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ABSTRACT Unmanned aerial vehicles (UAVs) are envisioned to play a pivotal role in modern
telecommunication and wireless sensor networks, offering unparalleled flexibility and mobility for
communication and data collection in diverse environments. This paper presents a comprehensive
investigation into the performance of supervised machine learning (ML) models for path loss (PL)
prediction in UAV-assisted millimeter-wave (mmWave) radio networks. Leveraging a unique set of
interpretable geometrical features, six distinct ML models–linear regression (LR), support vector regressor
(SVR), K nearest neighbors (KNN), random forest (RF), extreme gradient boosting (XGBoost), and deep
neural network (DNN)–are rigorously evaluated using a massive dataset generated from extensive ray-
tracing (RT) simulations in a typical urban environment. Our results demonstrate that the RF algorithm
outperforms other models showcasing superior predictive performance for the test dataset with a root mean
square error (RMSE) of 2.38 dB. The proposed ML models demonstrate superior accuracy compared to
3GPP and ITU-R models for mmWave radio networks. This study thoroughly investigates the adaptability
of these models to unseen environments and examines the feasibility of training them with sparse datasets
to improve accuracy. The reduction in computation time achieved by using ML models instead of extensive
RT computations for sparse training datasets is evaluated, and an efficient algorithm for training such
models is proposed. Additionally, the sensitivity of ML models to noisy input features is analyzed. We
also assess the importance of geometrical features and the impact of sequentially increasing the number of
these features on model performance. The results emphasize the significance of the proposed geometrical
features and demonstrate the potential of ML models to provide computationally efficient and relatively
accurate PL predictions in diverse urban environments.

INDEX TERMS UAVs, millimeter-wave (mmWave), 5G, path loss (PL), ray tracing, and machine learning.

I. INTRODUCTION

UNMANNED aerial vehicle (UAV) communication is
becoming a critical part of achieving the expected

benchmark performance of future wireless networks and
to increase the coverage [1], [2], [3]. UAV communications

provide improved coverage and quality of service due to
having a high probability of line of sight (LOS) links [4], [5],
[6], [7]. Due to their 3D mobility, such UAV communications
can bring a rapid transformation in a wide spectrum of use
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cases in telecommunication and wireless sensor networks
in smart cities, precision agriculture, public safety, disaster
management, smart manufacturing, and health [8], [9],
[10], [11], [12], [13], [14]. It is projected that UAV-based
services and applications can attract USD 38.3 billion
by 2027 [15]. Despite recent advancements, there remain
significant research challenges to maximize the potential of
UAV communications, necessitating further advancements
in channel modeling, mobility management, integration
into terrestrial and non-terrestrial networks, and leveraging
ML to optimize these solutions. Recently, millimeter-wave
(mmWave), providing high data rate due to availability of
large bandwidth, reducing antenna size to realize massive
MIMO and minimizing interference using concepts of
beamforming, has been considered to be integrated into UAV
for performance enhancement [16].

Channel modeling plays an important role in establishing
a functional wireless network which is optimized by consid-
ering the characteristics of the environment and associated
channel parameters [17]. Traditional radio channel modeling
techniques including field measurements [18], deterministic
models [19], and stochastic models [20] suffer limitations in
accurate UAV channel prediction. The ML based models can
overcome the limitations of field measurement (site-specific),
deterministic models (high computational complexity) and
stochastic models (lower accuracy). The existing literature
presents various approaches for PL prediction and signal
strength estimation in UAV-assisted mmWave communica-
tion channels [21], [22], [23], [24], [25], [26], [27], [28],
[29], [30].
Path delay, reflection angle, and carrier frequency were

