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This study compares the performance of the hillClimber algorithm to that of the hillClimber with a plugged

in Frequency Fitness Assignment (FFA) method on the optimization of 240 Job Shop Scheduling Problem
(JSSP) instances. The JSSP instances have been systematically generated in gridwise sizes to investigate the
performance of the algorithms on problem instances with steadily increasing numbers of jobs and machines.
The comparison of the FFA-hillClimber and the default hillClimber is done in both EQ setting, accepting
equally good (or fitness-frequent) solutions, and NO setting, that only accepts improvement. FFA-hillClimbers
are more successful than default hillClimbers on smaller problem instances, but not on larger ones. Results
also suggest a function between the ratio between jobs and machines, number of evaluations, and the success

of the respective algorithms.

1 The Job Shop Scheduling Problem

The Job Shop Scheduling Problem (JSSP) is a con-
strained optimization problem which entails minimiz-
ing the length, or makespan of a schedule with j jobs
on m machines ( ;

). In JSSP, each job needs to be processed once
on each machine exactly once, but what makes the
problem hard is that each process has a predetermined
processing time and that the processes have prece-
dence constraints. This means, for example, that Job
1 must first be processed on Machine O for exactly
2 minutes, then on Machine 1 for exactly 5 minutes,
and finally on Machine 2 for 9 minutes (see Fig.1).
No longer, no shorter, and in exactly that order. Pro-
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cessing times are continuous and not divisible, but

idle time on a machine between jobs is possible. Fur-

thermore, a machine can only process one job at a

time, and job can only be processed by one machine

at a time ( ; ;
).

Practical applications do not require much imagi-
nation, as efficient scheduling of manufacturing pro-
cesses is a way for businesses to reduce costs (

). But also less intuitive and more
mission-critical applications such as surgery schedul-
ing in hospitals and clinics can be modeled as JSSP
( ). Not only do surgical pro-
cedures make up a significant source of revenue (in
some countries!), but scheduling resources like per-
sonnel (surgeons, anaesthetists, nurses) and facilities
(operating rooms, intensive care beds) make up a sig-
nificant chunk of its costs.

Academic interest in the objective of schedule

1Obviously, the objective of ‘revenue’ depends on a
country’s health care system.
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Figure 1: An example of a randomly generated problem instance (top), a random solution in permutation representation
(middle), and the corresponding schedule for that solution permutation, determining its makespan (bottom).

makespan minimization stems back to at least the
1950s, when it was remarkably enough considered an
easy problem. But since then, as along its factorial
search space increase, (Eq. 1), JSSP has been proven
to be an NP-Hard problem (

). It is true that a superpoly-
nomial search space increase in itself does not mean a
problem is NP-hard, as Leonard Euler demonstrated
in 1736 when solving the Bridges of Koningsberg
problem with a polynomial-time method. For NP-
hard problems however, such an algorithm is not
known, making these problems not solvable (mean-
ing: finding the optimal solution) in any stretch of
reasonable time for realistic instance sizes.

But even if a problem is NP-hard, it is not a fi-
nal verdict on the hardness of an individual instance.
Many nuances exist, like the solvability phase transi-
tion of a problem, along which the hardest instances
can be found, while vast majority of the instances
is relatively easy ( ;

). For the number partition prob-
lem, which is classified as ‘weakly NP-hard’, the
number of informational bits per integer, and even the
distribution of informational bits over the integers ex-
ert influence on the instances’ computational hardness
( )-

For the JSSP, something similar is at play, as the
ratio between the number of jobs j and the number
of machines m in an instance also appear to play a

part in the difficulty of finding optimal or reason-
able solutions for JSSP instances. In the extremes,
when j/m is either really high or really low, “sim-
ple priority rules almost surely generate an optimal
schedule” ( ). These results
are very strong, and possibly related to Ruben Horn’s
work on the number partition problem (

), but the converse is also
true: When J/m is close to 1, the problem is likely
hard ( ). Randomly generated
schedules for these instances are likely further away
from known optimal solutions than for instances with
smaller and larger j/m ratios, and local optima in the
solution landscaped are also known to be further from
global optima ( ).

