure both the incoming
flow value to a junction and the current flow value
within the junction should be less than the maximum
current flow of the junction. We denote this bound as
flowIn, flowCur ≤ C. The main reason the incom-
ing flow value to a junction should be less than the
maximum current flow is to avoid additional congestion
occurrences.

• Upper bound-2: This bound ensures that the outgoing
flow value cannot exceed maximum current flow and
the incoming flow to a junction. We denote this bound
as flowOut ≤ C + flowIn. This is a kind of ap-
plication of the flow conservation rule; if there is no
incoming flow and current flow in a junction, then there
will be no outgoing flow.

In the calculation of (1), if we take the maximum values
according to these bounds, we see that the numerator will be
equal to C−flowIn. And if this value is divided by C, it will
result in a value lying in [0, 1]. By applying these bounds,

we ensure the modelled transport system’s stability by setting
limits according to the maximum current flow values of the
different junctions. After that, we use the junction-specific
utilization and dynamicity factors in order to decide the
network’s overall twin sampling rate. We calculate the twin
sampling rate as given below:

α̂ ≈ max{ζiρi|i = 1, 2, ...n} (3)

In this formula, ζiρi values stand for the individual twin
sampling rates of the junctions. Here, the utilization factor
implies the importance of a junction in a transportation
network, while the dynamicity factor highlights the flow
changes for a junction. As we want to catch the dynamic
changes for the important junctions of a transportation net-
work, we multiply these two metrics to find the individual
twin sampling rates of the junctions. Similarly, to catch the
dynamical changes in the transport topology and update
our records accordingly, we take the maximum twinning
rate among the set of junctions to apply for the whole
transportation topology. In this way, we can hit the required
twinning rate for the most dynamic scenario by involving
the less dynamic ones as well. With the result of (3), we
fed the digital twin layer with the decided α̂ and updated
the knowledge graph, G, accordingly. According to α̂, if a
node’s traffic change is high, the twin sampling rate value
will have a high value and vice versa. The practical meaning
of this rate is that it decides when to update the data in the
knowledge graph by perceiving the traffic flow information
from junctions.
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2) Knowledge Graph Construction
The modelling methodology for transportation networks is
essential to create a 360-degree view. To do this, the real-
time acquired data should be represented with additional
information, such as road infrastructure, relations between
transport entities, and regulation rules. In addition, these in-
formation sets need to be available within the transportation
network model with spatial and temporal indexes. To enable
such an environment, we first start with constructing the
knowledge graph of the transport network. We represent this
knowledge graph as G = (V,E,R,Ms,MT ), where V , E,
and R represent the node set, edge set, and regulation set of
the transport topology, respectively. The nodes represent the
intersections of nodes, while the edges correspond to their
contextual and spatial relationships. The regulations imply
the set of rules to be applied for corresponding junctions.
In addition, MS and MT correspond to spatial and temporal
attributes of the knowledge graph that reflect the specific
information of the given point, such as GPS location, speed
limit, road direction, and CO2 level. At this point, we call
a subgraph of G, as base knowledge graph to utilize in
CO2 prediction in the next section and we denote it as
G = (V,E,R), where G ⊂ G is hold.

C. TWIN SERVICE LAYER
1) CO2 Prediction
DTER utilizes a hybrid method for emission prediction.
More specifically, it comprises four modules: BANE Em-

bedding Layer, Multi-Layer Perceptron (MLP) Regression
Layer, Bidirectional LSTM Layer, and Attention Layer.
The proposed CO2 prediction scheme is illustrated in Fig.
3. Here, the machine receives the base knowledge graph
(G), spatial attributes (MS), temporal attributes (MT ), and
time window (∆). The ∆ vector is the corresponding time
difference between each timestep.

BANE Embedding Layer: Node embeddings have been
used to represent nodes in a graph as low-dimensional
vectors while preserving the structural properties and rela-
tionships. These are generated by algorithms such as ran-
dom walks, singular value decomposition, and graph neural
networks. These plain network embeddings can fall short
of representing real-world conditions because of a lack of
considering attributes such as occupancy rate and travel time
variability. Thus, we utilize the attributed graph embedding
algorithm, BANE model [33], to preserve structural and
contextual information. This BANE embedding layer takes
in G and MS and creates binary codes for vertices, resulting
in the embedding matrix B.

