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A B S T R A C T

Multimaterial problems in linear and nonlinear elasticity are some of the least explored
using mixed finite element formulations with higher-order elements. The fundamental issue in
adapting the mixed displacement–pressure formulations with linear and higher-order continuous
elements for the pressure field is their inability to capture pressure and stress jumps across
material interfaces. In this paper, for the first time in literature, we perform comprehensive
studies of multimaterial problems in elasticity consisting of compressible and incompressible
material models using the mixed displacement–pressure formulation to assess the performance
of different element types in accurately resolving pressure fields within the domains and
pressure jumps across material interfaces. In particular, inf–sup stable displacement–pressure
combinations with element-wise discontinuous pressure for triangular and tetrahedral elements
are considered and their performance is assessed along with the Q1/P0 element and Taylor–
Hood elements using several numerical examples. The results show that Taylor–Hood elements
fail to capture the stress jumps due to the continuity of DOFs across elements, the Crouzeix–
Raviart (P2b/P1dc) element yields substantially poor pressure fields despite a significant
increase in pressure degrees of freedom and that the P3/P1dc element produces superior quality
results fields when compared with the P2b/P1dc element.

1. Introduction

Elasticity problems consisting of multiple materials are ubiquitous in nature, e.g., biological tissues and man-made composites.
For rubber-like polymers and soft tissues, the stress–strain relation is defined by hyperelastic models, which also form the
building blocks for the constitutive relations for soft multifunctional composites such as electroactive polymers [1], magnetoactive
polymers [2], hydrogels [3], etc. The typical deformation behaviour of materials, in general, can range from the compressible regime
with significant volumetric changes to the incompressible regime with zero volumetric change.

While compressible materials are relatively straightforward to simulate using pure displacement formulations, incompressible
hyperelastic models require sophisticated finite element formulations for computing accurate numerical results. Formulations such
as 𝑭 -bar formulation [4], average nodal strain formulation [5], reduced integration method with hourglass control [6], enhanced-
strain method [7], enhanced assumed strain (EAS) methods [8], energy-sampling stabilisation [9], smoothed FEM [10–12] etc., that
take the contribution from the volumetric part of the strain energy function into the stiffness matrix end up being computationally
expensive due to the increased ill-conditioning of the resulting stiffness matrix as the incompressibility limit is approached, that is,
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as Poisson’s ratio approaches 0.5. For simulating the truly incompressible material models accurately, mixed displacement–pressure
formulation, also referred to as the hybrid formulation, is the only viable option.

In the mixed displacement–pressure formulation, the pressure field acts as a Lagrange multiplier for enforcing the incompress-
bility constraint [13–17]. Other variants of mixed formulations formulate the problem by adding the difference in pressure as

least-squares term to the total potential energy [18]. To overcome the issues with solving the saddle-point matrices resulting
rom the mixed displacement–pressure formulation and also enable the use of equal-order interpolation for the displacement and
ressure fields, pressure-stabilised formulations inspired by the developments in computational fluid dynamics have been adapted for
lasticity problems [19–35]. Recent efforts on mixed displacement–volumetric strain formulation [36,37] follow similar stabilisation
o overcome volumetric locking.

The majority of mixed displacement–pressure formulations with inf–sup stable elements such as Taylor–Hood (P2/P1 and Q2/Q1)
elements [13,38] and Bézier family [16], subdivision stabilised NURBS elements [15], and mixed stabilised formulations [19,24,27],
have been studied extensively for problems with a single material. However, problems of practical interest often consist of multiple
materials, requiring numerical methods that are applicable to such problems. A fundamental requirement in simulating solid
mechanics problems with multiple materials is accurately capturing the stress discontinuities across material interfaces. While the
mixed displacement–pressure formulation with the Q1/P0 element (linear quadrilateral/hexahedral for displacement and element-
wise constant for pressure) is readily applicable to multimaterial problems, higher-order elements are not so readily adaptable
for problems with multiple materials. Although the Taylor–Hood family of elements satisfy the inf–sup stability condition, their
straightforward applicability is limited to incompressible solid mechanics problems with a single material. For multi-material
problems, direct application of the Taylor–Hood elements results in incorrect pressure (and hence stress) values at the material
interfaces. This is due to the continuity of pressure degrees of freedom (DOFs) across elements, which makes it impossible to capture
pressure (and hence stress) jumps at material interfaces without additional effort.

To accurately resolve pressure jumps at the material interfaces using linear or higher-order elements for pressure, the pressure
DOFs for the elements sharing a material interface must be duplicated, as done in Kadapa et al. [3]. However, such an approach
of duplicating pressure DOFs is only possible to implement with knowing the additional information, such as the area/volume the
element is attached to. Note that we cannot prepare the duplicate nodes based on the material information alone, as disjointed
locations can share the same material number, for example, particles distributed in a matrix. Moreover, the approach of duplication
of pressure DOFs is challenging to implement in parallel codes for distributed memory architectures based on a message-passing
interface; this requires a significant amount of data transfer among processes. An alternative is to generate non-matching meshes for
each component, but this requires a contact formulation to enforce the displacement continuity, which adds unnecessary overhead.
Therefore, pressure spaces must be discontinuous to accurately resolve the pressure jumps across material interfaces.

Although the well-known Q1/P0 element [17,39] is readily adaptable to such problems, its lack of inf–sup stability and lower-
order nature forces one to use extremely finer meshes for accurate results [1]. Among higher-order elements with discontinuous
pressure spaces, the Crouzeix–Raviart element (P2b/P1dc - quadratic triangular/tetrahedral element with a cubic bubble for
displacements and linear element-wise discontinuous space for pressure) [40–42] and P3/P1dc element (cubic triangular/tetrahedral
element for displacements and linear element-wise discontinuous space for pressure) [42,43] are of particular interest because they
allow for the easy of generation of triangular and tetrahedral meshes for complex geometries. However, these elements have not
been explored in the context of nonlinear elasticity problems. Motivated by the need to accurately simulate nonlinear elasticity
problems consisting of multiple materials of which one or all materials are incompressible, in this work, we evaluate the accuracy
and performance of P2b/P1dc and P3/P1dc elements in the context of linear and nonlinear elasticity problems, particularly those
made up multiple materials, for the first time in literature to the best of our knowledge. The accuracy of results is evaluated by
calculating error norms for the examples of thick-walled cylinders and spheres made of linear elastic materials and subjected to
internal pressure. The performance of the elements is further demonstrated by studying benchmark examples and their extensions
in nonlinear elasticity with hyperelastic materials.

