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Abstract—The Internet of Things (IoT) management relies
on the efficient and timely transfer of data from sensors to
applications. Processing required data transformations at the
edge gateway introduces spatial complexity issues, particularly
concerning resource constraints and latency requirements. By
adopting a zero-copy binary format, Flatbuffers, we reduce the
spatial complexity of processing at IoT edge gateway. However,
at the service applications, interoperability challenges may arise
when dealing with binary data formats compared to text-based
formats. To accommodate the constraints of IoT edge gateways
and service applications, we introduce a framework that aims
to improve the data exchange rate between the IoT layer and
the management layer while maintaining interoperability. Our
comparative analysis across three scenarios, involving single and
multiple sensors, shows that the proposed FlatBuffers-based
framework outperforms the conventional JSON and Protocol
Buffers formats in terms of frequency. These findings highlight
the significant potential of FlatBuffers in boosting the real-time
interaction capabilities of IoT systems.

Index Terms—Internet of Things (IoT), Data Serialization,
Serialization Format, Edge Computing

I. INTRODUCTION

Internet of Things technologies have revolutionised how
the physical and virtual worlds work together. With this, IoT
sensors started producing massive amounts of data to serve the
demands of various applications. In recent years, Digital Twin
(DT) technology has emerged, accelerating this demand even
more and requiring real-time characteristics [1]. However,
efficient and instant communication in resource-constrained
environments to support such applications remains a signifi-
cant challenge.

To counteract that, employing processing techniques such
as compression before transmission has been explored [2].
However, the IoT sensors’ limited computational capabilities
may prevent such local processing, leading to processing
delays. Furthermore, these IoT sensors are often deployed in
remote areas without reliable network connectivity, resulting
in intermittent data transmission, loss, and increased latency.
As a result, this hinders the efficiency of the IoT management
[3].

IoT edge gateways serve as a bridge connecting numerous
IoT sensors and performing required data transformations.
Here, syntactic interoperability issues arise when integrating

diverse sensor types, necessitating a unified data format to
simplify data sharing [4]. On top of this, supplying continuous
or periodic data brings the challenge of depleting the gate-
way’s resources and extending processing latencies. Coupled
with the interoperability challenges, this load may lead to
gateway memory potentially reaching full capacity, preventing
its ability to process new data. Considering these, it is evident
that the challenges of space and time efficiency and syntactic
interoperability have to be addressed in IoT management.

Fig. 1: Comparison of Serialization Formats based on [5]–[8]

To answer these challenges, data serialization techniques
offer a promising approach. By reducing the size of the
data, they improve the latency encountered in the network.
Moreover, they provide compatibility across different devices
and platforms which can enable interoperability. JavaScript
Object Notation (JSON) has been widely used due to its
flexibility, which is owed to formatting the data in human-
readable name-value pairs. However, this requires the data
to be parsed in character bases, resulting in higher memory
and time requirements. To overcome this, binary formats have
been developed: Protocol Buffers (Protobuf), Concise Binary
Object Representation (CBOR), Binary JSON (BSON), and
Flatbuffers. However, each formatting comes with different
space and time complexities based on how the serialisation,
deserialization and parsing are performed. As shown in Fig-
ure 1, Flatbuffers is a strong candidate to answer the needs



Fig. 2: The Proposed IoT Management Architecture

of IoT management and in larger systems like Digital Twins,
which rely heavily on accurate and timely data. Considering
this, we explore data serialisation in IoT management and
introduce a new framework shown in Figure 2. Consequently,
we contribute to the literature as below.

• To improve the efficiency in IoT management, we em-
ploy a zero-copy data format using Flatbuffers, enabling
the payload size to be reduced by 50% on average
compared to human-readable formats. Then on the IoT
edge gateway, we create an improved data pipeline by
deserialization, processing and reserilization at the IoT
edge gateway. This allows the latencies to be reduced
while allowing data transformations and intelligence at
the edge.

• We create a Parser interface in the Management Layer
to ensure compatibility with a wide range of service
applications. Here, we transform FlatBuffers into JSON
without incurring additional latency at the IoT layer
while answering the syntactic interoperability needs.

• We perform empirical experiments on the proposed
framework under three scenarios. These reveal that the
proposed framework can provide 8.7% improvement on
the cycles per second. Lastly, we provide insights into
the ongoing discussion on incorporating edge computing
into IoT applications.

The rest of the paper is organized as follows: Section II
surveys the available literature regarding serialization formats.
The preliminary description of our proposed architecture is

presented in Section III. In Section IV, the performance of
the proposed architecture is evaluated, and the efficiency
of FlatBuffers compared to JSON and Protocol Buffers is
discussed. Finally, the study is concluded with a future work
outline in Section V.

