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Abstract— This The rise of autonomous vehicles (AVs) 

brings with it the need for secure and privacy-preserving 

machine learning models. Federated learning (FL) allows AVs 

to collaboratively train models while keeping raw data localized. 

However, traditional FL systems are vulnerable to security 

threats, including adversarial attacks, data breaches, and 

dependency on a central aggregator, which can be a single point 

of failure. To address these concerns, this paper introduces a 

peer-to-peer decentralized federated learning system that 

integrates lightweight blockchain technology and Binius Zero-

Knowledge Proofs (ZKPs) to enhance security and privacy. In 

this system, Binius ZKPs ensure that model updates are 

cryptographically verified without exposing sensitive 

information, guaranteeing data confidentiality and integrity 

during the learning process. The lightweight blockchain 

framework secures the network by creating an immutable, 

decentralized record of all model updates, thus preventing 

tampering, fraud, or unauthorized modifications. This 

decentralized approach eliminates the need for a central 

aggregator, significantly enhancing system resilience to attacks 

and making it suitable for dynamic environments like AV 

networks. Additionally, the system’s design includes Byzantine 

resilience, providing protection against adversarial nodes and 

ensuring that the global model aggregation process remains 

robust even in the presence of malicious actors. Extensive 

performance evaluations demonstrate that the system achieves 

low-latency, scalability, and efficient resource usage while 

maintaining strong security and privacy guarantees, making it 

an ideal solution for real-time federated learning in autonomous 

vehicle networks. The proposed framework not only ensures 

privacy but also fosters trust among participants in a fully 

decentralized environment.  

Keywords— ZKPs, data integrity, peer-to-peer, cryptography, 

model poisoning 

I. INTRODUCTION 

The rise of autonomous vehicles (AVs) has introduced 
revolutionary changes in the transportation sector, presenting 
significant opportunities to improve safety, efficiency, and 
convenience in daily commutes. Autonomous vehicles rely 
heavily on real-time decision-making, using data from 
numerous onboard sensors, cameras, and external data sources 
to navigate dynamic environments and interact with other 
vehicles on the road. However, the massive amounts of data 

required for such operations have prompted concerns about 
privacy, security, and data integrity. To address these 
challenges, federated learning (FL) has emerged as a 
promising decentralized approach that enables vehicles to 
collaboratively train machine learning models without sharing 
raw data, thereby preserving privacy [5]. Despite its potential, 
federated learning introduces several critical challenges, 
including malicious participants, privacy leakage, and the 
need for trust in model aggregation. This paper introduces an 
innovative solution that integrates lightweight blockchain 
technology and Binius Zero-Knowledge Proofs (ZKPs) to 
enhance both privacy and security in federated learning [9]. 
The system addresses key issues such as protecting local data 
privacy, defending against Byzantine attacks, and ensuring 
verifiable updates to the global model without compromising 
efficiency, particularly in real-time environments like AV 
networks. Through this introduction, we aim to outline the 
significance of privacy-preserving and secure federated 
learning, the current state of research in this domain, and how 
our proposed solution contributes to the growing field of 
secure autonomous vehicle communication and learning [8]. 

A. The Role of Federated Learning in Autonomous Vehicles 

Federated learning has gained traction in recent years as a 
method to train machine learning models in decentralized 
environments. In traditional machine learning systems, data 
from multiple clients is collected and stored centrally to train 
models, which presents significant privacy risks, especially in 
sectors like healthcare, finance, and, most recently, 
autonomous vehicles. The centralized collection of data not 
only makes it vulnerable to breaches but also raises concerns 
regarding compliance with privacy regulations, such as the 
General Data Protection Regulation (GDPR) and the 
California Consumer Privacy Act (CCPA). In the context of 
autonomous vehicles, federated learning allows each vehicle 
to locally train its models using data generated by onboard 
sensors, without sharing the actual data with a central server. 
Instead, vehicles share only model updates (gradients or 
parameters) with a central aggregator, which then combines 
these updates to generate a global model. The global model is 
then sent back to the vehicles for further local training. This 
paradigm ensures that sensitive data never leaves the device, 
offering significant privacy advantages. However, even 



though raw data is kept local, there are still several 
vulnerabilities, such as model inversion attacks, in which 
attackers can infer private data from shared model updates. 
Moreover, federated learning systems are susceptible to 
Byzantine failures, where adversarial nodes attempt to corrupt 
the global model by sending malicious updates. 