MLP Regression Layer: The junctions’ incoming and out-
going flow data are contained within the temporal attributes
MT ∈ RN×F×T . Using this, the MLP regression mod-
ule calculates the produced CO2 emissions. This module
receives N × F inputs and generates N outputs, creating
X ′ ∈ RN×T .

Bidirectional LSTM Layer: The emission levels through-
out the time domain might follow certain patterns resulting
from the traffic patterns. The Bidirectional LSTM considers
long- and short-term patterns in both forward and backward
directions. Here, this layer receives the concatenation of node
embeddings (B), CO2 signals(X ′), and time window (∆).
Here the X ′ is the matrix containing the predicted emissions
per node. The hidden state matrix (H) of the Bidirectional
LSTM is forwarded to the attention layer.

Attention Layer: The attention mechanism computes a
weighted sum in which the weights are learned. This layer
calculates the resulting degree of emission considering the
respective timesteps. Using this layer, the model can consider
both CO2 production and its accumulation. Then, this model
outputs the emission predictions, denoted as G′.

2) Autonomous Action Recommendation
The proposed autonomous recommendation engine com-
prises two significant steps. First, it performs risk zone
clustering for detecting the high-risky zones in terms of CO2
levels. Here, the risk zones represent particular areas within
the transport topology having differentiated CO2 values.
Then, a Reinforcement Learning (RL)–based action set is
explored. The details of these steps are explained below.

Risk Zone Clustering: The CO2 values in a transport
network depend on the dynamics of the flowing traffic, and
the level of emissions differ spatially depending on these
dynamics. Therefore, performing clustering for risk zones
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enables us to understand emission behaviour by catching
the zone-specific emission values and producing accurate
recommendations accordingly. At this point, we formulate
clustering as a community detection problem in graph theory.
To solve this emissions’ community detection, we work on
the predicted graph, G

′
, and refer to each community as a

separate risk zone, Zi. Therefore, our approach holds the
statement G′ =

⋃r
i=1 Zi, G′ = Z1 ∪ Z2 . . . Zr where r is

the total number of risk zones within the transport topology.
CO2 Matrix, O: It is an n× n matrix comprising of the

CO2 values for individual nodes in graph G’. We represent
it as O = diag(o1, ..., on) ∈ Rnxn. The diagonal elements of
this matrix stand for the node-specific predicted CO2 values.
Therefore, the non-diagonal elements are equal to zero.

O =

o1 0 0

0
. . . 0

0 0 on


Strength Matrix, S: It is an n × n matrix stating the

strengths between the pair of nodes in a neighbourhood area
within the transport topology. The strength of a node pair is
determined by the total edge weights connecting them. As
in our implementation, we denote the junctions as nodes and
the roads as edges; the edge weights are proportional to the
physical distance between the two junctions. We represent
it as S= {sij |i, j = 1, 2, . . . n}, where sij indicates the
strength value of node pairs (i, j). The diagonal elements
of this matrix are equal to zero implying that self-loops will
contribute to zero distance.

S =


0 s12 . . . s1n
s21 0 . . . s2n

... s(n−1)2 0 s(n−1)n

sn1 sn2 . . . 0


Laplacian matrix analysis serves to preserve the local

geometry, which is the case we desire for our transport net-
work implementation. Therefore, we construct the Laplacian
matrix of our transport network for the zone identification
task. With this, the nearby points in the physical space will
remain nearby in the reduced virtual space. Regarding this,
there are different ways of defining the Laplacian matrix of
a graph depending on the application. As our main target
is to create clusters on our knowledge graph, we use the
Normalized Laplacian matrix and one of its properties. We
use (4) to generate the Normalized Laplacian matrix, which
partitions the network into clusters based on the smallest
eigenvalues and their corresponding eigenvectors.

LN = 1− SO−1 =


1, i = j

−sij/oj , (i, j) ∈ G

0, o.w.

(4)

Moreover, we partition the graph into clusters by using
the smallest eigenvalues and corresponding eigenvectors by

using Spectral Clustering with the k-means algorithm. We
also utilize a stopping criteria for the clustering, as explained
below.

Community Matrix, Z: It states the node-specific CO2
values and highlights the clusters in the graph as a result
of Laplacian matrix analysis. For instance, the community
matrix of a graph network with two extracted clusters will
look like:

Z =

z11 . . . z1m . . . z1n
z21 . . . z2m . . . z2n

...
...

...
...

...
zm1 . . . zmm . . . . . .

z(m+1)1 . . . z(m+1)m . . . z(m+1)n

...
...

...
...

