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Current approaches to activity-assisted living (AAL) are complex, expensive, and intrusive, which 
reduces their practicality and end user acceptance. However, emerging technologies such as artificial 
intelligence and wireless communications offer new opportunities to enhance AAL systems. These 
improvements could potentially lower healthcare costs and reduce hospitalisations by enabling more 
effective identification, monitoring, and localisation of hazardous activities, ensuring rapid response 
to emergencies. In response to these challenges, this paper introduces the Transparent RFID Tag 
Wall (TRT-Wall), a novel system taht utilises a passive ultra-high frequency (UHF) radio-frequency 
identification (RFID) tag array combined with deep learning for contactless human activity monitoring. 
The TRT-Wall is tested on five distinct activities: sitting, standing, walking (in both directions), and 
no-activity. Experimental results demonstrate that the TRT-Wall distinguishes these activities with an 
impressive average accuracy of 95.6% under four distinct distances (2, 2.5, 3.5 and 4.5 m) by capturing 
the RSSI and phase information. This suggests that our proposed contactless AAL system possesses 
significant potential to enhance elderly patient-assisted living.

Human activity recognition (HAR) plays a significant role in facilitating remote health monitoring and activ-
ity-assisted living (AAL) for elderly individuals wishing to maintain independence at home. With an aging 
population, the need for such assistance is growing. United Nations estimates1 predict a decrease in the ratio of 
individuals aged 15 to 64 to those over 65 from 7:1 in 2020 to 4:1 by 2050, leading to a global elderly population 
of approximately 2 billion by 20502. This demographic trend suggests a potential workforce shortage in elderly 
care, emphasising the importance of AAL research3. AAL integrates various technologies to support carers by 
addressing challenges such as limited mobility, chronic disease monitoring, reducing social isolation, and man-
aging medication4. The medical data collected from these technologies is essential for the growing demand for 
technology-driven healthcare solutions, particularly for disabled patients in indoor environments5. The moti-
vation for this study is to develop affordable and innovative monitoring technologies to improve the quality of 
life and empower elderly individuals to live independently. Despite progress in HAR and AAL systems, current 
solutions often face challenges such as high costs, privacy issues, and the inconvenience of wearable sensors. The 
proposed TRT-Wall system aims to address these challenges using commercially available off-the-shelf (COTS) 
ultra-high frequency (UHF) RFID technology. This study focuses on providing a cost-effective, contactless, and 
easy-to-install solution that bridges the gap between advanced HAR technologies and practical applications for 
elderly care. This approach will enhance our ability to monitor and support the elderly, promote their independ-
ence and safety, and contribute significantly to the growing field of AAL.

In recent years, HAR has been utilised by camera systems or on-body sensors such as infrared, accelerom-
eters/gyroscopes, and frequency-modulated continuous wave (FMCW) radar6,7. However, these systems face 
challenges8,9. For example, camera-based monitoring can encounter issues like occlusion, restricted perspective, 
low lighting and frame resolution, and high computational demands for video processing. Privacy concerns are 
also significant, although studies indicate a willingness among the elderly to trade some privacy for increased 
autonomy8. Wearable sensors can be burdensome during activities like sleep or physical exercise, with a risk 
of users forgetting or losing interest in wearing them10. As an alternative, contactless (tag-free) sensors using 
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technologies like Wi-Fi, Radar, and RFID offer benefits such as enhanced privacy and better performance in 
complex indoor environments with various obstacles and moving objects, creating multiple signal paths11. While 
radar-based solutions with large antenna systems and wide bandwidths have been successful in accurate, real-
time activity monitoring, they are often expensive, power-hungry, and not widely accessible12. A more economical 
option is to use UHF RFID readers in combination with battery-less and compact RFID tags.

RFID technology is a practical and cost-effective solution for remotely monitoring elderly healthcare13. Its 
benefits include low cost, compact size, scalability, shareability, and battery-free operation14. Recent advances have 
produced inexpensive, highly sensitive passive tags with read ranges exceeding 10 meters, supporting their use 
as an economically viable solution for pervasive healthcare5. The emergence of ‘tag-free’ sensing, which employs 
contactless technology instead of attaching tags directly to the human body15, presents a potential solution for 
AAL challenges16. This approach is less cumbersome and invasive for recognising fundamental activities like 
standing, sitting, running, and walking, which are essential for well-being. These systems detect target objects 
or events by analysing signal characteristic changes, such as RSSI and phase shift. Commonly, coarse-grained 
measurements of RSSI and phase value are used for sensing17, but accurate results for indoor AAL and posi-
tioning require consideration of factors such as obstacles causing non-line-of-sight (NLOS) conditions, signal 
weakening due to rapid fading, and multipath effects from indoor construction materials, along with climate 
changes impacting signal propagation speed. These factors collectively affect the accuracy and reliability of AAL 
and positioning systems in indoor environments18.

This study introduces a monitoring system utilising COTS UHF RFID technology, operating within the fre-
quency range of 860 to 950 MHz. The primary objective is to develop intelligent walls equipped with RFID tag 
arrays on each side to distinguish five distinct human activities: sitting, standing, walking in two directions, and 
no-activity. Our proposed TRT-Wall system hypothesises that the presence and movement of the human body 
within the radio field will result in recognisable RFID signal patterns due to attenuation, diffraction, reflection, 
and multipath effects. Notably, the TRT-Wall approach enables monitoring the daily activities of elderly patients 
using pseudo-localisation, reusing low-cost printed RFIDs and existing RFID readers for indoor activity rec-
ognition. Additionally, it ensures simple deployment using COTS RFID readers, requiring only a single reader 
with a single antenna.