[randomness streeter]

However hard it may be to find an optimal solu-
tion for a JSSP instance, it is a problem that allows
for easy generation of random initial solutions from
which to start the heuristic optimization process, un-
like problems like the traveling tournament problem
where creating a random initial schedule that satis-
fies all constraints to be considered a valid sched-
ule has even been called impossible (

) and

HP protern folding that suffers from the same prob-
lem (

). For the JSSP, thrngs are a

lot easier as an initial random valid solution (a JSSP



schedule) can be created in linear time. Furthermore,
there is also a deterministic constant time connective
mutation type available, which is also not guaranteed
(e.g. the traveling tournament problem and HP pro-
tein folding don’t have one). Both the initialization
and mutation procedures will be further explained in
Sections 4 and 5.

When it comes to the question of data sets, a col-
lected set of 242 benchmark instances is commonly
used in JSSP research literature, courtesy of Jelke J.
van Hoorn ( ). In this set the number
of jobs range between 6 and 100, and the number of
machines between 5 and 20, with the smallest individ-
ual instance existing of 6 jobs on 6 machines and the
largest 100 jobs on 20 machines ( ).
The distribution of j and m is somewhat haphazard
over the set, but this is understandable as the set is
comprised of 8 earlier JSSP benchmark sets. The ad-
vantage is of course the reachable generality of com-
parisons accross earlier studies. In another more re-
cent study, custom problem instances are generated
drawing jobs’ processing times from different proba-
bility distributions, to more fully understand the land-
scape of possible JSSP instances (

). For our experiments, a set of JSSP prob-
lem instances with gradually increasing job and ma-
chine numbers is created for a more granular look
into the effect of instance size, but also the aforemen-
tioned job/machine ratios, on hillClimber and FFA-
hillClimber performance. Using newly created JSSP
instances rather than a known benchmark set does
mean that there are no known optimal makespans for
the generated instances, but we won’t need those, to
compare the performance of the FFA-hillClimber to
the hillClimber algorithm rather than to find optimal
solutions. These instances and algorithms’ source
code is publicly available ( ).

2 HillClimbers

Possibly the most elementary evolutionary algorithm
is the (1+1)EA, shorthand for “the new generation
is chosen as the best individual of one parent and
one child” ( ), but colloquially
known as the ‘hillClimber’ algorithm. HillClimbers
exist in many variants, with best-first moves, pro-
portional probability moves, variable mutability, ran-
dom restarts and all sorts of other bells and whis-
tles, but we will restrict this study to the stochas-
tic hillClimber. In order to optimize a given prob-
lem, the stochastic hillClimber starts off with a ini-
tial valid random solution and tries to optimize the
quality by making one mutation in each generation

and accepting the mutated solution if better. Mov-
ing through the solution space like this is also called
the “Choose First Positive” ( )
or “first improvement” ( )
strategy, which means that an encountered new solu-
tion that changes the objective value positively, (or at
least non-negatively). These algorithms usually per-
form well, but have the risk of getting stuck in a lo-
cal optimum rather than moving towards the global
optimum in the solution space ( ;
)-

One decision that needs to be made when imple-
menting a hillClimber algorithm is whether to accept
only better solutions, or equally good solutions as
well.

[ BEGIN SARAH:

The choice of a neutral moves policy should de-
pend on the extent of neutrality in the landscape. Ex-
isting literature indicates a non-trivial proportion of
neutrahty in the landscapes of JSSP (

; ) and, indeed, in schedul-
ing problems more generally ( ). The
presence of neutrality in fitness landscapes can be
helpful ( ) or unhelpful (

) to search; it is likely that this depends on the
type of neutrality ( ) and design
of the algorithm.