...
zn1 . . . znm . . . znn




As we desire to form clusters regarding the CO2 values,

we calculate the average emission value in percentage (ei)
and take it as a stopping criterion for iterative clustering. We
calculate ei value for the cluster i as given in (5):

ei(%) =
1

k

k∑
j=1

zjj × 100 (5)

where the value of k corresponds to the total number of
nodes present in cluster i. Therefore, k ≤ n should be held.

Q-learning based Recommendation Engine: Since Q-
learning works on discrete states and actions, it fits well for
our target, which is making location-aware recommendations
to reduce emission values. That’s why we adapt Q-Learning
for the autonomous creation of actions by deciding the
number of vehicles to be accepted for a particular junction.
Therefore, we map the Q-learning components into our trans-
port topology by considering each node, namely junctions, as
an agent. Also, we consider each cluster calculated with the
Laplacian as a state. The agent performs action by exploring
the number of vehicles to be served within a junction and
obtains a reward for this. Therefore, our recommendation
system is represented as six tuples; {E,Ag, S,A, p,R}. We
explain the major elements of the recommendation system
below.

• Environment, E: The transport network consisting of
n number of junctions forms an environment for Q-
learning. The transport topology is constructed in the
form of CO2 zones, as explained in the above section.

• Agent, Ag: Each junction in our transport network that
can calculate the in-flow and outflow traffic is defined
as an agent.

• State, S: The state space represents the total number of
CO2 classes consisting of three types as quantized in
Table 3. We define these classes’ boundaries in the Z
by referencing the ei values. This is because average

VOLUME , 7

This article has been accepted for publication in IEEE Open Journal of Vehicular Technology. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/OJVT.2024.3484956

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Duran et al.: Digital Twin-empowered Green Mobility Management in Next-Gen Transportation Networks

emission values differ depending on the dynamics of
transport topology.

• Action, A: Action set states the total number of ve-
hicles to be served at a time while keeping the CO2
values below the risky level. These risky situations and
action space values are stored within the knowledge
graph, G. Here, the actioni is formed for Zi where
i = argmax(ei). Then, the action set is formed as
A = {actioni|i = 1, 2, ...r} for each of the risk zones.

• Probability, p: Represents the probability of transition
to the new state. In our approach, it stands for the
probability of transitioning from one emission class
to another. Therefore, this value is important while
defining the boundaries of threshold values.

• Reward, R: The agents accept a reward for each
emission class change in which the emission value
is decreased, considering the transport topology. In
this circumstance, we form an emission-oriented re-
ward function for this study. To do this, we define
an emission function to be minimized and refer to it
while creating the reward function. Therefore, we first
calculate the geodesic distance, which is the shortest
path between the two nodes, by using the betweenness
centrality measure. We choose this centrality as it
considers the location information of a node with the
global view of the entire transport network. In addition,
we take advantage of its flow consideration perspective,
which is impossible with other centrality measures. We
calculate the dynamical betweenness centrality value of
a node as follows: bi = 1

(n)(n−1)

∑
l ̸=i,m̸=i,l ̸=m

ρlm(i)
ρlm

[34]. As the betweenness centrality value increases with
the number of nodes in a graph, we use the relative
betweenness centrality value that we calculate by using
normalization: b′i = bi

MAX(bi)
to hold 0 ≤ b′i ≤ 1

condition. We use the b′i values in our objective function
to decrease the CO2 values considering the graph G′.
After that, we form the Emission Function denoted as
E, as given in (6). This function sums the total cluster-
specific calculated emission values by considering the
centrality measure and the average emission value
within the cluster. The constraint (7) ensures the total
number of clusters should not exceed the total number
of nodes in transport topology. Moreover, the centrality
value (b

′

i) should be in the interval [0, 1] (8). Lastly, the
average emission values (ei) within a cluster should not
be non-negative for all updated adaptive twinning rates
(9).

Minimize E =
∑
Zi

b
′

iei ∀Zi ∈ G′ (6)

subject to
∑
i∈V

Zi ≤ n ∀i = 1,m (7)

0 ≤b
′

i ≤ 1 ∀n ∈ V (8)
ei ≥ 0 ∀α̂ (9)

Then, we form an emission-oriented reward function:

Rt+1 =
(et − et+1)

+

E
(10)

where (y)+ operator takes the value of y if it is positive,
and takes zero otherwise. In (10), the numerator checks
for if the action leads to a decrease in the CO2 level.
Here, dividing it by the total emission of the whole
topology, E, gives the normalized reward value. At
this point, we note that DTER focuses on reducing
road transportation emissions. More specifically, if a
congestion scenario is to be avoided, additional route
recommendation algorithms should be integrated into
the system. Thus, in this study, we assume that DTER
does not result in any congestion or accident scenario.