B. Security and Privacy Challenges in Federated Learning 

Despite its promising potential, federated learning 
introduces several security and privacy challenges, 
particularly in untrusted and dynamic environments such as 
autonomous vehicle networks. First, federated learning 
assumes that all participants act honestly, which may not hold 
true in practice. In a real-world scenario, adversarial nodes 
may deliberately manipulate their local models to poison the 
global model, leading to degraded performance or incorrect 
decisions. This problem is exacerbated in autonomous 
vehicles, where real-time decisions, such as braking or lane 
changes, could lead to catastrophic consequences if based on 
faulty models. Second, while federated learning protects the 
privacy of raw data by keeping it local, the model updates 
shared during training still pose privacy risks. Model inversion 
attacks and membership inference attacks can allow 
adversaries to reconstruct private data from the updates, 
making it crucial to enhance the privacy guarantees of 
federated learning systems. Techniques such as differential 
privacy and secure multi-party computation (SMPC) have 
been proposed to mitigate these risks, but they often come at 
the cost of model accuracy or computational overhead. 
Additionally, federated learning requires trust in the central 
aggregator, which is responsible for combining the model 
updates from all participants. A compromised aggregator 
could manipulate the global model, leading to reduced 
accuracy or even dangerous behaviors in autonomous 
vehicles. This necessitates the development of a decentralized 
and trustless system that ensures the integrity and correctness 
of the global model without relying on a central entity. 

C. The Role of Blockchain in Federated Learning 

To address the issues of trust and security in federated 
learning, recent research has explored the integration of 
blockchain technology. Blockchain provides a decentralized 
and immutable ledger that can record model updates, ensuring 
that all participants can verify the correctness and provenance 
of the updates. This eliminates the need for a trusted central 
aggregator, as all updates are recorded on the blockchain and 
can be verified by any participant. Additionally, blockchain 
can be used to incentivize honest behavior and penalize 
malicious nodes, further enhancing the robustness of the 
system. Several studies have explored blockchain-based 
federated learning for autonomous vehicles. For example, 
Sultana et al. propose a blockchain-enabled federated learning 
system that logs encrypted model updates on a blockchain, 
ensuring that no single entity can tamper with the updates [1]. 
However, while blockchain enhances the security and 
transparency of the system, it introduces significant 
computational overhead due to the resource-intensive nature 
of blockchain consensus mechanisms. This makes traditional 
blockchain systems unsuitable for real-time applications like 

autonomous vehicles, where low latency and fast decision-
making are critical. 

D. The Power of Zero-Knowledge Proofs in Privacy-

Preserving FL 

Zero-Knowledge Proofs (ZKPs) are cryptographic 
techniques that allow one party to prove to another that they 
know a value or that a computation is correct, without 
revealing the actual value or details of the computation. This 
makes ZKPs particularly well-suited for privacy-preserving 
federated learning, as they enable participants to verify that 
model updates are valid without revealing any sensitive 
information about the data used to generate them. Recent 
works, such as RoFL (Robust Federated Learning) and 
RiseFL, have explored the use of ZKPs to enhance privacy 
and security in federated learning. zkFL, proposed by Wang 
et al. [2], uses ZKPs to enable secure gradient aggregation in 
federated learning systems, offering privacy guarantees for 
participants while preventing malicious updates. Similarly, 
RiseFL employs ZKPs to verify that model updates were 
correctly aggregated without revealing sensitive data used in 
training. However, these approaches assume that the 
aggregator behaves semi-honestly, leaving room for potential 
vulnerabilities if the aggregator is compromised. The 
proposed system goes beyond these approaches by integrating 
Binius ZKPs, which provide strong privacy guarantees 
without relying on a trusted aggregator. In this system, Binius 
ZKPs are used to verify the correctness of model updates in a 
fully decentralized manner, ensuring that even if the 
aggregator is compromised, no sensitive information can be 
inferred from the model updates. This makes the system 
resilient to Byzantine attacks and other adversarial behaviors, 
providing a higher level of security than traditional federated 
learning systems. 

E. Enhancing Federated Learning with Lightweight 

Blockchain and Binius ZKPs 

The proposed system combines lightweight blockchain 
technology with Binius ZKPs to address the challenges of 
privacy, security, and trust in federated learning for 
autonomous vehicles. By using a lightweight blockchain, the 
system reduces the computational overhead associated with 
traditional blockchain systems, making it suitable for real-
time decision-making in AV networks. The blockchain 
ensures that all model updates are recorded and verifiable, 
eliminating the need for a central aggregator and providing a 
decentralized and transparent system. In addition, the 
integration of Binius ZKPs ensures that all model updates are 
cryptographically verified before aggregation, preventing 
malicious participants from tampering with the global model. 
This enhances the system’s Byzantine resilience, making it 
robust against adversarial behaviors such as model poisoning. 
Furthermore, Binius ZKPs allow the system to achieve 
privacy-preserving verification, ensuring that no sensitive 
information is revealed during the training process. 