utilized as input features in [21] to train an artificial neural
network (ANN) model for accurate PL prediction in air-to-
ground (A2G) channels. Initially, a massive ray-tracing (RT)
dataset was employed, which was subsequently fine-tuned
with measured data. Similarly, PL under both line-of-
sight (LOS) and non-line-of-sight (NLOS) conditions were
predicted in [22] using a back propagation neural network
(BPNN). This was achieved using simulated RT data, with
path delay and reflection angle as the sole input features.
Geographical features, including distance, heights, terrain
types, and shadowing buildings, were leveraged in [23] using
a multi-layer perception (MLP) to forecast signal strength
coverage across various cities based on measured data. RF
and KNN was employed in [24] to predict PL and delay
spread in A2G mmWave channels. Their approach involved
utilizing the XY coordinates of UAVs, propagation distance,
shadowing buildings, and elevation angle as input features.
These features were selected through an iterative feature
selection scheme, enabling the training of models using RT
datasets. In a related work [25], an ML framework was
proposed, leveraging an extensive list of sixteen features
extracted from raw network data, including site topology and
various geographical datasets such as digital terrain, digital
height, and digital land use maps, alongside user equipment
(UE) measurement traces. A range of supervised regression

models were evaluated for predictive accuracy, generalization
performance, and computational efficiency. In a few recent
studies [26], [27], [28], [29], the stacked generalization of
ensemble models is investigated, where diverse base learners
were combined to produce an optimized meta learner for
enhanced performance. In [26], the structure of base learners
like XGBoost, Light gradient boosting machine (LightGBM),
and categorical boosting (Catboost) was fine-tuned to achieve
superior predictive accuracy using the whale optimization
algorithm. In [27], building height parameters were extracted
using image processing techniques, enriching the dataset
for PL prediction against measured data using an ensemble
model comprising SVR, RF, ANN, XGBoost, LightGBM,
KNN, and adaptive boosting (AdaBoost), followed by a
meta LR model. Similarly, in [29], SVR, gaussian process
(GP), ANN, least square boosting (LSBoost), and bagging
base learners were stacked to yield a weighted average meta
model predicting received signal strength using fundamental
features such as height, distance, and XY coordinates against
measured data.
While there has been considerable research on ML-based

PL prediction models in recent years, much of the reported
work has relied either on complex features derived from
field measurements that can be challenging to obtain, or
on simpler features like distance, heights, coordinates, and
frequency that make these models similar to traditional
PL models. However, in contrast to these approaches, our
proposed model incorporates a unique set of interpretable
geometrical features, that account for site-specific details.
These features can be easily computed without the need
for computationally intensive RT algorithms, thus enhancing
the adaptability of ML models to a wider range of urban
environments.
The contributions of this research work are summarized

as follows:

• A comprehensive performance evaluation of six distinct
supervised ML models, including LR, SVR, KNN, RF,
XGBoost, and DNN is carried out. These models are
trained using a unique set of geometrical features on a
dataset generated through RT simulations in a typical
urban environment. The results show that the mean
RMSE of all the models except LR is below 3 dB using
the proposed geometrical features.The proposed models
have also shown better accuracy than 3GPP and ITU-R
models.

• The study evaluates the trained models’ generalization
capabilities in new environments and evaluates the
increase in accuracy and reduction in computation times
for training with sparse datasets.

• We assess the impact of noisy input features and the sig-
nificance of geometrical features on model performance,
including the effect of incrementally adding these
features.

The subsequent sections of this paper are outlined as
follows: Section II details the methodology for generating
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FIGURE 1. Top view of the simulated environment used for dataset generation.

a comprehensive dataset and identifying unique geometrical
features crucial for PL prediction. In Section III, we
summarize the models developed through an extensive hyper-
parameter tuning process. Section IV provides a thorough
evaluation of the supervised ML models’ performance on
both the test dataset and in generalizing to unseen envi-
ronments. Additionally, we introduce an efficient algorithm
tailored to enhance predictive performance using sparse
training data. An analysis of the importance of geometrical
features and their impact on model performance with varying
feature sets is also included. Finally, Section V presents the
conclusion.