• Q Function: The algorithm updates the Q values by
using the equation which we adapt from Bellman Equa-
tion: Qt+1(S,A) = Q(.)+α(R+γmaxA′ Q(S′, A′)−
Q(.)), where Q(.) function stands for Qt(S,A). In this
formula, the agent, a junction, considers all the possible
actions, that is, the number of vehicles and states of
transport regions, to choose one, maximizing the reward
function. In this formula, the A′ is the action that could
be taken at state S′. Also, γ is a discount factor showing
the significance of the next states with learning rate, α.

• Policy, π: We utilize the ϵ-greedy action selection
mechanism by randomly choosing the exploration and
exploitation states. Therefore, the junction agent takes
a random action at a given time with the probability of
ϵ or (1 −ϵ).

TABLE 3. Emission Classes and Corresponding Boundaries

Emission Class Threshold

1 ei ≤ 30%

2 30% < ei ≤ 70%

3 ei > 70%

As seen in Alg.1, DTER takes the spatio-temporal features
and Q-learning parameters information as the inputs and
produces the base knowledge graph and whole knowledge
of the transport topology (line-2 in Alg.1). After that, it
performs CO2 prediction steps and constructs the predicted
knowledge graph by including the emission values for each
junction (line-7 in Alg.1). Then, transport specific twin
sampling rate is calculated by considering the utilization
and the dynamicity factors of the related junction (line-
9 in Alg.1). The clustering stopping criteria is checked
in line-10. If the stopping condition is not met, Laplacian
matrix analysis is performed in line-12 and line-13. If the
condition is met, the clustering is stopped, and the cluster
information is used as in the last updated community matrix.
The emission function value is calculated in line-19 with
the given constraints. After all these steps, Q-learning is
performed by taking an action with the ϵ-greedy approach
and the Q-table is updated according to the reward function
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Algorithm 1 DTER: DT-empowered Eco-Regulation Algo-
rithm
Require: spatio-temporal feature set, α, γ
Ensure: G, G′, G, Z , E, R, At+1

1: Initialize α̂, MS , MT , ei, Q, A;
2: Construct G, and G;
3: foreach change in α̂
4: Update MS , and MT

5: Perform MLP to create X’
6: Retrieve B
7: Perform LSTM to create G’
8: Calculate ρ and dynamicity factor ζ ▷ (1),(2)
9: Calculate α̂ ≈ max {ζiρi|i = 1, 2, ...n} ▷ (3)

10: while |cj − ck| > ei
11: Construct O, S
12: Generate LN , Compute eigenvectors ▷ (4)
13: Apply k-means, Generate Z
14: Calculate ei =

1
k

∑k
j=1 zjj × 100 ▷ (5)

15: end
16: end
17: Calculate centrality, bi = 1

(n)(n−1)

∑
l ̸=i,m̸=i,l ̸=m

ρlm(i)
ρlm

18: Calculate b′i =
bi

MAX(bi)
19: Calculate emission function, E ▷ (6)
20: foreach episode
21: Take action, a
22: Observe reward R, and state, S′ ▷ (10)
23: Update Q-table
24: Qt+1 ← Q(.) + α(R+ γmaxA′ Q′ −Q(.))
25: Decide next action, a′ with policy, π
26: Update a ← a′, S ← S′

27: Update action set, At+1 ← At

28: end

results (lines 20-26). In the last step, the optimum action set
is applied as the output of the autonomous recommendation
engine (line-27).

IV. EXPERIMENTAL STUDIES
A. DATASET
Due to the scarcity of reliable on-road carbon emission
datasets, we conduct experiments by using a real-world
dataset from the open-source project1. We first create our
physical twin layer in SUMO by extracting the traffic vol-
umes in the UK from four major roads: A330, A3095, A329,
and A321. For this, we used the data from the roads dataset
and merged them with the count points and count entries
dataset. The raw data we use in our simulations includes
1000 transactions and 280 unique trips, each with different
source and destination junctions. Afterwards, we create two
scenarios for emission values:

• Scenario-1: In this, we create emission values of the
vehicle records by utilizing the predefined emission
models in SUMO. We set the simulation area as 1 km2.
We assume that all the vehicles are identical. Therefore,
we present the HBEFA3/PC G EU4 model for Euro
norm 4 gasoline cars to record emission values.