Specific contributions of this paper are: 

1.	 We propose TRT-Wall, which uses contactless UHF RFID tags for sequential and simultaneous activity detec-
tion. Specifically, we collected a dataset for four different activities: sitting, standing, and walking (forward 
and backward).

2.	 The propose TRT-Wall leverages RSSI and phase data fluctuations for activity localisation.
3.	 We perform an extensive evaluation of the collected dataset to determine the walking direction (i.e., forward 

or backward).
4.	 We calculate the speed of the moving object to establish a relationship between detection and activity loca-

tion.

The paper is structured into several sections. Section “Related work” discusses related studies pertinent to the 
problem. Section “Evaluation and results” presents data evaluation strategies and the obtained results. Section 
“Discussion” analyses the results in detail. Section “Data and methods” explains data sources and research meth-
odologies. Section “Limitations and future directions” discusses the study’s limitations and suggests directions 
for future research. Finally, Section “Conclusion” provides the paper’s concluding remarks.

Related work
In HAR, researchers have increasingly focused on utilising UHF passive RFID tags to improve the quality of life 
for the elderly. These applications range from location and mobility monitoring to medication management and 
fall prevention. Both ‘tag-free’ and ‘tag-based’ technologies have been explored for tracking and analysing daily 
activities. For example, Raad et al.19 introduced a ‘tag-based’ prototype using passive RFID wearable anklets or 
bracelets to detect wandering elderly individuals within their homes. Shuaieb et al.20 proposed a low-cost indoor 
location system based on RFID tags to enhance automated alarm systems in nursing homes and to trigger emer-
gency services for stationary targets. Feng et al.21 developed a posture-recognition system named ‘SitR’, which 
uses RF signals and three lightweight RFID tags on the user’s back to recognise seven sitting postures. Systems 
like ‘TagCare’, a fall detection system for the elderly, utilise RSSI and Doppler frequency readings22. Another 
suggested approach for fall detection employs passive RFID sensor tags in indoor footwear, monitoring RSSI 
and pressure changes. Toda et al.23 provided a comprehensive mechanism for fall detection by analysing routine 
activities through shoe sole pressure data and RSSI fluctuations. Ruan et al.24 introduced the ‘TagFall’ system, 
which uses abrupt changes in RSSI values to distinguish falls from daily activities. These methods demonstrate 
the potential of passive ‘tag-based’ solutions for recognising various activities and postures.

‘Tag-free’ sensing offers several advantages for AAL, including low cost, non-intrusive nature, and structural 
simplicity. Sigg et al.25 introduced a ‘tag-free’ radio-based activity detection method using ambient FM radio 
signals. He et al.26 proposed a technique to enhance the signal-to-noise ratio of RFID tags for detecting activities 
such as arm swings and knee bends without physical contact. Zou et al.27 developed the ‘GRfid’ system for gesture 
recognition, employing multi-tag phase measurement and normalising dynamic time warping (DTW) distance. 
Dian et al.28 introduced the ‘RFree-GR’ system, capable of recognising fine-grained gestures, evidenced by its 
evaluation of 16 American Sign Language words. Zhao et al.29 presented the ‘RF-Motion’ system, which uses RFID 
technology to identify six types of human motion with an 87% accuracy rate, utilising DTW, synthetic aperture 
algorithms, and data slicing. RFID tag arrays have been used to predict motion and pose-based activities, with 
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challenges such as temporary occlusions or physical obstructions in wall-mounted systems30,31. The ‘RF-HMS’ 
system employs an RFID tag array to monitor tag-free human motion through walls, identifying the presence 
or absence of moving individuals with an average accuracy of 90%32. The ‘IDSense’ system integrates passive 
RFID tags into everyday objects to detect human-object interactions, including motion and touch, primarily in 
proximity to walls33.

Previous ‘tag-free’ approaches primarily rely on tag or tag arrays as reference points to detect object motion 
or direction, or they require proximity to the tags for activity recognition, thus limiting their scope. In contrast, 
the TRT-Wall approach facilitates AAL monitoring of elderly patients through pseudo-localisation, utilising a 
cost-effective printed RFID array in conjunction with a single COTS reader and antenna. Table 1 outlines the 
contrasting features among different existing systems.

Evaluation and results
This section presents the results of four distinct experimental scenarios, each involving different subjects per-
forming various activities, as depicted in Fig. 4. The evaluation includes an assessment of both the overall perfor-
mance and the impact of reader-subject and subject-tag distances, as well as the type of activity on the system’s 
accuracy. Tables 2 and 3 provide a comprehensive evaluation used to assess the system’s robustness.

Artificial intelligence model development
The development of an artificial intelligence (AI) model aims to provide assistance and support to individuals 
with limited mobility or disabilities, enabling them to perform daily activities in a contactless manner. One of 
the key challenges in developing an AI model for contactless AAL is ensuring the privacy and security of the 
user’s data.

Table 1.   Comparison of existing systems in human activity recognition.

