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A non-linear Lasso and explainable LSTM approach for estimating tail risk 
interconnectedness
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aDepartment of Civil Engineering, Indian Institute of Technology Kharagpur, West Bengal, India; bDepartment of Mechanical Engineering, 
Indian Institute of Technology Kharagpur, West Bengal, India; cBusiness School, Edinburgh Napier University, Edinburgh, UK

ABSTRACT
Tail risk inter-connectivity is a significant aspect and a risk indicator that should be focused on. 
Many of the previous works have shown potential non-linearity in tail risk contagion. With the 
recent advancements in deep learning, Long-Short Term Memory (LSTM) networks have played an 
important role in sequential data prediction. We experiment with LASSO-based neural networks 
and interpretative LSTM model along with other machine learning approaches for investigating tail 
risk interconnectedness among the public banks of Japan. We also investigate the risk reception 
from large overseas banks in United States finding that medium-sized banks are more likely to 
receive international risks. Our studies show that LSTM-based model is an excellent fit for the 
scenario and total connectedness goes up during an economic crisis. The banks having larger 
market capitalization are more prone to emission and reception of tail risks. This is accompanied by 
exhibiting the impact of some major economic distresses on Japanese banking system. These 
results provide important information to regulators and policy makers.
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networks; LSTM
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I. Introduction

During crises, bad luck (tail risks) can spread 
between financial institutions, threatening the 
whole system. This ‘systemic risk’ stems from two 
factors: how risky individual companies are and 
how connected they are. A single failure can cause 
a domino effect, crippling the entire system. 
Liquidity issues, credit risks of failing partners, or 
even panic-driven price swings could all cause this 
‘spillover effect’. Regulators can’t just look at indi-
vidual companies anymore. They, like investors 
who focus on potential losses more than gains, 
need to consider the interconnectedness (Basel  
2013) of the financial system as a key risk measure.

There are several issues with tail risk intercon-
nectedness. First, although tail risk spillover effects 
are somewhat nonlinear in nature while most of the 
suggested solutions are based on the linear assump-
tion. Second, risk depends on lot of factors hence 
a multi-dimensional setup should be used. Thirdly, 
if a flexible and nonlinear model is used the chal-
lenge of interpretation comes into picture. It would 

be challenging to assess the contribution of parti-
cular risk variables. Having an indicator that distils 
nonlinear and interacting risk components is useful 
for regulators. As a result, it demands a data-driven 
model that is not only adaptive but also capable of 
providing straightforward interpret-ability.

Nguyen, Chevapatrakul, and Yao (2020) used 
LASSO (Least Absolute Shrinkage and Selection 
Operator) to capture the important features for 
assessment of interconnectedness. They have 
directly incorporated the penalized linear coeffi-
cients of the regressor as feature importance. The 
existing approaches to estimating conditional tail 
risk have certain potential drawbacks, as pointed 
out by Härdle, Wang, and Yu (2016). Torri, 
Giacometti, and Tichý (2021) studied a network 
model to analyse how interconnected banks spread 
risk. It identifies vulnerable banks and calculates 
systemic risk for each one. The model considers 
traditional risk factors as well. Results show inter-
connectedness in the European banking system, 
with higher concentration of risk in southern 
Europe during economic downturns. With the 
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ongoing fascination of cryptocurrencies, tail risk 
measurement was done with several cryptocurren-
cies (Ahelegbey, Giudici, and Mojtahedi 2021) 
using Extreme Downside Hedge (EDH) and 
Extreme Downside Correlation (EDC) which led 
the authors to bifurcate cryptocurrencies into spec-
ulative and technical assets.

Hautsch, Schaumburg, and Schienle (2014) 
researched a new way to assess how financial 
firms contribute to overall risk in the financial 
system. They consider the interconnectedness of 
financial firms and how the risk of one firm can 
impact others. Their method, called ‘realized sys-
temic risk beta’, uses statistical analysis to measure 
how a firm’s risk (Value-at-Risk) affects the risk of 
the entire system. Giudici, Leach, and Pagnottoni 
(2022) compare two types of stablecoins: one 
backed by a basket of currencies and another 
pegged to a single major currency (like the US 
dollar). The argument is about basket-based stable-
coin being better. They achieve this by finding the 
optimal mix of currencies for the basket, then 
showing how this basket is less volatile than indi-
vidual currencies.

Since, any financial crisis shows its impact on the 
systemic banking network of the economy, within 
recent years, Dew-Becker (2022) and Nguyen and 
Lambe (2021) have explored the determinants of 
total tail risk. Capital flow, degree of trade and 
business linkage between countries, macroeco-
nomic factors such as inflation, stock market vola-
tility, exchange rates, interest rates play a crucial 
role in determining tail risk interconnectedness. 
Giudici and Parisi (2018) suggested a novel credit 
risk measurement model for Corporate Default 
Swap (CDS) spreads that combines vector autore-
gressive regression with correlation networks. This 
was applied to European countries creating 
a clustering effect between central and border 
countries. Maghyereh and Yamani (2022) found 
that banks with more income sources (diversified) 
have lower risk of causing financial system pro-
blems. This effect is stronger for Islamic banks. 
Even during the COVID-19 pandemic, both 
Islamic and conventional banks faced similar risk.