The proposed system is evaluated through comprehensive 
simulations, which demonstrate its ability to maintain high 
model accuracy while providing strong privacy and security 
guarantees. The system is also shown to be scalable, with low 
computational and communication overhead, making it 



suitable for large-scale autonomous vehicle networks. 
Autonomous vehicles present unique challenges for federated 
learning systems, particularly with respect to privacy, 
security, and real-time decision-making. The proposed system 
addresses these challenges by integrating lightweight 
blockchain technology and Binius Zero-Knowledge Proofs 
(ZKPs), providing a decentralized and privacy-preserving 
solution for federated learning in AV networks. This system 
not only enhances privacy and security but also reduces the 
computational overhead, making it suitable for real-time 
applications in autonomous vehicles. Through comprehensive 
evaluations, the system demonstrates its potential to support 
the next generation of secure and decentralized AV systems, 
ensuring that model updates can be verified without 
compromising privacy or performance. 

II. RELATED WORK 

Federated Learning (FL) has gained significant traction in 
recent years as a decentralized framework that allows multiple 
devices to collaboratively train machine learning models 
without centralizing sensitive data. In the domain of 
autonomous vehicles (AVs), FL has emerged as a promising 
approach to facilitate large-scale data processing while 
maintaining privacy. However, traditional FL frameworks are 
susceptible to various security and privacy risks, especially 
when dealing with malicious aggregators or adversarial 
participants. To address these issues, several research efforts 
have explored the integration of blockchain and zero-
knowledge proofs (ZKPs), providing additional layers of 
security and privacy in federated learning systems. 

A. Federated Learning and Privacy Concerns 

In vehicular networks, federated learning introduces 
unique privacy challenges as data must be exchanged and 
aggregated in a distributed environment. One major concern 
is the privacy of local data stored on each vehicle. In 
traditional FL settings, a central server or aggregator receives 
local model updates from participants to build a global model, 
but this process is vulnerable to attacks if the aggregator is 
compromised. Sultana et al. propose a blockchain-enabled FL 
system that mitigates this risk by using blockchain to log 
encrypted model updates from participants, ensuring that no 
single entity has direct access to raw data [1]. Blockchain 
serves as a distributed ledger that records model updates, 
providing transparency and reducing the risk of data 
tampering. While this approach enhances trust among 
participants, it relies heavily on the consensus mechanism of 
blockchain to ensure security. This dependence introduces 
several inefficiencies, especially in real-time environments 
like autonomous vehicles. Additionally, the absence of ZKPs 
limits the system’s ability to provide verifiable privacy 
guarantees for model updates. In comparison, the proposed 
system in this paper goes beyond blockchain’s inherent 
security properties by integrating Binius ZKPs to ensure that 
each model update is cryptographically verified without 
revealing any private information about the data used in the 
training process. This combination addresses both privacy and 
security in a more robust manner, ensuring that the 
aggregation process cannot be compromised by either 
malicious participants or faulty aggregators. 

B. Zero-Knowledge Proofs in Federated Learning 

ZKPs have recently been integrated into federated learning 
to strengthen privacy guarantees, especially when the 
aggregator is untrusted. The RoFL (Robust Federated 
Learning) protocol, as demonstrated by Lycklama et al. [3], 
employs ZKPs to ensure that each client’s model updates 
adhere to certain constraints before being aggregated. This 
approach protects against malicious model updates, ensuring 
that no client can send poisoned updates to corrupt the global 
model [4]. Similarly, RiseFL, proposed by Zhu et al., 
leverages ZKPs to allow each participant to verify that their 
model update was correctly aggregated without revealing 
sensitive data used in training. These ZKP-based protocols 
have proven effective in preventing model poisoning attacks 
while maintaining a strong privacy-preserving guarantee. 
However, both of these works make certain assumptions about 
the behavior of the aggregator, namely that it behaves semi-
honestly and only deviates from the protocol in a limited way. 
This assumption leaves room for potential vulnerabilities if 
the aggregator behaves maliciously. The proposed system 
diverges from these approaches by leveraging Binius ZKPs, 
which do not rely on trust in the aggregator. Instead, they offer 
stronger privacy guarantees by ensuring that even a 
compromised aggregator cannot learn any sensitive 
information from the model updates. Moreover, the use of 
ZKPs enhances the system’s ability to defend against 
Byzantine failures and adversarial attacks, where nodes 
deliberately provide false information to disrupt the learning 
process. 