System Activity recognised Tag-based or tag-free Algorithm utilised

Raad et al.19 Wandering detection Tag-based (anklets/bracelets) RSSI Fingerprinting

Shuaieb et al.20 Indoor localisation Tag-based (head to ankle) Euclidean RSSI distance

Feng et al.21 Posture recognition Tag-based (on back) Machine learning

Zhu et al.22 Fall detection Tag-based (on neck) RSSI, Doppler frequency

Toda et al.23 Fall detection Tag-based (in shoe) Machine learning (RSSI pressure)

He et al.26 Activity detection Tag-free (single antenna and tag) Enhanced signal-to-noise

Dian et al.28 Gesture recognition Tag-free (distance between tags 70–90 cm) Machine learning

Wang et al.34 In-Car activity tag-free (four antennas and six tags) Adversarial networks (RSSI)

Zhao et al.29 Motion identification Tag-free (four antennas and six tags) DTW, SAR (RSSI and phase)

Oguntal et al.31 Motion and pose prediction Tag-free (two antennas and 228 tags) Machine learning

TRT-Wall Motion and activities Tag-free (1 antennas and 15 tags) Machine learning

Table 2.   Deep learning classification accuracy in multi-distance and multi-subject. Significant values are in 
bold.

Subjects

4.5 m 3.5 m 2.5 m 2 m

RSSI (%)  Phase (%)
FeatureSet 
(%) RSSI (%)  Phase (%)

FeatureSet 
(%) RSSI (%)  Phase (%)

FeatureSet 
(%) RSSI (%)  Phase (%)

FeatureSet 
(%)

LSTM accuracy

   1 81.2 68.3 75.2 87.4 81.2 62.5 60.6 62.7 74.1 53.5 62.9 69.5

   2 91.6 75.2 88.6 91.8 87.7 85.7 72.4 68.5 79.8 66.8 66.3 73.4

   3 93.7 92.1 90.3 95.6 94.3 91.6 76.4 73.5 82.4 70.2 70.3 76.4

CNN accuracy

   1 78.7 75.3 78.1 68.2 86.6 81.4 63.4 66.5 61.3 60.3 66.5 70.4

   2 82.3 81.3 79.5 89.5 88.4 87.6 69.3 67.5 64.3 64.8 70.4 70.4

   3 89.3 93.2 85.7 93.5 92.6 87.5 76.5 76.6 84.4 73.7 74.5 76.3

LSTM+CNN accuracy

   1 79.6 75.7 78.4 86.6 68.7 81.5 63.4 66.9 61.6 60.5 66.8 70.5

   2 81.6 82.7 79.4 88.5 87.7 87.6 67.5 69.8 64.3 64.5 70.3 70.7

   3 92.3 89.5 85.6 92.6 91.7 87.6 76.5 76.5 84.6 73.6 74.6 76.4
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Data analysis using DL models
To assess the efficacy of the system, experiments were conducted on datasets collected from a scenario-based 
environment. Only the front layers of the RSSI and phase profiles were used for all activities. The system’s per-
formance was evaluated using three distinct DL models: long short-term memory (LSTM), convolutional neural 
network (CNN), and a combination of the two (LSTM+CNN). Before training an LSTM-CNN network, a raw 
RSSI data were transformed into a stack of matrices with dimensions of 5× 3 , corresponding to the tag array 
size. The experiment data was simplified by focusing on the 1D layer rather than converting to three levels using 
the timestamp dimension. The instantaneous RSSI value for each RFID tag was entered into the i-th row and j-th 
column of a matrix. If certain tags failed to provide RSSI readings due to blockage caused by human activity, the 
corresponding value defaulted to zero. The processed data was normalised with a mean of zero and a standard 
deviation of one before being passed into the network as input. The proposed hybrid DL models incorporated a 
single LSTM layer with a single dropout and flatten layer, while the CNN model utilised a 1D convolution layer 
due to the linear data structure. Two equally sized 1D convolutional layers and two identically sized max pooling 
layers were used, with a dense layer employed between the flatten and output layers. For the third model, fully 
connected layers were used to merge the LSTM and CNN models. The optimizer used was adam, with a decay 
of 1e−6 and a learning rate of 0.01. The activation function was set to tanh. The models were trained across 50 
epochs, with user recognition being addressed as a problem of multi-class classification. The parameters tracked 
during the training included accuracy and loss.

Data analysis using ML models
In this study, we applied three classical ML algorithms, namely SVM, random forest, and decision tree classifier 
alongside DL algorithms to evaluate the collected dataset. We assessed accuracy using a train-test split tech-
nique, ensuring predictions were generated from data not used during model training. The data was divided into 
training and testing subsets with a train-test ratio of 0.8, meaning 80% of the data was used for training and the 
remaining 20% for testing, as detailed in Table 4.

Table 3.   Machine learning classification accuracy in multi-distance and multi-subject. Significant values are in 
bold.