Long et al. (2022) proposed a Gradient Boosting 
Machine (GBM) regressor approach to measure 
tail risk interconnectedness. They used relative 
variable importance integrating with explanatory 

power of inputs as a measure to quantify the 
metric. Inspired by recent growth in deep learning, 
we imitate a robust and accurate fit model for 
estimating the tail risk within the financial insti-
tutes. A recent work developed by Lemhadri et al. 
(2021) which created LassoNet: A neural network 
with feature sparsity. LassoNet demonstrates inter-
pretable characteristics for our estimation by 
applying L1 regularization (LASSO) to appropriate 
weights of the neural network. Another form of 
Neural Networks are Sequential or Recurrent 
Neural Networks (RNN Rumelhart, Hinton, and 
Williams (1986), Jordan (1986)) introduced in 
1980s tend to capture the patterns and trends in 
sequential data form. Specially designed RNN 
known as Long-Short Term Memory (LSTM) 
Hochreiter and Schmidhuber (1997) were intro-
duced to retain the flow of long term important 
dependencies within the models. Extracting tail 
risk interconnectedness is a fine task of predicting 
returns and hence we chose to go with the LSTM 
model added with interpretable nature termed as 
Interpretable-Multivariate LSTM (Guo, Lin, and 
Antulov-Fantulin 2019). We experiment with the 
above described approaches and find out that 
IMV-LSTM-based approach outperforms all the 
other methodologies.

We focus on Japan’s banking system primarily 
on how it is affected by its own national banking 
system and other major international banks from 
United States. Japan consists of several large banks 
like Mitsubishi UFJ Financial Group ($2.54 billion 
USD), Mizuho Financial Group ($1.67 billion 
USD), Bank of Japan ($4.85 billion USD) in terms 
of total assets. Our major concern lies with study-
ing the influence of 2011 mega tsunami that hit 
Japan and the drastic effect of COVID-19 pan-
demic. Using the LSTM approach we extract out 
the interconnectedness among the Japanese banks 
along with the risk contagion with large banks in 
United States. Various analyses on dynamic risk 
transmission and risk reception from domestic 
and international domain show that banks with 
high market capitalization are prone to get affected 
by tail risks and mediocre banks are highly likely to 
get affected by international risks. It is also found 
that the risk goes high up during the time of eco-
nomic distress. Liu (2014) showcased that in case of 
high volatile situations of Japanese markets and the 
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necessity to control volatility in Japanese markets. 
We extend our risk interconnectedness to major 
overseas banks in United States of America. With 
the Japanese banks as our epicentre of analysis we 
only observe the risk reception from these banks 
into the Japanese system.

The rest of the paper is structured in the follow-
ing format. Section II contains the details of meth-
odology implemented. Section I shows the 
empirical results followed by Section IV which 
concludes our study.

II. Methodology

Concept of CoVaR

Value at Risk (VaR) is a measurement of the like-
lihood of a loss over a certain time period. 
Regulators and risk managers in the financial sec-
tor frequently use it to evaluate the magnitude and 
probability of possible loss in their assets. V aRi

q 
can be defined as: 

where Xi stands for the log return of a financial 
institute i and q is the quantile level. Adrian and 
Brunnermeier (2016) gave a concept of CoVaR, 
which is basically the conditional format of V aR 
taking spillover effects and the macro state of the 
economy into account: 

where V � j;ðXi;MÞ is a vector representing the 
influences from financial institutes other than 
j along with the lagged macro-state variables. 
More precisely to determine V aR at time t, 
Equation 3 can be solved using qauntile regression: 

Here γ is the sensitivity term for dependence of log 
return on macro-state variables and α is the offset. 
CoVaR can be determined by solving Equation 5 by 
quantile regression and substituting VaR obtained 
from Equation 4 into Equation 6: 

The β in Equation 6 can interpreted as the degree of 
dependence of log return of institute i to the influ-
ences from institutes other than i or which we refer 
as a system of institutes sys. The amount of tail risk 
interconnectedness within a financial system is 
determined by using this equation iteratively for 
all institutes.

Adrian and Brunnermeier (2016) described 
a bivariate estimation of β in their work not con-
sidering the interactions within the institutes. 
Moreover Chao, HÃ¤rdle, and Wang (2012) 
showed that complex nonlinear dependency exists 
between financial assets, especially when the finan-
cial system is under distress. Keeping things under 
consideration we extend our search into a non- 
linear space. We experiment with several machine 
learning models extending from tree based to con-
strained by regularization and Recurrent Neural 
Networks. Among all of the approaches the perfor-
mance of RNN-based model was the best assisting 
us to derive an accurate metric for the tail risk 
interconnectedness.

Objective

To present our tail risk estimation problem in 
a mathematical formulation let us consider a set 
of financial institutes S, their daily log returns to be 
X and macro state variables which are country 
specific to be M. Then for some institute j 2 S we 
need to estimate an empirical value let us denote it 
by D which will represent the tail risk interconnect-
edness of j with "i 2 Sji�j. We start with a flexible 
parametric model: 

Where F is a function. D is obtained from the 
internal parameters of the function F post optimi-
zation subjected to minimizing the residual quan-
tile sum of loss given by: 
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where LqðuÞ ¼ uðq � Iðu< 0ÞÞ is the quantile loss 
function for quantile q, T is total number of data 
samples and IðÞ is an indicator function which 
returns 1 if its argument condition is satisfied, 
else 0. Since we are focused on left tail, hence we 
choose to go with q ¼ 0:05.

LassoNet

LASSO or least absolute shrinkage and selection 
operator is a commonly used regularization 
method used for zeroing out weights correspond-
ing to redundant features. Generally lasso is used 
with linear models with applying the L1 norm on 
the weights of regression model.

Previously discussed in Equation 7 that F is 
a generalized parametric model hence we look at 
Lemhadri et al. (2021) which describes a residual 
neural network model framework with global fea-
ture selection (Figure 1). It is capable of selecting 
relative importance of input variables by applying 
L1-regularization in a non-linear space.