II. LITERATURE REVIEW

The data serialization approaches work to minimize pro-
cessing time and ensure that the data transfer is efficient. This
process converts complex data structures into a streamlined,
transportable format. This enables reducing the payload size
considerably and thus the processing time [9].

Data serialisation techniques have played a key role in
developing digitalized technologies. The Extensible Markup
Language (XML), a schema-driven text-based format, estab-
lished the foundation for web data exchange since its develop-
ment in the late 1990s. Following the XML, the schema-less
JavaScript Object Notation (JSON) format used name and
value pairs, simplifying the text-based data format. Although
JSON provides a readable and convenient data serialization
format, its dynamic-typing serialization structure results in
runtime inefficiency. This is because the JSON requires the
data to be parsed character by character, leading to increased
serial and deserialization delays. To overcome this, Google
introduced Protocol Buffers (Protobuf) in the late 2000s,
utilizing binary encoding in serialization. In this approach,
the name part of the data is separately held at both ends and
values are sent in a binary format and accessed via positional



binding. Reducing the size of the communicated payload and
the parsing mechanism allowed faster operations, reducing
the latency. Following this, the Binary JSON (BSON) and
schema-less Concise Binary Object Representation (CBOR)
have been included in the name part of the sent data. This
provided more flexibility while compromising on efficiency.
Lastly, FlatBuffers, a schema-driven format developed in 2014
by Google, has advanced the deserialisation by allowing
direct access to serialized data without parsing or unpacking,
significantly reducing latency [5], [7].

There are many serialization formats, each offering dif-
ferent levels of efficiency and flexibility. Therefore, the data
serialization format should be selected based on the specific
requirements and constraints of the IoT environment [10].
As highlighted in [5], [7], JSON, CBOR, and BSON offer
a moderate performance level, providing efficient resource
management. However, FlatBuffers and Protobuf are iden-
tified as more advantageous formats due to their specific
traits. Protobuf is distinguished by its time efficiency thanks to
reduced message size and enhanced serialization speed. Con-
versely, FlatBuffers is acclaimed for its space efficiency and
expedited deserialization process. This is achieved by zero-
copy deserialization through a compact binary format that
enables direct memory mapping without additional data struc-
ture allocation, or parsing [9]. Data serialisation techniques
employed in IoT Management require space and time effi-
ciency to enable on-the-fly processing and work in resource-
constrained environments. The findings in [6] highlight the
potential of Flatbuffers to enhance communication efficiency
and performance for data exchange processes in real-time
applications. Additionally, Flatbuffers has been utilised in
other areas such as data center communication [11] and con-
trol plane messages [12] to great success. Considering these,
FlatBuffers stands out as a worthy candidate for enabling
efficient IoT management.

Given these attributes, we utilize FlatBuffers in our pro-
posed framework to ensure minimal overhead and to optimize
communication efficiency in terms of frequency.

III. PROPOSED IOT MANAGEMENT ARCHITECTURE

The proposed IoT management architecture as illustrated
in Fig. 2 comprises of the IoT Layer and the Management
Layer.

A. IoT Layer

1) Serializer: The IoT sensors are equipped with micro-
controllers that poll and collect environmental data from on-
board sensors. A pre-compiled code is deployed to these
microcontrollers to handle the formatting and data structure.
Using this, the sensor data in the memory is serialized into
FlatBuffers and transmitted to the IoT Edge Gateway. An
example of temperature sensor payload data structure is given
in Listing 1 along with a matching JSON counter-example in
Listing 2. While these examples of the schema-defined data
structure present have similar sizes, FlatBuffers encodes this
into a binary format. Conversely, when JSON-encoded data

is used, the exemplified textual delimiters and data keys are
included within the payload. Because of this, the Flatbuffers
offer a more efficient memory layout and access as well as
reduced payload size.

1 namespace Sensors;
2 table Metadata {
3 id: string;
4 location: string;
5 type: string;
6 }
7 table Reading {
8 value: float32;
9 timestamp: int64;

10 }
11 table TemperatureSensor {
12 metadata: Metadata;
13 readings: [Reading];
14 }
15 root_type TemperatureSensor;

Listing 1: Example of FlatBuffers Data Schema for
Temperature Sensor Data.

1 {
2 "TemperatureSensor": {
3 "metadata": {
4 "id": "string",
5 "location": "string",
6 "type": "string"
7 },
8 "readings": [
9 {

10 "value": "float32",
11 "timestamp": "int64"
12 }
13 ]
14 }
15 }

Listing 2: Example of JSON Data Schema for Temperature
Sensor Data.

