
Multi-Faceted Maximization of a Microgrid-
Incorporated Hybrid Photovoltaic-Wind-Battery-

Diesel System in Basra, Iraq 
 

Aqeel Mezher Thajeel Alsultan  
Faculty of Artificial Intelligence 
Universiti Teknologi Malaysia 

Kuala Lumpur, Malaysia 
mezher@graduate.utm.my 

Mohd Nabil Muhtazaruddin  
Faculty of Artificial Intelligence 
Universiti Teknologi Malaysia 

Kuala Lumpur, Malaysia 
mohdnabil.kl@utm.my  

Nurul Aini Bani 
Faculty of Artificial Intelligence 
Universiti Teknologi Malaysia 

Kuala Lumpur, Malaysia 
nurulaini.kl@utm.my  

Firdaus Muhammad-Sukki 
School of Engineering and Built Environment 

Edinburgh Napier University 

Edinburgh, United Kingdom 
f.muhammadsukki@napier.ac.uk

Abstract—Hybrid Renewable Energy Sources (HRES) in 

microgrids present a cost-effective option for supplying power 

to remote areas. This research focuses on optimizing HRES 

systems for Base Transceiver stations in Basra, Iraq, by using 

the Multiobjective Improve Salp Swarm algorithm (MOISSA) 

to enhance reliability, reduce energy costs, and improve energy 

distribution through effective design variables such as 

photovoltaic power, wind turbines, and battery autonomy days. 

Through MATLAB simulations with the MOISSA algorithm, 

and comparative analysis to other algorithms, the study shows a 

significant reduction in energy costs and a decrease in power 

supply probability, offering valuable design solutions for 

Hybrid Microgrid Systems.  

Keywords— hybrid renewable energy sources, multiobjective 

salp swarm, algorithm, microgrid 

I. INTRODUCTION  

The increasing global attention towards alternative energy 
sources is driven by factors like population growth, escalating 
energy needs, higher production expenses, greenhouse gas 
emissions, and the environmental effects of fossil fuels. 
Despite progress in renewable energy technologies, rural areas 
and islands still struggle with electricity shortages, making 
wind, solar, and hydropower essential due to their widespread 
availability, cleanliness, and user-friendly nature [1-4]. The 
integration of wind and solar power in a hybrid energy system 
improves reliability and quality, with the option to include 
storage devices for efficiency during periods of low wind or 
solar activity, making Hybrid Microgrid Systems (HMS) the 
most efficient and cost-effective solution for utilizing 
localized renewable energy sources in off-grid areas, despite 
the complexity of planning and designing these systems due 
to economic and technical challenges related to the variability 
of renewable energy sources and the necessity for optimal 
sizing and energy management strategies to effectively meet 
electricity demands [5,6]. 

Prior studies have explored the sizing of hybrid microgrid 
systems using different methods. The first category includes 
software tools like HOMER, HOMER Pro, PVSYST, HOGA, 
IHOGA, and RAPSIM, but users struggle to choose suitable 
components intuitively [7-10]. Deterministic strategies make 
up the second classification, requiring substantial simulation 
time to evaluate all system configurations. Metaheuristic 
algorithms form the third category, with Fathy et al. [11] 
introducing a method using social spider optimizers for 
microgrid sizing in Saudi Arabia. Bukar et al. applied the 
grasshopper optimization algorithm in Nigeria, while Farh et 
al. [12] used the bonobo optimizer in Saudi Arabia to 
minimize system cost. Jufri et al. [13] optimized a hybrid 
power generation system in Indonesia, and Borhanazad et al. 
presented a multi-objective particle swarm optimization 
technique in Iran [14]. The summary of the literature findings 
is shown in Table 1. 

The study utilizes the novel meta-heuristic optimization 
algorithm MOISSA to optimize dimensions in hybrid 
microgrid systems and suggests an Energy Management 
System, showing superior performance in convergence 
speed and balancing exploration and exploitation when 
compared to other algorithms, as detailed in the paper's 
structured sections focusing on system components, Energy 
Management Strategy (EMS), optimization results, and 
result analysis. 

