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Abstract. This paper addresses a critical gap in digital twin simulation 

within manufacturing environments by focusing on the dynamic 

representation of worker movements during assembly processes. We 

introduce an innovative approach that utilises Ultra-Wideband (UWB) 

sensors to incorporate worker trajectory data into Siemens Process Simulate 

software, enabling the creation of a digital twin of assembly line operations. 

Our methodology involves comprehensive data collection using UWB 

sensors, followed by pre-processing steps such as data cleaning, 

interpolation, and classification of points into dwell and transit locations. 

Within the framework of Process Simulate, we develop the assembly process 

digital twin, integrating simulations of tricycle assembly alongside dynamic 

worker path and movement simulations. Our digital twin facilitates 

ergonomic analysis, process optimisation, and worker interaction analysis, 

offering insights for enhancing factory efficiency and safety. Notably, 

through visualisation of worker paths and identification of bottlenecks, our 

digital twin enables optimisation of resource allocation. Quantitative results 

demonstrate significant improvements, such as a reduction in the time of 

completion of six products by 11% compared to Discrete Event Simulation 

under similar process conditions. This study highlights the transformative 

potential of digital twin technology in manufacturing, providing a robust 

framework for simulating and optimising worker movements within real-

world factory environments. 

1 Introduction 

In recent years, the manufacturing industry has experienced a notable shift towards 

digitalisation and automation, spurred by the principles of Industry 4.0. Central to this 

evolution is the concept of digital twins, virtual representations of physical assets or systems. 

Digital twins empower manufacturers to construct virtual models that accurately reflect the 
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behavior, performance, and attributes of real-world counterparts in a dynamic and 

interconnected manner. This facilitates real-time monitoring, analysis, and optimisation of 

manufacturing processes, leading to heightened efficiency, productivity, and informed 

decision-making. Initially conceived in the aerospace and automotive sectors, the concept of 

digital twins has since permeated various industries, spanning healthcare, energy, and 

construction. The integration of advanced technologies like IoT, AI, and cloud computing 

has further propelled the adoption of digital twins across sectors. 

Digital twins serve as a critical bridge between the physical and digital realms in modern 

manufacturing, enabling companies to create digital replicas of manufacturing assets, 

processes, and systems. This facilitates gaining valuable insights into operations, identifying 

inefficiencies, and optimising performance. With the global digital twin market projected to 

reach $48 billion by 2026, with a CAGR of 58%, their increasing adoption across industries 

is evident.[1] In manufacturing, digital twins are leveraged for product design, production 

planning, predictive maintenance, and supply chain optimisation. The ability to simulate and 

analyse intricate manufacturing processes in a virtual environment empowers companies to 

reduce costs, minimise downtime, and enhance product quality. 

2 Challenges in replicating human movements in digital twins 

The implementation of digital twins for human simulation and movement presents a myriad 

of challenges that must be addressed for effective utilisation in various domains. One 

significant challenge lies in achieving accurate and realistic representations of human 

movements, considering factors such as sensor accuracy and biomechanical modelling 

limitations [2][3]. Additionally, data latency and synchronisation issues hinder real-time 

responsiveness, leading to discrepancies between simulated and actual movements [4][5]. 

Integrating diverse data sources and technologies poses complexities due to compatibility 

issues and interoperability constraints [6][7]. Privacy and ethical concerns arise regarding the 

collection and processing of human movement data, necessitating safeguards for individual 

privacy rights [2][8]. Moreover, simulating human-robot interaction requires advanced 

modelling and control algorithms to achieve seamless collaboration and synchronisation [9]. 

Scalability issues, lack of standardisation, and best practices further impede widespread 

adoption, highlighting the need for industry-wide standards and guidelines [10][11]. 

Addressing these challenges through advanced modelling techniques, enhanced data 

integration capabilities, and ethical guidelines is essential to unlock the full potential of 

digital twins for human simulation and movement. 