II. DATASET GENERATION AND FEATURE ENGINEERING
A. SIMULATION SETUP AND DATASET GENERATION
In order to train the ML models, a large dataset is required.
The dataset used in this paper is generated using an
in-house RT model that has been validated in previous
works [31], [32], [33]. The simulated scenario consists of
67 buildings within a 400m x 600m area and is taken from
Munich city as shown in Fig. 1. This environment is labeled
as Munich-1 for future reference in this paper. The average
building height in the simulated environment is about 20m.
RT simulations are performed to compute the received power
through direct LOS, first-order specular wall reflection, and
ground-reflection rays between the transmitter and receiver.
A half-wave dipole transmitter antenna with 30 dBm output
power at 28 GHz carrier frequency is used. The RT model
also incorporates the diffused scattering contributions at
the receiver due to first-order wall reflections. The single
lobe directive scattering model, as proposed in [34] is used

TABLE 1. RT model simulation parameters for dataset generation.

to compute the Diffuse scattered fields. The simulations
are performed for a total of 36 different locations of the
transmitter, each at three different altitudes of 25m, 35m, and
45m. The valid rays are computed between each transmitter
to a grid of 6, 074 receiver points distributed across the
environment at a resolution of 5m x 5m. It is assumed
that the vector database of the buildings, UAV position,
and receiver grid locations are known a priori. The height
of the receiver points is 1.5m. Building walls are modeled
as solid concrete. The buildings are oriented according to
their real-world coordinates and are not intentionally rotated.
Only the receiver points within the rectangular area defined
by the perimeter of the buildings at the border of the
environment are considered, while the open areas outside this
perimeter are discarded. Table 1 summarizes the simulation
parameters used for the RT model to generate the dataset.

B. GEOMETRICAL FEATURES FOR MODELS TRAINING
The RT model computes PL for 250, 514 distinct transmitter-
receiver pairs. Simultaneously, the RT model computes a
distinctive set of geometrical features for each transmitter-
receiver pair in the dataset, as shown in Fig. 2. These
features, crucial for subsequent analyses, are comprehen-
sively outlined in Table 2. In this study, UAV does not
measure these features as these are computed using the
geometrical data of buildings vector database, UAV position
and receivers location.
The foremost critical feature is the direct

three-dimensional (3D) distance between the transmitter
and the receiver. The remaining features can be broadly
categorized into three sub-groups. The features related to
visibility account for the reflection rays arriving at the
given receiver location. This category includes the count of
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FIGURE 2. Computation of geometrical features including (a) 3D distance (r), UAV height (hTX ), angles (θ , φ), and (b) visibility and shadowing features.

TABLE 2. A detailed description of geometrical features derived from the propagation environment.

visible building walls at the given receiver location, along
with metrics such as the minimum and average distances
between a receiver and the visible walls. Additionally,

it accounts for the transmitter’s height, a critical factor
influencing the number of building walls directly visible
to the transmitter. The second category focuses on features
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TABLE 3. Summary of hyperparameters for different ML models.

associated with shadowing caused by buildings obstructing
the direct path between the transmitter and receiver. These
features include the count of building walls situated in the
horizontal plane between the transmitter and receiver, the
distances covered both inside and outside the shadowed
buildings along the direct line connecting the transmitter
and receiver in the horizontal plane, and metrics related
to the minimum, maximum, and average heights of the
shadowing buildings. Fig. 2(b) shows an example of the
computation of shadowing features as there are 4 walls
(n1 to n4) between the transmitter and receiver. Likewise, the
total indoor and outdoor shadowed region is computed as din
and dout respectively. The example also shows the visibility
features as there are 8 walls (N1 to N8) visible to the
receiver. The final category is related to the angular features,
capturing the angle (θ) formed by the line connecting the
receiver to the transmitter on the horizontal plane with the
positive X-axis, and the elevation angle (φ) formed between
the direct line connecting the transmitter and receiver and
the XY plane as shown in Fig. 2(a).