Conceptually, also accepting solutions with equal
objective values might alleviate some of the risk of
the hillClimber getting stuck in a local optimum. In-
deed, this has been ratified in the literature: a study
which systematically compared hill climbers with dif-
ferent pivot rules and neutral moves policies found ac-
cepting neutral moves to be advantageous to search
( )-

As it relates to design of the FFA hill climber, both
choices for neutral moves pohcy seem to be apph-
cable on JSSP (

). Weise et al. state that ”A
plateau of the objective function is also a plateau un-
der FFA” ( ). Indeed, because all
members of a plateau will share the same frequency
fitness value it seems that acceptance of solutions with
equally-rare fitness may be necessary for escape from
neutral regions. Nevertheless, we would like to study
both neutral move policies in the interest of rigour.

:END SARAH ]

Until now, these considerations have not been dis-
cussed in earlier studies studies of FFA for JSSP op-
timization. In this study we will, and we will label
the settings as EQ for hillClimbers that DO accept
equally good solutions, and NOEQ for hillClimbers that
DO NOT accept equally good solutions. Turns out it
makes quite a difference.
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Figure 2: The distribution of makespans for 10° randomly generated unoptimized schedules for a JSSP instance with 50 jobs

and 16 machines.

3 Frequency Fitness Assignment

“Frequency Fitness Assignment” is the brainchild of
Thomas Weise, really. A publication in 2013 from his
lab in HeFei University, China, introduced a new way
to steer evolutionary algorithms through the search
space of combinatorial optimization problems. The
new ‘plugin’, Frequency Fitness Assignment (FFA),
biases an evolutionary algorithm towards rarer objec-
tive values, rather than towards better objective values
per se ( ). The (a postiori?) rationale
behind this method is that “good solutions are indeed
rare and the better the solutions get, the rarer they
are” ). Yet, surprisingly enough,
the application of FFA in evolutionary algorithms
has already shown good results on several optimiza-
tion problems such as the traveling salesman problem
( ; ) and HP pro-
tein folding ( ). The results on
the job shop scheduling problem have been indepen-
dently replicated by Ege de Bruin from Amsterdam’s
VU university, and later published at EvoSTAR 2023
( ; ). Recently,
more in-depth studies on the efficiency, algorithmic
invariance under objective function transformations
and explainability of its performance through entropy
and search space trajectories have appeared, show-
ing that the concept is slowly maturing from a wild
proposal to a well-understood principle (
; ; )-

When optimizing instances of the JSSP with a

hillClimber algorithm (HC) and a hillClimber with

Frequency Fitness Assignment plugged into it (HC-
FFA), FFA-hillClimber mainly shows good but not
better results on most problem instances studied in
both ( ) and ( ).
However, the FFA-hillClimber does manage to out-
perform the classic hillClimber on some instances
in these studies. One possible reason for the FFA-
hillClimber outperforming the hillClimber is that the
FFA-hillClimber does not get stuck in a local mini-
mum like the hillClimber does( ).
This work does however point out that, based on their
results, the FFA-hillClimber seems more likely to out-
perform the hillClimber for JSSP on smaller problem
instances, and less likely on larger instance sizes. This
observation, and the validation or falsification of it,
are the core issues of the paper you are currently read-
ing. We aim to follow up on this reasoning by specif-
ically comparing the performance of the hillClimber
versus the FFA-hillClimber on JSSP instances, both
when accepting equal solutions (EQ setting), or when
only accepting better solutions (NOEQ setting), on a set
of systematically sized JSSP instances.

4 Problem (instance) representation

Following the method used in previous studies of FFA
on JSSP ( ; ;

) to transform a problem instance into a
valid schedule, the following constraints must be met:

* In each instance there are j jobs that must be pro-
cessed on all m machines exactly once.



* Each job has to be processed on each machines in
the order specified in the problem instance.

* Each job has a processing time on each machine
specified in the problem instance.

* A job can be processed on only one machine at a
time.

* A machine can process only one job at a time.

A single problem instance consists of a table of m x j
entries holding two integers in each cell: the ma-
chineID and the processing time on that machine
(Figure 1, top table). A solution to the problem in-
stance can be given by a single permutation of m X j
integers, all corresponding to a jobID (Figure 1, cen-
tral array). Each jobID appears in the permutation m
times, as is done in papers by Weise et al., De Bruin
, and De Bruin, Thomson, and Van den Berg (
; ; ).