Representation
To estimate F, we chose this to be class of residual 
feed-forward networks: 

where x is the input vector with dimension d, hW 
denotes the feed-forward neural network with 
weights W and θ 2 R d are the weights of the resi-
dual (skip) layer. Assuming K to be the number of 
units in the first hidden layer, then its 
weights; Wð1Þ 2 R d�K .

For applying regularization, the original loss 
function minimization is added with a penalty 
that promotes feature sparsity. There is involve-
ment of a proximal algorithm during training 
which assists in the trade-off between linear and 
non-linear component of the model by updating 
skip and first hidden layer’s weights following 
a customized constraint defined in Equation 11. 
We then choose an optimal network F� from 
Equation 9 which minimizes the quantile loss func-
tion in Equation 8: 

Formulation
The constrained objective of LassoNet is 
defined by: 

where Lðθ;WÞ 1 is the loss function defined in 
Equation 8 and M is a hierarchical coefficient.

This type of model architecture is hybrid in 
nature as it jointly consists of linear and non- 
linear operators. Parameters from both kind of 
operators can be directly used for feature 

Figure 1. Architecture of LassoNet. Design comprises a single 
residual link (shown in green) and an arbitrary feed-forward 
neural network (represented in black).

Figure 2. Architecture of vanilla LSTM model with highlighted 
regions of functions. � and � denote element-wise multiplica-
tion and addition respectively. σ and tanh represent sigmoid and 
hyperbolic-tangent activation function respectively.

1The default loss function for LassoNet regressor is set to mean-squared error. We modify the source code to change the loss function to quantile loss.
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selection. Considering the scalibilty factor of 
data, sometimes deep neural networks can be 
difficult to train given the computation time 
constraints. However, residual networks like 
this are easy to train shown by He et al. (2016). 
Further Raghu et al. (2017) showed that residual 
neural networks act as universal approximators 
to many classes of functions which give us the 
freedom to choose LassoNet as an ideal approach 
for this scenario.

Training
LassoNet mainly has two hyper-parameters asso-
ciated with the L1 penalty coefficient λ, and hier-
archical parameter M. It controls the contribution 
of linear and non-linear component.

The whole training process is formulated in 
the two parts. The first part starts with fitting 
a general un-regularized artificial neural net-
work on the training set of data. The network 
uses early-stopping method to stop the training. 
The best fitted weights (the ones which are 
having the least value of loss function on test 
set) are then used to compute the regularized 
version of the network. The model then starts to 
sail from dense-to-sparse state as the penalizing 
coefficient λ is gradually increased. It starts fil-
tering out less significant features and keeps on 
continuing with the most significant ones. Once 
all the active features become zero the training 
eventually stops.

Interpretable LSTM

IMV-LSTM
The emergence of Long Short-Term Memory 
(LSTM) (Hochreiter and Schmidhuber 1997) net-
works has revolutionized the landscape of time 
series forecasting. LSTMs are widely employed for 
forecasting stock prices, exchange rates, and other 
financial time series, offering superior accuracy 
compared to traditional methods (Bhandari et al.  
2022).

However in the case of tail risk interconnected-
ness estimation we primarily deal with the extent of 
impact of features on the predicted variables. 
Extracting out feature importance in LSTMs is 
a challenging task. To handle this problem, Guo, 
Lin, and Antulov-Fantulin (2019) reinvented the 

LSTM with interpretable nature known as 
Interpretable Multi-Variable LSTM, or IMV- 
LSTM: (Figure 2)

Representation
Assuming we have N � 1 time series and 
a target series variable yT ¼ ½y1; y2; . . . yT� of 
length T. The multi variable inputs can now 
be stacked together to form an input tensor 
XT ¼ ½x1; . . . ; xT� and xt ¼ ½x1

t ; . . . ; xN� 1
t ; yt� so 

xt 2 R N . Each of xn
t is the input at time step t 

and can be multidimensional. Given XT , the 
objective is to learn a non-linear mapping 
which gives us the target value for the next 
time step: 

While estimating the function F , the variable 
importance are learned. The importance vector 
I 2 R N is non-negative and is normalized such 
that 

PN
n¼1 In ¼ 1.

The purpose of IMV-LSTM is to use hidden 
state matrices and create corresponding update 
schemes so that each element (such as a row) of 
the hidden matrix only contains data from 
a particular input variable. The hidden states 
and gates in IMV-LSTM are replaced by tilde to 
avoid confusion with the vanilla LSTM. The hid-
den state and time step t is given as ~ht where 
hn

t 2 R d. The input to hidden transition matrix U j 

where Un
j 2 R d�d0 and the hidden to hidden tran-

sition is given by W j, where Wn
j 2 R d�d. The 

updated hidden state is given by: 

Here ~jt 2 R N�D and � is the tensor dot product 
between two tensors. The process of vectorization 
denoted by vec in Equation 15 involves flattening 
a two-dimensional matrix into one dimension by 
concatenating the columns. And the operation 
matricization(�) is the inverse of vectorization in 
Equation 16. It reshapes a vector into two- 
dimensional matrix, in this case it goes from 
R D ! R N�d. Element wise multiplication is 
defined by �. 
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In general the Equation 12 can be taken up by 
Bayesian method in probabilistic domain: 

In Equation 17 there is an introduction of latent 
variable zTþ1 for estimating yTþ1. It is discrete 
variable over the set of values {1, 2, N}. The 
context vector gn is computed as the temporal 
attention weighted sum of hidden states of vari-
able n. It is given by gn ¼

P
t αn

t hn
t where 

αn
t ¼

exp fnðhn
t ÞP

k
exp fnðhn

kÞ
. Here fnð�Þ can a feed forward 

neural network.
The first part of probability in Equation 17 can 

be estimated by Gaussian distribution parameter-
ized on ½μn; σn� ¼ φnð½h

n
T; gn�Þ and second part by 

taking softmax function over ff ð½hn
T; gn�ÞgN .