2. Kinematics, strain and stress measures and constitutive relations

We consider an arbitrary solid body with 0 as the reference configuration and 𝑡 as the current configuration the body assumes
under the action of external loads. A nonlinear deformation map  ∶ 0 → 𝑡 takes the point 𝑿 in the reference configuration,
0, to the point 𝒙 in the current configuration, 𝑡, so that the displacement is 𝒖 = 𝒙 −𝑿. Assuming that the map  is smooth and

nvertible so that the deformation gradient 𝑭 is well defined. 𝑭 and its determinant 𝐽 are given as

𝑭 ∶= 𝜕
𝜕𝑿

= 𝜕𝒙
𝜕𝑿

= 𝑰 + 𝜕𝒖
𝜕𝑿

, 𝐽 ∶= det(𝑭 ), (1)

here 𝑰 is the second-order identity tensor.
The right Cauchy–Green deformation tensor, 𝑪, the Green–Lagrange strain tensor, 𝑬, and the infinitesimal strain tensor, 𝜺, are

defined as

𝑪 = 𝑭 T 𝑭 , (2)

𝑬 = 1
2
[𝑪 − 𝑰] , (3)

𝜺 = 1
2
[

(∇𝒖)T + ∇𝒖
]

. (4)
2 
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In the case of truly incompressible materials in the finite strain regime, the deformation of the solid is such that the total volume
hange at any point in the domain is zero. This acts as a constraint on the displacement field that needs to be solved in the elasticity
roblem. Mathematically, the incompressibility constraint in the finite strain regime is given as,

𝐽 = 1. (5)

To model hyperelastic materials in the incompressible finite strain regime, the deformation gradient is decomposed into deviatoric
nd volumetric components as

𝑭 = 𝑭 vol 𝑭 dev, (6)

here

𝑭 vol ∶= 𝐽 1∕3 𝑰 , and 𝑭 dev ∶= 𝐽−1∕3𝑭 , (7)

nd the modified version of the deformation gradient is defined as

𝑭 ∶= 𝐽−1∕3 𝑭 . (8)

Accordingly, the modified versions of the right Cauchy–Green tensor and the Green–Lagrange strain tensors are given as

𝑪 ∶= 𝑭
T
𝑭 (9)

𝑬 ∶ 1
2

[

𝑪 − 𝑰
]

(10)

The nonlinear behaviour of soft polymers and soft biological tissues is defined by using hyperelastic models in the form of strain
energy density functions. For nearly incompressible materials, the strain energy functions for hyperelastic models are assumed to
be split into deviatoric and volumetric parts as,

𝛹 (𝑪 , 𝐽 ) = 𝛹dev(𝑪) + 𝛹vol(𝐽 ). (11)

A wide variety of functions for deviatoric and volumetric are available in the literature. In this work, Neo-Hookean and Mooney–
Rivlin models are considered for the deviatoric part.

3. Mixed displacement–pressure formulation in small strains

In this work, the mixed formulation in small strains is tuned for linear isotropic elastic materials. For the mixed displacement–
pressure formulation in small strains, the infinitesimal strain tensor is decomposed into deviatoric and volumetric parts as

𝜺 = 𝜺dev + 𝜺vol = �̄� + 𝜺vol (12)

with

𝜺vol = 𝜀𝑀𝑀 𝑰 = 𝑢𝑀,𝑀 𝑰 , (13)

�̄� = 𝜺dev = 𝜺 − 1
3
𝑢𝑀,𝑀 𝑰 (14)

where the subscripts 𝐼 , 𝐽 and 𝑀 denote the coordinate components, and the repeated index means summation. For example,
𝜀𝑀𝑀 = 𝑢𝑀,𝑀 = 𝜕𝑢𝑋

𝜕𝑋 + 𝜕𝑢𝑌
𝜕𝑌 + 𝜕𝑢𝑍

𝜕𝑍 .
With 𝑝 as the additional unknown, the Cauchy stress for linear elastic material for the mixed formulation is calculated as

𝝈 = �̄� + 𝑝 𝑰 = 2𝜇 �̄� + 𝑝 𝑰 (15)

and in component form as

𝜎𝐼𝐽 = 𝜎𝐼𝐽 + 𝑝 𝛿𝐼𝐽 = 2𝜇 𝜀𝐼𝐽 + 𝑝 𝛿𝐼𝐽 (16)

For compressible materials (𝜈 < 0.5), hydrostatic pressure, 𝑝, is related to the volumetric strain via the relation

𝑝 = 𝜅 𝜀𝑣 (17)

here 𝜅 is the bulk modulus. For incompressible materials, 𝑝 acts as a Lagrange multiplier enforcing the volumetric constraint

𝜀𝑣 = 0. (18)

Considering both compressible and incompressible materials, the total potential energy for the mixed displacement–pressure
ormulation in small strains can be written as

𝛱(𝒖, 𝑝) =
[ 1 ∇𝒖T �̄� + 𝑝 [𝜀𝑣 −

𝑝
]
]

d𝑉 −𝛱ext, (19)
∫0
2 2𝜅
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where

𝛱ext = ∫0

𝒖T 𝒇 0 d𝑉 + ∫𝜕N
0

𝒖T 𝒕0 d𝐴, (20)

is the energy contribution from the external body force, 𝒇 0, and traction, 𝒕0.
Following the variational calculus, the first variation (𝛿()) and second variation (𝑑()) of 𝛱 are

𝛿𝛱 = ∫0

[

𝛿𝑢𝐼,𝐽 �̄�𝐼𝐽 + 𝛿𝑢𝐼,𝐽 𝑝 𝛿𝐼𝐽 + 𝛿𝑝 𝑢𝑀,𝑀 −
𝑝
𝜅
𝛿𝑝
]

− 𝛿𝛱ext (21)

𝑑(𝛿𝛱) = ∫0

[

𝛿𝑢𝐼,𝐽 C𝐼𝐽𝐾𝐿 𝑑𝑢𝐾,𝐿 + 𝛿𝑢𝐼,𝐽 𝛿𝐼𝐽 𝑑𝑝 + 𝛿𝑝 𝛿𝐾𝐿 𝑑𝑢𝐾,𝐿 − 1
𝜅
𝛿𝑝 𝑑𝑝

]

(22)

where

C𝐼𝐽𝐾𝐿 =
𝜕�̄�𝐼𝐽
𝜕𝑢𝐾,𝐿

= 𝜇 𝛿𝐼𝐾 𝛿𝐽𝐿 + 𝜇 𝛿𝐼𝐿 𝛿𝐽𝐾 − 2
3
𝜇 𝛿𝐼𝐽 𝛿𝐾𝐿, (23)

is the fourth-order elasticity tensor.
Using the finite element approximations for the solution variables and their variations,

𝒖 = 𝐍𝒖 𝐮, 𝑝 = 𝐍𝑝 𝐩, (24)

𝛿𝒖 = 𝐍𝒖 𝛿𝐮, 𝛿𝑝 = 𝐍𝑝 𝛿𝐩, (25)

where 𝐍𝒖 and 𝐍𝑝 are the basis functions, respectively, for the displacement and pressure fields, and 𝐮 and 𝐩, respectively, are the
nodal degrees of freedom (DOFs), respectively, for the displacement and pressure fields, the coupled matrix system for the mixed
formulation can be written as