Subjects

4.5 m 3.5 m 2.5 m 2 m

RSSI (%)  Phase (%)
FeatureSet 
(%) RSSI (%)  Phase (%)

FeatureSet 
(%) RSSI (%)  Phase (%)

FeatureSet 
(%) RSSI (%)  Phase (%)

FeatureSet 
(%)

SVM accuracy

   1 80.2 78.4 70.5 85.4 84.5 75.6 76.5 74.8 70.6 66.7 67.6 65.5

   2 81.6 82.7 73.7 90.5 85.7 81.6 76.5 73.6 72.7 66.6 65.5 63.8

   3 89.4 89.6 82.6 91.6 89.6 84.5 81.5 83.6 77.6 70.4 72.9 68.4

RF accuracy

   1 73.7 71.6 71.0 76.6 74.2 73.3 69.3 66.9 65.5 61.4 59.4 63.4

   2 81.2 73.2 74.5 79.3 81.4 73.4 71.8 66.4 70.3 65.5 63.5 63.9

   3 81.7 78.7 76.3 90.8 85.4 81.4 78.6 78.5 73.5 67.7 66.5 66.9

DT accuracy

   1 73.5 70.5 77.4 74.7 75.6 78.4 70.5 63.2 68.6 66.3 60.3 63.5

   2 77.4 75.5 81.4 79.5 77.4 80.5 73.4 67.5 71.6 65.5 62.6 64.6

   3 85.6 81.3 85.4 79.2 82.3 82.6 79.8 74.7 76.4 68.6 70.8 66.4

Table 4.   Hyper-parameters of ML/DL algorithms.

S. No. Algorithms Hyper parameters

1 LSTM Optimizer = adam, hidden-layers-activation = tanh, lr = 0.01, loss = binary-crossentropy, batch-size = default, 
hidden-layer-size (15, 50), dropout = 0.2, out-layer-activation = softmax, epochs = 50

2 CNN Optimizer = adam, hidden-layers-activation = tanh, lr = 0.01, loss = binary-crossentropy, batch-size = default, 
hidden-layer-size (15, 32), max-pooling-layer-size = (3, 1), out-layer-activation = softmax, epochs = 50

3 LSTM + CNN
Optimizer = adam, hidden-layers-activation = tanh, lr = 0.01, loss = binary-crossentropy, batch-size = default, 
LSTM-hidden-layer-size (15, 50), CNN-hidden-layer-size (15, 50), dropout = 0.2, max-pooling-layer-size = (3, 
1), out-layer-activation = softmax, epochs = 50

4 SVM Degree = 3, gamma = auto, kernel = linear, tol = 0.001, shrinking = true, C = 1.0

5 RF n-estimator = 10, criterion = gini, max-features = auto, min-samples-leaf = 1, min-impurity-split = 1e−07 , 
n-jobs = 1

6 ET min-samples-leaf = 1, splitter = best, min-impurity-split = none, criterion = gini
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User recognition’s overall performance
To evaluate the effectiveness of user recognition with our collected dataset, we employed the k-fold cross-valida-
tion technique. This method involves dividing the dataset into k equal-sized groups and randomly shuffling them. 
In each fold, k −1 groups are used for training, while the remaining group is used for validation. The process is 
repeated k times, and the average of the outcomes serves as the final estimate. We chose k = 5, resulting in each 
fold consisting of eight samples from each user for testing (240 samples total; 20% ), while the remaining samples 
(960 samples total; 80% ) are used for training. Thus, each sample is used exactly once as validation data across 
all folds. The overall results and normalised confusion matrix are depicted in Figs. 1 and 2.

Discussion
This study assessed six algorithms, namely LSTM, CNN, LSTM+CNN, SVM, RF, and DT, for contactless RFID-
based HAR across four distinct scenarios, employing three different approaches as detailed in “Evaluation and 
results”. The results revealed that in scenario 1, where the reader and antenna were 2 m from the subject and the 
subject-TRT-Wall distance was 0.5 m, DL algorithms (LSTM, CNN, and LSTM+CNN) outperformed the ML 
algorithms (SVM, RF, and DT). In contrast, in scenario 2, characterised by noise and a weak line of sight (LoS), 
the ML algorithms performed better, with SVM achieving the highest accuracy of 83.6% . In scenario 3, which 
entailed a strong NLoS environment, the DL algorithms, particularly LSTM, outperformed the ML algorithms, 
achieving an impressive accuracy of 95.6%. In scenario 4, where the reader and antenna were positioned 4.5 
meters from the subject, the DL algorithms again exhibited better performance, with LSTM achieving the highest 
accuracy of 93.7% . Cross-validation further affirmed the reliability of both SVM and LSTM algorithms, achiev-
ing average accuracies of 91.6% and 95.6% respectively, as demonstrated in Fig. 2. The normalised confusion 
matrix underscored the LSTM model’s consistent recognition accuracy, surpassing 91% for all subjects. This 
observation reinforces the potential of the proposed approach for practical implementation in user recognition 
applications, as depicted in Figs. 1, 9, and 11. Overall, the performance of DL and ML algorithms for contactless 
RFID-based HAR depends on the distance from TRT-Wall to the reader antenna. DL algorithms are better suited 
for scenarios requiring the capture of temporal dynamics of human activities, while ML are more effective in 
noisy environments or when the distance is limited.

Data and methods
This section presents the methodologies and materials used in an experimental setup involving multiple test 
scenarios before applying ML and DL techniques for predictive analytics. The hardware and software components 
were carefully organised to collect RSSI and Phase information from the RFID UHF passive tags array using 
reader sensing devices to indicate human activity. These components are detailed in subsections “Hardware 
setup” and “Software setup”. Our proposed methodology is depicted in Fig. 3, comprising four major components 
elaborated upon below.

Figure 1.   Comparison of DL and ML algorithms across various scenarios and approaches.

Figure 2.   A normalized confusion matrix of various activities recognition using SVM and LSTM.
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Experimental setup
The experiments presented in this paper, conducted within a 10× 10 m2 room in the James Watts South building 
at the University of Glasgow, received ethical approval from the University of Glasgow’s Research Ethics Commit-
tee (approval nos.: 300200232, 300190109). All methods followed the guidelines and regulations of the Research 
Ethics Committee, and all subjects gave written informed consent before the data collection.