This representation can be seen as a list in which
each jobID occurs m times. But since the process-
ing order on the machines is a hard requirement for
a job, the m entries in the permutation is identical.
Switching two identical jobIDs from different places
in the permutation therefore does not lead to a new
solution (e.g. in Figure 1: Job 2 in 4th position and
Job 2 in the 9th poisition). This reflects in the number
of possible ‘reasonable’ schedules (meaning: without
trivially unnecessary machine idle time), which is

(jm)!
Jj(m!)
The list of jobIDs, can give rise to a valid schedule in
all of its permutations without further amends. Fur-
thermore, all reasonable schedules can be represented
by such a permutation. Finally, and this is neither
trivial nor unimportant, a mutation exists that con-
nects all representations into one connected combi-
natorial state space, making sure that at least prin-
cipally, every solution is reachable from every other
solution. That mutation is the swap mutation, which
swaps two elements in the permutational solution rep-
resentation. Other mutations, such as double swaps or
triple shuffles, can also connect the entire combinato-
rial state space and might function better or worse,
depending on the algorithmic deployment (e.g. simu-
lated annealing or genetic algorithms might better use
different mutation types). Finally, we should under-
stand that having such a mutation is a luxury. Many
constraint optimization problems, even from the same
class, appear not to have such a mutation, making
them practically much harder (cite TTP, protein fold-
ing)
Constructing the corresponding schedule from a
permutational solution is relatively straightforward

(D

and can be done in O(n) time. Taking the example in
Figure 1, Job 1 is the first job in the permutation and it
can start right away at time 0 on Machine 0, occupy-
ing it for 2 minutes. Next to be placed in the schedule
is again job 1, this time on Machine 1, and occupy-
ing it for 5 minutes. It can start at the first available
minute on Machine 1 after both Job 1’s previous pro-
cess and Machine 1’s previous job are finished. The
latter of these is the strongest constraint in this case,
and Job 1 can start immediately on Machinel after it
finishes its process on Machine 0. Note that if either
Job 0 or Job 2 would have been wedged in between,
we would have gotten the same final schedule. In
other words: the permutation representation is some-
what redundant. This might cause some neutrality in
the search space, although the effect might depend on
the instance size.

After all jobs from the permutation are placed, the
time it takes for all jobs to complete all their processes
is called the makespan of the schedule. In the example
in figure 1 the makespan is 18 minutes. Minimizing
the makespan is the objective of a JSSP instance, and
the makespan’s length is therefore its objective value.

5 Experiment

For our experiment, we generated JSSP instances with
jobs j € {5,10,15,...,90,95,100} jobs, and machines
m € {5,6,7...,23,24,25}, totalling 20 x 21 = 420 in-
stances. These ranges of j and m completely envelop
Weisal’s original study and De Bruin et al.’s repli-
cation, which both use Van Hoorn’s benchmark set
( ; ;

). For each job j, a random permutation of the
m machines is assigned, after which each job process,
for every machine, gets assigned a random duration
of 1 < dur < 10 minutes.

After creation, all 420 problem instances are
solved with two algorithms, a default hillClimber and
an FFA-hillClimber, both of which have two settings,
eq/noeq. When switched to eq, the algorithm will
accept equally good mutated solutions (or equally
fitness-infrequent in case of FFA), but when switched
to noeq it will only accept better solutions (or more
fitness-infrequent in case of FFA). Our experimen-
tal setup is thereby slightly wider than earlier stud-
ies which only studied these algorithms in eq setting
( ; ;

).

The default hillClimber (“the simplest local search
possible” ( )) starts off with a sin-
gle random but valid solution, and every iteration per-
forms one mutation, implemented as a ‘job swap’.



The job swap operation randomly selects two differ-
ent job indices in the permutational representation,
and subsequently swaps these iff the jobIDs are dif-
ferent — else a new random index is selected for the
second job. Iff the makespan of the newly mutated
schedule is shorter than the incumbent schedule, the
new schedule is accepted and replaces the incumbent
schedule. If the hillClimber is in eq setting for this
run, it will not only accept a better schedule (with
shorter makespans), but also an equally good sched-
ule.