[

𝐊𝒖𝒖 𝐊𝒖𝑝
𝐊𝑝𝒖 𝐊𝑝𝑝

]{

𝐮
𝐩

}

=
{

𝐅𝒖
𝟎

}

(26)

where

𝐊𝒖𝒖 = ∫0

𝐆T
0 𝗖𝐆0 d𝑉 , (27a)

𝐊𝒖𝑝 = ∫0

𝐃T
0 𝐍𝑝 d𝑉 = 𝐊T

𝑝𝒖 (27b)

𝐊𝑝𝑝 = −∫0

1
𝜅
𝐍T
𝑝 𝐍𝑝 d𝑉 (27c)

𝐅𝒖 = 𝐅ext = ∫0

𝐍T
𝒖 𝒇 0 d𝑉 + ∫𝜕N

0

𝐍T
𝒖 𝒕0 d𝐴, (27d)

where 𝗖 is the fourth-order elasticity tensor (C) expressed in the matrix form. 𝐆0 and 𝐃0 are the gradient–displacement and
divergence–displacement matrices with respect to the reference configuration, which, for a single basis function, 𝑁𝒖, are given
as

𝐆0 =

⎡

⎢

⎢

⎢

⎣

𝜕𝑁𝒖
𝜕𝑋 0 0 𝜕𝑁𝒖

𝜕𝑌 0 0 𝜕𝑁𝒖
𝜕𝑍 0 0

0 𝜕𝑁𝒖
𝜕𝑋 0 0 𝜕𝑁𝒖

𝜕𝑌 0 0 𝜕𝑁𝒖
𝜕𝑍 0

0 0 𝜕𝑁𝒖
𝜕𝑋 0 0 𝜕𝑁𝒖

𝜕𝑌 0 0 𝜕𝑁𝒖
𝜕𝑍

⎤

⎥

⎥

⎥

⎦

T

, (28)

𝐃0 =
[

𝜕𝑁𝒖
𝜕𝑋

𝜕𝑁𝒖
𝜕𝑌

𝜕𝑁𝒖
𝜕𝑍

]

. (29)

4. Mixed displacement–pressure formulation in finite strains

We adapt the mixed displacement–pressure formulation that is recently proposed by Kadapa and Hossain [17] because of its
advantage in yielding symmetric global stiffness matrices irrespective of the volumetric energy function. Following Kadapa and
Hossain [17], the total energy functional for the mixed displacement–pressure formulation in the finite strain regime is given as,

𝛱(𝒖, 𝑝) = ∫0

[

𝛹dev(𝑪) + 𝛹𝑝(𝐽 , 𝑝)
]

d𝑉 −𝛱ext , (30)

where 𝛹𝑝 is the generic energy functional that accounts for the effect of volumetric deformation in the compressible as well as
incompressible regime while considering arbitrary volumetric energy function. 𝛹𝑝 enforces the incompressibility constraint 𝐽=1
using the Lagrange multiplier approach for the truly incompressible case while it uses a more generic constraint by incorporating
the volumetric energy function 𝛹vol [17]. For the generic case, we have 𝛹𝑝(𝐽 , 𝑝) in the perturbed Lagrangian form as

𝛹 (𝐽 , 𝑝) = 𝑝
[

𝐽 − 𝐽 −
𝜗 𝑝 ] (31)
𝑝 2

4 
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with 𝑝 as the Lagrange multiplier. 𝐽 and 𝜗 are calculated using

𝐽 = 𝐽𝑛 −

𝜕𝛹vol(𝐽 )
𝜕𝐽

|

|

|

|𝐽𝑛

𝜕2𝛹vol(𝐽 )
𝜕𝐽2

|

|

|

|𝐽𝑛

; 𝜗 = 1
𝜕2𝛹vol(𝐽 )

𝜕𝐽2

|

|

|

|𝐽𝑛

, (32)

with 𝐽∙ = det (𝑭 (𝒖∙)). The subscript 𝑛 in Eq. (32) denotes the previously converged load step. From the generic case in (31), we can
recover the truly incompressible case by setting 𝐽 = 1 and 𝜗 = 0 based on the user input. The reader is referred to Kadapa and

ossain [17] for the comprehensive details on the mixed formulation and its demonstrated advantages using benchmark numerical
xamples.

By taking the first variation (𝛿) of the total energy functional given in Eq. (30), we get

𝛿𝛱 = ∫0

[

𝛿𝑢𝑖,𝑗
[

𝜎𝑖𝑗 + 𝑝 𝛿𝑖𝑗
]

𝐽 + 𝛿𝑝
[

𝐽 − 𝐽 − 𝜗 𝑝
]

]

d𝑉 − 𝛿 𝛱ext . (33)

Using the finite element approximations for the displacement and pressure fields and their variations in (24), the semi-discrete
form for the mixed formulation in finite strains can be written as,

𝐑𝒖 = ∫𝑡

𝐆T 𝝈 d𝑣 − 𝐅ext = 𝟎, (34a)

𝐑𝑝 = ∫0

𝐍T
𝑝

[

𝐽 − 𝐽 − 𝜗 𝑝
]

d𝑉 = 𝟎, (34b)

where 𝝈 is the total stress and discrete gradient–displacement matrix with respect to the current configuration (𝐆) for a single basis
function is given as

𝐆 =

⎡

⎢

⎢

⎢

⎢

⎣

𝜕𝑁𝒖
𝜕𝑥 0 0 𝜕𝑁𝒖

𝜕𝑦 0 0 𝜕𝑁𝒖
𝜕𝑧 0 0

0 𝜕𝑁𝒖
𝜕𝑥 0 0 𝜕𝑁𝒖

𝜕𝑦 0 0 𝜕𝑁𝒖
𝜕𝑧 0

0 0 𝜕𝑁𝒖
𝜕𝑥 0 0 𝜕𝑁𝒖

𝜕𝑦 0 0 𝜕𝑁𝒖
𝜕𝑧

⎤

⎥

⎥

⎥

⎥

⎦

T

. (35)

We use the Newton–Raphson scheme to solve the set of nonlinear Eqs. (34a) and (34b) in an efficient manner. With 𝑛+1 and 𝑛
denoting the current and previously converged load steps, respectively, and 𝑘+1 and 𝑘 denoting the current and previous iterations
at the current load step, the displacement DOFs, 𝐮𝑛+1, and pressure DOFs, 𝐩𝑛+1, at the current iteration of the current load step are
computed as the iterative increments, 𝛥𝐮 and 𝛥𝐩, from the respective quantities at the previous iteration, 𝐮(𝑘)𝑛+1 and 𝐩(𝑘)𝑛+1, as

𝐮(𝑘+1)𝑛+1 = 𝐮(𝑘)𝑛+1 + 𝛥𝐮, (36a)

𝐩(𝑘+1)𝑛+1 = 𝐩(𝑘)𝑛+1 + 𝛥𝐩, (36b)

By adapting the Newton–Raphson scheme, we arrive at the coupled matrix system given as
[

𝐊𝒖𝒖 𝐊𝒖𝑝
𝐊𝑝𝒖 𝐊𝑝𝑝

]

