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Abstract: Tracking control of the output probability density function presents significant challenges,
particularly when dealing with unknown system models and multiplicative noise disturbances. To
address these challenges, this paper introduces a novel tracking control algorithm based on reinforce-
ment Q-learning. Initially, a B-spline model is employed to represent the original system, thereby
transforming the control problem into a state weight tracking issue within the B-spline stochastic
system model. Moreover, to tackle the challenge of unknown stochastic system dynamics and the
presence of multiplicative noise, a model-free reinforcement Q-learning algorithm is employed to
solve the control problem. Finally, the proposed algorithm’s effectiveness is validated through
comprehensive simulation examples.
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1. Introduction

The surge in interest in stochastic control stems from its applicability to diverse
real-world systems, including aerospace, chemical, textile, and maritime machinery [1,2].
Gaussian processes in control can be managed through mean and variance manipulation [3],
but non-Gaussian processes, such as particle scale distribution in paper processing [4],
flame shape dynamics [5], and chemical polymerization molecular weight distribution [6],
necessitate a more comprehensive approach. Wang’s 1996 innovation introduced probabil-
ity density function (PDF) control [7–9], utilizing B-spline functions to bypass the Gaussian
assumption limitations [10]. This has led to a range of stochastic control frameworks in both
theoretical and practical realms, particularly in target tracking, where systems often aim to
track distributions rather than values [11]. In detail, this method applies a B-spline model
to represent the system’s dynamic probability density function (PDF) by mapping the
weights of the B-spline function to a dynamic state–space model. This approach shifts the
focus from controlling the shape of the PDF to aligning the weights with predefined values.
Under this framework, numerous significant papers have been published. For example,
Luan’s output PDF control tackles static tracking [12]. However, the controller design
in most of the papers within this framework heavily relies on precise knowledge of the
PDF model. Specifically, it requires the state–space model, derived from the PDF via the
B-spline network, to be accurate for effective controller design. Meeting this requirement is
challenging in many real-world industrial systems, limiting the practical application and
development of this framework.
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Multiplicative noise, which poses significant challenges due to its signal-dependent
nature and non-linear characteristics, appears in various applications. However, a great
number of studies, including those utilizing the algorithms proposed under Wang’s frame-
work, do not account for the influence of multiplicative noise in their system modeling.
Although Yang’s fully probabilistic design under Wang’s framework addresses this issue
by incorporating multiplicative noise into the model [13], it necessitates precise knowledge
of the system’s model parameters. Consequently, there is still a gap between this method
and practical real-world applications.

Another important aspect often neglected in this framework is the consideration of
time-varying targets. In many industrial contexts, time-varying targets are essential and
present additional challenges for controller design. However, most studies within this
framework tend to overlook this factor, which further complicates the practical application
and effectiveness of the framework in real-world scenarios [9].

To address these barriers, this paper employs Wang’s B-spline framework to develop a
model-free control approach that enables dynamic weights to adapt to a time-varying target
pattern. In our design, we utilize Q-learning-based Linear Quadratic Tracking Control
(LQT) as a controller to achieve the tracking goal. Traditional LQT often struggle with
the complexities of real-world systems, highlighting the necessity for model-free control
strategies. Thus, reinforcement learning, particularly strategy iteration, is employed here to
handle control and scheduling tasks without requiring complete model information [14].
As a model-free technique, reinforcement learning optimizes control by learning under
given constraints [11,15]. The concept of L-Extra-Sampled (Les)-dynamics was introduced
in [16], providing a new perspective for addressing reinforcement learning problems in
partially observable linear Gaussian systems. However, the research in this paper pri-
marily focuses on linear Gaussian systems, which may limit the method’s applicability
to non-Gaussian systems. In [17], an algorithm based on Q-learning was proposed to
handle time-varying linear discrete-time systems with complete dynamic uncertainties. Al-
though the algorithm is model-independent, it may require more computational resources
to compute the Q-function and update the policy when dealing with high-dimensional
systems. Ref. [18] introduced extreme value theory into reinforcement learning, proposing a
new online and offline maximum entropy reinforcement learning update rule [19]. This rule
avoids the difficulty of estimating the maximum Q-value in continuous action space. In [20],
an efficient offline Q-learning method was proposed to solve the data-driven discrete-time
linear quadratic regulator problem. This approach does not require knowledge of the
system dynamic model and demonstrates advantages over existing methods in simulations.
In [21], a Q-learning based iterative learning control (ILC) framework for fault estimation
(FE) and fault-tolerant control (FTC) was proposed to address the actuator fault problem
in multiple-input multiple-output (MIMO) systems. However, traditional reinforcement
learning methods are inefficient, consuming significant time and requiring continuous
adjustment. The efficiency of reinforcement learning can be enhanced by integrating it with
optimal control techniques. For instance, in [22], the successful application of Q-learning to
handle discrete systems with uncertain parameters was demonstrated, improving track-
ing control performance. Similarly, Xue’s extension to two-time-scale systems showed
favorable outcomes [23]. However, these findings are based on deterministic models and
neglect the system randomness and uncertainties. By solving the Riccati equation for
quadratic optimal control of linear stochastic systems with unknown parameters, we im-
prove learning efficiency and achieve model-free tracking control. This approach allows for
effective control even in the presence of random disturbances, addressing the limitations of
traditional methods and enhancing the practical applicability of our framework.