The FFA-hillClimber also has an eq - noeq
setting. As explained earlier, its FFA-plugin en-
tails keeping a frequency log with every possible
makespan value and how often it was encountered.
It starts off with all log entries set to zero, after
which it initializes a random solution, calculates its
makespan value, and increases that value’s entry in
the frequency log by 1. Each iteration, it mutates
the incumbent schedule similar to the hillclimber: it
randomly selects two different job indices in the per-
mutation, and subsequently swaps these two jobs iff
they have different jobIDs (or draws two new val-
ues otherwise). It then calculates the makespan of
the new schedule, increases that makespan’s observed
frequency in the log, looks whether this value was less
encountered than the incumbent objective value and
if so, accepts the mutated schedule as the new incum-
bent schedule. Different from the default hillClimber,
the FFA-hillClimber also separately retains the best-
so-far solution, which often is different from the in-
cumbent solution. Finally, an FFA-hilClimber run can
also be set to eq, thereby also accepting mutated solu-
tions with makespans that are equally frequently en-
countered contrary to the noeq setting, which ensures
accepting only less frequently encountered makespan
values’ schedules.

All four algorithmic settings performed 3 runs of
10° function evaluations for each of the 420 problem
instances. The runtime of each algorithm on all 420
problem instances is about 3.5 days on a local ma-
chine, meaning that the entire experiment took ap-
proximately 6 weeks. This is much fewer than pre-
vious studies, that usually deploy 10° function eval-
uations per problem instance ( ;

; ). It has been
pointed out that this high number of evaluations may
turn the FFA-hillClimber algorithm into an almost
“stochastically exhaustive search” (

). However, even on the scale of 10° function
evaluations we do get some very interesting

NOEQ EQ

HC-FFA 161,028 158,420

HC 164,420 142,027

Table 1: Sums of the best makespans found for all 420
JSSP instances after one million evaluations for each of the
four algorithmic settings versions. The default hillClimber
showed both the worst and the best performance, and the EQ
setting outperformed the NOEQ setting on these instances.

Results.

When comparing the absolute performance of all four
algorithmic settings, the default hillClimber performs
both best and worst. Summing up” all 420 average
makespans gives 164,420 for the hillClimber that ac-
cepts only mutations that lead to better makespans
(the NOEQ setting), which is the worst performing al-
gorithmic setting. When the same hillClimber does
accept equal-makespan-mutations however (the EQ
setting), it becomes the best performing algorithmic
setting with a total makespan of 142,027.

[ BEGIN SARAH: This ratifies findings from
the literature on other problems where acceptance of
neutral moves has been found to be advantageous to
search efficiency ( ).

:END SARAH ]

When it comes to the FFA-HillClimber, it is
again the EQ setting that outperforms the NOEQ set-
ting, at 158,420 total makespan against 161,028 total
makespan.

[BEGIN SARAH: This finding matches with the
axiom mentioned in Section 2 that a plateau in ob-
jective function space is also a plateau with relation
to FFA. It appears that the freedom of movement af-
forded by allowing moves to solutions with equally-
rare fitness may be necessary to escape the plateaus.

:END SARAH ]

On the larger scale of things, these differences can
be regarded as quite small. If we would normalize
the makespan of best algorithmic setting (HillClimber
with EQ) to 1, the setting FFA-HillClimber with EQ
would have 1.12, the setting FFA-HillClimber with
NOEQ would have 1.13 and the worst setting, Hill-
Climber with NOEQ, would have 1.16. These values
are small in the context of optimization, where im-
provement in a run can easily lead up to 50% better
objective values, even in the experiments from our
study (Figures 5 and 6). The objective of this study
however, was to gather insight on the dominance of
the FFA-hillClimber over the default hillClimber (and
vice versa) relative to the computational budget. In

ZFor suggestive reasons, we do not average these val-
ues; a makespan of 5 machines with 10 jobs is obviously
lower than 5 machines with 100 jobs. The summed end re-
sult however, would not differ.