The experimental setup was designed to simulate a realistic indoor environment to assess the efficacy of 
our AAL system. The TRT-Wall setup mimics a typical room structure with dimensions of 1.5× 1.5 m 2 . The 
environment included multiple metal storage boxes and tables, providing rich multipath characteristics and a 
strong non-line-of-sight (NLoS) environment. The TRT-Wall is divided into five columns, each consisting of 
three tags, and three rows, totaling fifteen tags.

Testbed configuration:

1.	 Tags Arrangement: The tags are uniformly placed in a 3× 5 grid, each 30 cm apart.
2.	 Antenna Placement: The circularly polarized antenna was placed at horizontal distances of 2, 2.5, 3.5, and 

4.5 m from the center of the TRT-Wall. The height of the antenna was maintained at 0.75 m above the floor 
surface.

3.	 Subject Positioning: The subjects were positioned 0.5 m away from the TRT-Wall and instructed to perform 
various activities (sitting, standing, walking) at designated locations within the testbed.

To better demonstrate the experimental setup, we have included an additional figure that depicts the overall 
configuration and layout of the testbed.

Hardware setup
The proposed TRT-Wall for the AAL system utilises COTS UHF Gen-2 RFID devices without any hardware or 
firmware modifications. The system comprises a UHF passive RFID tag array and an Impinj R700 reader (see 
Fig. 4c). The reader operates between 865 and 868 MHz using time-division multiplexing mode, can read up to 
1100 tags per second, and is compliant with the EPC Class 1 and Gen 2 standard tags. These tags are attached to 
a board configured in a 3× 5 grid, uniformly placed 30 cm apart, numbered from 1 to 15, and arranged from left 
to right, and top to bottom. A circularly polarised antenna with dimensions of 250 mm × 250 mm × 14 mm (see 
Fig. 4b) and an 8.0 dBi gain is connected to the reader. The wavelength � is set at 0.34 m, and the RF transmitter 
power is set to 30 dBm. The model training backend module runs on a laptop with an Intel® Core i7− 10850H 
CPU at 2.7 GHz, dual-core, and 16 GB of RAM.

Software setup
To collect data, the reader’s data collection program is run on a laptop using the Impinj ItemTest Software ver-
sion 2.8.0 (available at https://​suppo​rt.​impinj.​com). The process involves the reader interrogating tags repeatedly 
and capturing RSSI and phase information from the back-scattered signals. The transmitter then transmits the 
received measurements of RSSI and phase information from the tag array through a laptop’s RS232 serial port 
continuously. The streamed readings are received by the backend module and processed accordingly.

Data collection and preprocessing
This section delineates the methodology employed for data collection. Firstly, we detail the various scenarios 
considered for data collection. This study has considered four distinct test scenarios, which are explained below. 

1.	 Test Scenario 1: One subject performing activities with the reader and antenna positioned 2 m from the 
subject, and the subject placed 0.5 m away from the TRT-Wall.

2.	 Test Scenario 2: One subject performing activities with the reader and antenna positioned 2.5 m from the 
subject, and the subject placed 0.5 m away from the TRT-Wall.

Figure 3.   Data flow diagram: RSSI and Phase capture for human activity, dataset compilation for ML/DL 
classification.

https://support.impinj.com
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3.	 Test Scenario 3: Three subjects performing activities with the reader and antenna positioned 3.5 m from the 
subject, and the subject placed 0.5 m away from the TRT-Wall.

4.	 Test Scenario 4: Three subjects performing activities with the reader and antenna positioned 4.5 m from the 
subject, and the subject placed 0.5 m away from the TRT-Wall.

Data collection
This study considered three subjects with varying ages, height, and weight to conduct experiments. To maintain 
consistency in both training and testing data, subjects performed four activities: sitting, standing, and walking 
(forward and backward) at their natural pace between the antenna and the TRT-Wall, as depicted in Fig. 4. Every 
subject provided informed consent, authorised by the University of Glasgow’s institutional review board. Data 
collection for each scenario involved subjects completing all activities while maintaining proximity to the TRT-
Wall and antenna. Twenty samples, including RSSI and phase information, were collected per activity for each 
subject. Only one subject performed each activity at a time, as recognising multiple subjects simultaneous was 
not the study’s intention. Consequently, the data matrix contains information from 15 tags. Data was collected 
at distance of 2, 2.5, 3.5, and 4.5 m from the antenna. The inclusion of three subjects aimed to enhance diversity 
in the dataset. A total of 1200 valid training and testing samples were collected across four scenarios, with each 
tag read approximately 30–36 times during a 3-s interval. These raw RSSI and phase readings were parsed using a 
Python script to extract relevant information for further preprocessing before being used for training and testing 
various ML/DL algorithms. A summary of the collected dataset is presented in Table 5.

Data preprocessing
Data preprocessing is an essential step in analysing raw RSSI data, as it involves cleaning, formatting, and trans-
forming the data into a structured format for further analysis. We used mathematical/statistical techniques 
such as moving average window and signal processing methods, including bandpass, low-pass, and high-pass 
filters, to focus on specific pattern. Initially, we processed the data using the following mathematical expression.

(1)Tf
y(k)− y(k − 1)

T
+ y(k) = x(k),

Figure 4.   Experimental setup in a mocked room for activity recognition and localisation using TRT-Wall.