In summary, this paper utilizes Wang’s B-spline framework to develop a model-free
control approach, enabling dynamic weights to adapt to a target time-varying pattern. In
the case of an unknown stochastic system model, we can change the output PDF shape
by controlling the weights. This approach expands the scope of application for stochastic
systems in output PDF control. Output PDF control is employed to monitor and manage
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the distribution of key parameters during the production process, which helps enhance
product quality and decrease scrap rates. For instance, in the semiconductor manufacturing
industry, controlling the distribution of parameters such as etching depth and doping
concentration during wafer fabrication ensures consistent chip performance. Similarly,
in the automobile manufacturing industry, controlling the distribution of coating thickness
during the painting process improves surface quality and anti-corrosion performance.
By leveraging the B-spline basis functions and the model-free reinforcement Q-learning
algorithm, we can effectively handle unknown system dynamics and multiplicative noise,
achieving precise control over the output PDF shape. This method facilitates accurate
PDF shape tracking and establishes a theoretical foundation for PDF monitoring in non-
Gaussian stochastic systems, making it highly applicable to real-world industrial contexts.
The contributions of this paper can be summarized as follows:

1 By integrating the reinforcement learning method with the LQR control algorithm,
the control framework proposed in this paper effectively addresses the challenge of
PDF tracking control in stochastic systems with unknown parameters, eliminating the
need for precise knowledge of the system’s model parameters.

2 By utilizing B-spline functions to approximate the PDF, our method converts the PDF
tracking problem into a state tracking problem with dynamic weights.

3 The multiplicative noise is being considered while modeling the PDF under the
B-spline framework, reflecting a more accurate representation of complex and realis-
tic uncertainties.

4 The consideration of time-varying PDF target, which are crucial in many real-world ap-
plications but often overlooked in previous studies, enhances the practical applicability
of the framework.

5 The framework combines optimal control principles with reinforcement learning,
specifically Q-learning, to significantly enhance the performance and accelerate the
learning speed of RL algorithms.

The remainder of this paper is organized as follows: Section 2 provides a detailed
description of the problem and the B-spline model of the PDF. In Section 3, the optimal
control law is derived based on the performance metrics, and the implementation algorithm
is presented. Section 4 demonstrates the application of the controller through two numerical
examples. Finally, Section 5 summarizes the conclusions and outlines potential future work.

2. Problem Description
2.1. PDF Description Based on B-Spline

Modeling the output PDF of a controlled system by solving partial differential equa-
tions can be challenging when using first principles, complicating the development of an
effective control strategy [24]. To overcome this, the B-spline approach can be employed to
approximate the PDF curve by mapping weights to basis functions. B-spline basis functions
are a flexible and widely used class of functions that can adapt to various interpolation
and fitting requirements. They can be classified by order: first-order, second-order, third-
order and fourth-order B-spline basis functions. Among these, third-order B-spline basis
functions are the most commonly used for cubic polynomial functions because they strike
a good balance between smoothness and computational complexity. Specifically, given a
known interval [a, b], where the output PDF γ(y) is continuous and bounded, the PDF can
be expressed using n B-spline basis functions as follows:

γ(y) =
n

∑
i=1

wiBi(y), (1)

where wi (with i = 1, 2, . . . , n) represents the weight and Bi(y) represents pre-selected n
basis functions, which can include Gaussian, radial basis, or wavelet functions. Given
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that γ(y) is a PDF defined on the interval [a, b], it is subject to the following mathematical
constraints: ∫ b

a
γ(y) = 1. (2)

To satisfy Equation (2), only n− 1 weights are independent, which allows us to express
the distribution in the following form:

γ(y) = C0(y)x + L(y), (3)

x = [w1, w2, . . . , wn−1]
T ∈ Rn−1×1, (4)

L(y) = (
∫ b

a
Bn(y)dy)−1Bn(y) ∈ R1×1, (5)

C0(y) =



B1(y)− Bn(y)∫ b
a Bn(y)dy

∫ b
a B1(y)dy

B2(y)− Bn(y)∫ b
a Bn(y)dy

∫ b
a B2(y)dy

...
Bn−1(y)− Bn(y)∫ b

a Bn(y)dy

∫ b
a Bn−1(y)dy



T

∈ R1×n−1, (6)

where x denotes the weight set, C0(y) represents the vector of basis functions, and L(y)
is a scalar associated with the basis functions. Based on Equations (5) and (6), we can
see that the choice of basis functions determines C0(y) and L(y). From Equation (1) to
Equation (6), it is evident that the B-spline model enables the control of the output PDF
shape by manipulating n − 1 independent weight vectors [25].