III. SUPERVISED MACHINE LEARNING MODELS
In order to facilitate effective model training and evalua-
tion, the dataset is partitioned into training and test sets,
maintaining a 75:25 ratio. The training set is used to train
and optimize several supervised ML models, including LR,
SVR, KNN, RF, XGBoost, and DNN. The hyperparameters
of these models underwent rigorous tuning for the regression
problem of PL prediction. The coefficient of determination,
R2 score, which shows how well the data fits the regression
model was used to select the hyperparameter values. R2 score
is calculated as follows:

R2 = 1 −
∑N

j=1

(
yj − ŷj

)2

∑N
j=1

(
yj − yj

)2
; yj = 1

N

N∑

j=1

yj (1)

where yj is the actual value of the target variable and ŷj is
the value predicted by the model. The value of R2 score
closer to 1 shows a better fit. We used feature scaling to
transform the input features with zero mean and unit standard
deviation for an effective training process with improved
convergence speed, stability, and fair consideration of all
features. A coarse-to-fine grid search approach was used
to find the best hyperparameters. The tuned hyperparameter
values are listed in Table 3.

TABLE 4. Comparisons of ML model performance on the test data using various
evaluation metrics.

IV. PERFORMANCE EVALUATION
A. MODELS PERFORMANCE ON TEST DATASET
The trained ML models with fine-tuned hyperparameters
predicted PL in the test dataset using the geometrical features
as input. The performance of the ML models is validated by
comparison of four matrices including mean absolute error
(MAE), mean absolute percentage error (MAPE), RMSE,
and coefficient of determination (R2). The coefficient of
determination R2 has already been defined in (1). The rest
of the metrics are defined as follows:

MAE (dB) = 1

N

N∑

j=1

|yj − ŷj|, (2)

MAPE = 1

N

N∑

j=1

∣
∣
∣
∣
yj − ŷj
yj

∣
∣
∣
∣ × 100, (3)

RMSE (dB) =

√
√
√
√
√

1

N

N∑

j=1

|yj − ŷj|2, (4)

where yj is the actual PL (dB) in the test data set, ŷj is the
predicted PL (dB) using one of the ML models, and N is the
total number of samples in the test dataset. Table 4 shows
the performance comparison of ML models in PL prediction
on the test dataset. Apart from the LR, all the models have
almost similar performance. Notably, the RF emerges as
the top-performing model across various evaluation metrics.
With the lowest RMSE of 2.38 dB, the smallest MAE
at 1.44 dB, a minimal MAPE of 1.36%, and R2 of
0.88, RF consistently surpasses its counterparts. Random
Forest achieves superior results due to its ensemble learning
approach, which combines multiple decision trees to improve
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FIGURE 3. Path loss comparison for the test dataset: Ray-tracing versus predictions from (a) linear regression, (b) support vector machines, (c) K nearest neighbors,
(d) random forest, (e) extreme gradient boosting, and (f) deep neural network.

accuracy and reduce overfitting, and its effectiveness in
handling high-dimensional data by selecting random subsets
of features for each split [35]. It is noteworthy that all other

models, excluding LR, have demonstrated commendable
performance, with an average RMSE of 2.63 dB. This
advocates for the adoption of these ML models in the
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design of UAV-based mmWave radio networks, presenting
a computationally efficient and accurate approach with an
average RMSE below 3 dB.

To provide a visual representation of the performance
comparison, scatter plots depicting predicted PL values
against the actual PL values for all the models are presented
in Fig. 3. The scatter plots offer insightful observations
on the accuracy and consistency of predictions. The LR
model exhibits substantial deviations between predicted and
actual values, exposing its limitations in effectively capturing
the complex dependencies of PL on geometric features.
In contrast, the remaining models demonstrate a more
uniform and accurate alignment between predicted and actual
values. The evenly distributed variations across these models
signify their robust performance in capturing the non-linear
relationships within the dataset.