{

𝛥𝐮
𝛥𝐩

}

= −
{

𝐑𝒖
𝐑𝑝

}

(37)

where

𝐊𝒖𝒖 = ∫𝑡

𝐆T 𝗲(𝒖(𝑘)𝑛+1, 𝑝
(𝑘)
𝑛+1)𝐆d𝑣, (38a)

𝐊𝒖𝑝 = ∫𝑡

𝐃T 𝐍𝑝 d𝑣 = 𝐊T
𝑝𝒖 (38b)

𝐊𝑝𝑝 = −∫0

𝜗𝐍T
𝑝 𝐍𝑝 d𝑉 (38c)

𝐑𝒖 = ∫𝑡

𝐆T 𝝈(𝒖(𝑘)𝑛+1, 𝑝
(𝑘)
𝑛+1)d𝑣 − 𝐅ext

𝑛+1, (38d)

𝐑𝑝 = ∫0

𝐍T
𝑝

[

𝐽 (𝑘)
𝑛+1 − 𝐽 − 𝜗 𝑝(𝑘)𝑛+1

]

d𝑉 , (38e)

here 𝗲 is material tangent tensor (e) expressed in the matrix form and 𝐃 is the divergence–displacement matrix with respect to
he current configuration, which, for a single basis function, 𝑁𝒖, is given as

𝐃 =
[

𝜕𝑁𝒖
𝜕𝑥

𝜕𝑁𝒖
𝜕𝑦

𝜕𝑁𝒖
𝜕𝑧

]

. (39)

Note that 𝐊𝒖𝒖 contains contributions from geometric and material nonlinearities.
Following the derivation above, the effective first Piola–Kirchhoff stress tensor (𝑷 ) for the mixed formulation is defined as

𝑷 ∶=
𝜕𝛹dev(𝑪)

+ 𝑝 𝐽 𝑭 −T = 𝑷 + 𝑝 𝐽 𝑭 −T. (40)

𝜕𝑭

5 
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Fig. 1. A typical interface between two domains made of materials with different material properties.

In the above equation, deviatoric component of the first Piola–Kirchhoff stress tensor, 𝑷 is computed solely from the deviatoric part
of the strain energy function, 𝛹dev. From 𝑷 , the Cauchy stress tensor becomes,

𝝈 ∶= 1
𝐽
𝑷 𝑭 T = 1

𝐽
𝑷 𝑭 T + 𝑝 𝑰 . (41)

The material tangent tensor (e) of order four is computed as

e𝑖𝑗𝑘𝑙 =
1
𝐽
𝐹𝑗𝐽

𝜕𝑃 𝑖𝐽
𝜕𝐹𝑘𝐿

𝐹𝑙𝐿 + 𝑝
[

𝛿𝑖𝑗 𝛿𝑙𝑘 − 𝛿𝑖𝑙 𝛿𝑗𝑘
]

. (42)

.1. Finite element spaces

It is well-established that the finite element spaces for the displacement and pressure for the mixed formulation cannot be chosen
rbitrarily [41]. The combination of displacement–pressure spaces must satisfy the inf–sup condition, and a pressure space that is
ot inf–sup compatible with the displacement space yields spurious oscillations in the pressure field. Because of this restriction,
he number of such spaces for the displacement–pressure combination is limited. Among the class of finite elements that satisfy
he inf–sup condition, Taylor–Hood elements such as P2/P1, Q2/Q1, and their higher-order extensions are popular. Recently, their
xtensions to NURBS [15] and Bézier elements, e.g., BT2/BT1, BQ2/BQ1 and BW2/BW1 [16,44] have also been proposed. Among
he elements that do not satisfy the inf–sup condition, the Q1/P0 element is widely used because of its simplicity despite yielding a
heckerboard pattern for pressure.

However, Taylor–Hood elements pose some serious issues when applied to problems with material interfaces. To understand
his, let us consider a material interface between two domains with different material properties as shown in Fig. 1. The Young’s
oduli of the two domains are 𝐸1 and 𝐸2, and their respective Poisson’s ratio are 𝜈1 and 𝜈2. The displacement and pressure fields

or the first domain are 𝒖1 and 𝑝1, respectively, and the corresponding quantities for the second domain are 𝒖2 and 𝑝2. For the mixed
isplacement–pressure formulation, we can express the Cauchy stresses in the 𝑖th domain as

𝝈𝑖 = 2𝜇𝑖 �̄�(𝒖𝑖) + 𝑝𝑖 𝑰 , 𝑓𝑜𝑟 𝑖 = 1, 2. (43)

The displacement field should be continuous at the interface for the perfectly bonded interface. Moreover, the Euler and Cauchy
tress principle [45] mandates the continuity of tractions at the interface. The continuity of displacements is easily ensured by the
0 continuity of the adapted Lagrange family of elements for the displacement field. But, continuity of tractions (𝒕(𝒏) = −𝒕(−𝒏)), as
iven by

2𝜇1 �̄�(𝒖1) ⋅ 𝒏 + 𝑝1 𝒏 = 2𝜇2 �̄�(𝒖2) ⋅ 𝒏 + 𝑝2 𝒏 (44)

requires that the pressure fields 𝑝1 and 𝑝2 must be discontinuous across the interface. However, because of the 𝐶0 continuity of
pressure DOFs for the Taylor–Hood elements, to capture such discontinuities in the pressure field either the pressure DOFs at the
interface must be duplicated [3], which is quite cumbersome for generic problems in 3D, or a suitable contact formulation must
be employed if both displacement and pressure DOFs are duplicated or non-matching meshes are used, which adds unnecessary
overhead. As an alternative, we propose elements with discontinuous pressure spaces.

In this work, we consider the Q1/P0 element, the P2/P1 element, the Crouzeix–Raviart (P2b/P1dc) element [40], and the
P3/P1dc element. The P2b/P1dc element is a quadratic triangular/tetrahedral element enriched with a cubic bubble for the
displacement (P2b) and element-wise linear discontinuous element (P1dc) for pressure. In the P3/P1dc element, the displacement
field is approximated with cubic triangular/tetrahedral element and the pressure is approximated with element-wise linear
discontinuous spaces. The displacement and pressure nodes for the different 2D elements considered in this work are illustrated

in Fig. 2.
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Fig. 2. Different elements used. Markers ∙ and ○, respectively, denote displacement and pressure nodes.

. Numerical examples

We study the accuracy of Q1/P0, P2/P1, P2b/P1dc and P3/P1dc elements using several benchmark examples especially in
onlinear elasticity and compare their relative merits and issues. The formulations are implemented in an in-house code written in
++. The meshes are generated using GMSH [46] and the results are postprocessed using ParaView [47].

The strain energy functions considered in this work are given below.

• Neo-Hookean model

𝛹dev =
𝜇
2

[

𝐼1 − 3
]

(45)

• Mooney–Rivlin model

𝛹dev = 𝐶10
[

𝐼1 − 3
]

+ 𝐶01
[

𝐼2 − 3
]

(46)

• Volumetric energy function

𝛹vol = 𝜅
2

[𝐽 − 1]2 (47)

where 𝜇 is the shear modulus, 𝜅 is the bulk modulus, 𝐶01 and 𝐶10 are the material constants.