Table 5.   Dataset summary using TRT-Wall: scenarios, subjects, and activities performed.

Activity

4.5 m 3.5 m 2.5 m 2 m

RSSI Phase RSSI Phase RSSI Phase RSSI Phase

Empty room 20 20 20 20 20 20 20 20

Sitting 20 20 20 20 20 20 20 20

Standing 20 20 20 20 20 20 20 20

Walking forward 20 20 20 20 20 20 20 20

Walking backward 20 20 20 20 20 20 20 20
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The collected data for each activity was formatted into a 2D matrix, where each row contained an observa-
tion and the columns represented the corresponding RSSI and phase tags. To ensure data quality, we applied 
pre-processing functions using libraries (i.e., Scikit and Pandas). The data for each activity was stored in a matrix 
with 540 columns of RSSI data (15 tags x 36 columns) when the activity was performed without any blockages. To 
ensure robust and unbiased training of ML/DL models, synthetic data was generated using generative adversarial 
network (GAN) and conditional tabular generative adversarial network (CTGAN), standardizing the number 
of samples for each activity class35. The phase and RSSI data for activity were saved as separate data files with 
a frame size of 36 (representing approximately 36 reading in three seconds). During activities such as sitting 
or standing, the corresponding tags were either partially or fully read. To maintain a 36-time tag reading, any 
missing data for each tag was replaced with zeros and included in the data matrix. The analysis revealed that no 
tag was read more than 36 times, and missing NaN values were imputed with the mean of each row using the 
SciKit SimpleImputer function. Additionally, the pandas unique function was used to divide the timestamp into 
seconds and verify the correct reading of each tag for three seconds.

Activity recognition using RSSI
The use of passive UHF RFID tags in indoor activity localisation for AAL is facilitated by a reader employing air 
interfaces protocol such as EPC class1 Gen-2 and ISO-18000-6c for data transmission and reception36. Within 
the realm of passive tag-based AAL, the RSSI RF capability can be effectively harnessed with COTS readers. In 
practical applications, passive RFID tags provide the reader with raw data in a 5-tuple format: RSSI, timestamp, 
EPC, TID, and frequency. The process of creating an RSSI dataset involves several steps outlined in Algorithm 1. 
The transformation required for solving the indoor propagation path loss model, used in various studies on RSSI 
distance transformation, can be derived through a simplified derivation.

where P(d0)dBm is received power along the propagation path of relative distance d, and P(d0)dBm along the 
propagation path of reference distance d0(1m).

Algorithm 1.   Pseudo code for RSSI dataset creation
The recognition of AAL was achieved through a series of carefully planned activities, as illustrated in Fig. 4. 

Specifically, five distinct activities were performed in the designated area in front of the TRT-Wall. For instance, 
the walking activity was conducted from the first to the fifth column, focusing on columns 3 and 4 for sitting and 
standing activity. Figure 5 shows the results, demonstrating that the RSSI variations can recognise each activity 
in the same location, with blocked tags causing RSSI drops. The RSSI strengths threshold was determined by 
observing maximum and minimum values, recorded at −55 dbm and −69 dbm respectively. The latter value, 
−69 dbm, was chosen as the threshold due to potential instances of non-reading or tag blocking. Instances of 
unread RSSI data or unrecognised activity are indicated by the colour green. Specifically, in Fig. 5a, the RSSI 
values for an empty room are displayed. Following this, Fig. 5b,c showcase sitting and standing activities in front 
of columns 3 and 4. Walking patterns from right to left and left to right are depicted in Fig. 5d,e, respectively.

RSSI‑based walking direction analysis
To clarify the walking direction, we partitioned the RSSI data into one-second intervals and distinguished each 
interval using two colours, as shown in Fig. 6. In Fig. 6a, during the 1-st second (in orange), the subject walked 
from column-1 to column-5, and during the 2-nd second (in blue), they moved from column-2 to column-5. In 

(2)y(k) =
T

Tf + T
x(k)

Tf

Tf + T
y(k − 1) = ax(k)+ (1− a)y(k − 1).

(3)P ower (d istance )dBm = P(d0)dBm − 10n log

(

d

d0

)

+ XdBm,

(4)d = 10
P(d0)dBm−P(d)dBm

10n , ∀ d0 = 1 and XdBm = 0



9

Vol.:(0123456789)

Scientific Reports |        (2024) 14:18896  | https://doi.org/10.1038/s41598-024-64411-y

www.nature.com/scientificreports/

Fig. 6b, during the 1-st second, the subject walked from column-5 towards column-1, indicated by the colour 
change from column-5 to column-3, while during the 2-nd second, they walked from column-2 to column-1. 
This partitioning and color-coding approach effectively illustrates the walking direction in the RSSI data.

Walking speed estimation
To accurately estimate walking speed, we acquired RSSI measurements at 3-s intervals and collected data from 
three subjects. Preprocessing was performed to address noise issues and enhance the precision of speed calcula-
tions. This preprocessing step included the removal of outliers, filtering out unreliable readings, and applying 
smoothing techniques to mitigate the impact of measurement fluctuations caused by environmental factors. 
Walking speed is calculated by analyzing changes in the distance over these 3-s intervals, as depicted in Fig. 6c. 
This speed calculation is performed using a basic geometric formula: v = �d

�t .