C. Blockchain and Decentralized FL 

The combination of blockchain and federated learning has 
been widely explored to address the issue of trust in 
decentralized environments. Blockchain provides an 
immutable, decentralized ledger that can store model updates 
and track participants’ actions in real-time, eliminating the 
need for a central authority. PZKP-FL, for example, combines 
blockchain with ZKPs to enable secure and verifiable 
federated learning [6, 11, 12, 14]. In PZKP-FL, model updates 
are recorded on-chain, and participants can use ZKPs to verify 
the correctness of computations without revealing their 
underlying data. This approach prevents collusion between 
participants and ensures that no party can provide dishonest 
updates without being detected. However, despite its 
advantages, this method introduces significant computational 
overhead due to the resource-intensive nature of blockchain 
operations and ZKP generation. The high latency and 
scalability limitations of traditional blockchain systems make 
them impractical for real-time applications like autonomous 
vehicles, where decisions must be made rapidly. In contrast, 
the proposed system leverages a lightweight blockchain 
optimized for low-latency environments, reducing the 
overhead while maintaining the security benefits of 
blockchain. By incorporating Binius ZKPs, the system 
ensures privacy-preserving and verifiable model aggregation, 
making it a more practical solution for AVs. 

D. Byzantine Resilience in Federated Learning 

A major challenge in federated learning is defending 
against Byzantine nodes, which are participants that behave  



 
Figure 1. The architecture of our proposed framework 

 
maliciously to corrupt the global model. Byzantine nodes may 
send incorrect or poisoned model updates, leading to 
significant degradation in model performance. Existing 
works, such as stake-based federated learning, introduce 
mechanisms to handle Byzantine nodes by using staking and 
voting systems [10, 13]. These methods work by assigning 
reputation scores to participants based on their past behavior, 
which allows the system to discount updates from nodes that 
are deemed unreliable. While this approach offers some level 
of Byzantine resilience, it is vulnerable to collusion between 
malicious nodes, where participants coordinate their efforts to 
circumvent the reputation system. Moreover, stake-based 
methods do not protect against Byzantine failures at the 
cryptographic level, leaving the system open to certain types 
of attacks. The proposed system addresses this limitation by 
integrating Binius ZKPs, which provide cryptographic 
guarantees that model updates are valid. By verifying the 
correctness of each update through ZKPs, the system prevents 
Byzantine nodes from submitting false or malicious data, 
thereby enhancing the resilience of the global model against 
adversarial participants. 

E. Applications to Autonomous Vehicles 

The application of federated learning to autonomous 
vehicles introduces several challenges, particularly with 
respect to latency, real-time decision-making, and privacy 
concerns. Autonomous vehicles must be able to collaborate in 
real-time to update their models based on rapidly changing 
environmental conditions. Blockchain-based FL has been 
explored as a solution to ensure the integrity of model updates 
exchanged between vehicles. For example, Kim et al. 
proposed a system that uses off-chain storage and data 
integrity mechanisms to ensure that AVs can safely exchange 
model updates [5, 15]. However, this system suffers from high 
communication costs and latency due to the blockchain 
processing overhead.  

The proposed system mitigates these issues by using 
lightweight blockchain protocols specifically optimized for 
AV networks. This approach significantly reduces the 
communication burden, allowing vehicles to exchange model 
updates efficiently. Additionally, the integration of Binius 
ZKPs ensures that all model updates are privacy-preserving 
and can be verified without revealing sensitive information 
about each vehicle’s data. This combination makes the 
proposed system a more suitable solution for real-time 
federated learning in autonomous vehicles, enabling faster 
decision-making and stronger privacy guarantees. 

III. THE PROPOSED FRAMEWORK 

The integration of connected autonomous vehicles 
(CAVs) into modern intelligent transportation systems has 
opened new avenues for innovation and efficiency in smart 
cities. However, the increasing reliance on autonomous 
systems brings significant challenges in terms of security and 
privacy, particularly in the exchange and processing of data 
required to train machine learning models. Federated Learning 
(FL) addresses some privacy concerns by decentralizing 
model training, allowing multiple clients (vehicles) to 
collaboratively train models without exposing their raw data 
to a central entity. Despite these advantages, traditional FL 
frameworks remain vulnerable to several security issues, 
including model poisoning, data leakage, and attacks by 
malicious participants (also known as Byzantine nodes). In 
this paper, we propose a comprehensive framework that 
addresses these challenges by combining Peer-to-Peer 
Federated Learning (P2P-FL) with Lightweight Blockchain, 
Binius Zero-Knowledge Proofs (ZKPs), and Differential 
Privacy (DP). The primary objective of this framework is to 
enhance the security and privacy of the learning process in a 
decentralized setting while maintaining the efficiency 
required for real-time operations in CAVs. The lightweight 
blockchain ensures immutability and traceability of model 
updates, Binius ZKPs provide cryptographic guarantees that 
the updates are valid without revealing sensitive information, 
and DP protects against data leakage by adding noise to the 
model updates. In this section, we detail the proposed 
framework’s components, architecture, and algorithms that 
collectively ensure a secure, private, and efficient federated 
learning process. The framework is designed to be scalable, 
Byzantine-resilient, and privacy-preserving, making it ideal 
for CAV networks where data security and integrity are 
paramount. 