2) Deserializer: The IoT Edge Gateway receives serialized
data over the wireless medium and deserializes it for further
processing at the Data Processor. Thanks to the zero-copy
characteristic of FlatBuffers, this process is without additional
memory allocations, enabling faster operations and lower
memory usage.

3) Data Processor and Edge Intelligence: Following the
deserialization, the IoT Edge Gateway initiates data pro-
cessing tasks. These may include filtering, compression, ag-
gregation, and edge intelligence [13]. By performing these
operations at the edge, the network efficiency can be enhanced
by reducing packet sizes and thus conserving bandwidth,
ultimately lowering transmission costs.



4) Reserailizer: After the processing tasks are performed,
the refined data is reserialized to be transmitted to the
Management Layer.

5) Commands Relay: This component directs commands
from higher-level Service Applications to the IoT sensors.
With this, the IoT sensors are instructed to perform actions
or adjustments. Upon receiving commands, the Commands
Relay translates and formats them into instructions compatible
with the communication protocols and formatting supported
by the sensor devices. While these may be hard-coded into
the IoT Edge Gateway, they also can be translated by using
Yet Another Next Generation (YANG) data models as in [14].

B. Management Layer

1) Parser: At the Parser, sensor data coming from multiple
IoT Edge Gateways are concatenated. This enables effective
interpretation and utilization by Service Applications. For this
mapping to occur, sensor data must once again be deserial-
ized. After mapping, this data is serialized back into JSON.
This conversion to JSON enables compatibility with a broader
range of Service Applications, ensuring seamless integration
and syntactic interoperability within the IoT ecosystem.

2) Service Applications: Service Applications derive in-
sights from sensor data and facilitate predictive maintenance,
optimization, and decision-making processes. These processes
generate actionable commands which are then communicated
back to the IoT Sensors via the IoT Edge Gateway, enabling
closed-loop control.

IV. PERFORMANCE EVALUATION AND RESULTS

A. Testbed Implementation and Performance Metrics Defini-
tion

The proposed IoT communication framework is tested
using an environment consisting of Virtual Machines (VMs)
hosted within the same private cloud infrastructure. This setup
simulates the real-world configuration with three types of
workloads, delineated in Section III. Here, first VM type
generates synthetic IoT Sensor data. Then, the second VM
serves as IoT Edge Gateway. This VM is designed to capture
sensor data periodically. Finally, third VM plays the role of
Parser where Protobuf and FlatBuffers scenarios’ payloads
are parsed into JSON.

For serialization of the data into JSON, Protocol Buffers,
and FlatBuffers formats, Go programming language has three
widely recognized and native open-source libraries [15]–[17].
As such, the client-server architecture is developed in Go
latest stable version 1.22. In this testbed setup, computational
resources include an Intel(R) Xeon(R) E7-4860 processor at
2.27GHz, with each VM provisioned with one vCPU and
1GiB RAM to accurately reflect the computational capabil-
ities anticipated in real-world IoT environments. The Rocky
Linux 9 operating system is used on VMs. The benchmarks
are done by evaluating the code across 50,000 iterations under
three scenarios shown in Table I:

1) In Scenario 1, a single IoT sensor is interfaced with
the IoT Edge Gateway, utilizing 4901 data objects
comprising 1 string + 1 int32.

2) Scenario 2 is setup to include multiple IoT sensors
connected to the IoT Edge Gateway, testing 4901 data
objects: 1 string + 6 int32.

3) Scenario 3 is the same as Scenario 2 but it uses floating
point values, testing 4901 data objects: 1 string +
6 float32.

TABLE I: Scenario Parameters

Number Name Payload Object Count Payload Object Type
1 Basic 4901 objects 1 string, 1 int32
2 Integer 4901 objects 1 string, 6 int32
3 Floating 4901 objects 1 string, 6 float32

To evaluate the efficacy of the framework in managing
diverse sensor configurations and complexities of data, this
study employs five critical performance metrics:

• Total Payload Size (KB): the total payload size generated
by the sensors and submitted by the edge gateway to the
parser.

• Total Serialization Time TS (ms): the cumulative dura-
tion required for data serialization at the sensor and the
subsequent reserialization at the edge gateway.

• Total Round-Trip Time TRTT (ms): the duration of data
transmission from the sensors to the gateway, then to the
management layer, and the returns of acknowledgements
in the reverse path.

• Total Deserialization Time TD (ms): the time taken at the
edge for deserializing the received data from the sensors
and the time taken at the management layer to parse and
deserialize the communicated aggregated data.

• Frequency F (cycle/s): the reciprocal of the end-to-end
time which is the sum of serialization time TS , round-trip
time TRTT , and deserialization time TD:

F =
1

TS + TRTT + TD
(1)

Collectively, these indicators provide a comprehensive as-
sessment of the system’s performance, facilitating an under-
standing of the framework’s efficiency within the context of
cyberphysical communications.

