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Abstract: In the evolving landscape of the Internet of Things (IoT), ensuring the security and
integrity of data transmission remains a paramount challenge. Routing Protocol for Low-Power
and Lossy Networks (RPL) is commonly utilized in IoT networks to facilitate efficient data routing.
However, RPL networks are susceptible to various security threats, with Sybil and flood attacks being
particularly detrimental. Sybil attacks involve malicious nodes generating multiple fake identities
to disrupt network operations, while flood attacks overwhelm network resources by inundating
them with excessive traffic. This paper proposes a novel mitigation strategy leveraging Bloom filters
and hash chains to enhance the security of RPL-based IoT networks against sybil and flood attacks.
Extensive simulation and performance analysis demonstrate that this solution significantly reduces
the impact of sybil and flood attacks while maintaining a low power consumption profile and low
computational overhead.

Keywords: authentication; Bloom filter; hash chain

1. Introduction

The proliferation of the Internet of Things (IoT) has led to the integration of countless
devices into networked environments, enabling unprecedented levels of connectivity
and automation. However, this vast network of interconnected devices also introduces
significant security challenges, particularly in the context of data transmission and network
integrity. With the rapid expansion of the Iot and its deep integration into various aspects
of society, these networks present a vast attack surface for malicious actors.

The limited capabilities of some devices might initially suggest a lower risk of data ac-
cess due to restricted functionality [1]. However, it is crucial to recognize that even the most
basic devices and networks require robust authentication and identity management for sev-
eral key reasons encompassing both user-to-device and device-to-device communication.

Unfortunately, applying conventional authentication techniques such as passwords,
certificates, biometrics, and two-factor authentication (2FA) to Internet of Things (IoT)
settings presents numerous challenges. These challenges include insufficient computational
resources for the complex operations involved, limited storage capacity on IoT devices,
lack of precision in IoT biometric sensors, and difficulties in managing and distributing
certificates across numerous devices [2,3].

The rapid growth of the IoT has coincided with a significant increase in the adoption
of Routing Protocol for Low-Power and Lossy Networks (RPL) as the primary routing
protocol for IoT networks [4,5]. While RPL may be the ideal choice for resource-constrained
devices, its inherently trust-based model does not provide sufficient security guarantees in
IoT environments, opening networks up to potential attacks such as sybil and flood attacks.

Sybil attacks pose a severe threat to network security in IoT environments [6]. In such
attacks, a malicious actor creates a multitude of fake identities to disrupt critical processes
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such as voting or resource allocation. Sybil attacks are particularly concerning in IoT con-
texts due to their large number of low-power devices with limited security capabilities [7].
These compromised identities can present a distorted view of the network topology, grant-
ing the attacker control over multiple nodes and potentially disrupting network operations.
Furthermore, sybil attacks can be leveraged to launch Denial-of-Service (DoS) attacks by
overwhelming the network with illegitimate traffic. These vulnerabilities highlight the
critical need for robust authentication techniques to prevent unauthorized devices from
impersonating legitimate ones and manipulating the network for malicious purposes.

Flood attacks, also known as Denial-of-Service attacks, aim to overwhelm a network
or system with excessive traffic, rendering it unavailable to legitimate users [8]. The combi-
nation of a sybil attack and a flood attack is a particularly serious threat to IoT networks [9].
In this scenario, the attacker leverages the sybil attack to distribute the flood attack across a
large number of seemingly legitimate nodes, making it extremely difficult to distinguish be-
tween legitimate and malicious traffic. This combined attack can severely degrade network
performance, disrupt essential services and potentially compromising the overall security
of IoT systems. Moreover, the weakened network defenses resulting from this attack cre-
ate opportunities for further malicious activities, such as data breaches or unauthorized
access attempts.

To address these challenges and ensure secure authentication in IoT environments, this
paper proposes a novel authentication and flood mechanism integrating Bloom filters and
hash chains. The proposed approach is evaluated through simulated performance testing
to assess its effectiveness and efficiency, and the results demonstrate that this approach
can provide a lightweight yet robust solution for securing IoT devices and networks by
leveraging the space efficiency and rapid membership checking capabilities of Bloom filters
alongside the tamper-evident properties of hash chains.