• Scenario-2: This is to test our proposed scheme on
a more realistic scenario with real emission values.
For this, we extract the emission values from the
American on-road carbon emission database, DARTE
[35], especially 2017 records with the corresponding
latitude and longitude information.

B. SIMULATION ENVIRONMENT
The simulation environment is shown in Fig. 4. Here, the
Physical Twin Layer is constructed using the microscopic
and continuous traffic simulator Simulation of Urban Mobil-
ity (SUMO) [36] where we mimic the real-world transporta-
tion network. Moreover, a dynamic scenario module is devel-
oped using Python and integrated with the SUMO simulator
using the TraCI interface. Moreover, the connection between
the simulation environment is established using the Eclipse

1https://github.com/Software-Dev-Group-Project/traffic-analyzer-sdgp
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Hono, a cloud-based IoT device management platform2. To
communicate with Hono, we used the HTTP protocol. Here,
the data measurements are sent to, and control commands
are received from the Hono. The integration of Hono to
the DT model and Service Layer applications is established
using the AMQP messaging protocol. Also, the updates to
the DT model hosted in Neo4j3 and the data handling and
service applications of the proposed architecture are realized
by Python scripts. We used the HTTP protocol between
the twin service layer and the DT model. Additionally, the
Scenario Maker module is implemented with SUMO. The
traffic demand, topology, and action set are received to set
the environment. The evaluation, monitoring and control of
this environment are established via the TraCI interface. All
simulation parameters are given in Table 4.

C. PERFORMANCE RESULTS
In this section, we aim to investigate the performance of
DTER considering (i) the right-time data capturing with the
proposed twin sampling rate and also mean query duration
to access an increasing number of objects in the knowledge
graph, (ii) the accuracy of the prediction algorithms imple-
mented within the Twin Service Layer, and (iii) total CO2
emission reduction within the zones via Q-learning based
autonomous actions and update mechanism (in g/km2) for
Scenario-1 and Scenario-2.

TABLE 4. DTER Network Simulation Parameters

Parameters Values

Topology Parameters
Total Number of Nodes: {25, 50, 250}
Incoming traffic flow: [0, 100] veh/min
(identical vehicles)
Max. current flow: 100 veh/min

ML Model Parameters
LSTM:
Optimizer: adam
Merge mode: concat (for BiLSTM)
Recurrent initializer: orthogonal
Max epochs: 40
Batch size: 256
MLP 2 (5,2)
Optimizer: sgdm
Cross-validation: 4-fold
Max epochs: 40
Batch size: 256

RL Model Parameters
Q-Learning:
Num. of episodes: 10000
Discount factor 0.99
Learning rate: 0.1
Update policy: Epsilon-greedy

We firstly search for the effect of twin sampling rate, α̂,
on the right-time data capturing for the simulated transport

2https://www.eclipse.org/hono/
3https://neo4j.com/

FIGURE 5. Digital Twin Layer performance analysis in terms of right-time
data capturing for proposed twin sampling rate and constant twinning
rate.

network within the Digital Twin Layer. For this, we create
a time series-based dynamic road network scenario in a
Python script with different incoming flow, outgoing flow,
and current flow for each junction. We also set maximum
current flow value as given in Table 4 for each junction. In
addition, we graduate CO2 values into levels in the dynamic
scenario and work on the interval of [2,3]. These CO2
levels correspond to the physical twin emission values and
are represented in Fig. 5 with the light blue line. We use
this as a baseline to compare the results of the proposed
twin sampling rate and a constant twinning rate of 0.7. We
simulate for thirty-five minutes and observe the resulting
CO2 levels for these twinning rates. We labelled the cases
as miss or hit. A miss case occurs when the resulting CO2
level differs at a lower bound of 15% from the physical twin
emission level. On the contrary, a hit case implies an upper
bound of 5% to be accepted as successive modelling for the
dynamic scenario. Regarding these limits, we have observed
the miss-hit cases during the simulation time. The results
show that the proposed twin sampling rate gives 19% more
successful right-time data capturing than the constant 0.7
twinning rates. More specifically, we see that the proposed
twin sampling rate surpasses the constant rate method when
catching the traffic flow behaviour of the dynamic scenario
due to its continuous trace on traffic flow metrics. The results
for the entire simulation time are given below.