B. Results and Discussion

Regarding the performance indicators payload size, TS ,
TRTT , TD, and F , our results indicate that the proposed
architecture significantly enhances the efficiency of the com-
munication for both single and multiple sensor scenarios
across all object types.

1) Scenario 1’s single sensor benchmark involving single-
string and integer data objects: FlatBuffers showed a payload
size approximately 10.29% larger than JSON and 20.5%
larger than Protocol Buffers, measuring 19,684 bytes com-
pared to 17,846 bytes and 15,648 bytes respectively. This
difference may be attributed to the data being sparse, meaning
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Fig. 3: Frequency performance of the scenarios

there are not a lot of fields in each object. Despite the expected
slower TS , FlatBuffers demonstrated a substantial increase
in deserialization efficiency, reducing both TRTT and TD.
This improvement in deserialization time contributed to a
frequency of 73.39 cycle/s, surpassing JSON’s 59.49 cycle/s
and Protobuf’s 67.29 cycle/s. These findings underscore the
benefits of FlatBuffers in enhancing deserialization efficiency
and optimizing the overall frequency.

2) Scenario 2’s multiple sensors and integer benchmark:
Here, binary formats have a significantly reduced payload size
compared to JSON’s 70,315 bytes. For serialization time TS ,
FlatBuffers outperform JSON by reducing the serialization
duration by 15.19%, recording a time of 562,274 ns in
comparison to JSON’s 663,194 ns. Moreover, FlatBuffers
surpass JSON in TRTT , showing a 5.27% improvement.
Notably, the deserialization time TD with FlatBuffers is sig-
nificantly reduced, 63.7% lower than JSON’s and 25.1% lower
than Protobuf’s. These enhancements collectively result in an
improved frequency F for FlatBuffers, which achieve 70.23
cycles/s. This performance analysis demonstrates FlatBuffers’
considerable advantages in handling multiple sensor data,
particularly highlighting its superiority in reducing deserial-
ization time which becomes critical for IoT ecosystems with
high sensor counts and data throughput.

3) Scenario 3’s multiple sensors and floating point bench-
mark: The improvements exhibited in Scenario 2’s integer
benchmark encourage testing a different benchmark under
the same setting of multiple sensors. Here, FlatBuffers di-
minish the payload size to 33,732 bytes from JSON’s 85,939.
This reduction is complemented by a notable acceleration in
serialization time TS , where both binary formats are more
than twice as fast as JSON. Although Protobuf has an overall
better payload size and serialization time, the TRTT and
TD highlights FlatBuffers’ superiority just as in Scenario
2. This faster transmission is crucial for systems requiring
prompt data exchanges. For deserialization, TD of FlatBuffers
marks 32.9% improvement over Protobuf, a critical factor for
efficiently handling complex datasets. Consequently, the Fre-
quency F of FlatBuffers is the highest among three data types.
These results highlight FlatBuffers’ significant contribution to
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Fig. 4: Performance comparison of the scenarios



enhancing the framework in data-intensive IoT environments
where precision of the data points are also important.

To summarize the analysis, Fig. 4 visually showcases
binary formats’ superiority over text-based formats such as
JSON in handling IoT communications across single and
multiple sensor scenarios. While Protocol Buffers has an
overall lower payload size, the zero-copy nature of FlatBuffers
concisely captures the frequency gains it offers over JSON and
even Protocol Buffers in the IoT communication framework as
shown in Figure 3. Protocol Buffers offers a slightly reduced
payload size and faster serialization time out of three formats.
However, FlatBuffers’ substantial improvements in deseri-
alization times (28.29%) enhances data processing speeds.
As such, FlatBuffers comes ahead with a 8.7% increase in
frequency F compared to second-best Protobufs. Further-
more, these evaluations provide evidence that the trade-offs
of the FlatBuffers to JSON or Protocol Buffers to JSON
parsing at the management layer are negligible when overall
performance improvement is concerned.

V. CONCLUSION AND EXTENSIONS

This study introduced a framework to enhance commu-
nication between IoT and management layers, leveraging
FlatBuffers for serialization to optimize the IoT edge gateway.
Our findings show that the proposed architecture outperforms
traditional JSON and Protocol Buffers in handling simple
and complex data, improving deserialization times and overall
frequency by 28.29% and 8.7%, respectively.

Future directions include exploring other serialization for-
mats and integrating the framework into machine learning
applications for edge intelligence. This integration aims to
address computational challenges of machine learning in
microcontroller environments, thereby expanding the frame-
work’s utility and efficiency in IoT ecosystems.
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