2.2. PDF Tracking Control Problem

The tracking problem is a prevalent issue in the field of control, including in stochastic
control systems. In conventional control fields, the objective often involves directing the
system to follow a predefined value. Conversely, in stochastic control systems, the goal
shifts to having the system track a predetermined probability density function (PDF).
Figure 1 illustrates the tracking diagram where system B tracks system A. System A,
despite its unknown structure, can monitor its output in real time, allowing access to
the output PDF distribution gk(y) at any given time k. On the other hand, system B is a
controlled system with established dynamics and employs a control input u to produce
its output γk(y, uk). The objective is to align the output distribution of system B with that
of system A, with D quantifying the disparity between the two distributions. The details
of the system and tracking control issues outlined above are further elaborated in the
subsequent section.

System
B

System
AD

γk(y, uk)

target gk(y)

Figure 1. Diagram of the tracking system.

Consider the stochastic system with output PDF γk(y), whose dynamics is formed
as follows:

γk+1(y) = f (γk(y), uk), (7)
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where the distribution of the system output y is denoted by γk(y) and uk represents the
system input.

Based on the B-spline model (3), denoting xk as the weights corresponding to the basis
functions, the output PDF γk(y) of the tracking system B can be represented as:

γk(y) = C0(y)xk + L(y). (8)

The tracking target gk(y) is a dynamic PDF with the following manner:

gk(y) = C0(y)Vk + L(y), (9)

where Vk in Equation (9) represent the pre-set target weights corresponding to each ba-
sis function.

Subsequently, the shaping of the output PDF γ(y, uk) over the interval [a, b] can be
achieved by controlling the weight state xk. Within the framework of the B-spline model
outlined in [8], the dynamics of the weight states xk for the B-spline model-based PDF are
described as follows:

xk+1 = Gxk + Huk + DxkEk, (10)

where G ∈ Rn−1×n−1 and H ∈ Rn−1×1 are the corresponding weight system parameters
and Ek represents the state-based model randomness, whose distribution is given by:

Ek ∽ (0, M), (11)

where M is the variance of Ek.
From Equations (7) to (10), we observe that the system’s PDF is dynamic, leading to

the derivation of a state–space model for the weights to represent the PDF’s dynamics.
However, obtaining precise model parameters, G, H, and D, is challenging. Existing
control strategies often rely on precise model parameters, necessitating that G, H, and D in
Equation (10) are known accurately. This assumption is difficult to meet in many real-world
industrial processes.

To address this limitation, this study explores the application of data-driven methods,
specifically reinforcement learning within machine learning, to mitigate the dependence
on model parameters. Reinforcement learning, characterized by its objective to maximize
reward through iterative optimization, offers a promising solution to the optimal control
problem [26]. By employing Q-learning, one of a reinforcement learning algorithm, the need
for explicit model knowledge is alleviated, as it enables the determination of optimal control
strategies based solely on system operational data. This approach enables the controlled
variable to effectively track the desired trajectory without requiring knowledge of the
model parameters.

The control flowchart is depicted in Figure 2. After selecting the B-spline basis func-
tions, the time-varying target weight rk in Figure 2 is determined based on the target
distribution using the B-spline principle. The system input uk is derived by assessing both
the target and system weights using a reinforcement Q-learning control, which will be
detailed in the subsequent section. The weight xk+1 is then updated through B-spline
principle modeling and the input uk. The output distribution is obtained by correlating the
weight with the basis function. It is important to note that the model error component Ek
is characterized by multiplicative noise, and D represents the appropriately dimensioned
weight matrix. The weights are iteratively updated according to the model to control the
output distribution.

There are many methods to address multiplicative noise, and it is necessary to choose
the appropriate method for different application scenarios to effectively reduce the noise’s
impact. Techniques such as logarithmic transformation, adaptive filtering, wavelet trans-
formation, statistical methods, and specially designed filters can significantly improve
the quality and reliability of signal processing. However, within a reinforcement learning
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framework, multiplicative noise can be directly learned, thus eliminating the need for these
additional processing methods.

Figure 2. System control structure diagram.

Building on this framework, the control objective for such stochastic system is to
design a state feedback controller that enables the weight xk to track the target weight
rk. Consequently, the PDF shape tracking control problem is transformed into a weight
tracking control problem. The details of the controller design will be presented in the
next section.