NOEQ EQ

Number of evaluations HC-FFA win Tie HC win | HC-FFA win Tie HC win
10,000 6.905% 0.238% 92.857% | 0.476% 2.857% 96.667%
100,000 23.571% 4.286% 72.143% | 0% 8.81% 91.19%
250,000 44.286% 4286% 51.429% | 0.476% 13.095% 86.429%
500,000 61.667% 4.048% 34.286% | 0.952% 16.905% 82.143%
750,000 71.19% 4.286% 24.524% | 0.952% 17.857% 81.19%
1,000,000 81.19% 4.524% 14.286% | 1.19% 20.476% 78.333%

Table 2: The percentage of wins (or tie) per algorithm variant on increasing number of evaluations over all 420 JSSP in-
stances. In the uphill variants, the FFA-hillClimber increasingly finds shorter makespans than the hillClimber as the number
of evaluations increases. For the sideways variants, hillClimber wins decrease over evaluations, and the percentage of ties

increases.

other words: these values could be strongly related to
the exact budget of 10° evaluations. For 10%, 10° or
10'9 evaluations, things could be quite different.

The advantage of creating our own bench-
mark set of 420 instances with the regularity j €
{5,10,15,...,90,95,100} jobs, and machines m €
{5,6,7...,23,24,25} is that it allows for a compar-
ison the algorithmic settings’ performance in a grid
view, with m on the horizontal axis, and j on the ver-
tical axis (Figures 3 and 4). Coloring cell (20,55) red
means that for the instance with 20 machines and 55
jobs, the FFA-hillClimber reached the best average
performance after 3 runs of 10® generations. Color-
ing it blue means the default hillClimber delivered the
best average performance for the same instance.

Taking this idea one step further, we also froze
the runs after 10,000, 100,000, 250,000, 500,000 and
750,000 generations, creating an exact same grid view
for different points in the run. When these inter-
mediate grids are then placed in order from 10,000
generations to 1,000,000 generations, a clear picture
emerges (Figures 3 and 4).

When in EQ-mode, the default hillClimber is the
dominant algorithm throughout the runs; just a few
red cells for very low numbers of jobs, mostly emerg-
ing later in the run (Fig. 3, percentages can be found
in Table 2). The number of ties though, when the de-
fault hillClimber and the FFA-hillClimber increases
slightly for lower numbers of machines — almost irre-
spective of the number of jobs. This might be taken as
a suggestion that in the very long run, the dominance
of the default hillClimber recedes.

When in NOEQ-mode, the picture is quite differ-
ent. Fow low numbers of generations, the default hill-
Climber still dominates the grid, but throughout the
evolutionary process, the FFA-hillClimber wins more
and more terrain, starting with the lower numbers of
jobs and machines but eventually taking over almost
the entire grid at 1,000,000 evaluations (Fig. 3, per-
centages can be found in Table 2). It might therefore
seem that the FFA-hillClimber is favourable in the

long run, but this is clearly not the case, because the
absolute results still favour the default hillClimber, in
EQ mode, over any other algorithmic setting (see Ta-
ble 1 again). On the other hand again, it must be noted
that these results only pertain to our experiment, and
different numbers of generations might give different
outcomes.

The convergence in Figures 5 and 5 illustrate the
relative differences between hillClimber and FFA-
hillClimber of either setting EQ or NOEQ. It becomes
apparent that when hillClimber outperforms FFA-
hillclimber, the instances are usually quite large.
When FFA-hillClimber outperforms the default hill-
climber, the instances are usually on the smaller side.

6 Conclusion and Discussion

For this benchmark set, using 1 million evaluations
(or: generations), the performance ranking for the
four algorithmic settings is clear (makespan lengths
are normalized to facilitate comparison):

1. (makespan = 1.00): HillClimber with EQ

2. (makespan = 1.12): FFA-HillClimber with EQ

3. (makespan = 1.13): FFA-HillClimber with NOEQ
4. (makespan = 1.16): HillClimber with NOEQ

The mandatory nuance though, is that this indeed per-
tains 1 million evaluations. It is very likely that for
other numbers of evaluations, the ranking might look
quite different, possibly stronger in favour of FFA in
both settings. Generally speaking, the more function
evaluations, the better FFA performs.