Estimation of tail risk interconnectedness

The importance vector I is learned during the 
training process of the IMV-LSTM. For a training 
data instance m, we define the variable impor-
tance as: 

However only I values do not provide any informa-
tion on variation of response caused by a feature. 

Therefore we incorporate the quantile format of 
R-square defined in Davino, Furno, and Vistocco 
(2014) by multiplying it with Equation 18. It also 
measures the quality of fit of a regression model on 
input data: 

where RLj
q is defined in Equation 8 and 

TLj
q ¼

PT
t¼1 Lq Xj

t � VaRj
q

� �
. These metrics are 

derived from the linear part of LassoNet.
We also extend our estimation by incorporating 

the sensitivity of the outputs according to small 
perturbations in inputs. For a neural network 
with one hidden layer Yannis, Paul, and Sovan 
(1995) define the sensitivity as the jacobian matrix 
of the mapping function. Absolute value is used 
since we are concerned with the magnitude, or how 
much it changes rather than the direction of 
change. Härdle, Wang, and Yu (2016) also pro-
posed the concept variable selection through 
a single-index model by leveraging the partial deri-
vative of the estimator function of CoVaR in their 
work. Therefore as stated about the empirical value 
D in Section 2.2, we can combine both the metrics 
and the final tail risk interconnectedness metric 
can be stated as: 

Where F is defined in Equation 12, the partial 
derivatives for a feature i are calculated by aver-
aging out the individual values through all the data 
samples.

If there are N financial institutes associated, for 
the national case we can construct a N � N direc-
ted adjacency matrix in which each element at ith 

row and jth column represents the tail risk from 
institute j to i. 
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It may to be noted that Z may not be symmetric 
in nature or Dijj might not be same as Djji. This 
accounts for the spillover effect between the insti-
tutes. Further it can be concluded that each row 
of the matrix indicates the outgoing influence 
from one respective institute and each column 
denotes how one respective institute is affected 
by other institutes. Since one institute can’t affect 
itself hence the diagonal elements are 0.

In the case of risk received from international 
banks, we can construct a N �M matrix where M 
is the number of international banks. Since we are 
concerned with how much risk is received by the 
Japanese banks from US banks hence, the matrix so 
formed in this case will have non-zero elements 
and Dijj will represent the risk received by ith 

Japanese bank from jth US Bank.

III. Experimental results

Investigating the tail risk spread within the public 
banks in Japan, we apply the described methodol-
ogy to perform an country specific analysis of ten 
large public banks in terms of assets situated in 
Japan. Along with that, the connectedness is 
extended to large public banks of United States of 
America. Most of the world’s major banks in terms 
of assets are located in US, China and Japan. Due to 
restrictions on data availability, the link of tail risk 
between Chinese and Japanese banks can not be 

taken up. For the case of international tail risk 
interconnectedness, we use the national as well as 
international macro state variables for analysis.

Data

All the returns data used in our work are available 
at Yahoo Finance. The daily log returns are defined 
by Xj

t ¼ logðPj
t=Pj

t� 1Þ where Pj
t is the dividend- 

adjusted closing price of each bank. Due to con-
straints on availability of data for certain para-
meters from early 2000s, we stick to data obtained 
for over a period of almost 14 years starting from 
1 April 2010 to 31 January 2024 (both dates inclu-
sive) spanning for 5054 days. Table 1 provides 
a detailed description of the listed banks for Japan 
and United States. Several economic events 
affected Japan during this period, the major ones 
being the great tsunami of 2011 and COVID-19 
pandemic staring from 2019 extending to 2021 
termed as post-covid period. Other event include 
consumption tax increase in 2014, negative interest 
rates implemented by Bank of Japan in 2016 and 
Germany overtaking Japan in economy in 2023.

From Table 1, we see few of the Japanese banks 
have high daily fluctuations in returns giving rise to 
maximum and minimum both greater than 2 sig-
nifying unpredictable patterns in Japanese stock 
markets (Andersen, Todorov, and Ubukata 2021). 
However the patterns are total opposite in the case 
of US banks. The maximum values are less than 2 in 

Table 1. Data description of all the public banks of Japan and US with ticker code and abbreviation. The table provides analysis of the 
log returns’ mean, standard deviation, minimum, maximum, skewness and the kurtosis of the values.