3 Methodology 

3.1 Data collection and pre-processing 

The need for dynamic tracking of people and goods within industrial sites has become 

increasingly crucial for enhancing performance and safety conditions. Traditional methods, 

such as door access control systems, are limited in their ability to provide real-time location 

data and often face challenges with unauthorised access and misplaced objects. To address 

these issues, we utilised Ultra-Wideband (UWB) tags and motion capture (MoCap) systems 

for accurate indoor localisation and tracking of personnel in an industrial setting. [12] 

The assembly line setup consisted of six tricycle assembly rigs, each with specific 

assembly processes and fixed stations. Workers at each station performed designated tasks 

sequentially, leading to the assembly of six tricycles within a three-hour period. The 

industrial setup was designed to mimic real-world production environments, allowing for the 

MATEC Web of Conferences 401, 08001 (2024)

ICMR2024
https://doi.org/10.1051/matecconf/202440108001

2



collection of realistic worker movement data. It is important to note some key assumptions 

made during the study. The actual dimensions and weights of the tricycle are not known. As 

a result, a generic tricycle model was selected, and assembly operations were based on a 

standard assembly instruction booklet.  

Each worker's path and actions were tracked using UWB tags placed in their pockets, 

providing precise information on their movements throughout the assembly process. The data 

captured included deviations from the predefined assembly protocol, such as breaks, or 

assistance provided to other workers. By analysing this data, insights into worker efficiency 

and process deviations could be gained, enabling opportunities for process optimisation and 

ergonomic improvements. 

3.1.1 Data pre-processing 

In this section, we describe the preprocessing steps applied to the data collected from Ultra-

Wideband (UWB) tags attached to workers. The aim is to synchronise and organise the data 

to facilitate further analysis and simulation of worker movements in the assembly process. 

The data collected from UWB tags are recorded at intervals of 100 ms. To align the data and 

reduce noise, we convert the time interval to seconds, assuming negligible changes in worker 

positions within a second. We then apply a smoothing function by averaging the position data 

obtained within the same second. Missing data points, such as when signals are obstructed, 

are substituted with the worker's last known position. 

 Using the second-to-second dataset, we employ Hierarchical Dendrogram clustering to 

cluster data points into respective clusters for individual workers. We have selected 

hierarchical dendrogram clustering in comparison to K-means, DBSCAN, OPTICS, and 

Fuzzy C-means clustering due to a low Silhouette score and Davies-Bouldin Index, and high 

Calinski-Harabasz Index [13]. This assessment has adequately considered movement 

cohesion and separation between clusters. Points where a worker remains in a cluster for 

more than 10 seconds are classified as dwell points. Transit points are identified as the 

movement between dwell points. A continuous sequence of transit points provides the path 

for each worker. These steps are repeated for each worker to classify their respective dwell 

and transit points. 

 

 
Fig. 1. (a) Clustering using Hierarchical Dendrogram (b) Worker Path and Dwell regions on 

the workplace. 

3.2 Modelling digital twin for assembly process 

3.2.1 Simulation in Process Simulate 

Simulation in Process Simulate involves replicating the assembly process of the tricycle 

along with simulating worker paths and movements. This includes the execution of various 

tasks such as "Go," "Get," "Put," and "Push" actions by the workers involved. The simulation 
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begins with modelling the assembly line layout and defining the process model of tasks to be 

performed. Each task corresponds to a specific action in the assembly process, such as 

mounting the lower frame, assembling the axle, attaching the saddle and pedal board, and so 

on. Process models were generated from the movement data using process mining techniques 

as outlined in Ayse et al. work [14]. In this step, the event log is utilised to discover a process 

model of the assembly process with a process mining algorithm.  

To integrate movement data into Process Simulate and generate frames, we imported the 

movement data, which consists of second-to-second x, y coordinates of workers, as a CSV 

file in the form of MFG data points. Each point is created as a frame, and using the path 

editor, the sequence of transit point frames are used for creating the worker path. Utilising 

three-dimensional (3D) visualisation techniques, worker paths and movements are rendered 

in a spatially immersive environment, providing a comprehensive perspective of assembly 

operations. By visualising worker trajectories in 3D space as shown in Figure 2, alongside 

the assembly layout and equipment, this approach enhances the understanding of spatial 

relationships and ergonomic considerations. The simulation video can be accessed here. 