B. ACCURACY COMPARISON WITH EMPIRICAL MODELS
In order to evaluate the prediction accuracy of ML models
against a benchmark, we evaluated the prediction error
between PL computed using RT (ground truth) for Munich-1
environment against PL computed using 3GPP and ITU-R
empirical models [36], [37].
PL for LOS and NLOS receivers is calculated in the 3GPP

model as follows:

PLLOS =
{
PL1 10m ≤ d2D ≤ d′

BP
PL2 d′

BP ≤ d2D ≤ 5 km,
(5)

PL1 = 32.4 + 21 log(d3D) + 20 log(fc),

PL2 = 32.4 + 40 log(d3D) + 20 log(fc)

− 9.5 log
(
(d′

BP)
2 + (hUAV − hRX)2

)
,

PLNLOS = max
(
PLLOS,PL

′
NLOS

)
,

PL′
NLOS = 13.54 + 39.08 log(d3D) + 20 log(fc)

− 0.6(hRX − 1.5), (6)

where d2D, d3D, fc, hUAV, and hRX represent the direct
2D horizontal distance, 3D distance, carrier frequency in
GHz, UAV height, and receiver height, respectively, with all
distances and heights in meters. The break point distance is
d′
BP = 4h′

UAVh
′
RXfc/c, where c is the speed of light. Here,

h′
UAV and h′

RX are the effective heights of the base station
and receiver, calculated by subtracting hE = 1m from hUAV
and hRX, respectively, for urban micro-cellular environments.
PL using the ITU-R model is given as follows:

PL(d, f ) = 10α log(d) + β + 10γ log(fc), (dB) (7)

where, α = 2.29, β = 28.6, and γ = 1.96 are the coefficients
of the PL model. The RMSE, MAE and MAPE between
PL computed using RT as ground truth and computed
using 3GPP and ITU-R models are listed in Table 5. The
metrics for best performing RF model are also included for
comparison.
The comparison between PL prediction accuracy using

empirical models and ML models reveals significant dif-
ferences. 3GPP and ITU-R models show relatively higher

TABLE 5. Comparison of PL computed using RT against empirical models.

errors with RMSE values around 7.49 dB and 7.54 dB
respectively, along with MAE values of approximately
6.45 dB and 6.40 dB, and MAPE values of about 6.12%
and 6.06% respectively. In contrast, ML models demonstrate
superior performance, with the best performing RF model
achieving an RMSE of 2.38 dB, MAE of 1.44 dB, and
MAPE of 1.36%. Other ML models also exhibit competitive
performance with RMSE values consistently below 3 dB,
indicating better fit to the data. These results highlight the
effectiveness of ML techniques in accurately predicting path
loss, surpassing empirical models in accuracy and reliability.

C. MODELS PERFORMANCE ON UNSEEN URBAN
ENVIRONMENTS
To evaluate the generalization capability of the proposed
ML models for PL prediction in environments different
from Munich-1 (Fig. 1), their performance was tested against
RT simulations in five distinct urban environments. One
environment is taken from Munich, and the other four are
from London. These environments are labeled as Munich-
2, London-1, London-2, London-3, and London-4 for future
reference in this paper and are shown in Fig. 4. RT simu-
lations were conducted for five distinct transmitter locations
in each environment, each at three different altitudes: 25m,
35m, and 45m. The RT computations were performed
between each transmitter location and a grid of receiver
points distributed across the environments at a resolution of
5m x 5m. The number of receivers in Munich-2, London-1,
London-2, London-3 and London-4 are 4735, 2895, 1771,
2445, and 1908 respectively. In this study, the receiver points
within the rectangular area formed by the perimeter of
buildings at the border of the environment were considered;
the open area outside this perimeter was discarded. The
same simulation parameters used for dataset generation in
Section II-A were applied here. Geometrical features, as
discussed in Section II-B, were computed for all transmitter-
receiver pairs. The pre-trained ML models, trained using the
dataset from Munich-1, are directly used to predict PL values
for all transmitter locations in the new environments. The
RMSE statistics including minimum value, maximum value,
inter-quartile range (IQR), and median value across all the
five environments for all the models are shown in the box
plot in Fig. 5. The mean RMSE score is also shown in the
plot.
The performance of the pre-trained ML models across

five different environments shows notable variation in RMSE
scores. Overall, the DNN model performs best on average.
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FIGURE 4. Building database in different locations used for validation of pre-trained models and development of models using sparse train dataset.