A. Framework Architecture 

The architecture of the proposed framework, Figure1, 
consists of four primary components: the Peer-to-Peer 
Federated Learning Network, Lightweight Blockchain, Binius 
Zero-Knowledge Proofs, and Differential Privacy with 
Adaptive Clipping. These components work in unison to 
provide a robust and scalable system for secure and private 
model training and aggregation across a decentralized 
network of CAVs. 

1) Peer-to-Peer Federated Learning Network 
Unlike traditional FL systems that rely on a centralized 

server to coordinate model aggregation and communication, 



our framework adopts a Peer-to-Peer (P2P) federated learning 
approach. In this architecture, each vehicle in the network acts 
both as a learner and an aggregator, responsible for 
exchanging model updates with its peers in the network. This 
decentralized setup eliminates the reliance on a single point of 
failure (the central server), making the system more robust 
against attacks and failures. The P2P-FL network is structured 
as a mesh of autonomous vehicles, where each vehicle is 
connected to a set of neighboring vehicles. Model updates are 
exchanged within this network according to a predefined 
schedule, ensuring that each vehicle receives updates from a 
diverse set of peers. The communication between peers is 
encrypted and signed to prevent tampering and 
eavesdropping. 

• Local Training: Each vehicle trains a local model on 
its private data, such as sensor readings, traffic 
conditions, and vehicle dynamics. 

• Model Exchange: Once training is complete, the 
vehicle shares its model update with neighboring 
peers, along with a proof that the update is valid (using 
ZKPs). These peers aggregate the received updates and 
integrate them into their models. 

• Decentralized Aggregation: Since there is no central 
server, each vehicle independently aggregates model 
updates from its peers, using robust aggregation 
methods to mitigate the influence of any Byzantine 
nodes. 

The following pseudocode illustrates the local training and 
model exchange process in a peer-to-peer federated learning 
environment: 

Algorithm 1: P2P Federated Learning with Model Exchange 

Input: Local data , neighbors , model  

Output: Aggregated model  

1.For each round  

1.1 Train local model  on data  for epochs 

1.2 Clip gradients and add noise to ensure differential privacy 

1.3 Generate Zero-Knowledge Proof (ZKP) for the model update 

1.4 Send model update and ZKP to neighbors  

1.5 For each neighbor  in  

- Receive model update and ZKP from  

- Verify ZKP and discard invalid updates 

1.6 Aggregate valid updates into model  

2. Return: Aggregated model  

 

2) Lightweight Blockchain 
The inclusion of a lightweight blockchain ensures the 

integrity and verifiability of the model updates exchanged in 
the P2P network. Each model update, along with its 
corresponding ZKP, is stored on the blockchain, creating an 
immutable ledger of all updates. This guarantees that model 
updates cannot be tampered with after they are shared, and it 
allows for decentralized verification of the learning process. 
The blockchain operates using a Practical Byzantine Fault 
Tolerance (PBFT) consensus mechanism, which is well-suited 

for systems with a limited number of participants, such as a 
network of autonomous vehicles. PBFT ensures that only 
valid updates (i.e., updates that have passed ZKP validation) 
are added to the blockchain, and it is resilient against 
Byzantine nodes. The process of adding model updates to the 
blockchain is outlined in Algorithm 2. 

 

Algorithm 2: Blockchain-Based Model Aggregation 

Input: Model updates from peers, blockchain  

Output: Updated blockchain   

1. For each model update  : 

1.1 Verify Zero-Knowledge Proof (ZKP) for  

1.2 If ZKP is valid: 

- Broadcast  to neighboring peers 

- Run PBFT consensus mechanism: 

- Propose: Peers propose to add  to blockchain 

- Prepare: Peers validate the proposal and vote 

- Commit: If a majority vote is positive, add to blockchain 

2. Return: Updated blockchain   

 

By leveraging a lightweight blockchain, the system 
ensures that all model updates are stored in a decentralized and 
tamper-resistant manner. This provides transparency and 
auditability, which are crucial for maintaining trust in the 
system, especially in the presence of malicious nodes. 