Activity recognition using phase
The utilisation of RF backscatter enables the signal to traverse a distance of 2d in dual directions, facilitating 
the monitoring of human activity through the analysis of RF phase differences using cross-relationships. The 
subsequent formula elucidates the correlation between distance, antenna phase rotation, and tag phase rotation:

The phase is a periodic function of 2π radians occurring every �/2 in the RF communication distance. The 
rotations of the antenna and tag phases are described by θAnt and θTag , respectively.

Assessing the precision and discriminatory nature of phase difference calculations during activity is essential. 
The significance is demonstrated in Fig. 7, which displays phase difference patterns during sitting and empty 
room in front of columns 3 and 4 using numpy’s np.corrcoef(x,y). The cross-relationship function is explained 
in Algorithm 2. The co-relationship difference pattern suggests an effective method for modeling activities. The 
smooth variation of phase differences across blocking tags during sitting highlights their accuracy and reliability. 
The visualisation results indicated that the calculated phase differences are reliable and sensitive to AAL activ-
ity. To quantify the strength of the relationship between two different activities performed against the same tag 
(each tag has 36 phase reading values), the following formula can be used to calculate the correlation coefficient:

where rxy represent the correlation coefficient of the linear relationship between the tag value of empty activity 
and sitting activity tags, xi , yi the values of the empty and sitting activity tags values whereas x and y denotes 
the mean of the values respectively.

(5)θ =

(

2π
2d

�
+ θAnt + θTag

)

mod(2π)�.

(6)rxy =

∑

(xi − x)(yi − y)
√

∑

(xi − x)2
∑

(yi − y)2
,

Figure 5.   Illustration showcasing the diversity of activity recognition data through RSSI distribution and 
magnitude analysis.

Figure 6.   Illustration of walking speed and direction recognition via RSSI method with time split.
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Algorithm 2.   Pseudo code for phase correlation

Activity recognition using FeatureSet
The performance of AI models can be significantly enhanced through feature engineering. Flexible features 
allow for simpler, easier-to-maintain models, leading to better performance. Moreover, feature engineering 
reduces the time required for extracting numerous variables. This research focuses on processed matrix data, 
with rows indicating activities or occurrences. Each activity has 540 columns, with each row including 36 RSSI/
phase samples (frame sizes) collected using 15 tags over a 3-s timeframe. The objective is to extract high-order 
features from the CSV file to significantly reduce data dimensions and boost the system’s robustness and clas-
sification accuracy. By combining statistical features such as mean, median, mean absolute value, standard 
deviation, variance, minimum, maximum, skewness, kurtosis, count, entropy, trimmed mean, trimmed variance, 
trimmed minimum, trimmed maximum, trimmed standard deviation, trimmed standard error, variation, score 
at percentile, and correlation coefficient, the study determines the optimal feature subset for AAL classification. 
Figure 8 demonstrated activity recognition by highlighting the standard deviation between empty activity and 
sitting, empty and standing, and empty and walking.

Ablation studies
The section systematically investigated key factors influencing RFID-based human activity recognition. It con-
cluded that maintaining a 0.5 m proximity between TRT-Wall and antenna is optimal. Additionally, it highlighted 
the importance of reducing the number of tags for more efficient data transmission. The study also explored the 
influence of subject quantity on detection accuracy, revealing a non-linear relationship. Lastly, it emphasized 

Figure 7.   Illustration of activity recognition using Phase difference with co-relationship.

Figure 8.   Illustration of activity recognition using standard deviation on the feature set.
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the critical role of antenna height in optimising system performance. It concluded that a default height of 0.75 
m ensures robust outcomes.

Impact of distance from TRT‑Wall to antenna settings
The study adopts the TRT-Wall approach, employing an array of tags to decouple the activity recognition of sub-
jects. Throughout the experiments, accuracy is measured at different distances between the antennas and tags, 
spanning from 2 to 4 m. The results reveal a statistically significant correlation between the TRT-Wall distance 
and the antenna. Notably, a TRT-Wall distance of 1 and 2 m causes severe distortion in RSSI and Phase waves, 
resulting in false positives during recognition. The initial tag distance between the subject and the TRT-Wall is 
set at 0.5 m. Subsequently, the accuracy of activity recognition is further tested at various subject-to-antenna 
distances, ranging from 2 to 4.5 m. The results indicate that the accuracy decreases with decreasing distance for 
unobstructed readings and beyond 3.5 m, factors such as weak signals and the lower reading rate of RFID tags 
affect accuracy. To address the impracticality at shorter distances, the proposed study maintains a default setting 
of 0.5 m between tags and subjects while testing the distance between the subject and the antenna at 2, 2.5, 3.5,  
and 4.5 m (Fig. 9).

Impact of number of tags
Increasing the number of tags leads to a greater number of reflected signals, broader pathway coverage, and 
enhanced data collection for activity detection. Our experiments reveal that a reduced tag count facilitates effi-
cient coupling and transmission of activity data. By eliminating two rows containing five tags each, we reduce the 
total tag count down from 25 (arranged in 5 rows and 5 columns) to 15 (arranged in 3 rows and 5 columns). This 
reduction not only provides supplementary information but also enhances activity prediction performance, as 
depicted in Fig. 10a illustrating sitting activity and Fig. 10b showcasing walking activity. If the goal is to augment 
the environmental path complexity, it is advisable to increase the number of tags in the columns. Additionally, 
within indoor environments, the incremental cost of adding more tags is marginal compared to the expense of 
incorporating additional readers with antennas37. To implement this, our study employs a default configuration 
comprising a single circularly polarised antenna and 15 passive UHF tags.