The mean RMSE ranges from 7.93 dB for DNN to 9.67 dB
for XGBoost. The remaining models including LR, RF, KNN
and SVR have the mean RMSE values of 8.09 dB, 8.41 dB,
8.61 dB, and 9.18 dB respectively. SVR demonstrated
the narrowest IQR of 0.67 dB, indicating a consistent
performance across different environments. Conversely, the
KNN model exhibited the widest IQR of 3.38 dB, suggesting
greater variability in its performance across the environments
with RMSE values varying between a minimum of 5.39
dB to a maximum of 11.55 dB. LR and DNN models
showed smaller variations in RMSE scores with IQR values
1.88 dB and 1.94 dB respectively. Whereas the XGBoost
and RF models showed moderate variations in RMSE scores
across environments with IQR scores 2.48 dB and 2.63 dB
respectively.

D. PERFORMANCE EVALUATION USING SPARSE TRAIN
DATA
In the preceding section, it was clear that models trained on
data from one environment struggled to generalize effectively
to new environments, as indicated by significantly higher
mean RMSE values compared to the best achievable values
shown in the RMSE column of Table 4. This suggests
that ML models must be re-trained with data specific to
the new environment for optimal performance. However,
the substantial data requirements for model training pose a
challenge as it requires extensive RT simulations to generate
large datasets. Paradoxically, this contradicts the primary
aim of ML models, i.e., to provide a faster, yet accurate
alternative to computationally intensive RT simulations. To
address this, we explore the feasibility of training ML
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FIGURE 5. RMSE performance of supervised ML models on unseen urban
environment.

models with smaller, sparsely sampled datasets derived from
initial RT simulations encompassing all potential transmitter
locations and heights. Utilizing the previously generated
datasets in five distinct urban environments (Munich-2,
London-1 to London-4) above, we evaluate how all models
perform when trained on sparse data from the same urban
environments. Consolidating data from all five transmitter
locations in each urban environment, we trained models
with varying sample sizes (5%, 10%, and 15% of the total
dataset available for each environment), examining how
their performance evolves. The resulting RMSE scores of
supervised ML models, trained on datasets ranging from 5%
to 15% sample size, are depicted in Fig. 6, alongside baseline
evaluations using the conventional 75:25 train-test split
ratio, providing a comprehensive comparison benchmark.
It is important to note that we did not conduct extensive
hyperparameter tuning during the model training phase, as
was done for Munich-1. Instead, we employed a randomized
search cross-validation technique to efficiently determine
the optimal hyperparameters, leveraging insights gained
from the previous model development cycle for Munich-1
environment (refer to Table 3).

These results highlight several key observations. When
comparing these results with the generalization performance
of the ML models in the previous section, it is clear that
models trained on even smaller datasets (e.g., 5% sampling)
from the same environment perform better than models
pre-trained on larger datasets from different environment.
For example, the mean RMSE for the LR model pre-
trained on Munich-1 is 8.09 dB when averaged across the
five environments as seen in the previous section. This
value decreases to a mean RMSE of 4.26 dB (5.69 dB
in Munich-2, 3.01 dB in London-1, 5.45 dB in London-
2, 4.07 dB in London-3, and 3.08 dB in London-4) when

the model is trained with only 5% of the dataset from
the same environments. This improvement is encouraging
as it indicates that prediction accuracy can be significantly
enhanced by running RT computations for a small sample
of receiver points across the environments and using this
sparse data to train the ML models. The mean RMSE of all
the models, averaged over the five environments, for each
sampling is computed and shown in Fig. 6 (f).
A general trend of decreasing RMSE with increasing