ticker abbreviation mean std min max skewness kurtosis

Japanese Banks
Bank of Japan 8301.T BOJ −0.00015 0.01765 −0.20479 0.19237 0.62832 23.72007
Mitsubishi UFJ Financial Group 8306.T MUFG 0.00030 0.01483 −0.11973 0.10606 0.15425 6.51407
Sumitomo Mitsui Financial Group 8316.T SMFG 0.00029 0.01398 −0.09396 0.09866 0.12703 6.34153
Mizuho Financial Group 8411.T MZF 0.00018 0.04775 −2.33791 2.27309 −1.89512 2151.64664
Sumitomo Mitsui Trust Holdings 8309.T SMTH 0.00020 0.04962 −2.26592 2.25132 −0.36218 1711.84205
Resona Holdings Inc 8308.T RHC 0.00003 0.01555 −0.17841 0.12909 −0.29967 10.92338
Aozora Bank 8304.T AZB 0.00031 0.04793 −2.30715 2.28942 −0.52247 2090.88071
The Chiba Bank 8331.T CHB 0.00019 0.01511 −0.10612 0.10253 −0.16081 5.69270
Hokuhoku Financial Group 8377.T HFG 0.00002 0.04809 −2.28539 2.27691 −0.24535 2001.72894
Seven Bank 8410.T SVB 0.00018 0.13808 −6.90574 6.91444 0.08988 2479.67897
US Banks
JPMorgan Chase and Co. JPM JPMC 0.00034 0.01468 −0.16211 0.16562 −0.05031 15.10439
Bank of America BAC BOA 0.00017 0.01793 −0.22713 0.16379 −0.31166 15.77881
Wells Fargo WFC WFGO 0.00017 0.01577 −0.17278 0.13571 −0.32127 13.17231
Citigroup. Inc C CITI 0.00010 0.04899 −2.30168 2.27931 −0.62631 1888.84682
PNC Financial Services Group PNC PNC 0.00026 0.01500 −0.17317 0.12172 −0.33693 13.40489
The Goldman Sachs Group GS GSG 0.00021 0.01510 −0.13686 0.16195 −0.36520 13.27923
Truist Financial Corporation TFC TFC 0.00012 0.01649 −0.21190 0.15909 −0.83341 20.05204
Capital One Financial Corporation COF COFG 0.00028 0.01792 −0.27278 0.17189 −0.75840 22.81533
Toronto-Dominion Bank TD TDB 0.00020 0.01788 −0.69720 0.69129 −0.38066 900.59292
US Bancorp USB USB 0.00017 0.01473 −0.15596 0.16014 −0.29582 16.25534
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most of the cases and the absolute minimum is also 
less than maximum suggesting longer positive tails. 
Models especially neural network based do not 
expect any probability distribution for the input 
data. Hence, no statistical test is performed on data.

Following Adrian and Brunnermeier (2016) we 
obtain the macro state variables for Japan. These 
variables are highly impacted by the country’s eco-
nomic state:

(1) The change in three-month treasury bond 
yield

(2) The difference between the yields on 
3-month and 10-year Treasury bonds

(3) The difference between the 10-year Treasury 
bond yield and AAA corporate bond yield

(4) The difference between the 3-month Treasury 
bond yield and the 3-month interbank offered 
rate (TIBOR-Tokyo interbank offered rate)

(5) The daily return of the Nikkei 225 stock 
index

(6) The Nikkei 500 real estate daily return
(7) The conditional variance of a Nikkei 225 stock 

index returns determined using the GARCH 
(1,1) model represents market volatility.

For the macro state variables of United States, we 
follow them as stated in Fan et al. (2018).

(1) VIX, which measures the implied volatility 
in the market.

(2) The daily change in the 3-month Treasury 
constant maturities, which can be defined as 
the difference between the current day and 
the previous day of 3-month Treasury con-
stant maturities.

(3) The change in the slope of the yield curve, 
which is defined by the difference between 
the 10-year Treasury constant maturities and 
the 3-month Treasury constant maturities.

(4) The change in the credit spread between 10- 
year BAA corporate bonds and the 10-year 
Treasury constant maturities.

(5) The daily S&P500 index returns.
(6) The daily Dow Jones U.S. Real Estate index 

returns.

All the bond-related data are extracted for the same 
time span as described previously and sourced 

from https://www.investing.com/Investing.com 
and Bloomberg terminal.

Setup

We apply the proposed methodology to the the ten 
Japanese banks where each of them receive tail risk 
from nine other banks. We build ten independent 
models. The network architecture of LassoNet is 
determined by three-fold cross-validation on gW 
which includes the number of neurons in the first 
hidden layer and the hierarchical parameter M. The 
procedure is also followed for IMV-LSTM which 
consists of number of LSTM units. We also experi-
ment with Gradient Boosting Machine (GBM) as 
processed by Long et al. (2022) and TENET (Tail- 
Event driven NETwork risk) as proposed by Härdle, 
Wang, and Yu (2016). GBM is optimized by five-fold 
grid search cross-validation for fine tuning the hyper- 
parameters as mentioned in the source work. The 
design of TENET is presented in details at the source 
paper which includes Minimum Average Contrast 
Estimation approach (MACE) with Smooth Clipped 
Absolute Deviation (SCAD) as regularization.

For connecting the Japanese banks with US 
banks, we plug the US macro variables in the 
Equation 5 and Equation 6 along the existing 
Japanese macro variables. Interestingly, the returns 
Xsysj� i

t in Equation 5 become the returns of the US 
banks as the independent variable. Hence the new 
versions of equation can be written as: 

Where MðUSÞ
t� 1 and MðJÞt� 1 the lagged macro variables 

of US and Japan respectively.
A comparative analysis between all the models is 

presented in Table 2. The losses presented are quan-
tile loss (Equation 8) given by the trained models on 
the test set for each of the banks. It is seen that IMV- 
LSTM surpasses other models by a very large margin 
by the terms of average loss. Table 3 shows the tail risk 
associated among the banks using the IMV-LSTM 
model. It is in the form of adjacency matrix defined 
by Equation 21 and Table 4 shows the risk received by 
Japanese banks from the US banks. The top 10 high-
est interconnectedness are marked in bold for the 
both the cases.
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Further results

Tail risk analysis
We dive deep into the analysis of tail risk inter-
connectedness by looking at the Risk Received 
(RR) and Risk Transmitted (RT). They measure 
the amount of total risk taken in by the bank and 
total risk emitted to other banks in the whole 
financial system respectively. 

The total connectedness (TC) is defined as the sum 
of risks along all the financial institutes within the 
network. It also acts as a system-level risk measure. 