TABLE I.  SUMMARY OF THE LITERATURE FINDINGS ON HYBRID 

MICROGRID SYSTEMS. 

Reference Year Country Objective 

function 

Algorithm 

[15] 2021 Saudi 
Arabia 

Reducing the 
Annual 

LPSP/COE 

Multiobjective 
Evolutionary 

Algorithm 

[16] 2020 Nigeria Reducing the 
Annual 

COE/DPSP 

The 
Multiobjective 
Grasshopper 



Optimization 
Algorithm is a 
computational 

method for solving 
multiple objective 

optimization 
problems. 

[17] 2022 Saudi 
Arabia 

Reduce the 
overall 

Annualized 
System Cost 
(ASC) to a 
minimum. 

The Bonobo 
Optimizer is a 

method that users 
use. 

[18] 2022 Saudi 
Arabia 

Employed to 
reduce the 

Annual 
COE. 

HOMER 

[19] 2021 India Reducing the 
Annual 

NPC/COE 

HOMER 

[11] 2020 Saudi 
Arabia 

Reduce the 
overall 

Annualized 
System Cost 
(ASC) to a 
minimum 

Utilizing 
techniques derived 

from the Social 
Spider Optimizer 

algorithm. 

[21] 2019 Egypt Minimizing 
the Annual 
LPSP/COE 

while 
maximizing 

RF. 

Employing the 
Multiobjective 

Dragonfly 
Algorithm 
(MODA) 

methodology 

[22] 2020 China The 
objective is 

to reduce the 
Annual 

CACS/DPSP 

Employing the 
Multiobjective 

Grey Wolf 
Optimizer 
techniques 

 

II. THE ENERGY MANAGEMENT SYSTEM FOR A HYBRID 

MICROGRID SYSTEM  

The study employs a framework illustrated in Figure 1, 
including photovoltaic (PV), wind turbine (WT), battery 
technologies (BT), and diesel generator (DG) elements, to 
construct Hybrid Renewable Energy Systems (HRES) for 
sustainable energy generation, utilizing various converters for 
battery regulation, power management, electricity conversion, 
and control, alongside an RB-EMS algorithm by Kempener et 
al. [23] for operational efficiency through hourly data 
collection on ambient temperature, solar irradiance, SOC, and 
load profile. 

The Energy Management Strategy (EMS) plays a critical 
role in designing autonomous microgrids by regulating power 
distribution among system components to enhance efficiency 
and cost-effectiveness. This study implemented four distinct 
EMS approaches, including utilizing renewable energy 
sources, battery storage, and diesel generators to meet load 
demands and optimize energy conservation benefits. The flow 
chart of the rule-based EMS is shown in Figure 2. 

III. MULTIOBJECTIVE SALP SWARM ALGORITHM 

The Salp Swarm Algorithm (SSA) is a unique swarm 
intelligence method considered a metaheuristic optimization 
algorithm, inspired by the foraging behaviour and cognitive 
skills of salps, as introduced by Mirjalili et al. in 2017, where 

organisms form chains led by a designated leader to 
collectively search for food, as depicted in Figures 3a and 3b. 

 

Fig. 1. Layout of an independent microgrid system. 

The Improved Salp Swarm Algorithm (ISSA) is an 
upgraded version of the SSA algorithm, displaying improved 
precision and optimality, as evidenced in studies by Wang et 
al. [24] and Duan et al. [25]. It demonstrates rapid 
computational efficiency, enhanced efficacy, and dependable 
convergence capabilities, effectively tackling economic 
dispatch issues, as Balakrishnan et al. highlighted [26]. 
Differentiations between SSA and ISSA lie in the random 
process and selection approach, with ISSA employing Levy 
flight for enhanced effectiveness. The depiction of ISSA can 
be observed in Figure 4, where Levy flight dictates the model's 
advancement in size and direction by utilizing the Levy 
distribution, characterized by a power-law tail probability 
function [26]. The Mantegna method [25] generates the 
corresponding numerical value based on the Levy distribution 
in this research, with the mathematical processes for the 
proposed algorithm detailed in Equations (1-5). 