training dataset size is observed for all models, except
for the LR model, which maintains an almost constant
mean RMSE of 4.2 dB across all samplings. The ensemble
learning models, RF and XGBoost, consistently perform best
across the environments for all samplings, achieving a mean
RMSE as low as 3.5 dB with a 15% training dataset size.
Interestingly, the DNN struggles with lower sample sizes
and performs poorly, with mean RMSEs of 5.34 dB, 4.55
dB, and 4 dB for 5%, 10%, 15% sampling, respectively.
This aligns with the fact that DNN models require large
amounts of data for better accuracy. SVR and KNN models
perform slightly better than LR and DNN, with mean RMSE
values below 4 dB for SVR and around 4 dB for KNN for
small sampling sizes between 5% and 15%. The variability
in models performances in different urban environments
is also observed. Models achieved lowest RMSE values
in London-4, whereas Munich-2 proved to be the most
challenging, with highest RMSE values observed for all
models across all samplings. It is noteworthy that the baseline
models utilizing a 75:25 train-test split do not achieve the
same level of performance as observed in Section IV-A for
Munich-1, where a very large training dataset was utilized
and an extensive hyperparameters tuning was performed.
To evaluate the computational performance gains from

using sparsely sampled training datasets, let tF denote the
time required for computing geometrical features, and t�
denote the time for RT computations for a given sampling
rate (5% to 15%). The total time required for PL estimation
using the ML model, tML, is

tML = tF + t�. (8)

Note that the ML model training and inference times are
excluded from these calculations as they are negligible
compared to tF and t�. This holds true for all models except
SVR, which requires significant training time for larger
datasets. Considering tRT represents the total time required
for PL computation using RT for the complete environment,
the percentage reduction (R) in computation time using the
ML model compared to RT can be calculated as follows:

R% =
(
tRT − tML

tRT

)

× 100. (9)

Table 6 illustrates the computational performance com-
parison across different sampling rates (5%, 10%, and 15%)
for the five urban environments. The time required for
computing geometrical features (tF) and ray tracing (tRT )
are presented for each environment. All the times are in
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FIGURE 6. Machine learning models performance on sparse train data in different urban environments.

TABLE 6. Computational performance comparison for different sampling rates.

seconds. An Intel Core i7 computer with 16 GB RAM is
used in simulations. The results show a significant reduction
in computation time using the ML model compared to RT.
For instance, at a 5% sampling rate, the time reduction R
in London-3 is the highest at 20.22%, while Munich-2 also
shows a notable reduction of 11.73%. However, the gains
decrease with increased sampling rates. This indicates that
the time gains will decrease as more data is used to train the
ML models for better accuracy. A negative time reduction
of -2.84% is recorded at 15% sampling for London-1 which
indicates that it takes more time for ML model than simply
running complete RT for London-1. These results highlights
the efficiency of using ML models with lower sampling rates
to achieve substantial time savings in PL estimation with
moderate accuracy.

The above analysis implies that the RF model can be
trained on a sparse dataset to achieve computationally
efficient and reasonably accurate PL prediction in any given
urban environment. Algorithm 1 outlines the necessary steps
for predicting PL in an urban environment.

E. MODELS PERFORMANCE WITH NOISY INPUT
FEATURES
To assess the impact of estimation error in input geometrical
features on ML model performance, the models were trained
on the same training dataset generated for Munich-1. Prior
to evaluation on the test dataset, uniform random noise was
introduced to the input features of the test dataset, with noise
levels ranging from 5% to 15% of the feature values. The
models’ performance was then evaluated. Fig. 7 illustrates
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Algorithm 1 Path Loss Prediction Using Sparse Train Data
Require: Buildings vector data, transmitter locations,

receiver grid, carrier frequency, and sampling rate (5%
to 15%) for train data.

Ensure: Radio coverage map for all transmitter locations
1: Initialize empty matrix P
2: for each transmitter location t do
3: for each receiver location r do
4: Add (t, r) to P
5: end for
6: end for
7: Initialize empty features matrix G
8: for each (t, r) pair in P do
9: Compute features F for transmitter t and receiver r
10: Add F to G
11: end for
12: Randomly sample a fraction of transmitter-receiver pairs

at the specified sampling rate from P
13: Extract corresponding feature subsets from G for sample

points
14: Compute PL using RT simulations for sample points
15: Train a Random Forest model M using the sampled

data:
16: Input: Sampled transmitter-receiver pairs and corre-

sponding features and path loss
17: Output: Trained Random Forest model M
18: Use M to compute path loss estimates for the remaining

transmitter-receiver pairs
19: return Estimated radio coverage map for all transmitter

locations

FIGURE 7. Performance comparison with noisy input features.