B. Differential Privacy with Adaptive Clipping 

Ensuring the privacy of individual vehicles' data is one of the 
key goals of our framework. To achieve this, we incorporate 
Differential Privacy (DP), which adds noise to the model 
updates before they are shared with peers. This prevents 
adversaries from inferring sensitive information about the data 
used to train the model. The challenge in applying DP in a 
federated learning environment is balancing privacy with 
model accuracy. Adding too much noise can degrade model 
performance, while too little noise may not provide adequate 
privacy. To address this, we use an Adaptive Clipping 
strategy, where the clipping threshold for the gradients is 
dynamically adjusted based on the norm of the gradients. This 
ensures that the amount of noise added is proportional to the 
sensitivity of the data, providing better control over the 
privacy-accuracy trade-off.  

C. Binius Zero-Knowledge Proofs 

To ensure the integrity and correctness of model updates, 
the framework incorporates Binius Zero-Knowledge Proofs 
(ZKPs). ZKPs enable a vehicle to prove that its model update 
is valid (e.g., within a certain range) without revealing the 
actual values of the model parameters. This provides a 
mechanism for detecting malicious updates without 
compromising the privacy of the participating vehicles. Each 
vehicle generates a ZKP for its model update before sharing it 
with peers. The ZKP proves that the model update satisfies 
certain conditions, such as being within a predefined range or 
following the expected gradient distribution. Peers verify the 
ZKP before accepting the model update. If the proof fails, the 



update is discarded, preventing malicious nodes from 
poisoning the model. Binius ZKPs, as explained by Vitalik 
Buterin [7], are an advanced form of Zero-Knowledge Proofs 
designed for decentralized systems like blockchain and 
federated learning. They focus on reducing computational 
load while ensuring privacy and verifiability across multiple 
participants.  

Key features include: 

• Smaller Proofs: They minimize proof size, enhancing 
efficiency for systems with limited resources. 

• Multi-party Efficiency: Optimized for secure, scalable 
participation by multiple users without overwhelming 
the network. 

• Adaptive Security: Dynamically adjusts the proof 
generation based on complexity, balancing speed and 
security. 

• Privacy: Ensures that sensitive data is kept private, 
verifying conditions without revealing the actual data. 

Algorithm 3: Model Update with ZKP Verification 

Input: Local model update , noise scale \epsilon, gradient clipping 

norm, ZKP range 

Output: Differentially private and verified model update 

1. Clip local gradients to a predefined norm using adaptive clipping 

2. Add Gaussian noise to the clipped gradients to ensure differential 

privacy 

3. Encode the model update for ZKP: 

• Convert model update to finite field elements 

• Generate Binius ZKP for the update 

4. Send the model update and ZKP to neighboring peers 

5. For each neighbor: 

• Verify the ZKP: 

• If ZKP fails, reject the model update 

• If ZKP succeeds, proceed to the aggregation phase 

6. Return: Verified and differentially private model update 

The use of Binius ZKPs ensures that malicious nodes 
cannot introduce faulty or tampered model updates into the 
system. This is particularly important in a decentralized 
environment like P2P-FL, where there is no central authority 
to oversee the model aggregation process. 

D. Byzantine Resilience 

In any decentralized system, there is a risk of Byzantine 
nodes—malicious or faulty participants that attempt to disrupt 
the learning process by submitting incorrect or poisoned 
model updates. To mitigate the impact of such nodes, our 
framework includes several Byzantine-resilient aggregation 
strategies. The choice of aggregation strategy depends on the 
detected proportion of Byzantine nodes in the network: 

• Krum Aggregation: Krum is a robust aggregation 
method that selects the model update that is closest to 
the majority of updates, discarding outliers that may 
have been submitted by Byzantine nodes. 

• Trimmed Mean Aggregation: Trimmed Mean removes 
the highest and lowest k% of the model updates and 
averages the remaining updates. This strategy is 
effective when the number of Byzantine nodes is 
moderate. 

• Geometric Median Aggregation: The Geometric 
Median minimizes the influence of any individual 
update by computing the median of all updates. This is 
a more robust method, especially in environments with 
a high proportion of Byzantine nodes. 

Algorithm 4: Byzantine-Resilient Aggregation 

Input: Set of model updates  from neighboring peers, Byzantine 

threshold  

Output: Aggregated global model 

1.For each peer: 

1.1 Collect model updates from neighbors 

1.2 If Byzantine ratio : 

- Use Krum aggregation 

1.3 If Byzantine ratio : 

- Use Trimmed Mean aggregation 

1.4 If Byzantine ratio : 

- Use Geometric Median aggregation 

2.Aggregate the model updates 

3. Return: Aggregated global model 

By dynamically adjusting the aggregation strategy based 
on the proportion of Byzantine nodes, the framework ensures 
that the learning process remains resilient against attacks, even 
when a significant portion of the network is compromised. 