 

   
 

Fig. 2. A pictorial depiction showcasing the tasks performed by workers during the assembly 

process and visualising continuous ergonomic assessment and worker interactions in the 

digital twin 

3.2.2 Assembly of tricycle 

In the tricycle assembly process model, each station is responsible for specific tasks. Station 

1 builds the lower frame, passing it to Station 2, where the axle is assembled. Once completed, 

Station 2 transfers the assembly to Station 4. Meanwhile, Station 3 assembles the saddle and 

pedal board, also passing it to Station 4. At Station 4, the rear wheels and axle unit are 

integrated, then forwarded to Station 6. Simultaneously, Station 5 assembles the front wheel 

and axle unit, passing it to Station 6. Finally, Station 6 completes the tricycle assembly. 

Throughout the process, deviations from the protocol, such as breaks or assisting others, may 

occur, affecting stock replenishment and operator comfort. Figure 3 illustrates the sequence 

of assembly tasks involved in the process. 

 

 
Fig. 3. Assembly tasks for the tricycle 

 

 

4 Results and discussion 
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4.1 Ergonomic analysis 

The digital twin developed in this study facilitates a comprehensive ergonomic analysis, 

allowing for the evaluation of physical strain and comfort levels associated with various tasks 

within the assembly process. Leveraging advanced simulation capabilities and real-time data 

integration, the ergonomic analysis encompasses multiple methodologies aimed at assessing 

and optimising worker safety and well-being. 

The Static Strength Prediction (SSP) technique serves as a fundamental tool for 

evaluating the physical demands placed on workers during assembly tasks. By quantifying 

the forces exerted on the body in static positions, SSP analysis helps identify potential 

ergonomic hazards and inform the design of workstations to minimise the risk of 

musculoskeletal injuries. The static strength prediction analysis for Worker 4 depicted in 

Figure 4 (a) and (b) reveals that the trunk extension exhibits the highest value at 225.40 N, 

followed by the hip extension at 196 N, the knees flexion at 145.2 N each, and the ankles 

extension at 153 N. The knees and ankles experienced the moment of 11.4 and 39.9 Nm. 

These findings and highlight the distribution of forces across various body parts during the 

assembly tasks, providing insights into potential areas of physical strain and ergonomic 

concern. 

Another method employed is the Rapid Upper Limb Assessment (RULA) [15], a rapid 

ergonomic assessment tool used to evaluate ergonomic risk factors associated with repetitive 

tasks and awkward postures. By assessing worker posture and movement frequency, RULA 

provides valuable insights into potential ergonomic issues and guides the implementation of 

interventions to mitigate risks. The assessment conducted using the Rapid Upper Limb 

Assessment (RULA), as depicted in Table 4(c), indicates a score of 2 for both left and right 

body parts, and a score of 1 for the trunk. This suggests that the operations performed fall 

within an acceptable risk level, with no immediate action required. 

The analysis of generic joint angles with respect to time as shown in Figure 4(d) offers 

insights into the dynamic movements and postures adopted by workers during assembly tasks. 

Tracking joint angles throughout task execution helps identify ergonomic stressors and 

opportunities for optimising task sequences and workstations to enhance worker comfort and 

efficiency.  

 

 
(a)         (b) 

 
                (c)         (d) 

 

Fig. 4. (a) Static strength prediction (b) capability summary chart (c) RULA assessment chart 

(d) generic joint angle v/s time chart for worker 4. 
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4.2 Process optimisation 

The utilisation of digital twin technology offers significant opportunities for optimising 

manufacturing processes by providing real-time insights into workflow dynamics and 

identifying areas for improvement. This section focuses on leveraging the digital twin 

framework to observe deviations from fixed task assignments and finding assignments based 

on data analysis, thereby enhancing process efficiency and productivity. 

      By analysing the event log within the digital twin environment, deviations from the 

predefined task assignments can be observed and analysed. For instance, it is noted that 

certain workers deviate from their assigned tasks, such as worker 2 joining worker 1 for task 

1 initially, and worker 4 occasionally undertaking task 5. Additionally, worker 6 assists with 

tasks 2 and 3, indicating flexible task allocation strategies. These deviations may stem from 

task dependencies and the need for collaborative efforts to complete certain assembly stages. 