 

Fig. 2. Flow chart of the rule-based energy management strategy 

 

 



 
Fig. 3. Illustration of  various salp, with (a) symbolizing the dominant salp 
and (b) showing the chin . 

���� �∝� 	 0.05   �|� |��∝                              �1� 

 
Where 1 < α ≤ 2, the standard deviation σm and σn 

represent the normal distribution of arbitrary numbers m and 
n, respectively: 
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The value of σm in equation (2) is determined through 

the following calculation: 
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The use of incremental and intermittent extensive 

movements in a Levy flight improves the search efficiency of 
an optimization framework by thoroughly exploring the 
vicinity of the current optimal solution and potentially 
covering a wider search space, leading to the successful 
discovery of the most efficient solution in the initial stage of 
ISSA, random coordinates are generated for salps based on 
the input data dimensions, followed by formulating solutions 
with randomly selected attributes from existing features. In 
the update phase, the ISSA adjusts the positions of search 
agents' leaders and followers. In contrast, the ISSA utilizes (�  Long to update salps' positions with the food source, 
limiting their convergence range. By introducing randomness 
through Levy flight to update salps' positions, exploration 
capabilities are enhanced, preventing them from getting stuck 
in local optima and promoting foraging, hence expanding the 
search space explored, as demonstrated by Wang et al. [27]. 
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After determining the appropriate step size, the leader's 
location is adjusted using equations (3,4). 
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To enhance the ISSA's exploration capabilities and avoid 
local optima stagnation, it is recommended that the step size 
of the initial random solution be increased. MOISSA utilizes 
various strategies to tackle sizing issues, as depicted in Figure 
4, by dispersing random particles within user-defined 
boundaries to refine the objective function through space 
traversal. The effectiveness and efficiency of MOISSA were 
evaluated through experiments comparing its performance 
with other optimization algorithms like (MOSSA), 
(MOALO), and (MOPSO), revealing that MOISSA 
effectively balances exploration and exploitation compared 
to its counterparts. 

 

Fig. 4. Flow chart of the Molitobjective Improved Salp Swarm Algorithm 
(MOISSA). 

IV. RESULTS AND DISCUSSION 

The current study presents various options for the 
optimal configuration of the analyzed microgrid utilizing a 
multiobjective optimization technique. This strategy yields a 
collection of optimal solutions called the Pareto front. 
MOISSA, MOSSA, MOPSO, and MOALO were subjected 
to over 100 iterations.   The results of utilizing the techniques 

 

 



above for independent microgrid setups exhibit a remarkable 
and uniform spread. This analysis is conducted based on 
LPSP and COE functions. The outcomes displayed on the 
Pareto front reveal not just an optimal solution but also a set 
of optimal solutions (non-dominated solutions) and a range 
of potential design decisions. The subsequent section 
discusses the findings from applying the MOISSA, MOSSA, 

MOPSO, and MOALO algorithms. 

A. Comparative Analysis 

The utilization of ISSA in the simulation aimed to 
decrease both the Cost of Energy (COE) and Loss of Power 
Supply probability (LPSP). The findings presented in Figure 
5 demonstrate that as the limit for LPSP rises, the ASC 
diminishes. However, achieving 100% reliability necessitates 
a more substantial diesel generator and increased 
incorporation of renewable energy, consequently leading to a 
higher annualized system cost. The evaluation of the 
performance of the four algorithms concerning the Pareto 
front is depicted in Fig 5, revealing that ISSA exhibits 
comparable and superior performance compared to SSA, 
PSO, and ALO.  