5.1. Thick-walled cylinder under internal pressure

In the first example, we consider a thick-walled cylinder subjected to internal pressure. The 2D model is assumed to be in
plane-strain condition. In addition to the simple thick-walled cylinder made of a single material, see Fig. 3(a), we also consider a
composite cylinder that is made of two different materials, see Fig. 3(b), to demonstrate the effectiveness of different element types in
capturing the pressure fields and stress discontinuities at the material interfaces. The radii of the circular portions are 𝑟𝑖 = 100 mm,
𝑟0 = 200 mm and 𝑟𝑚 = 150 mm. The material properties are: 𝐸 = 200 MPa, 𝜈 = {0.3, 0.5}, and 𝐸1 = 200 MPa, 𝐸2 = 20 MPa and
𝜈1 = 𝜈2 = {0.3, 0.5}. The pressure on the inner surface of the cylinder is 𝑝𝑖 = 0.1 MPa. Since the condensed form of Q1/P0 is not
applicable to perfectly incompressible cases, Poisson’s ratio for the Q1/P0 element is taken as 0.4999. The analytical solutions are
provided in Appendix.

5.1.1. Simple thick-walled cylinder
Convergence analysis is conducted with five uniform meshes shown in Fig. 4. Graphs of 𝐿2 relative error norms in displacement,

pressure and stress against mesh refinement are shown in Figs. 5 and 6, respectively, for 𝜈 = 0.3 and 𝜈 = 0.5. As shown, all four

lement types considered in the study yield the expected convergence rates. A closer look at the convergence rates and the magnitude

7 
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Fig. 3. Thick-walled cylinder: problem setup for simple and composite cylinders.

Fig. 4. Simple thick-walled cylinder: meshes used for the analysis.

of errors reveals a surprising outcome in the convergence of the pressure field. While the magnitude of errors in the displacement of
the P2b/P1dc element is only slightly lower than that of the P2/P1 element, the magnitude of error in the pressure field obtained
with the P2b/P1dc element is even higher than that of the Q1/P0 element, and at least an order of magnitude higher than that
of the P2/P1 element. The error magnitude of the pressure field obtained with the P2b/P1dc element is almost two orders higher
and the error magnitude of stress is one order of magnitude higher when compared with the P3/P1dc element, indicating a subpar
performance of the P2b/P1dc element despite a substantial increase in the number of pressure DOFs when compared with the
Q1/P0 and P2/P1 elements and while having the same number of pressure DOFs as that of the P3/P1dc element. The performance
of the P3/P1dc element is substantially superior to that of the P2b/P1dc element although both elements have the same number of
pressure DOFs.

The subpar performance of the P2b/P1dc element can be further understood through warped plots of the pressure field obtained.
As shown in Fig. 7, the pressure field obtained with the P2b/P1dc element is erratic as opposed to the smooth pressure fields obtained
with the P2/P1 and P3/P1dc elements.

5.1.2. Composite thick-walled cylinder
Similar convergence studies are conducted for the thick-walled cylinder made of two materials, referred to as the composite

cylinder henceforth, using five meshes shown in Fig. 8. Graphs of error norms are shown in Figs. 9 and 10 for two different values
of Poisson’s ratio for the same values of Young’s moduli, 𝐸1 = 200 MPa and 𝐸2 = 20 MPa. The graphs show the expected rate
of convergence for displacement, pressure and stress fields for the Q1/P0, P2b/P1dc and P3/P1dc elements. However, the rate of
convergence for the P2/P1 element deteriorates substantially in all the fields: the displacement convergence rate is one instead of
three and pressure and stress converge at a rate of 0.5 instead of two. This drop in convergence rates for the P2/P1 element is due
to the fact that the pressure nodes (and hence DOFs) are continuous across the elements. Therefore, the default implementation of
the P2/P1 element is incapable of capturing the pressure jumps across material interfaces, see Fig. 11(b). On the contrary, Q1/P0,
P2b/P1dc and P3/P1dc elements capture the pressure jumps accurately. However, within each cylindrical domain, the pressure
field obtained with the P2b/P1dc element (see Fig. 11(c)) shows the same erratic behaviour as observed in the case of the simple
8 
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Fig. 5. Simple thick-walled cylinder: 𝐿2 relative error norms of displacement, pressure and stress for 𝐸 = 200 MPa and 𝜈 = 0.3.

Fig. 6. Simple thick-walled cylinder: 𝐿2 relative error norms of displacement, pressure and stress for 𝐸 = 200 MPa and 𝜈 = 0.5.

Fig. 7. Simple thick-walled cylinder: warped plots of pressure (by a factor of 1000) obtained with Q1/P0, P2/P1, P2/P1dc and P3/P1dc elements for 𝐸 = 200 MPa
and 𝜈 = 0.5.
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Fig. 8. Composite thick-walled cylinder: meshes used for the analysis.

Fig. 9. Composite thick-walled cylinder: 𝐿2 relative error norms of displacement, pressure and stress for 𝐸1 = 200 MPa, 𝐸2 = 20 MPa and 𝜈1 = 𝜈2 = 0.3.

Fig. 10. Composite thick-walled cylinder: 𝐿2 relative error norms of displacement, pressure and stress for 𝐸1 = 200 MPa, 𝐸2 = 20 MPa and 𝜈1 = 𝜈2 = 0.5.

cylinder. The pressure field obtained with the P3/P1dc element is not only discontinuous at the material interface but also smoother
within each domain, as shown in Fig. 11(d).

At this point, it is worth highlighting the superior accuracy of the P3/P1dc element in all the fields. With only three additional
nodes for the displacement field when compared with the P2b/P1dc element, the convergence rates of displacement and pressure
(and stress) increase, respectively, by an order of one and 0.5, and at the same time the magnitudes of errors in all the quantities are
lower by at least one order when compared with the P2b/P1dc element. The additional computational cost of the P3/P1dc element
is worth it when we consider the accuracy of the results obtained, particularly pressure and stress fields.

5.2. Thick-walled composite sphere under internal pressure

We consider the thick-walled composite sphere to study the performance 3D versions of P2/P1, P2b/P1dc and P3/P1dc elements.
The radii of the spheres are 100, 150 and 200 mm. Due to the symmetry, only 1/8th of the sphere with symmetry boundary
conditions is considered for the analysis. The Young’s moduli of the inner and outer cylinders, respectively, are 𝐸1 = 200 MPa and
𝐸2 = 20 MPa, and the Poisson’s ratio is 𝜈1 = 𝜈2 = 0.5. Four meshes shown in Fig. 12 are used for the analysis, and the graphs
of displacement, pressure and stress fields are shown in Fig. 13. As shown, the error norms for all three element types show the
10 
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Fig. 11. Composite thick-walled cylinder: contours of plots of pressure (warped by a factor of 100) obtained with different element types for 𝐸1 = 200 MPa,
𝐸2 = 20 MPa and 𝜈1 = 𝜈2 = 0.5.