E. Secure Model Exchange Protocol 

To prevent eavesdropping and tampering during the 
exchange of model updates, the framework implements a 
secure model exchange protocol that combines encryption and 
digital signatures. 

• Encryption: Model updates are encrypted using AES-
256 encryption before being transmitted to 
neighboring peers. This ensures that the updates 
cannot be intercepted or modified by an attacker during 
transmission. 

• Digital Signatures: Each model update is signed using 
an RSA digital signature, allowing the receiving peers 
to verify the authenticity of the update. This prevents 
malicious nodes from impersonating other peers or 
modifying the updates. 

The secure model exchange process is outlined in 
Algorithm 5. 

Algorithm 5: Secure Model Exchange 

Input: Local model update , RSA private key, AES encryption key 

Output: Encrypted and signed model update 

1.Encrypt the model update using AES-256 encryption: 

• Generate a random initialization vector (IV) 

• Encrypt the model update using the AES encryption key 



2. Sign the encrypted model update using RSA private key: 

• Compute the SHA-256 hash of the encrypted model update 

• Sign the hash using the RSA private key 

3. Transmit the encrypted and signed model update to neighboring peers 

4. Return: Encrypted and signed model update 

This combination of encryption and signatures ensures 
that the model updates are both confidential and authentic, 
preventing a wide range of attacks, including man-in-the-
middle attacks and impersonation. 

In this paper, we presented a comprehensive framework 
for enhancing security and privacy in peer-to-peer federated 
learning for autonomous vehicles. By combining lightweight 
blockchain, Binius ZKPs, and differential privacy, we 
addressed key challenges such as model poisoning, Byzantine 
attacks, and data privacy in decentralized learning 
environments. Our simulations demonstrated the 
effectiveness of the framework in maintaining model accuracy 
while providing robust security and privacy guarantees. 
Future work will focus on further optimizing the system, 
including adaptive privacy budgets and more sophisticated 
Byzantine detection mechanisms. 

IV. EXPERIMENTS 

In this section, we describe the experiments conducted to 
evaluate the security, privacy, and performance of our 
federated learning framework for autonomous vehicles using 
lightweight blockchain and Binius ZKPs. The experiments 
focus on assessing the framework’s ability to enhance privacy, 
resist Byzantine nodes, and maintain efficiency and 
scalability. All experiments were implemented in Python, 
utilizing PyTorch for model training, NumPy for numerical 
computations, and Seaborn/Matplotlib for visualization.  The 
dataset used was Gazebo, collected for autonomous 
navigation tasks in indoor environments. It contains 66,806 
samples, with 80% for training and 20% for testing, making it 
well-suited for evaluating autonomous driving models in 
decentralized, peer-to-peer federated learning. 

A. Privacy vs. Accuracy Trade-off 

One of the critical aspects of this experiment is to examine 
the impact of different privacy budgets on model accuracy. 
We utilized differential privacy with noise addition and 
gradient clipping, fine-tuning both mechanisms across 
multiple privacy budgets (epsilon values). Setup: We ran tests 
with eight different epsilon values ranging from 0.01 to 0.06, 
incrementing in small steps. Each configuration was executed 
over five rounds to average the results for more robust 
conclusions. Results and Discussion: Figure 2 illustrates the 
privacy-accuracy trade-off. As privacy levels increase through 
differential privacy, accuracy decreases, but our system 
maintains high accuracy with robust privacy measures, crucial 
for autonomous vehicles. 

B. Byzantine Resilience 

The next set of experiments tested the framework’s 
resilience against Byzantine nodes, simulating scenarios with 
varying ratios of Byzantine participants. Setup: We simulated 
peer-to-peer training environments with Byzantine node ratios 
ranging from 0% to 50%, testing their impact on model 

accuracy. For each Byzantine ratio, multiple participants (10, 
50, 100, and 200 nodes) were tested to assess scalability. 
Results and Discussion: Figures 3 and 4 demonstrate the 
system’s resilience to Byzantine nodes. Using Binius ZKPs, 
malicious updates are effectively detected and rejected,  

 

Figure 2. Privacy vs. Accuracy Trade-off 

 

Figure 3. Model Accuracy vs Byzantine Nodes 

 

Figure 4: Detailed Model Accuracy Across Byzantine Nodes and 
Participants (Heatmap) 

ensuring the integrity of the global model despite adversarial 
behavior. 