This paper presents diverse options for the most suitable 
configuration of the analyzed load BTS using a multi-
objective optimization strategy. This strategy generates a 
collection of optimal solutions called the Pareto front. Within 
multi-objective decision-making, identifying a solution from 
the Pareto front is crucial. The Pareto front encompasses a set 
of solutions not dominated by others. Optimal solutions are 
chosen from this collection, which can be likened to a 
Cartesian graph, where the x-axis value is the sole variable 
used to determine a solution. It is essential to define a specific 
variable, such as LPSP = 0%, LPSP = 1%, LPSP = 2%, etc., 
to achieve a solution. This method serves two main purposes: 
first, it illustrates the impact of cost variation with different 
LPSP values at 1%, 2%, and 3%, and second, it demonstrates 
how adjustments to the aforementioned variable influence 
design.  

Table  compares all four algorithms utilizing a Pareto 
front solution. The cost of energy for ISSA, PSO, SSA, and 
ALO are 0.1521, 0.1552, 0.1538, and 0.1530 $/kWh, 
respectively. If we compare all four algorithms based on the 
cost of energy production, ISSA produces energy at the 
lowest price of 0.1521$ per unit. The system is modelled to 
operate using entirely dependable renewable energy sources. 
The annualized expenditure for the system amounts to 
89171.83$. By allowing the LPSP threshold to reach 5%, the 
annualized cost of the system decreases to 63322.34$. 
Likewise, when the LPSP threshold is set at 10%, the 
annualized cost of the system is 51382.18$, and at 20% 
LPSP, the system cost further drops to 42683.69$. A solution 
is chosen from the Pareto front where a 5% loss of power 
supply probability is accepted. This final solution includes an 
87.04kW wind turbine, a 9.48kW solar system, a 76.07 kWh 
battery storage system, and a 20.42kW diesel generator. The 

annualized cost of this system remains at 89171.83$, with an 
energy production cost of 0.152$/kW.  

 

Fig. 5. Pareto plot of all four algorithms. 

The depicted graph in Fig 6 illustrates the charge level in 
the storage system over three days. Analysis of the plot 
reveals that the state of charge (SOC) consistently remains 
under 30%, with the highest SOC recorded at 100%. In the 
daytime, surplus solar energy is stored in the battery system 
for later use, ensuring a continuous energy supply after sunset 
to meet demand. Consequently, the SOC of the battery 
system rises during daylight hours, peaking at 100%, and 
declines at night to meet energy requirements. Maintaining 
the SOC above the 30% threshold optimizes the design, 
prolonging the battery system's lifespan by preventing deep 
discharges. 

BTS relies on available energy to meet its energy needs 
during operation. Fig 7, a graphical illustration, shows the 
utilization of HRES and BT to address load requirements. 
Solar and wind power are utilized daily to satisfy energy 
demands, with excess energy stored in batteries. Energy is 
then drawn from these batteries at night to meet load 
demands. In cases of inadequate energy storage, the DG 
system is activated. Fig 8 depicts the load demand for HRES 
and the BT system throughout one week. The yellow curve 
represents the surplus energy stored in the battery, which 
highlights that the battery remains fully charged in times of 

TABLE II    RESULTS COMPARISON OF ALL ALGORITHMS 

Algo 

Wind 

(kW) 

PV 

size 

(kW) 

Battery 

storage 

(kWh) 

DG  

Size 

(kW) 

LPSP 

(%) 

COE 

($/kWh) 

ISSA 87.04 9.48 76.07 20.42 5 0.1521 

PSO 96.58 1 91.56 15.40 5 0.1552 

SSA 73.61 52.97 63.43 15.92 5 0.1538 

ALO 72.43 34.56 64.16 23.37 5 0.1530 

 

 



 

Fig. 6.   Graph of SOC(%)of the battery storage system. 

 

Fig. 7.  The comparative plot of load demand, battery discharging wind and 
solar energy. 