The rest of this paper is organized as follows: Section 2 establishes the foundation for
the proposed approach. The section begins by introducing the RPL and its susceptibility to
sybil and flooding attacks. Following this, we discuss two cryptographic constructs integral
to our proposed solution, namely, Bloom filters and hash chains. Section 3 provides an
overview of recent research efforts pertinent to our proposed solution while identifying their
shortcomings. Section 4 describes our proposed solution, including its design principles and
key features. Section 5 presents the results of our simulations, with a focus on evaluating
the performance and effectiveness of the proposed solution. Finally, Section 6 summarizes
the key findings and explores potential avenues for future research.

2. Background

This section establishes foundational knowledge essential for comprehending the
proposed approach. It begins by introducing the Routing Protocol for Low Power and
Lossy Networks (RPL), a critical component for routing data in resource-constrained
environments. Following this, two cryptographic constructs are introduced that are crucial
to the proposed solution, namely, Bloom filters and hash chains.

2.1. Overview of RPL

Routing Protocol for Low-Power and Lossy Networks (RPL) is a distance vector
routing protocol specifically designed for IPv6 communication in Low-Power and Lossy
Networks (LLNs) [5]. It facilitates the creation of a Destination-Oriented Directed Acyclic
Graph (DODAG) by leveraging an objective function and a set of configurable parameters.
This objective function guides the network in computing the ‘best’ path for data transmis-
sion, considering factors such as energy consumption, hop count, or other application-
specific metrics.

RPL establishes a DODAG, a tree-like structure where all nodes have a single root,
typically a border router or a collector node (LBR); routes are directed towards this root. This
structure ensures loop-free routing and minimizes control overhead within the network.
An example of a simple DODAG network can be seen in Figure 1.
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Figure 1. DODAG visualisation.

The RPL protocol utilises several control messages to create and maintain its topology.
These messages, including DODAG Information Objects (DIOs) and Destination Adver-
tisement Objects (DAOs), allow nodes to discover neighbouring nodes, learn about the
DODAG structure, and advertise their own reachability towards the root. A third type of
control message used in RPL is DODAG Information Solicitation (DIS). Nodes that have
not yet joined the network and are seeking to establish themselves within the DODAG
structure utilize DIS messages.

The RPL protocol leverages a key mechanism called the Trickle timer algorithm
to optimize control message exchange and minimize energy consumption. This timer
dynamically adjusts the interval between control message transmissions, balancing network
responsiveness with energy efficiency. During normal operation, nodes gradually increase
the interval between transmissions as the network stabilizes, reducing unnecessary control
traffic and preserving battery life.

Despite its efficiency, RPL control messages can be abused by malicious actors [10,11].
One such vulnerability lies in the DIS message. Nodes that have not yet joined the network
utilize DIS messages to discover existing DODAGs and request routing information. While
this mechanism facilitates seamless node integration, it also presents an opportunity for
Denial-of-Service (DoS) attacks [12].

A malicious node can exploit the network’s discovery mechanism to launch a sybil–
flood attack. This attack combines the creation of fake identities (sybil attack) with a flood
of control messages (flood attack). Specifically, the attacker utilizes a large number of fake
nodes in order to bombard the network with a continuous stream of DIS messages.

Upon receiving a DIS message, a neighboring node resets its Trickle timer to its fastest
rate and immediately responds with a DIO message. This behavior, while intended to
facilitate network discovery, can be manipulated by attackers. The constant barrage of
DIS messages from the sybil nodes forces honest nodes to repeatedly reset their Trickle
timers, leading to a surge in control message transmissions and a significant drain on
network resources.

This excessive control traffic can overwhelm the network, causing several issues:
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• Saturation: Communication channels become congested, hindering legitimate data
transmission.