Generally the institutes with high transmitted risk 
grab the attention from regulators. To visually repre-
sent the tail risk contribution among the banks we 
plot directed and weighted graphs. Figure 3 shows 
the network depicting the contribution. The width 
of the edges is directly proportional to the magni-
tude of the tail risk emitted. In Figure 4 we select 
a threshold of 0.018, which is greater than the 75% 
percentile of all the values in tail risk matrix. The 
risks which are less than the threshold are omitted 
out. We observe that MUFG, SMFG, HFG and MZF 
are the ones receiving and transmitting major 
amount of risks. All of them are top banking services 
in Japan and also leading global financial groups. 
Mitsubishi UFJ Financial Group (MUFG) is ranked 
as the largest bank in japan followed by Sumitomo 
Mitsui Financial Group (SMFG) in terms of assets 
and market capitalization. Hence, there exists 
a strong tail risk emission from SMFG to MUFG. 
These observations show that the results obtained by 
IMV-LSTM are intuitive and economically 

Table 2. Comparative study of loss function by different models 
on test set while obtaining interconnectedness within the 
Japanese banks. In the cases of LassoNet and TENET, value is 
presented for pure quantile loss or unregularized loss.

Ticker GBM LassoNet TENET IMV-LSTM

8301.T 1.57 1.58661 0.92153 0.78995
8306.T 0.55334 0.59866 0.42556 0.55669
8316.T 0.55503 0.53268 0.57899 0.60761
8411.T 0.67964 0.66489 0.89123 0.69371
8309.T 1.23485 1.38546 0.9231 0.74236
8308.T 0.74382 0.85623 0.86441 0.70942
8304.T 0.94433 0.86548 1.02379 0.887
8331.T 0.74723 0.76312 0.75139 0.68413
8377.T 1.00089 0.95663 0.98734 0.48942
8410.T 1.03362 1.5794 0.85691 0.63823
Average 0.906275 0.978916 0.822425 0.679782

Table 3. Tail risk contagion matrix obtained from IMV-LSTM model for interconnectedness within the Japanese banks. Each row 
depicts the tail risk received from corresponding bank in columns.

BOJ MUFG SMFG MZF SMTH RHC AZB CHB HFG SVB

BOJ 0 0.0193 0.0161 0.0205 0.0166 0.0162 0.0191 0.0161 0.0202 0.0202
MUFG 0.0247 0 0.0248 0.0248 0.0249 0.0222 0.0190 0.0249 0.0240 0.0247
SMFG 0.0264 0.0210 0 0.0290 0.0202 0.0260 0.0206 0.0188 0.0183 0.0220
MZF 0.0210 0.0231 0.0164 0 0.0226 0.0231 0.0155 0.0230 0.0214 0.0228
SMTH 0.0139 0.0134 0.0139 0.0133 0 0.0141 0.0147 0.0141 0.0135 0.0105
RHC 0.0189 0.0194 0.0183 0.0185 0.0186 0 0.0192 0.0182 0.0187 0.0193
AZB 0.0071 0.0081 0.0072 0.0085 0.0082 0.0122 0 0.0116 0.0080 0.0081
CHB 0.0218 0.0221 0.0222 0.0223 0.0220 0.0218 0.0218 0 0.0222 0.0221
HFG 0.0195 0.0154 0.0230 0.0281 0.0195 0.0201 0.0277 0.0196 0 0.0188
SVB 0.0150 0.0167 0.0145 0.0155 0.0178 0.0150 0.0171 0.0144 0.0156 0

Table 4. Tail risk contagion matrix obtained from IMV-LSTM for risk spread from US banks to Japanese banks. Each row depicts the tail 
risk received from corresponding US banks in columns.

JPMC BOA WFGO CITI PNC GSG TFC COFC TDB USB

BOJ 0.0145 0.0143 0.0157 0.0154 0.0143 0.0170 0.0171 0.0147 0.0142 0.0151
MUFG 0.0180 0.0172 0.0179 0.0171 0.0172 0.0175 0.0170 0.0166 0.0174 0.0173
SMFG 0.0167 0.0166 0.0167 0.0167 0.0166 0.0167 0.0167 0.0167 0.0167 0.0167
MZF 0.0130 0.0128 0.0127 0.0196 0.0208 0.0137 0.0124 0.0131 0.0131 0.0207
SMTH 0.0169 0.0168 0.0168 0.0169 0.0168 0.0168 0.0167 0.0168 0.0168 0.0168
RHC 0.0216 0.0061 0.0181 0.0209 0.0207 0.0208 0.0207 0.0205 0.0208 0.0155
AZB 0.0130 0.0148 0.0154 0.0161 0.0143 0.0137 0.0133 0.0145 0.0127 0.0199
CHB 0.0166 0.0164 0.0166 0.0164 0.0161 0.0162 0.0166 0.0160 0.0159 0.0163
HFG 0.0183 0.0185 0.0185 0.0182 0.0180 0.0185 0.0184 0.0186 0.0181 0.0182
SVB 0.0168 0.0169 0.0169 0.0168 0.0168 0.0172 0.0169 0.0171 0.0170 0.0171
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consistent. Figure 5 shows the risk received from US 
banks with the same selected threshold. Middle 
range banks in terms of total assets are more prone 
to receive tail risks from the overseas banks. Here we 
see that banks like Resona Holding Corporation 
(RHC) and HFG are the receptors of large risks 
from top US banks like JP Morgan and Chase, 
CITI Group, Wells Fargo and others.

Significance analysis
A descriptive analysis of the risk received and 
risk transmitted of the banks is presented in 

Table 5. This also contains the information of 
market capitalization (market cap), interbank 
asset ratio and interbank liability ratio for the 
listed banks. Basel (2013) states that market 
capitalization and interbank liability ratio are 
the important judgement parameters for inter-
connectedness especially when financial system 
is under distress. There exists a positive correla-
tion between these indicators and the absorption 
and emission of risk. We perform a linear 
regression analysis of risk received and risk 
transmitted with market capitalization, asset 
ratio and liability ratio. Table 6 displays market 
information about the top US banks selected for 
analysis. Tables 7 and 8 show description of 
regression analysis.