3. Control Algorithm

In this section, we introduce the reinforcement Q-learning control algorithm to achieve
the tracking objective of the weight state. The primary motivation for choosing reinforce-
ment learning control is to attain optimal tracking control in the presence of unknown
model parameters. Additionally, the reinforcement Q-learning method is employed to es-
tablish an optimal control iterative solution structure, which proves to be more efficient than
traditional reinforcement learning algorithms. The specific details are elaborated below.

3.1. General Control Solution of LQT for Systems with Multiplicative Noise

In this section, we consider the infinite-horizon linear quadratic tracking problem with
multiplicative noise. This developed algorithm will then be utilized as a foundation to
create our model-free Q-learning control method.

Denoting the target weight for the LQT problem which are generated by the B-spline
model based on the expected PDF output is rk, based on the system dynamics Equation (10),
we construct the augmented system:

Xk+1 =

[
xk+1
rk+1

]
=

[
G 0
0 I

][
xk
rk

]
+

[
H
0

]
uk +

[
D 0
0 0

][
xk
rk

]
Ek ≡ AXk + Buk + DXkEk, (12)

where the augmented state Xk is given by:

Xk =

[
xk
rk

]
. (13)

For the regular infinite-horizon LQT problem, the objective is to design an optimal
controller for the system in Equation (10), ensuring that the weight xk tracks a reference
trajectory rk. This can be achieved by minimizing the following infinite-horizon perfor-
mance index:

J = E
{

∞

∑
i=0

1
2

[
(xi − ri)

TQ(xi − ri) + uT
i Rui

]}
, (14)

where E denotes the mathematical expectation over the noise {E(0),E(1),. . . }, and Q > 0 and
R > 0 are symmetric matrices. The performance index in Equation (14) can be rewritten
using Equation (13) as:

J = E
{

∞

∑
i=0

1
2

[
XT

i Q1Xi + uT
i Rui

]}
, (15)
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where Q1 = CT
1 QC1 with C1 = [I,−I]. The stochastic system (12) is said to be mean-square

stabilizable if there exists a state feedback control [27]:

u∗
k = −KXk. (16)

When the model parameters are known, there are multiple methods to determine the
optimal feedback gains and the associated optimal cost. The optimal cost can be derived
from the solution of the generalized algebraic Riccati Equation (GARE) [28]:

P = Q1 + AT PA + MDT PD − AT PB(R + BT PB)−1BT PA. (17)

The optimal gain matrix is as follows:

K∗ = −
(

R + BT PB
)−1

BT PA. (18)

As verified in [29], the standard conditions for the uniqueness and existence of a solu-
tion to the standard ARE require that (A, B) is stabilizable and (A,

√
Q1) is detectable [30].

3.2. Data-Driven Reinforcement Learning for LQT Problems

In this section, we establish the action-value Q-function for reinforcement learning to
iteratively solve the Riccati equation for quadratic optimal control of stochastic systems
with unknown model parameters using data. The Q-function is equivalent to the cost
function in optimal control, and we need to optimize this Q-function to achieve the optimal
value through the control strategy [31]. We construct our Q-function according to the
standard control method. Firstly, we need to defined the Q-function. If the control policy,
such as in Equation (16), is a mean-square stabilization control policy, then the Q-function
should be defined in the desired form. Thus, the Q-function is defined as follows:

Q(Xk, uk) = E
{

∞

∑
i=0

1
2

[
XT

i Q1Xi + uT
i Rui

]}
. (19)

where Q1 is defined in Equation (15). The Bellman equation transforms an infinite sum
of terms into a simpler, future-term form. Thus, based on the discrete-time LQT Bellman
equation and Equation (19):

Q(Xk, uk) = E
{

1
2

XT
k Q1Xk +

1
2

uT
k Ruk + ΓQ(Xk+1, uk+1)

}
= E

{
1
2

XT
k PXK

}
,

(20)

where P is defined in Equation (17). The Q-function can be further extended as follows:

Q(Xk, uk) = E
{

1
2

XT
k Q1Xk +

1
2

uT
k Ruk +

1
2

ΓXT
k+1PXk+1

}
, (21)

where 0 < Γ ≤ 1 is the discount factor .This discount factor is crucial because it prevents
the reward from increasing to infinity as the time step approaches infinity, thereby making
the infinitely long control process evaluable. The discount factor represents the expectation
of future rewards. A smaller discount factor places more emphasis on the reward in the
current state, while a larger discount factor emphasizes future rewards. However, in the
context of an infinite-time control process, the condition Γ = 1 holds if and only if the
reference trajectory rk is Schur stable. The selection of the discount factor depends on the
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desired effect, involving a balance between exploration and exploitation of the algorithm.
By incorporating augmented system dynamics Equation (12), the Q-function becomes:

Q(Xk, uk) = E
{

1
2 XT

k Q1Xk +
1
2 uT

k Ruk +
1
2 Γ

(
AXk + Buk + DXkEk

)T P
(

AXk + Buk + DXkEk
)}

. (22)

To simplify the computation of the Q-function, we introduce a kernel matrix H = H T ,
emphasizing its quadratic nature in the variables:

Q(Xk, uk) = E
{

1
2

[
Xk
uk

]T

H

[
Xk
uk

]}

= E
{

1
2

[
Xk
uk

]T[
HXX HXu
HuX Huu

][
Xk
uk

]}
,

(23)

HXX = Q1 + Γ(AT PA + MDT PD), (24)

HXu = ΓAT PB1, (25)

HuX = ΓBT PA, (26)

Huu = R + ΓBT
1 PB1, (27)

The optimal control action can then be derived by setting the gradient of Q-Function
with respect to to zero, leading to a policy formula based on the Riccati-type solution.
Applying the condition ∂Q(Xk ,uk)

∂uk
= 0 to Equation (23), we can obtain:

uk = −H −1
uu HuXXk, (28)

Substituting Equations (26) and (27) into Equation (28), we have:

uk = −(R + ΓBT PB)−1Γ(BT PA)Xk. (29)

Define the extended state Zk as:

Zk =

[
Xk
uk

]
. (30)

The Q-function can then be written as the following form by substituting Equation (30)
into Equation (20):

Q(Xk, uk) = E
{

1
2

[
Xk
uk

]T

H

[
Xk
uk

]}
= E

{
1
2

ZT
k H Zk

}
. (31)

where
ZT

k H Zk = XT
k Q1Xk + uT

k Ruk + ΓZT
k+1H Zk+1. (32)

The multiplicative noise is then incorporated into the kernel matrix H to participate
in the policy iteration without requiring additional consideration.

The algorithm is structured around two main components:

1 Policy Evaluation:

E
{

ZT
k H j+1Zk

}
= E

{
XT

k Q1Xk + (uj
k)

T R(uj
k) + ΓZT

k+1H
j+1Zk+1

}
. (33)

Estimating the Q-function based on current policy and updating the kernel matrix H
using collected data by Equation (33).
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2 Policy Improvement:

uj+1
k = −(H −1

uu )j+1H
j+1

uX Xk. (34)

Adjusting the control policy to minimize future Q-function values thereby optimizes
system performance over time. Policy iteration can be implemented using least squares
(LS) with the data tuple [22].

Through these steps, the reinforcement Q-learning algorithm iteratively refines its
estimates and policy, adapting to changes in system dynamics and performance criteria
without requiring prior knowledge of the underlying system model. The multiplicative
noise is embedded within the kernel matrix using the data-driven method. This approach
not only enhances the flexibility of the control system, but also improves its robustness in
handling real-world operational variabilities.

Algorithm 1 provides a structured approach to implement the proposed control frame-
work, ensuring that each step is clearly defined and actionable.

Algorithm 1: Tracking control framework with output probability density function
Input: Target PDF γg(y, k) with time dynamics
Output: PDF

1 Choose n B-spline basis functions and a stabilization control policy u0;
2 Model the PDF and get the weight dynamic using B-spline models as Equation (5);
3 Initialize: In the Q-function Q and R, nuclear matrix H0, discount factor Γ, error

excepted σ and multiplicative noise Ek here denotes random generation;
4 for k = 0 do
5 Update xk+1 according to Equation (12)
6 Update Hk+1 according to Equation (33)
7 Update uk+1 according to Equation (34)
8 if ||xk − rk|| > σ then
9 k = k + 1; Back to step 5

10 else
11 break; Termination of learning
12 end
13 end
14 return result

4. Simulation Result

In this section, we demonstrate the effectiveness of the model-free PDF tracking
control algorithm through two numerical simulations. During the simulation process,
the algorithm does not have any knowledge of the system model and relies solely on
numerical calculations.

We start by choosing the B-spline basis functions, which are crucial for transforming
the original system into a form suitable for our control algorithm. B-spline basis functions
are flexible and can be tailored to various interpolation and fitting requirements. Specifically,
we use third-order B-spline basis functions because they provide a good balance between
smoothness and computational complexity. The B-spline basis functions selected are
as follows:

B1(y) = 0.5(y2 + 6y + 9)I1 + (−y2 − 3y − 1.5)I2 + 0.5y2 I3,

B2(y) = 0.5(y2 + 4y + 4)I2 + (−y2 − y + 0.5)I2 + 0.5(y2 − 2y + 1)I4,

B3(y) = 0.5(y2 + 2y + 1)I3 + (−y2 + y + 0.5)I4 + 0.5(y2 − 4y + 4)I5,

B4(y) = 0.5y2 I4 + (−y2 + 3y − 1.5)I5 + 0.5(y2 − 6y + 9)I6,

(35)

where Ii =

{
1 y ∈ [i − 4, i − 3]
0 others

, i = 1, . . . , 6.
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As per constraint (2), only the corresponding weights for three of the four B-spline
basis functions are necessary.