• Resource Depletion: Frequent control message exchange rapidly drains the finite
battery resources of participating nodes.

The effectiveness of any flooding attack highlights the importance of incorporating
security measures into RPL implementations. These measures can involve techniques for
identifying and filtering out malicious messages, thereby protecting network integrity and
ensuring efficient operation.

2.2. Bloom Filters

Bloom filters offer a space-efficient data structure that enables efficient query responses,
making them ideal for scenarios where fast lookups are crucial [13]. This efficiency comes
with a trade-off, however, in the possibility of false positives (FP), where a query element
might be incorrectly identified as a member of the set. However, unlike false negatives (FN),
which Bloom filters are guaranteed to avoid, false positives indicate a potential membership
that needs further verification. FNs occur when a query element is erroneously reported
as absent even though it is present in the dataset. This characteristic makes Bloom filters
particularly valuable in scenarios where a certain level of FPs is tolerable or where secondary
verification mechanisms can be employed to eliminate FPs post-filtering [14].

Due to their rapid query times and space-efficient nature, Bloom filters have found
widespread application in various domains. These data structures are particularly ad-
vantageous for tasks such as weak password detection, unique username identification,
and suspicious URL caching within social media platforms. Their ability to conserve
storage space makes them well suited for applications where managing large datasets
is crucial.

Figure 2 visually depicts the operation of a simple Bloom filter. Initially, all bits within
the filter array are set to zero, representing an empty set. During the insertion stage,
elements are added to the Bloom filter.

Each element is inserted as follows:

• Hashing: The element undergoes hashing using multiple hash functions, typically
denoted as K. This process maps the element to a set of (K) hash values.

• Modulo Operation: Each hash value is then subjected to a modulo operation with the
size M of the Bloom filter array. This ensures that the resulting index falls within the
valid range of the array (0 to M − 1).

• Bit Setting: The corresponding bit positions in the Bloom filter array, determined by
the modulo operation results, are set to one.

Consider the example of Entry 1 in Figure 2. The entry is hashed using two different
hash functions. These hash values undergo a modulo operation by 12. Consequently,
positions 4 and 8 within the Bloom filter array are set to 1.

During a search operation, the queried element undergoes hashing with the same
functions used for insertion, generating multiple hash values. These values are subjected to
a modulo operation to obtain valid indices within the filter array.

A bitwise AND operation is then performed between the corresponding bit positions
in the array and a bit vector of ones. If the resulting vector is equal to the search vector (as
exemplified by Search 2 in Figure 2), it indicates a potential match. However, due to the
probabilistic nature of Bloom filters, there is a chance of a false positive (the element might
not actually be present; see the example of Search 3 in Figure 2). Conversely, any unset bit
reveals the element’s definitive absence (guaranteed true negative), as demonstrated by
Search 1 in Figure 2.
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Figure 2. Simple Bloom filter operation.

The design and application of Bloom filters necessitates careful consideration of the
False Positive Rate (FPR), as false positives can lead to unnecessary resource consump-
tion, increased latency, and potentially compromised network security if not managed
effectively [15]. To minimize the inherent tradeoff between query speed and accuracy, key
parameters require thoughtful configuration. These parameters include:

• The size of the Bloom filter (N).
• The number of entries stored in the filter (M).
• The number of different hash functions employed (K).

The probability of encountering a false positive during a search operation can be
calculated using the following formula:

FPR =

(
1 −

(
1 − 1

M

)KN
)K

. (1)

The Formula (1) calculates the FPR by considering the interplay between the following
key parameters:

• Array size (N): A larger array size reduces the probability of collisions during hash
function application. Collisions occur when different elements map to the same bit
position in the Bloom filter array. With larger N, there are more available bit positions,
leading to a lower FPR.

• Number of entries (M): As the number of entries stored in the filter increases, the prob-
ability of encountering a false positive also rises. This is because a higher M increases
the likelihood of multiple elements sharing the same hash values, leading to more
collisions and a higher FPR.