We observe that in both the cases (risk received 
and risk transmitted) market capitalization and 
interbank liability ratio have positive coefficient 
for regression proving they are positively corre-
lated. This result is consistent with the propositions 
by Bassel committee. In case of Risk Received 
within the Japanese Banks we see that inter liability 
ratio is statistically significant from Table 7. In the 
case of risk received from overseas banks the coef-
ficient of market cap is not significant however 
inter liability ratio is. For transmission of risk 
Table 8 depicts that both market capitalization 
and inter liability ratio are significant. The relation 
between the results obtained and the balance sheet 
variables supports our approach.

Figure 3. The directed network representation of the tail risk 
interconnectedness between the Japanese banks. Each node repre-
sents the listed banks and the width of the edge is directly propor-
tional to the magnitude of risk emitted from one bank to another.

Figure 4. The directed network representation of tail risk contagion 
between Japanese banks corresponding to threshold = 0.018. The 
risks which are less than 0.018 are omitted out and the persisting 
strong connections are shown.

Figure 5. The directed network representation of tail risk con-
tagion from US banks to Japanese banks corresponding to 
threshold = 0.018.
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Rolling window analysis
To study the spillover effects among the institutes we 
execute a rolling window analysis of the tail risk 
interconnectedness. To effectively catch COVID-19 
and the time periods of several other economic dis-
tresses we choose the rolling window size to be 250  
days which is also the standard trading days in a year. 
Figure 6 exhibits the trend shown by total connected-
ness (Equation 25) within the Japanese banks over the 

years. A high magnitude of total connectedness is 
observed during the period of 2010–2011. This is 
the effect of great tsunami that hit Japan in 2011 
due to earthquake. It deeply affected the whole finan-
cial system across the country. From 2016 onwards, 
the total connectedness went down, this is probably 
due to starting increment in taxes by government and 
negative interest rate started by Bank of Japan (BOJ). 
Starting after 2019, we again see a spike which can be 
simply accounted for the COVID-19 outbreak 
through out the world. This was the most cata-
strophic event badly affecting the markets and bank-
ing systems. Takahashi and Yamada (2021) showed 
that during COVID, Japanese firms which experi-
enced international exposure showed less abnormal 
returns than which were not. This shows that the 
spillover effects are stronger within the national lim-
its. From the mentioned observations, we conclude 

Table 5. The description of listed banks in terms of risk received, risk transmitted within the national and international domain. Also 
presents information on market capitalization and total assets (both in billion Japanese yen), inter asset ratio and inter liability ratio.

Bank Market Cap Asset Ratio Liability Ratio Total Assets Risk Received (US) Risk Transmitted Risk Received

BOJ 30.85000 0.00284 0.16591 735.1166 0.16540 0.16430 0.16830
MUFG 18534.65740 0.00289 0.05798 386.780 0.15040 0.21400 0.15850
SMFG 11930.07504 0.00298 0.10865 270.4290 0.16530 0.20230 0.15640
MZF 7792.00628 0.00218 0.07709 254.256 0.17410 0.18890 0.18050
SMTH 2419.97840 0.00277 0.24802 690.230 0.17160 0.12140 0.17040
RHC 2295.29913 0.00214 0.07992 74.813 0.16810 0.16910 0.17070
AZB 286.09708 0.00121 0.09513 7.1840 0.16580 0.07900 0.17470
CHB 928.27950 0.00305 0.10820 19.788 0.16460 0.19830 0.16070
HFG 243.41369 0.00133 0.09397 16.173 0.16270 0.19170 0.16190
SVB 352.14291 0.01437 0.11046 1.3120 0.17360 0.14160 0.16850

Table 6. The description of listed banks of US in terms of market capitalization and total 
assets (both in billion US dollars), inter asset ratio and inter liability ratio.

Bank Market Cap Asset Ratio Liability Ratio Total Assets

JPMC 568.39782 0.01279 0.11264 3875.393
BOA 295.70172 0.00834 0.10512 3180.151
WFGO 201.82051 0.00991 0.11357 1932.468
CITI 119.38898 0.00383 0.13437 2411.834
PNC 62.31048 0.00993 0.12952 561.58
GSG 133.75381 0.00519 0.20300 1641.594
TFC 50.84788 0.00204 0.11150 535.349
COFC 54.17163 0.01021 0.10308 478.464
TDB 106.08992 0.00551 0.20532 1957.024
USB 67.92689 0.00818 0.09485 663.491

Table 7. Description of linear regression analysis showing how risk received is dependent on market capitalization, 
interbank asset (I. asset) ratio and interbank liability (I. liability) ratio.

Risk Received Among Japanese Banks From US banks

Variables coef t value p-value coef t value p-value

Market cap 5.234e-06 1.740 0.125 5.018e-06 1.743 0.125
I. asset ratio 5.4301 1.040 0.333 5.8467 1.170 0.280
I. liability ratio 0.9384 4.253 0.004 0.9318 4.412 0.003

Table 8. Description of linear regression analysis showing how 
risk transmitted is dependent on market capitalization, inter-
bank asset (I. asset) ratio and interbank liability (I. liability) ratio.