Example 1

The fourth weight is linearly dependent on the first three weights, thereby reducing
the model order to three. For example, 1, we use the same model as in reference [32] for
comparison to demonstrate the difference between model-based and model-free approaches.
By comparing the results, we can highlight the advantages and limitations of the proposed
model-free reinforcement Q-learning algorithm against traditional model-based methods.
Thus, the coefficient matrix of the system model is given by:

xk+1 = Gxk + Huk + DxkEk, (36)

with G =

 0.555 −0.098 −0.041
−0.1 −0.734 0.181
−0.292 0.02 0.291

, H =

0.275
0.302
0.302

, D =

 0.41 1.66 0.51
−0.11 0.215 0.16
0.31 0.02 −1.005

.

In the described model, G represents the state weight matrix, H is the control matrix,
D is the random weight matrix of the noise term, and Ek is the Gaussian noise. Note that the
parameters G, H, and D are assumed unknown. The target weights change every 100 steps,
alternating between rk =

[
0.4229 0.1217 0.1487

]T and rk =
[
0.5908 0.1701 0.2077

]T .

Additionally, the initial state of the system is set at x0 =
[
0.2673 0.0969 0.1897

]T .
The noise covariance follows the distribution given by Ek ∼ N(0, 0.004). The perfor-
mance index, as indicated in Equation (14), employs Q = diag

[
20 20 20

]
and R = 0.1,

with a discount factor Γ = 0.8. The parameter σ is chosen to be a suitably small value = 0.01.
The initial kernal matrix H0 is given by:

H0 =



65.9612 16.9868 12.0472 80.0261 −12.02978 3.0209 −27.0793
49.9990 86.9108 −13.9571 54.1188 −23.0361 −25.0965 74.9031
3.9340 −17.9644 38.9088 70.9414 13.0338 −32.9645 79.0096

71.9722 8.9283 52.9810 33.9975 16.9669 69.9581 15.0152
96.0250 −14.9325 93.0874 34.9930 69.0667 35.0675 63.9573
−30.0573 86.0075 70.0079 −0.0794 −10.0277 −39.0610 −23.9975
−18.9535 6.0832 −31.9131 37.9693 66.9357 99.0435 −24.9186


The simulation results are shown in Figures 3–7. Figure 3 illustrates the weight

tracking effect during the online learning process. It is evident that the algorithm begins
with exploration and converges around the 40th iteration, demonstrating its computational
efficiency. Notably, in Figure 4, the red line represents the weight tracking curve under the
enhanced Q-learning algorithm, while the blue dashed line represents the target reference
curve. The weights r1, r2, and r3 are controlled states, whereas r4, which is linearly related
to the other weights and excluded from control due to constraints, is also shown. Figure 4
further shows the control of the four weights and their corresponding target reference
curves after the learning is completed. This demonstrates that the reinforcement Q-learning
algorithm successfully tracks the specified target weights after learning. Figure 5 presents
the system control input, with the red line indicating the control input curve under the
reinforcement Q-learning algorithm. This curve aligns synchronically with the target
configuration change and is smooth enough for practical use. Figure 6 illustrates the output
curve of the reinforcement Q-learning algorithm, which consistently follows the desired
PDF shape at each time instant. It also presents the results of the target weights integrated
with the PDF output derived from the B-spline model. For example, in controlling the
flame shape, this curve represents the flame shape at each moment. Despite the unknown
system parameters, the output curve achieves the desired PDF shape, highlighting the
effective utilization of the data. Figure 7 shows the tracking error curve of the four states. It
can be seen from the figure that, despite the presence of multiplicative noise interference,
the tracking effect remains very good. The tracking error only experiences a jump when



Mathematics 2024, 12, 2499 11 of 15

the tracking weight changes, and in the remaining cases, it is essentially near 0. Finally,
the mean square error of the tracking is calculated to be very small, specifically 0.0285,
indicating that the tracking effect is good. These results indicate that the proposed control
framework effectively enables the system’s PDF to track a predefined PDF shape without
requiring specific knowledge of the system parameters.

Figure 3. Online learning process state curve.

Figure 4. Learning ending state curve.
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Figure 5. Control input curve.

Figure 6. System output PDF of 3D drawings.