Fig. 12. Thick-walled composite sphere: meshes used for the analysis.

Fig. 13. Thick-walled composite sphere: 𝐿2 relative error norms of displacement, pressure and stress for 𝐸1 = 200 MPa, 𝐸2 = 20 MPa, and 𝜈1 = 𝜈2 = 0.5.

same trend as observed in the 2D case. The P2/P1 element fails to capture the pressure jumps accurately, and the P3/P1dc element
shows superior performance when compared with the P2b/P1dc element, yielding a higher convergence rate and lower magnitude
of errors. The contour plots of pressure presented in Fig. 14 for mesh 2 show the inability of the P2/P1 element to accurately capture
pressure jumps at the interface, and smoother pressure fields along with accurate pressure jumps obtained with the P3/P1dc element.

5.3. Cook’s membrane in 2D

We now consider the original and modified cases of the popular Cook’s membrane benchmark. The first case is the Cook’s
membrane problem with a single material, and the second case is the modified one with two materials with different material
properties, as shown in Fig. 15.

5.3.1. Cook’s membrane with single material
For this case, Young’s modulus is 𝐸 = 240.565 MPa and Poisson’s ratio is 𝜈 = 0.4999. As shown in Fig. 16, five meshes are used

for the analysis using triangular elements. Mapped meshes with corresponding number of elements per side are used for the Q1/P0
11 
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Fig. 14. Thick-walled composite sphere: contours of plots of pressure obtained with different element types using mesh 2.

Fig. 15. Cook’s membrane: setup of (a) single material case and (b) two material case.

Fig. 16. Cook’s membrane with a single material: meshes used for the analysis.

element. Only five load steps are used for the simulations with the Neo-Hookean model. The Y-displacement of point A with mesh
refinement using different element types is shown in Fig. 17 for linear elastic and Neo-Hookean materials. All the element types
converge with mesh refinement and match well with the reference values from the literature. Although the solution with the Q1/P0
element converges with mesh refinement, the pressure field obtained shows the well-known checkerboard pattern, see Fig. 18. The
pressure field obtained with P2/P1 and P3/P1dc elements is smoother than that obtained with the P2b/P1 element, consistent with
the results obtained in the thick-walled cylinder example.
12 
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Fig. 17. Cook’s membrane with a single material: convergence of Y-displacement of point A for 𝐸 = 240.565 MPa and 𝜈 = 0.4999 with (a) linear elastic material
and Neo-Hookean material. Reference values are from Kadapa et al. [15].

Fig. 18. Cook’s membrane with a single material: contours of pressure obtained with the Neo-Hookean model and different element types for 𝜈 = 0.4999.

5.3.2. Cook’s membrane with two materials
For the two-material version, two cases are considered. The Young’s modulus and Poisson’s ratio for case 1 are: 𝐸1 = 250 MPa,

𝐸2 = 2.5 MPa, 𝜈1 = 0.5 and 𝜈2 = 0.5. For case 2, 𝜈2 = 0.2 with other parameters being the same as those of case 1. The load value is
𝐹 = 1 N/mm for both cases.

The convergence of the Y-displacement of point A with respect to mesh refinement, as shown in Fig. 19, follows the same trend
for both cases. Interestingly, the P2/P1 and P3/P1dc elements converge from above, while Q1/P0 and P2b/P1dc elements converge
from below. Although the displacement solution obtained with all elements converges with mesh refinement, the pressure field
obtained with the P2/P1 element differs significantly at the interface due to the continuity of the pressure DOFs, see Fig. 20. Even
though P2b/P1dc and P3/P1dc elements capture the pressure jump accurately, the pressure field obtained with the P3/P1dc element
is smoother within each domain.

5.4. Block under compression in 3D

5.4.1. Block with a single material
We first consider the benchmark example of a homogeneous block under compression. Due to the symmetry of the boundary

and loading conditions, a quarter portion of the block with symmetry boundary conditions is modelled, as shown in Fig. 21(a). The
material model is the Neo-Hookean model with Young’s modulus of 240.565 MPa and a Poisson’s ratio of 0.4999. The problem
is studied using five meshes shown in Fig. 22, and the Z-displacement of point A as the percentage of compression is plotted in
Fig. 21(b) for different elements. As shown, accurate results are obtained with coarse meshes using P2b/P1dc and P3/P1dc elements.
From the contour plots of pressure presented in Fig. 23, we can see that the pressure field obtained with the P3/P1dc element is
smoother than that of the P2b/P1dc element.
13 
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Fig. 19. Cook’s membrane with two materials: convergence of Y-displacement of point A for 𝐸1 = 250 MPa, 𝐸2 = 2.5 MPa, 𝜈1 = 0.5 and (a) 𝜈2 = 0.5 and (b)
𝜈2 = 0.2.

Fig. 20. Cook’s membrane with two materials: contours of pressure obtained with the linear elastic material model and different element types.

Fig. 21. Block under compression: (a) problem setup, and (b) comparison of compression level obtained with different element types.
14 
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Fig. 22. Block under compression: plots of meshes with 2, 4, 8, 12 and 16 elements per side.

Fig. 23. Block under compression: contour plots of pressure obtained with different element types for the mesh with 12 elements per side.

Table 1
Multilayer block: material properties of different layers.
Layer Material model Material properties

Layer 1 Mooney–Rivlin 𝐶10 = 541.552 Pa, 𝐶01 = 100 Pa, 𝜅 = 10000 Pa
Layer 2 Neo-Hookean 𝜇 = 320.776 Pa, 𝜅 = 32000 Pa
Layer 3 Neo-Hookean 𝜇 = 160.388 Pa, 𝜅 = 16000 Pa
Layer 4 Neo-Hookean 𝜇 = 80.194 Pa, 𝜅 = 8000 Pa

5.4.2. Block with four layers
Next, we consider the block with four layers from Wu et al. [12]. The setup of the problem is shown in Fig. 24. The material

properties of each layer are tabulated in Table 1. The analysis is performed using two meshes shown in Fig. 24 with P2/P1, P2b/P1dc
and P3/P1dc elements. The first and second meshes consist of 627 and 3742 elements, respectively. The number of nodes for the
respective meshes are 1131 and 5935 for the P2 element, 1758 and 9677 for the P2b element, and 3475 and 18935 for the P3
element. The load is applied in five uniform increments. The deformed shapes are presented in Fig. 25. The graphs of Z-displacement
along the diagonal like AC presented in Fig. 26 show that the results obtained with different elements match well with the reference
solution obtained with finer meshes (48004 nodes) in Wu et al. [12]. The contour plots of the pressure field in Fig. 27 show that
P2b/P1dc and P3/P1dc elements capture the pressure jumps accurately while the P2/P1 element fails to do so.