Risk Transmitted Among Japanese Banks

Variables coef t value p-value

Market cap 9.059e-06 2.541 0.039
I. asset ratio 5.2514 0.848 0.424
I. liability ratio 0.7889 3.017 0.019
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that during the time of economic distress the total 
connectedness rises up and vice-versa. Skipping next 
to post-COVID period (after 2020) we observe sud-
den fall in the trend. All the economic activities 
resumed in normal fashion and hence system risk 
went down. Referring to Figure 7, we see that the 
total risk received by Japanese banks from the US 
banks also went up during the COVID-19 period. 
This was anticipated due to global impact of 
COVID to all the banks.

Banks need to be ready for a cascade effect in 
case of pandemics and other international calami-
ties. As they falter, international financial institu-
tions become more dangerous for one another. If 
banks have a greater understanding of how external 

shocks spread across the banking system, they will 
be more capable of managing these higher risks. 
This may mean preparing for an increase in loan 
defaults or increasing liquidity in unpredictable 
economic times. Banks and authorities can identify 
times of increased risk, such as during financial 
crises, when the overall risk throughout the system 
increases dramatically, by putting this rolling win-
dow strategy into practice.

Dynamic risk analysis
To assess the dynamic risk emitted and trans-
mitted in the rolling windows, we look at some 
results in the form of heat-map to get visual 
estimation of the magnitude. Figures 9 and 8 

Figure 6. Total connectedness among the Japanese banks vary-
ing with 250 days time interval from the year 2010 to 2024.

Figure 7. Total risk received from US banks to Japanese banks 
varying with 250 days time interval from the year 2010 to 2024.

Figure 8. Risk transmitted by the Japanese banks to themselves over the course of years within 250 days interval.
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show the analysis of risk received and trans-
mitted within the Japanese banks respectively. 
SMFG, MZF, BOJ and SVB are the highest risk 
transmitters during the 2011 period of natural 
calamity. We again observed high temperature 
values during the COVID-19 period. During 
that time MUFG transmitted the highest risk 
to other Japanese bank followed by SVB. There 
are specifically two high temperature regions 
through out the course of years as also described 
in the total connectedness plot. Figure 9 also 
depicts that banks receive high amount of risks 
during economic crisis. MUFG, SMTH and AZB 
are the banks which received the highest amount 
of risks during the 2019 to 2020 period. During 
the unfortunate event of tsunami MUFG and 
SMFG were the highest risk receivers.

IV. Conclusion

In this work we propose an interpretable LSTM- 
based approach using the model named IMV- 
LSTM to estimate the tail risk contagion among 
the Japanese banks and overseas banks at US. We 
primarily focus on the 5% quantile level of the left 
tail. IMV-LSTM works in multidimensional space 
and accounts for the potential linearity and non- 
linearity in the tail risk contagion metrics. An indi-
cator Dijj is presented which is equally harnessed 
from the linear and non-linear settings of the 

model taking all the numerical dependencies like 
variable importance and rate of variation between 
the institutes and the system. Institutes with high 
tail risk connectedness are worth attention by the 
regulators. Gofman (2017) stated that such insti-
tutes can be too interconnected to fail. We find that 
institutes with large market capitalization are more 
prone to receive and transmit tail risk to other 
institutes. Large banks in Japan like MUFG, 
SMFG, SMTH, etc., are the ones which are highly 
susceptible to risks.

From the 2011 tsunami crisis we observe that 
MZF and RHC transmitted the high risk to others. 
Talking about the risk received from US banks, we 
conclude that global economic distress affects the 
banking systems due to good linkage due to which 
during the COVID period the risk reception from 
international banks soared high. Before this not 
much research was done on impact of COVID-19 
on Japan’s banking system. Our work depicted that 
MUFG received that largest risk during COVID 
times and results are intuitively and economically 
consistent.

Rare, severe events (tail risks) threaten big banks 
and the financial system. These risks quickly spread 
between connected banks. To prevent this ‘conta-
gion’, banks need better risk management. This 
means anticipating and assessing risks, then using 
tools like reserves or diversification to reduce them. 
But focusing just on individual risks isn’t enough. 

Figure 9. Risk received by the Japanese banks from themselves over the course of years within 250 days interval.
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By understanding how banks are connected, they 
can identify threats that could crash the entire 
system. This knowledge allows for targeted risk 
management, like reducing exposure to risky 
banks. In short, improved, interconnected risk 
management is vital for banks to protect them-
selves and the system from financial crises.

Regulators should consider how connected banks 
are, not just individual risk. Banks with high ‘tail risk 
connectedness’ (heavily reliant on borrowing and 
lending with others) are especially worrisome. 
These ‘too interconnected to fail’ banks could cause 
major financial crises if they collapse. Regulators 
need to focus on these connections and tailor rules 
to address them. For highly connected banks, this 
might mean requiring more capital reserves to han-
dle unexpected events. Rising of total connectedness 
is a sign of financial distress. Accuracy in determina-
tion of tail risk interconnectedness is a very crucial 
aspect in financial networks of banks and deep 
learning based neural networks can do so.

In future, the inclusion of other financial fac-
tors (Dew-Becker 2022) and with better and 
advanced machine learning models results can 
be further improved. More explainable models 
can also help in formation of robust metrics. 
Currently, due to constraints on data availability 
on the Chinese banking system from our end, 
the study inhibits to the domestic Japanese 
financial system and its linking with the US 
banking systems. For using IMV-LSTM, the 
data needs to be presented in sequential form 
hence, the choice of appropriate sliding window 
still remains a hyper-parameter to be played 
around with. Given this deep learning approach, 
cross-validation methods for optimal neural 
architecture determination are time consuming. 
The variable importance as presented in IMV- 
LSTM is stochastic in nature unlike of tree- 
based methods of LASSO methods which are 
deterministic. This can be improved in future 
with deterministic models with accompanied 
with explainable nature fit for sequential data.
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