Figure 7. Tracking error.
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Example 2

To strengthen the argument for the algorithm’s applicability in model-free scenar-

ios, we provide another numerical simulation example, with G =

[
0.6969 0.6545
−0.0241 0.8603

]
,

H =

[
0.1298
0.0787

]
, D =

[
0.0081 0.6649
0.1665 0.1786

]
. The target weights change every 100 steps, al-

ternating between rk =
[
0.4229 0.1217

]T and rk =
[
0.8458 0.2434

]T . Additionally,

the initial state of the system is set at x0 =
[
0.2673 0.0969

]T . The noise covariance
follows the distribution given by Ek ∼ N(0, 0.04). The initial kernal matrix is H0 =

66.00452 19.9959 95.0028 −29.996 42.9970
23.0017 32.9949 60.9976 54.99558 −33.9953
37.9961 55.9946 −36.0101 77.9975 74.0099
70.9958 −19.0035 91.0042 31.0001 88.0092
33.9968 16.0032 57.0020 2.0017 31.9961

.

The simulation results are illustrated in Figure 8. In this figure, the red solid line
represents the system state under our control, while the blue dashed line indicates the
target weight. As shown, the system states successfully tracks the pre-set time-varying
references. Additionally, the mean square error is calculated to be 0.1561, demonstrating
the effective control performance. This result clearly shows that even without a model,
the second-order stochastic system can accurately track the target weight.

Figure 8. Learning ending state curve.

Through two numerical simulation examples, we observe that the overall tracking
error is minimal, the response speed is rapid, and the learning efficiency is high in both
systems. This indicates that our control method is effective across different systems. Ad-
ditionally, the mapping relationship between the systems is established using B-spline
function fitting, which allows for controlling the PDF shape by tracking the target weight.
Furthermore, the presented approach does not require prior knowledge of the model,
enabling flexible back-and-forth switching control of the PDF shape.

5. Conclusions

This paper addresses the challenge of output distribution shape tracking in stochastic
distribution systems by developing a learning-based, model-free control algorithm within
the B-spline model framework to approximate the PDF. This method simplifies the complex
issue of PDF shaping into a more manageable problem of dynamic weight modification,
treating the system’s inherent randomness and inaccuracies as state-dependent noises,
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which closely mirror real-world complexities. To handle time-varying targets and reduce
dependency on precise model knowledge, an extended Reinforcement Q-learning algo-
rithm is applied in this framework. Simulation results confirm the method’s effectiveness,
demonstrating its ability to accurately track varying distribution shapes. Using the data-
driven method to control, it greatly removes the limitation that most control methods need
system model parameters. Additionally, this approach eliminates the need to address
complexities arising from multiplicative noise issues.

Author Contributions: Conceptualisation, Y.Z. (Yong Zhang); Methodology, Y.Z. (Yuyang Zhou);
Validation, W.Y.; Writing—original draft preparation, W.Y.; Resources, Y.Z. (Yong Zhang); Writing—
review and editing, Y.Z. (Yuyang Zhou); funding acquisition, Y.R. All authors have read and agreed
to the published version of the manuscript.

Funding: This work was supported in part by the National Natural Science Foundation of China
under Grant 62263026, Grant 62063027, the Fundamental Research Funds for Inner Mongolia Uni-
versity of Science and Technology under Grant 2024QNJS003, the Inner Mongolia Natural Science
Foundation under Grant 2023MS06001, the Program for Young Talents of Science and Technology
in Universities of Inner Mongolia Autonomous Region under Grant NJYT22057, the Fundamental
Research Funds for Inner Mongolia University of Science and Technology under Grant 2023RCTD028,
and the Inner Mongolia Autonomous Region Control Science and Engineering Quality Improvement
and Cultivation Discipline Construction Project.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Ren, M.; Zhang, Q.; Zhang, J. An introductory survey of probability density function control. Syst. Sci. Control Eng. 2019,

7, 158–170. [CrossRef]
2. Lu, J.; Han, L.; Wei, Q.; Wang, X.; Dai, X.; Wang, F.Y. Event-triggered deep reinforcement learning using parallel control: A case

study in autonomous driving. IEEE Trans. Intell. Veh. 2023, 8, 2821–2831. [CrossRef]
3. Filip, I.; Dragan, F.; Szeidert, I.; Albu, A. Minimum-variance control system with variable control penalty factor. Appl. Sci. 2020,

10, 2274. [CrossRef]
4. Li, M.; Zhou, P. Predictive PDF control of output fiber length stochastic distribution in refining process. Acta Autom. Sin. 2019, 45,

1923–1932.
5. Sun, X.; Xun, L.; Wang, H.; Dong, H. Iterative learning control of singular stochastic distribution model of jet flame temperature

field. J. Beijing Univ. Technol. 2013, 33, 523–528.
6. Cao, L.; Wu, H. MWD modeling and control for polymerization via B-spline neural network. J. Chem. Ind. Eng. China 2004,

55, 742–746.
7. Wang, H.; Yue, H. Output PDF control of stochastic distribution systems: Modelling control and applications. Control Eng. China

2003, 10, 193–197.
8. Wang, H.; Zhang, J. Bounded stochastic distributions control for pseudo-ARMAX stochastic systems. IEEE Trans. Autom. Control.