These findings closely relate to De Bruin et al’s
earlier observation and hypothesis, that plugging the
FFA method into a hillClimber algorithm may result
in a “stochastically exhaustive algorithm” (

). If this qualification is indeed truth-
ful, FFA is expected to perform better on smaller
JSSP instances, as these have smaller combinatorial
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the FFA-hillClimber found the biggest improvements in makespan over the uphill hillClimber. The number of evaluations are
on a logarithmic scale.

1200 1 jobs: 95 jobs: 5 220
1100 4 : machines: 25 machines: 23 | 210
1000 e a ;\ Y —— HC 2o
e ) | 190
900 1 FFA-HC
| 180
800 F170
700 4 160
600 4 F1so
1100 jobs: 100 jobs: 10 | 200
machines: 21 machines: 13
[=S i e
] 180
2 TS
%00 =
O 160
S
800 F140
=
700 L 120
1200 1 e jobs: 100 jobs: 10 L 240
1100 4 ﬁ_\:\ machines: 24 machines: 17
+220
1000 - | 200
200 A | 180
800 160
700 4 140
600 L— T T . T T - T . T T . . —L 120
10° 100 10? 10° 10¢ 10° w10 10t 10° 10° 10* 10° 100
Evaluations

Figure 6: Some typical runs for the EQ setting, with on the left hand side are the three instances where the default hillClimber outperformed
the FFA-hillClimber with the biggest absolute difference. On the right hand side are the three instances where the FFA-hillClimber found
the biggest improvements in makespan over the uphill hillClimber. The number of evaluations are on a logarithmic scale.



search spaces, requiring fewer evaluations to exhaus-
tively explore (either deterministically or stochasti-
cally). Our results appear that confirm this; the results
in Figure 4 show that the FFA-hillClimber in NOEQ
mode oindeed vertakes the hillClimber in NOEQ mode
for increasing numbers of evaluations, but more im-
portantly: this process starts at the smaller instances,
visualized by the red area progressively expanding
from the bottom left.

This is also true for both algorithms in EQ mode,
but the effect is much less pronounced, showing just
a slight expansion of the grey area, signifying more
ties, but no convincing dominance of FFA. Quite the
contrary, actually. We are unsure why this happens
EQ mode, but it might have to do with the smallness
of the mutation, the neutrality of the landscape, or the
relatively small number of evaluations (carefully de-
noting that a budget of 10° evaluations is only small
compared to the regular budgets of FFA, which range
to 10%). We think it is well possible that for these al-
gorithmic settings, FFA will also overtake at a budget
of 10° evaluations, and have to rethink our current ex-
perimental setup then, because an estimated runtime
of 12,000 weeks ( 231 years) on the current configu-
ration might be a little over the top.

Another detail to note is the increase of fies in-
stead of FFA-runs. Considering that these too are the
smaller instances, it is possible that ties mean that in
both settings the global optimum was found. There-
fore, it is possible that we accidentally discovered that
the hillClimber in EQ mode actually reaches a lot of
global minima on these problem instances. There is
no way to check this hypothesis (as this problem is
still NP-hard), but the relatively low number of possi-
ble makespan values might justify an attempt with an
exact algorithm to rigourously evaluate these problem
instances.

Taking this thought one step further, it is quite
possible, that for these low numbers of job duration
(1 to 10 minutes), many global minima exist, similar
to the number partition problem with many low in-
tegers ( ;

). So even if the combinatorial state space
is sizeable, the number of global optima might be high
too. In fact, if the partition problem is any measure to
go by, it is possible that the number of global optima
increases for larger instances if the range of process-
ing times remains the same ( ;

). This number might in fact be expo-
nential, but that might still not be enough given the
factorial nature of JSSP.
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