5.5. Twisting of a layered column

We now consider the torsion of a square column with four layers. The problem setup and the meshes used for the analysis are
presented in Fig. 28. The material model is the incompressible Neo-Hookean with 𝐸 = 170 MPa for layers 1 and 3 and 𝐸 = 17 MPa
for layers 2 and 4. The simulations are carried out for one full rotation with a load step of 9 degrees. The deformed shapes and
contour plots of pressure obtained with the different element types at three different load steps are presented in Fig. 29. While
there is a negligible difference in the deformed shapes, the pressure field obtained with the P3/P1dc element is smoother within
the individual domains when compared with the P2b/P1dc element.

The wall times to complete 40 load steps with P2/P1, P2b/P1dc and P3/P1dc elements are, respectively, 75, 87 and 510 s using
the MUMPS direct solver on a single processor. It is understandable that P3/P1dc elements are computationally more expensive
than the P2/P1 and P2b/P1dc elements; however, the accuracy of results is substantially higher. P2b/P1dc element does offer a
compromise between the accuracy and computational cost while accurately maintaining the pressure and stress jumps across the
15 
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Fig. 24. Multilayer block: problem setup and meshes used.

Fig. 25. Multilayer block: deformed shapes and contour plots of the Z component of displacement obtained with different elements.

Fig. 26. Multilayer block: comparison of Z-displacement along the diagonal like AC obtained with P2/P1, P2b/P1dc and P3/P1dc elements against the reference
solution from [12].

material interfaces; however, the accuracy of pressure fields obtained within individual domains is subpar when compared with the
P3/P1dc element.
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Fig. 27. Multilayer block: contour plots of pressure obtained with different element types with mesh 2.

Fig. 28. Twisting of a layered column: (a) problem setup and (b) the mesh used for the simulation.

5.6. Twisting of a fibre-reinforced soft tissue

We now consider a soft tissue sample of length 5 mm and diameter 2 mm that is reinforced with fibres of diameter 0.4 mm placed
at (±0.3,±0.3) mm, as depicted in Fig. 30. The material model is the incompressible Neo-Hookean model with the shear modulus of
1 MPa and 10 MPa, respectively, for the matrix and fibre. The problem is simulated with Q1/P0, P2b/P1dc and P3/P1dc elements
using the meshes shown in Fig. 30 for a rotation of 360 degrees using increments of 9 degrees. The solution obtained with the Q1/P0
element is used as the reference. The deformed shapes at 180 and 360 degrees obtained with the Q1/P0 and P3/P1dc elements are
shown in Fig. 31. The contour plots of pressure presented in Figs. 32 and 33 clearly show that the pressure field obtained with the
P2b/P1dc element is significantly poor when compared with the P3/P1dc element.

5.7. Particle-filled soft composite

As the last example, we consider a soft matrix filled with particles. This example demonstrates the need for accurate and robust
tetrahedral elements since the generation of meshes with hexahedral elements for such problems is cumbersome. The matrix is a
cube of side length 1 mm and is filled with six spherical particles of radii 0.1, 0.12, 0.1, 0.12, 0.1 and 0.12 mm with their respective
centres at (0.25,0.6,0.1), (0.6, 0.5, 0.3), (0.6, 0.3, 0.7), (0.3, 0.3, 0.3), (0.3, 0.7, 0.3) and (0.7, 0.7, 0.7). The material model for the
matrix is incompressible Mooney–Rivlin with 𝑐1 = 0.375 and 𝑐2 = 0.125 MPa, and that for the particles is incompressible Neo-Hookean
with 𝜇 = 100 MPa. The face at 𝑋 = 0 is fixed, and a displacement of (0.8, 0, 0) mm is applied on the face at 𝑋 = 1 mm in increments
of 0.1 mm. The mesh used for the simulation is shown in Fig. 34.
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Fig. 29. Twisting of a layered column: deformed shapes and contour plots of pressure at 90 degrees ((a) and (b)), 270 degrees ((c) and (d)) and 360 degrees
((e) and (f)). In each subfigure: (Left) P2/P1, (Centre) P2b/P1dc and (Right) P3/P1dc.
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Fig. 30. Twisting of a fibre-reinforced soft tissue: problem setup and meshes used for the simulation.

Fig. 31. Twisting of a fibre-reinforced soft tissue: deformed shapes and contour plots of displacement magnitude.

There is a negligible difference in the displacements obtained with the P2b/P1dc and P3/P1dc elements. The deformed shapes
obtained with the P3/P1dc element at 0.2 mm and 0.8 mm of applied displacement are shown in Fig. 35. The pressure fields obtained
with P2b/P1dc and P3/P1dc elements show drastic differences, as presented in Figs. 36 and 37. The pressure fields obtained with the
19 
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Fig. 32. Twisting of a fibre-reinforced soft tissue: contour plots of pressure for the fibres.

Fig. 33. Twisting of a fibre-reinforced soft tissue: contour plots of pressure for the clipped domains.

P3/P1dc element are much smoother than those of the P2b/P1dc element, indicating better accuracy observed in the thick-walled
cylinder and sphere examples with linear elasticity.

6. Conclusions

We have assessed the performance of discontinuous pressure spaces based on triangular and tetrahedral elements in the context
of mixed displacement–pressure formulation for the simulation of multimaterial problems in linear and nonlinear elasticity. The
novel contribution of the present work is the adaptation of P2b/P1dc and P3/P1dc elements and extensive studies of their relative
advantages and disadvantages for problems in linear and nonlinear elasticity. The accuracy of different elements in accurately
resolving pressure jumps across material interfaces, as well as in capturing pressure fields within the individual material domains,
is assessed using several numerical examples.

The key observations from the results obtained in the present work are:

• The P2/P1 element, without any additional preprocessing, fails to capture pressure jumps across material interfaces due to
the continuity of pressure nodes/DOFs across element edges/faces.

• The magnitudes of error norms in pressure obtained with the P2b/P1dc element are higher than those obtained with the Q1/P0
element despite the P2b/P1dc element having significantly higher pressure DOFs.

• For the single material case, converting the P2/P1 element to the P2b/P1dc element by adding an extra node with a cubic
bubble function does not lower the displacement error norm significantly. However, surprisingly, the P2b/P1dc element yields
pressure fields of substantially poor quality despite a significant increase in pressure DOFs.

• Even though the P2b/P1dc element resolves the pressure jumps across material interfaces accurately, the accuracy of pressure
fields within the individual domain is poor. Despite having the same number of pressure DOFs, the magnitudes of error in
20 
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Fig. 34. Particle-filled composite: mesh used for the simulation.

Fig. 35. Particle-filled composite: deformed shapes at 0.2 mm and 0.8 mm of applied displacement obtained with the P3/P1dc element.

pressure obtained with the P2b/P1dc element are about two orders of magnitude higher when compared with the P3/P1dc
element. The superior accuracy of the P3/P1dc element is evident in the smoother pressure fields obtained with it, as shown
with the warped plots of the pressure field for the thick-walled cylinder example. These differences in the accuracy have a
substantial effect on the pressure fields obtained for the nonlinear elasticity problems, as demonstrated by the examples of
twisting of a layered column and fibre-reinforced soft tissue.