the RMSE of the ML models at various noise thresholds,
with the RMSE of all models on the noise-free data (Table 4)
also plotted as a baseline.
The analysis of RMSE performance for ML models with

noisy input features shows that Linear Regression (LR) is
highly sensitive to noise, with RMSE increasing significantly
from 11.37 dB to 20.7 dB to 30.65 dB as noise levels rise
from 5% to 10% to 15%. In contrast, the other models

FIGURE 8. Relative importance of features in Random Forest model.

demonstrate robustness, with relatively smaller increases in
RMSE under noise conditions. Interestingly, KNN performs
better than RF with noisy input features, as evidenced by its
lower RMSE values under all noise conditions.

F. FEATURE IMPORTANCE AND SEQUENTIAL FEATURE
INCLUSION
The above results highlight the RF model’s remarkable
ability to predict PL with a minimal RMSE. To gain insights
into the model’s decision-making process, a feature impor-
tance analysis is conducted using the Scikit Learn API. The
results, depicted in Fig. 8, present the relative importance of
geometrical features in descending order for the RF model
that gives the best RMSE score of 2.38 dB on the test
dataset (see Table 4). Notably, the feature corresponding
to the maximum height of the buildings obstructing the
receiver holds the highest relative importance of 0.3. This
is followed by the 3D distance between the transmitter and
receiver, with a relative importance of 0.15. Subsequently,
the angular parameters (φ and θ), transmitter height, and
the average distance between the receiver and visible walls
exhibit relative importance ranging from 0.07 to 0.066. The
remaining input features demonstrate progressively lower
relative importance, as illustrated in the figure.
To further investigate the model’s performance with

varying sets of input features, a sequential feature inclusion
approach is used. Initially, the RF model is trained using
only the single feature with the highest feature importance
value, and its RMSE is assessed on the test dataset. We
used the larger dataset for train and test as discussed in
Section II. Subsequently, the model undergoes additional
training phases, each time incorporating the feature with the
next highest importance value. This sequential process is
iterated until all feature combinations are exhaustively tested.
Fig. 9 illustrates the RMSE values evaluated on the test
dataset as the number of features is sequentially increased
during model training. The RMSE on the test dataset varies
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FIGURE 9. Comparison of Model’s performance with increasing number of features.

from 5.85 dB to 4.07 dB for combinations involving the
top 4 features, with the highest RMSE of 6.2 dB observed
for top 2 features. A notable decrease in RMSE is then
observed, sharply declining to 2.65 dB for the combination of
6 features. Following this, the RMSE demonstrated a minor
and consistent decrease, reaching 2.38 dB for the remaining
7 features used in the training. This also implies that the
RF model can be trained using only the six features without
significantly affecting the RMSE score.

V. CONCLUSION
This paper investigated the performance of classical super-
vised ML models in predicting PL in urban UAV-assisted
mmWave radio networks, leveraging a unique set of thirteen
geometrical features. The findings showed the superior
performance of the RF model, surpassing all counterparts
across multiple evaluation metrics, with an RMSE of
2.38 dB, MAE of 1.44 dB, MAPE of 1.36%, and an
impressive R2 score of 0.88. The proposed ML models
demonstrate better accuracy than 3GPP and ITU models. The
models, however, exhibited limited generalization capability
to unseen environments, and require re-training with data
specific to the new environment. To address this limitation,
we extensively evaluated the accuracy improvements and
reductions in run times when the models were trained using
sparse data across five different urban environments. An
analysis of the sensitivity of ML models to noisy input
geometrical features revealed that the LR model exhibited the
largest variations in accuracy with noisy inputs. Additionally,
an analysis of the importance of geometrical features showed
that the RF model could still achieve a commendable RMSE
of 2.65 dB with only six features, emphasizing its robustness.
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