C. Latency and Throughput Analysis 

Efficiency is critical in federated learning systems, 
especially in peer-to-peer networks with a decentralized 
structure. We measured the system's latency and throughput 



during multiple communication rounds to evaluate how 
quickly and efficiently the model updates propagate through 
the network. Setup: The system was tested over 100 
communication rounds, measuring latency (in seconds) and 
throughput (updates per second). Results and Discussion: 
Figure 5 shows the latency and throughput comparison of the  

 

 Figure 5: Latency and Throughput per Round

 

Figure 6: Accepted vs Rejected Updates per Round. 

 

Figure 7: Verification Time: Centralized vs Decentralized. 

system with and without lightweight blockchain. The added 
security layer maintains low latency and optimized 
throughput, suitable for real-time autonomous vehicle 
networks. 

D. Accepted vs. Rejected Updates 

This experiment tracked the number of accepted versus 
rejected updates per communication round, providing insights 
into the system’s validation process. Setup: We ran 100 
communication rounds, logging the number of accepted and 
rejected updates. Results and Discussion: As shown in Figure 
6, nearly all updates were accepted across all rounds, with a 
negligible number of rejections. This demonstrates the 
robustness of the Binius ZKP-based verification system in 

accurately validating model updates and filtering out faulty or 
malicious contributions. 

E. Verification Time: Centralized vs. Decentralized 

We compared verification times for both centralized and 
decentralized approaches, evaluating the impact of using 
lightweight blockchain and Binius ZKPs for decentralized 
verification. Setup: The experiment was conducted over 100 
rounds, comparing the time required to verify model updates 
using centralized and decentralized methods.  

 

Results and Discussion: As depicted in Figure 7, 
verification times for both approaches remained consistent, 
with the decentralized system averaging around 0.75 seconds 
per verification. While centralized verification had occasional 
spikes, the decentralized approach consistently performed 
well, demonstrating its scalability and reliability. 

V. FUTURE WORK 

The proposed federated learning system combines 
lightweight blockchain, Binius Zero-Knowledge Proofs 
(ZKPs), and differential privacy, offering a strong foundation 
for secure and privacy-preserving decentralized learning. 
However, several avenues for further enhancement remain: 

• Dynamic Privacy Mechanisms: While the system 
already ensures privacy with differential privacy and 
ZKPs, future work could explore dynamic, real-time 
adjustments of privacy budgets to further optimize 
privacy without sacrificing performance. 

• Advanced Consensus Models: Although the current 
system incorporates lightweight blockchain, future 
research could focus on developing even more scalable 
and efficient consensus mechanisms tailored to 
connected autonomous vehicle (CAV) networks. This 
would help reduce latency and computational 
overhead as network complexity increases. 

• Enhanced Byzantine Detection: The existing 
Byzantine fault-tolerant mechanisms could be 
augmented with advanced machine learning-based 
techniques to further improve the detection and 
mitigation of Byzantine failures, enhancing overall 
system security. 

VI. CONCLUSION 

This paper introduces a robust, secure, and privacy-
preserving federated learning framework that uniquely 
integrates Binius Zero-Knowledge Proofs (ZKPs), 
lightweight blockchain, and differential privacy. The novelty 
lies in the combination of these technologies, offering an 
advanced solution for decentralized learning in autonomous 
vehicle (AV) networks. Binius ZKPs provide efficient, 
privacy-preserving proof mechanisms that allow vehicles to 
verify model updates without exposing sensitive data. This 
novel cryptographic technique ensures the system’s privacy 
and integrity while reducing computational overhead. In 
conjunction with lightweight blockchain, the framework 
securely records and verifies model updates, preventing 
tampering and securing the network from malicious nodes. 



The inclusion of Byzantine fault tolerance further strengthens 
the system, allowing it to detect and reject faulty or malicious 
updates. The use of differential privacy further enhances the 
system by introducing noise into the model updates, ensuring 
that individual data points remain private while still allowing 
for accurate model training. This combination of privacy and 
security ensures that the system is not only secure but also 
scalable and efficient, making it suitable for the fast-paced, 
decentralized nature of AV networks. Simulations 
demonstrate the framework's low-latency performance and 
scalability, showing its potential for real-world applications in 
AV networks. Beyond AVs, the framework’s applicability can 
extend to sectors such as healthcare, smart cities, and 
industrial IoT, where privacy-preserving, secure, and 
decentralized learning is critical. In conclusion, the integration 
of Binius ZKPs, blockchain, Byzantine fault tolerance, and 
differential privacy provides a novel, secure, and scalable 
solution for federated learning in real-time environments, 
offering significant contributions to both privacy-preserving 
technology and decentralized learning frameworks. 
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