• While the computational cost of the P3/P1dc element is higher than that of the P2b/P1dc element, the accuracy of results
obtained with P3/P1dc is substantially better.

In conclusion, the present work offers significant insights into the performance of Q1/P0, P2/P1, P2b/P1dc and P3/P1dc elements
for simulating multimaterial problems in linear and nonlinear elasticity. While the Q1/P0 element is reasonably accurate and
competitive in terms of performance, the difficulty of mesh hexahedral generation for complex problems makes it less appealing for
practical problems. The P2b/P1dc element performs poorly, requiring finer meshes for accurate results. The P3/P1dc yields accurate
results using coarse meshes. We hope this work inspires further research on new element technologies for multimaterial problems
consisting of incompressible hyperelastic materials.
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Fig. 36. Particle-filled composite: contour plots of pressure for the particles at 0.2 mm and 0.8 mm of applied displacement.

Fig. 37. Particle-filled composite: contour plots of pressure on the clipped model (with a plane at 0.4 mm along the Y-axis) at 0.2 mm and 0.8 mm of applied
displacement.
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ppendix. Analytical solutions for the examples

.1. Simple thick-walled cylinder

The analytical solution for the simple thick-walled cylinder under internal pressure in plane-strain condition is given as

Radial stress ∶ 𝜎𝑟𝑟 = 𝐴 − 𝐵
𝑟2
, (A.1)

Hoop stress ∶ 𝜎𝜃𝜃 = 𝐴 + 𝐵
𝑟2
, (A.2)

Pressure ∶ 𝑝 =
2 (1 + 𝜈)𝐴

3
, (A.3)

Hoop strain ∶ 𝜀𝜃𝜃 = 1 + 𝜈
𝐸

[

[1 − 2𝜈] 𝐴 + 𝐵
𝑟2
]

, (A.4)

Radial displacement ∶ 𝑢𝑟 = 𝜀𝜃𝜃 𝑟 =
1 + 𝜈
𝐸

[

[1 − 2𝜈] 𝐴 𝑟 + 𝐵
𝑟

]

, (A.5)

with

𝐴 =
𝑝𝑖 𝑟2𝑖

𝑟2𝑜 − 𝑟2𝑖
, 𝐵 = 𝐴𝑟2𝑜 , (A.6)

where 𝑟 is the radial coordinate, 𝑟𝑖 is the inner radius, 𝑟𝑜 is the outer radius, 𝑝𝑖 is the internal pressure, 𝐸 is the Young’s modulus
nd 𝜈 is the Poisson’s ratio.

.2. Composite thick-walled cylinder

With the expressions for the inner and outer cylinders as

• For the inner cylinder (𝑟1 ≤ 𝑟 ≤ 𝑟𝑚)

𝜎𝑟𝑟1 = 𝐴1 −
𝐵1

𝑟2
, (A.7)

𝜎𝜃𝜃1 = 𝐴1 +
𝐵1

𝑟2
, (A.8)

𝑝1 =
2 (1 + 𝜈1)𝐴1

3
, (A.9)

𝜀𝜃𝜃1 =
1 + 𝜈1
𝐸1

[

[1 − 2𝜈1] 𝐴1 +
𝐵1

𝑟2
]

, (A.10)

𝑢𝑟1 =
1 + 𝜈1
𝐸1

[

[1 − 2𝜈1] 𝐴1 𝑟 +
𝐵1
𝑟

]

, (A.11)

• For the outer cylinder (𝑟𝑚 ≤ 𝑟 ≤ 𝑟𝑜)

𝜎𝑟𝑟2 = 𝐴2 −
𝐵2

𝑟2
, (A.12)

𝜎𝜃𝜃2 = 𝐴2 +
𝐵2

𝑟2
, (A.13)

𝑝2 =
2 (1 + 𝜈2)𝐴2

3
, (A.14)

𝜀𝜃𝜃2 =
1 + 𝜈2
𝐸2

[

[1 − 2𝜈2] 𝐴2 +
𝐵2

𝑟2
]

, (A.15)

𝑢𝑟 =
1 + 𝜈2 [

[1 − 2𝜈2] 𝐴2 𝑟 +
𝐵2

]

, (A.16)

2 𝐸2 𝑟
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the unknowns 𝐴1, 𝐴2, 𝐵1 and 𝐵2 can be calculated by solving the following boundary and interface conditions using symbolic
omputations in Octave.

𝜎𝑟𝑟1 (𝑟 = 𝑟𝑖) = −𝑝𝑖, (A.17)

𝜎𝑟𝑟2 (𝑟 = 𝑟𝑜) = 0, (A.18)

𝜎𝑟𝑟1 (𝑟 = 𝑟𝑚) = 𝜎𝑟𝑟2 (𝑟 = 𝑟𝑚), (A.19)

𝜀𝜃𝜃1 (𝑟 = 𝑟𝑚) = 𝜀𝜃𝜃2 (𝑟 = 𝑟𝑚). (A.20)

The expressions for the unknowns are quite complicated for the generic problem. However, simplified expressions and exact
values for the unknowns can be obtained for the given values of 𝑝𝑖, 𝑟𝑖, 𝑟𝑜, 𝑟𝑚, 𝐸1, 𝐸2, 𝜈1 and 𝜈2. For example, for 𝐸1 = 200, 𝐸2 =
20, 𝑟𝑖 = 100, 𝑟𝑚 = 150, 𝑟𝑜 = 200, 𝑝𝑖 = 1 and 𝜈1 = 𝜈2, we get

𝐴1 =
4 (27 − 20 𝜈1)
149 − 114 𝜈1

, 𝐵1 =
10000 (257 − 194 𝜈1)

149 − 114 𝜈1
,

𝐴2 =
8 (1 − 𝜈1)

149 − 114 𝜈1
, 𝐵2 =

320000 (1 − 𝜈1)
149 − 114 𝜈1

.3. Composite thick-walled sphere

Similar to the composite thick-walled cylinder, the solution for the composite thick-walled sphere can be obtained by using the
ollowing expressions for the radial stress (𝜎𝑟𝑟,), hoop stress (𝜎𝜃𝜃), pressure (𝑝), hoop strain (𝜀𝜃𝜃) and radial displacement (𝑢𝑟), and

using the boundary and interface conditions.

𝜎𝑟𝑟 = 𝐴 − 𝐵
𝑟3
, (A.21)

𝜎𝜃𝜃 = 𝐴 + 𝐵
𝑟3
, (A.22)

𝑝 = 𝐴, (A.23)

𝜀𝜃𝜃 = 1
𝐸

[

[1 − 2𝜈] 𝐴 + 1
2
[1 + 𝜈]𝐵

𝑟3
]

, (A.24)

𝑢𝑟 =
1
𝐸

[

[1 − 2𝜈] 𝐴𝑟 + 1
2
[1 + 𝜈]𝐵

𝑟2
]

. (A.25)
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