Incorporating the digital twin methodology, the worker's status (working or transiting) is 

determined based on their proximity to the workstation. When a worker is dwelling near the 

workstation, they are actively engaged in the assembly process. Conversely, when the worker 

is in transit, it is assumed that the assembly operation is temporarily halted, typically during 

product transfer between assembly stations. This integration enables real-time monitoring of 

worker activities and facilitates the identification of workflow interruptions or bottlenecks 

for proactive intervention. The box and whisker plots below in Figure 5 illustrate the 

completion times for assembling six tricycles. The data includes median completion times 

for both flexible and fixed allocations using Discrete Event Simulation (DES), sourced from 

Ayse et al.'s work[14]. Additionally, the completion time for the digital twin is calculated 

from the Minute-to-Minute report generated post-simulation in Process Simulate. This 

calculation involves summing the individual completion times for each operation associated 

with each worker. Notably, the assembly time for workers can be adjusted within Process 

Simulate by modifying the time allocated for each task. The median completion time for the 

fixed allocation DES is approximately 222 minutes, while it reduces to 211 minutes with 

flexible allocation. Similarly, the median completion time for the fixed digital twin is around 

210 minutes, whereas for the flexible digital twin simulation, it's approximately 198 minutes. 

This indicates an 11.6% reduction in the median completion time for the fixed allocation 

DES compared to the flexible allocation using digital twin.  

 

 
Fig. 5. Box and whisker plot for time of completion of six products. 

4.3 Limitations 

While Process Simulate offers a comprehensive suite of tools for simulating worker 

operations within a digital twin framework, there are several limitations that need to be 

addressed to fully leverage its capabilities in manufacturing environments. 

One of the primary limitations of Process Simulate is the manual configuration required 

for setting up worker operations. Tasks such as "go," "get," and "push" need to be defined 

and programmed manually, which can be time-consuming and labour-intensive. This manual 
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setup process restricts the scalability and agility of the digital twin, especially in dynamic 

manufacturing environments where operations may change frequently. 

Another significant limitation is the lack of integration with real-time data sources. 

Process Simulate does not provide native support for automating operations based on real-

time data inputs, such as worker location or task completion status. This limitation hinders 

the digital twin's ability to dynamically adjust operations in response to changing conditions 

on the factory floor, limiting its effectiveness in optimising workflow efficiency and resource 

utilisation. Furthermore, it's important to note that the assembly tasks are assumed for the 

present simulation which lead to present joint angles and Static Strength Prediction results. 

However, Process Simulate provides access to motion tracking software like Synertial [16] 

Full body mocap, enhancing its potential for realistic simulations. 

Process Simulate currently lacks built-in functionality for easily exporting positional 

coordinates from external data formats, such as sensor data or motion capture systems. This 

limitation makes it challenging to integrate spatial data collected from other sources into the 

digital twin environment, hindering its ability to accurately simulate worker movements and 

interactions. Without seamless data integration capabilities, the digital twin may fail to 

provide an accurate representation of real-world manufacturing processes. 

The existing automation options within Process Simulate are relatively limited, primarily 

relying on manual programming and configuration. While the software offers tools for 

creating and automating human operations, there is a lack of advanced scripting or code-

based automation capabilities. Providing more options for automating human operations 

through custom scripting or code development would enhance the flexibility and adaptability 

of the digital twin, enabling more efficient and responsive simulation of worker activities. 

5 Conclusion 

In conclusion, the digital twin framework offers significant advancements in enhancing 

worker safety, productivity, and operational efficiency in manufacturing. By integrating 

ergonomic analysis and process optimisation methodologies, it enables proactive 

identification of ergonomic hazards, real-time monitoring of workflow dynamics, and 

immersive visualisation of worker interactions. However, challenges such as manual 

configuration, limited automation, and data integration need addressing for its full potential 

to be realised. Overcoming these hurdles will be crucial for maximising the benefits of digital 

twin technology in improving manufacturing processes and worker well-being. Additionally, 

it's worth noting that although Process Simulate primarily serves as a digital model [17], with 

some modifications, it can function as a digital twin by integrating real time data from motion 

tracker software. This capability enhances its potential to accurately replicate real-world 

manufacturing environments and further optimise worker operations. 
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