 
Fig. 8.  Comparative representations of various factors including battery 
charging, load demand, battery discharging, wind energy, and solar energy 

abundant renewable energy. In daylight hours, excess power 
is produced by the renewable energy system and stored in the 
battery storage system. Even with ample renewable energy 
around the 80th hour, the charging curve gradually 
diminishes to zero, indicating the battery's full charge status. 

Fig 9 shows battery charging and discharging curves for 
the three days. The blue curve shows the charging curve of 
the battery storage system in case sufficient surplus 
renewable energy is available. The red curve shows the 
battery storage system's discharging during the night when 
solar energy is unavailable to fulfill the load demand. During 
the year, 97384.25 kWh of energy is stored in the battery 
storage system, which provides 87517.56 kWh of energy to 
the load. 

 
Fig. 9.  Profile of battery charging and discharging. 

 

 

Fig 10.  Graph of the generation and load balance, as well as the SOC of the 
BTS. 

B. Comparison of Energy Generation with Load Demand 

and State of Charge 

 
Gaining knowledge about the load requirements of 

Renewable Energy Sources (RES) and Battery Technologies 
(BT) in different day and night scenarios and creating 
effective plans to meet these load needs is crucial. Fig 10 
visually compares energy generation, load demand, and 
battery storage system charge status. Wind and solar energy 
are suitable sources for charging the battery during the day, 
reducing the need for Diesel Generators (DG). However, 
when solar energy is unavailable, the BT system supplies 
power to the system. This highlights the importance of 
formulating a holistic approach to address the varying energy 
demands of a system. Additionally, an efficient battery 
storage system plays a significant role in promoting a 
sustainable energy environment by enhancing the utilization 
of RES. 

 Fig 11 demonstrates the monthly power generation, 
load demand, and annual battery charging-discharging. These 
diagrams offer insights into the mean wind energy 
generation, solar energy production, DG production, battery 
storage, and discharge, along with the load demand of the 
BTS. For instance, looking at January, it is evident that all of 
the load demand of the BTS is satisfied solely by solar and 
wind energy, without the DG needing to operate. However, 
in the summer season, especially during peak hours, the DG 
is employed to meet the increased load demand, as shown by 

the yellow bars in the diagrams. 

 

 

 



 

Fig 11. Power generation, load demand, and battery charging-discharging for 
the whole year. 

V. CONCLUSIONS 

The hybrid MOISSA algorithm delivered superior 
outcomes in contrast to other algorithms. The primary aim of 
this algorithm is to determine the best number of wind, PV, 
BT, and DG components while minimizing COE, and 
reducing LPSP. Moreover, the hybrid MOISSA algorithm 
has avoided premature convergence and eventually 
converges towards global optimal solutions. By offering 
more efficient and cost-effective solutions, the hybrid 
MOISSA algorithm in this study has contributed to the 
progress of RESs. A significant advantage of the hybrid 
MOISSA algorithm is its potential to produce highly accurate 
results that align with the research's stated goals. It is 
postulated that the algorithm's implementation in the study 
will enhance RESs by providing more effective solutions. 
This research evaluates the efficiency and effectiveness of the 
hybrid MOISSA algorithm in achieving the study's 
objectives. 

The study's results demonstrate the hybrid algorithm's 
superiority over other algorithms. With a 0% LPSP, the 
hybrid MOISSA algorithm reaches the optimal design with a 
minimal COE of 0.2309$/kWh, in comparison to PSO, SSA, 
and ALO, which have COEs of 0.2856, 0.2726, and 0.2622 
$/kWh, correspondingly. These findings demonstrate the 
superior performance of the hybrid algorithm over others. 
Similarly, with a 20% LPSP, the hybrid MOISSA algorithm 
exhibits the lowest COE of 0.1521$/kWh, while PSO, SSA, 
and ALO showcase COEs of 0.1552, 0.1538, and 
0.1530$/kWh, respectively. 