Figure 9.   Assessing LSTM accuracy through four different scenarios and approaches.

Figure 10.   Impact of number of tags.
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Impact of number of subjects
This section examines how the number of subjects affects performance and concludes that detection accuracy 
does not increase linearly with the number of subjects, but rather gradually. Since fewer subjects indicate less 
variation in user characteristics, this result is consistent with our expectations. We assess a number of parameters 
in our study, including RSSI, Phase, and feature values. When there are three subjects involved, our suggested 
method has an accuracy of 96% , but when there is just one subject, it only has an accuracy of 81.20% . Neverthe-
less, WiFi-ID38 and WiWho39 outperform our method when detecting six subjects at a single distance using 
Wi-Fi signals, achieving accuracy levels of 77% and 80% , respectively. As shown in Table 6, RFree-ID40, TagFall24, 
and DFD41,42 achieved high accuracy levels of 93% , 94%, 94% , and 95% for detecting human activities such as 
walking or falling using RFID. It needs to be noted that it may not be practical or convenient to enable subjects 
to perform activities at a distance of 4.5 m for proper recognition (Fig. 11).

Impact of antenna height
This study examines how the performance of RFID tag reading systems is affected by antenna height. The sys-
tem’s range and precision are significantly influenced by the antenna height. Generally, increasing the antenna 
height can improve system performance. Nonetheless, we conducted an experiment to examine three different 
antenna placement scenarios in our RFID tag reading system. In the first case, the antenna was mounted against a 
1.5× 1.5 m 2 wall at ground level. Our research showed that the tags on the top row were not properly read, which 
reduced the recognition accuracy. In the Second scenario, we adjusted the antenna height to 0.75 m, placing it at 
the centre of the wall and ensuring a LoS. It was thought that a small change in antenna height would have little 
impact on accuracy. Nevertheless, we noticed a decrease in the tag signal strength when the antenna height was 
raised further from 0.75 to 1.5 m. The was due to the reader’s signal was not strong enough to reach the lower 
row of tags. According to the findings of our experiments, maintaining the default antenna height of 0.75 m, or 
mid-height of the wall, is necessary to achieve optimal system performance. After experimental verification, it 
is clear that the system is robust for AAL.

Limitations and future directions
The TRT-Wall approach is a key step toward enabling the accurate detection of indoor activities without requir-
ing users to wear or carry any RFID tags. Nonetheless, there are numerous opportunities to further strengthen 
the basic TagFree concept in the future.

Table 6.   Analysis of different user activity detection approaches. Significant values are in bold. Significant 
values are in italics.

Approach Technology Group size Antenna Accuracy (%)

WiFi-ID38 WiFi 6 1 77

WiWho39 WiFi 6 3 80

WiPg43 WiFi 5 3 92.7

RF-Motion29 RFID 1 4 90

RFree-ID40 RFID 5 1 93

TagFall24 RFID 1 4 94

DFD41 RFID 1 1 94

RF-Car34 RFID 1 4 95

TRT-Wall RFID 3 1 95.6

Figure 11.   Scenario 3: a comparison of DL and ML algorithms on 3.5 m.
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System flexibility
The study investigated the precision with which TRT-Wall can detect each subject’s activity. Nonetheless, it is 
expected that the system’s scope could expand to monitor multiple subjects simultaneously due to complex 
subject interactions. This would require more extensive data pre-processing and analysis. According to our 
preliminary study, deep learning algorithms are better at detecting individual activities than conventional meth-
ods. Moreover, the TRT-Wall range is limited to 12 m when using a single antenna. This reading range can be 
extended by installing larger antenna arrays using an Impinj antenna hub and employing many RFID tags as 
references for wider coverage.

Model generalisation
The implementation of our proficient deep learning model is limited to non-uniform antenna configurations 
and tag placements. Consequently, the model necessitates retraining to accommodate heterogeneous environ-
ments. An alternative approach to enhance predictive outcomes involves tuning the model through federated 
learning. Federated learning facilitates training on various various samples, presuming that certain activities 
occur in a spcecific sequential order. This results in a generalised and uniform trained model that is adaptable 
to any heterogeneous environment.

User authentication
The ability of the current approach to distinguish between a limited number of activities and user detection is 
restricted. In the future, this limitation could be overcome by developing a user identification and recognition 
model that utilises strong and complete user attributes, rather than focusing solely on activities.

Conclusions
This study utilises multipath signals generated by various activity patterns collected from commercial Impinj 
RFID readers to establish a cost-effective, contactless, and privacy-preserving user identification mechanism. We 
demonstrate the efficacy of our system, TRT-Wall, in identifying activities in typical indoor environments without 
tagging the targets. We employ a data preprocessing technique in our tag-free model, which gives comprehensive 
information for activity recognition. The tag-free activity detection problem is successfully addressed using a 
Long Short Term Memory network. Our comprehensive experimentation outcomes and the implementation with 
commercial RFID devices validated that our tag-free TRT-Wall approach outperforms existing state-of-the-art 
methods, achieving average activity identification accuracy rates of 95.6%, 94.3%, and 91.6% for RSSI data, phase 
difference, and features, respectively, with up to three subjects in multipath-rich environments.

Data availability
The datasets utilized in the current study are available from the corresponding author upon reasonable request 
at m.khan.6@research.gla.ac.uk.
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