Moreover, we observe the required duration for a query
to test the performance of the implemented knowledge
graph hosted in Neo4j within DTER. For this, we have
increased the number of requested objects to one thousand
in a single query and noted the required duration in ms.
We individually compare the performance of the knowledge
graph with traditional data files and relational databases.
As the number of requested objects increases, traditional
and relational databases take more time to retrieve all the
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FIGURE 6. Digital Twin Layer performance analysis in terms of mean
duration performance to reach the requested objects for traditional data
file, relational database, and knowledge graph.

requested objects due to intensive join operations performed
on the data files. This can be seen in Fig. 6. On the other
hand, as our proposed DT modelling takes advantage of
preserving relationships while separating the real-time data
into spatio-temporal graphs, we see a 30% reduced mean
duration time to reach all requested objects compared to the
two circles in the figure.

FIGURE 7. Twin Service Layer performance analysis for CO2 prediction
for LSTM, BiLSTM, embeddings integrated, and DTER.

In addition, we test the DTER performance regarding the
CO2 prediction within the Twin Service Layer. For this,
we decided on a 2-layered 5-2 architecture for MLP to
estimate the current emission based on the graph signals
of the knowledge graph. In the proposed method, we use
concat as the merge mode of the graph embeddings before
giving it to BilSTM. We compare our prediction method with
a single implementation of LSTM and BiLSTM and the joint

usage of these with the graph embeddings. As seen in Fig. 7,
the most accurate prediction arises with our proposed model
with 97.8% accuracy, where we add MLP to the joint usage
of BiLSTM and embeddings.
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FIGURE 9. CO2 reduction with DTER recommendation engine for
Scenario-1 and Scenario-2.

In the last section, we search for the effect of proposed
regulation updates within DTER on the total CO2 emissions
for the clustered zones individually. For this, we integrate
our dynamic scenario into the SUMO environment. We
run Scenario-1 and Scenario-2 separately. We set the same
maximum current flow values for both of the scenarios.
Similarly, we set the maximum allowable traffic flow density
at 3 veh/m2 to avoid additional congestion occurrences. In
the What-If implementation, we define our objective function
and initialize the main parameters (given in Alg.1) for the
first run of the Q-learning. We compare the performance of
DTER with the no-action applied case by considering the
two scenarios. Fig. 8 shows the result of Laplacian matrix
analysis for Scenario-1 presenting six emission classes in
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total. Three of these classes belong to the Emission Class-
3 due to their average emission value having the value of
ei > 70%, while the remaining three of them lying within
30% < ei ≤ 70%. We use these clustered zones in the x-
axis of Fig. 9 while evaluating the average emission values
with DTER and without applying the regulation updates.
As seen in this figure, in Scenario-1, when no regulations
are applied, the total CO2 value reaches the above three
hundred levels. Conversely, with DTER, the CO2 values
are controlled via the autonomous recommendation of the
number of vehicles allowed for junctions. This control results
in ∼ 20% reduction in the total emission values. Similarly,
in Scenario-2, we record a 15% reduction in emission levels
with DTER. The main reason for this reduction stems from
a higher miss rate when we embed real-world emission data
into the SUMO environment. As a result, we can analyze
the forthcoming emission values by changing the scenario
parameters and acting accordingly before a condition occurs
in the real environment.

V. CONCLUSION AND FUTURE WORK
This study presents a DT-empowered Eco-Regulation frame-
work (DTER) to design next-generation transportation net-
works while addressing mobility effectively. For this, DTER
addresses the challenges of implementing DT within trans-
portation systems. Firstly, it fills the gap in the literature
regarding right-time data capturing by presenting a twin
sampling rate specific to transport network dynamics. With
this, the proposed scheme successfully captures the right-
time data by 19% more successively and decreases the query
duration by 30% via the knowledge graph utilization. In
addition, the accurate CO2 prediction mechanism with MLP,
Bidirectional LSTM, and node embeddings makes DTER a
strong method to infer future emission cases. In addition,
DTER performs Laplacian-based emission zone clustering
to highlight the risky locations. Lastly, the autonomous
recommendations of DTER consider the predicted emission
values and contribute to decreased emission levels by ∼ 20%
with SUMO emission models, and by 15% with real-world
emission values.

For future work, we plan to improve our twin sampling
rate formula by differentiating the several types of vehicles
and their corresponding emission values. Moreover, we want
to explore GAN methods for regulation formation. This will
allow us to enhance the capabilities of our proposed model
and test it from scalability and robustness perspectives.
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