The Hybridized MOISSA algorithm has been employed 
to optimize a hybrid renewable energy system to fulfill the 
energy needs of a Base Transceiver Station (BTS) while 
considering various LPSP reliability limitations. A 
comparative analysis shows that this algorithm surpasses 
three other algorithms in terms of Cost of Energy (COE). The 
resulting optimized setup, which ensures a 20% LPSP, 
comprises a 101-kW wind turbine, a 42-kW PV system, an 
80-unit battery storage system, and a small-scale DG. 
Therefore, the findings of this research indicate that the 
hybridized MOISSA algorithm demonstrates superior 
effectiveness in terms of the energy generation cost for an off-
grid BTS. 
 
 

REFERENCES 

[1] Dalton, G. J., Lockington, D. A., & Baldock, T. E. (2009). Case study 
feasibility analysis of renewable energy supply options for small to 
medium-sized tourist accommodations. Renewable Energy, 34(4), 
1134-1144. 

[2] Gipe, P., & Möllerström, E. (2023). An overview of wind turbine 
development history: Part II–The 1970s onward. Wind Engineering, 
47(1), 220-248. 

[3] Chaudhari, M. S., & Tibude, S. A New Hybrid Solar-Wind Charging 
Station for Electric Vehicle Applications and Its Simulation. 

[4] Ghorbani, N., Kasaeian, A., Toopshekan, A., Bahrami, L., & Maghami, 
A. (2018). I am optimizing a hybrid wind-PV battery system using GA-
PSO and MOPSO to reduce cost and increase reliability. Energy, 154, 
581-591. 

[5] Ileana, Citaristi. (2022). United Nations Development Programme—
UNDP.  183-188. doi: 10.4324/9781003292548-43. 

[6] Zafar, M. A. B., Islam, M. R., Islam, M. S. U., Shafiullah, M., & Ikram, 
A. I. (2022, December). Economic analysis and optimal design of 
micro-grid using PSO algorithm. In 2022, the 12th International 
Conference on Electrical and Computer Engineering (ICECE) (pp. 
421-424). IEEE. 

[7] Ajlan, A., Tan, C. W., & Abdilahi, A. M. (2017). Assessment of 
environmental and economic perspectives for a renewable-based 
hybrid power system in Yemen. Renewable and Sustainable Energy 
Reviews, 75, 559-570. 

[8] Sinha, S., & Chandel, S. S. (2014). Review of software tools for hybrid 
renewable energy systems. Renewable and sustainable energy reviews, 
32, 192-205. 

[9] Bernal-Agustín, J. L., & Dufo-Lopez, R. (2009). Simulation and 
optimization of stand-alone hybrid renewable energy systems. 
Renewable and sustainable energy reviews, 13(8), 2111-2118. 

[10] Al Garni, H. Z., Mas' ud, A. A., & Wright, D. (2021). Design and 
economic assessment of alternative renewable energy systems using 
capital cost projections: a case study for Saudi Arabia. Sustainable 
Energy Technologies and Assessments, 48, 101675. 

[11] Fathy, A., Kaaniche, K., & Alanazi, T. M. (2020). A recent approach-
based social spider optimizer for optimal sizing hybrid 
PV/wind/battery/diesel integrated microgrid in Aljouf region. IEEE 
Access, 8, 57630-57645. 

[12] Farh, H. M., Al-Shamma’a, A. A., Al-Shaalan, A. M., Alkuhayli, A., 
Noman, A. M., & Kandil, T. (2022). Technical and economic 
evaluation for off-grid hybrid renewable energy system using novel 
bonobo optimizer. Sustainability, 14(3), 1533. 

[13] Jufri, F. H., Aryani, D. R., Garniwa, I., & Sudiarto, B. (2021). Optimal 
battery energy storage dispatch strategy for small-scale isolated hybrid 
renewable energy system with different load profile patterns. Energies, 
14(11), 3139. 