2001, 46, 486–490. [CrossRef]
9. Zhang, Q.; Zhou, Y. Recent advances in non-Gaussian stochastic systems control theory and its applications. Int. J. Netw. Dyn.

Intell. 2022, 1, 111–119. [CrossRef]
10. Wang, H. Bounded Dynamic Stochastic Systems: Modelling and Control, 1st ed.; Springer Science & Business Media: London, UK,

2000; pp. 15–34.
11. Huang, E.; Cheng, Y.; Hu, W. Tracking control of multi-agent systems based on reset control. Control. Eng. China 2022, 29, 6.
12. Luan, X.; Liu, F. Finite time stabilization of output probability density function of stochastic systems. Control Decis. 2009, 24,

1161–1166.
13. Zhou, J.; Wang, H. Optimal tracking control of the output probability density functions: Square root B-spline model. Control

Theory Appl. 2005, 22, 369–376.
14. Hansen-Estruch, P.; Kostrikov, I.; Janner, M.; Kuba, J.G.; Levine, S. Idql: Implicit q-learning as an actor-critic method with diffusion

policies. arXiv 2023, arXiv:2304.10573.
15. Carmona, R.; Laurière, M.; Tan, Z. Model-free mean-field reinforcement learning: Mean-field MDP and mean-field Q-learning.

Ann. Appl. Probab. 2023, 33, 5334–5381. [CrossRef]

http://doi.org/10.1080/21642583.2019.1588804
http://dx.doi.org/10.1109/TIV.2023.3262132
http://dx.doi.org/10.3390/app10072274
http://dx.doi.org/10.1109/9.911429
http://dx.doi.org/10.53941/ijndi0101010
http://dx.doi.org/10.1214/23-AAP1949


Mathematics 2024, 12, 2499 15 of 15

16. Yaghmaie, F.A.; Modares, H.; Gustafsson, F. Reinforcement Learning for Partially Observable Linear Gaussian Systems Using
Batch Dynamics of Noisy Observations. IEEE Trans. Autom. Control. 2024. [CrossRef]

17. Nguyen, H.; Dang, H.B.; Dao, P.N. On-policy and off-policy Q-learning strategies for spacecraft systems: An approach for
time-varying discrete-time without controllability assumption of augmented system. Aerosp. Sci. Technol. 2024, 146, 108972.
[CrossRef]

18. Meyn, S. Stability of Q-learning through design and optimism. arXiv 2023, arXiv:2307.02632.
19. Garg, D.; Hejna, J.; Geist, M.; Ermon, S. Extreme q-learning: Maxent rl without entropy. arXiv 2023, arXiv:2301.02328.
20. Lopez, V.G.; Alsalti, M.; Müller, M.A. Efficient off-policy Q-learning for data-based discrete-time LQR problems. IEEE Trans.

Autom. Control. 2023, 68, 2922–2933. [CrossRef]
21. Wang, R.; Zhuang, Z.; Tao, H.; Paszke, W.; Stojanovic, V. Q-learning based fault estimation and fault tolerant iterative learning

control for MIMO systems. ISA Trans. 2023, 142, 123–135. [CrossRef]
22. Kiumarsi, B.; Lewis, F.L.; Modares, H.; Karimpour, A.; Naghibi-Sistani, M.B. Reinforcement Q-learning for optimal tracking

control of linear discrete-time systems with unknown dynamics. Automatica 2014, 50, 1167–1175. [CrossRef]
23. Xue, W.; Fan, J.; Lopez, V.G.; Jiang, Y.; Chai, T.; Lewis, F.L. Off-policy reinforcement learning for tracking in continuous-time

systems on two time scales. IEEE Trans. Neural Netw. Learn. Syst. 2020, 32, 4334–4346. [CrossRef] [PubMed]
24. Zha, W.; Li, D.; Shen, L.; Zhang, W.; Liu, x. Review of neural network-based methods for solving partial differential equations.

Chin. J. Theor. Appl. Mech. 2022, 54, 543–556.
25. Zhang, Y.; Zhou, P.; Lv, D.; Zhang, S.; Cui, G.; Wang, H. Inverse calculation of burden distribution matrix using B-spline model

based PDF control in blast furnace burden charging process. IEEE Trans. Ind. Inform. 2023, 19, 317–327. [CrossRef]
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