[14] Borhanazad, H., Mekhilef, S., Ganapathy, V. G., Modiri-Delshad, M., 
& Mirtaheri, A. (2014). Optimization of micro-grid system using 
MOPSO. Renewable energy, 71, 295-306. 

[15] Sinha, S., & Chandel, S. S. (2015). Review recent trends in 
optimization techniques for solar photovoltaic–wind-based hybrid 
energy systems. Renewable and sustainable energy reviews, 50, 755-
769. 

[16] Anoune, K., Bouya, M., Astito, A., & Abdellah, A. B. (2018). Sizing 
methods and optimization techniques for PV-wind based hybrid 
renewable energy system: A review. Renewable and Sustainable 
Energy Reviews, 93, 652-673. 

[17] Bashir, N., Modu, B., & Harcourt, P. (2018). Techo-economic analysis 
of off-grid renewable energy systems for rural electrification in North-
eastern Nigeria. 

[18] Seedahmed, M. M., Ramli, M. A., Bouchekara, H. R., Milyani, A. H., 
Rawa, M., Budiman, F. N., ... & Hassan, S. M. U. (2022). Optimal 
sizing of a grid-connected photovoltaic system for a large commercial 
load in Saudi Arabia. Alexandria Engineering Journal, 61(8), 6523-
6540. 

 



[19] Thirunavukkarasu, M., & Sawle, Y. (2021). A comparative study of the 
optimal sizing and management of off-grid solar/wind/diesel and 
battery energy systems for remote areas. Frontiers in Energy Research, 
9, 752043. 

[20] Omar, A. S., Mohamed, A. A. A., Senjyu, T., & Hemeida, A. M. (2019, 
October). Multi-Objective Optimization of a Stand-alone Hybrid 
PV/wind/battery/diesel Micro-grid. In 2019 IEEE Conference on 
Power Electronics and Renewable Energy (CPERE) (pp. 391-396). 
IEEE. 

[21] Zhu, W., Guo, J., Zhao, G., & Zeng, B. (2020). Optimal sizing of an 
island hybrid microgrid based on improved multi-objective grey wolf 
optimizer. Processes, 8(12), 1581. 

[22] Wang, J., Gao, Y., & Chen, X. (2018). A novel hybrid interval 
prediction approach based on modified lower upper bound estimation 
in combination with multi-objective salp swarm algorithm for short-
term load forecasting. Energies, 11(6), 1561. 

[23] Wang, J., Gao, Y., & Chen, X. (2018). A novel hybrid interval 
prediction approach based on modified lower upper bound estimation 
in combination with multi-objective salp swarm algorithm for short-
term load forecasting. Energies, 11(6), 1561. 

[24] Duan, Q., Wang, L., Kang, H., Shen, Y., Sun, X., & Chen, Q. (2021). 
It improved the salp swarm algorithm with simulated annealing for 
solving engineering optimization problems: symmetry, 13(6), 1092. 

[25] Balakrishnan, K., Dhanalakshmi, R., & Khaire, U. M. (2021). 
Improved salp swarm algorithm based on the levy flight for feature 
selection. The Journal of Supercomputing, 77(11), 12399-12419. 

[26] Wang, J., Gao, Y., & Chen, X. (2018). A novel hybrid interval 
prediction approach based on modified lower upper bound estimation 
in combination with multi-objective salp swarm algorithm for short-
term load forecasting. Energies, 11(6), 1561. 

[27] Abualigah, L., Shehab, M., Alshinwan, M., & Alabool, H. (2020). Salp 
swarm algorithm: a comprehensive survey. Neural Computing and 
Applications, 32(15), 11195-11215. 

[28] Yadong, W., & Weixing, S. (2019, June). Improve Multi-objective Ant 
Lion Optimizer Based on Quasi-oppositional and Levy Fly. In 2019 
Chinese Control and Decision Conference (CCDC) (pp. 12-17). IEEE. 

 

 