• Number of hash functions (K): Employing a greater number of hash functions dis-
perses elements across the Bloom filter array more effectively. Each hash function
maps the element to a potentially different bit position. More hash functions lowers
the chance of collisions, and consequently reduces the FPR.

By adjusting the values of M, K, and N, developers can achieve a desired balance
between the FPR and the space efficiency requirements of a specific application. A larger N
offers a lower FPR but requires more space; conversely, a smaller N offers faster lookups
but may lead to a higher FPR. Similarly, increasing K lowers the FPR but requires more
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computation during insertion and querying. Finding the optimal configuration depends
on the specific application’s priorities for space efficiency, query speed, and tolerable FPR.

While standard Bloom filters offer significant advantages in terms of query speed
and space efficiency, a key limitation is their inability to delete entries after insertion. This
characteristic necessitates careful consideration of the data being stored and the potential
membership changes throughout the application’s life cycle. To address this limitation,
extensive research has been conducted on extending the functionality of Bloom filters to
allow removals without sacrificing performance [16].

Furthermore, efforts have been directed towards enhancing the space-efficient nature
of Bloom filters. These advancements include the exploration of alternative data structures
such as 2D and 3D arrays to potentially improve storage utilization [17].

2.3. Hash Chain

A hash chain is a cryptographically secure sequence of values that can be used to
verify data integrity and ensure chronological order. A hash chain is created by applying a
cryptographic hash function to an initial input, known as the seed, then iteratively applying
the hash function to the resulting hash value [18]. The inherent one-way property of
cryptographic hash functions makes them computationally impossible to reverse. This
prevents derivation of the original seed or any preceding hash values from a given hash
value in the chain, even in the event of collisions (where different inputs produce the same
hash output).

A hash chain is a cryptographically secure sequence of fixed-size values constructed
using three elements:

• Number of Hashes (x): This parameter defines the length of the chain, specifying the
number of times a cryptographic hash function will be iteratively applied.

• Hash Function (h): This element identifies the specific cryptographic hash function
used to generate the chain. Common choices include SHA-256, MD5 (although its use
is discouraged due to security weaknesses), and other functions with well-defined
collision resistance properties.

• Seed (k): This is the initial input value that serves as the starting point for the chain.
The seed can be of any data type suitable for the chosen hash function.

The hash chain construction can be formally defined as follows:

• The initial hash value hx is obtained by applying the hash function h to the seed k:

hx = h(k). (2)

• Starting from the second hash value, the hash function is applied iteratively to the
previous hash value in the chain. This generates the remaining hash values:

hx−1 = h(hx), hx−2 = h(hx−1), . . . , h1 = h(h2). (3)

• The final hash value in the chain h0 is designated as the root hash. It is derived by
applying the hash function to the second-to-last hash value:

h0 = h(h1). (4)

To strengthen the security of transmitted messages, the proposed method incorporates
a novel approach utilizing hash chains to generate a sequence of one-time passwords. This
mechanism offers several advantages over alternative techniques such as Merkle hash trees.

In addition to its security benefits, the use of hash chains offers potential advantages
in terms of both communication and computational efficiency. The sequential nature of
hash chains allows for more compact representation of message authentication information
compared to Merkle trees, resulting in reduced message size and lower transmission
costs. Moreover, the computational overhead associated with hash chain generation is
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generally lower than that of Merkle trees, making hash chains particularly suitable for
resource-constrained IoT environments [19].

While Merkle trees excel in certain applications, their suitability for generating sequen-
tial one-time passwords is limited. The inherent structure of Merkle trees does not naturally
lend itself to the creation of ordered cryptographic values. Although adaptations could be
made to accommodate this requirement, they would introduce additional complexity and
potentially diminish the performance benefits often associated with Merkle trees [20]. By
employing hash chains, our proposed system effectively addresses the critical challenge of
message authentication while optimizing resource utilization in IoT networks.

3. Related Work

Ensuring secure authentication and defending against sybil and flooding attacks in
resource-constrained IoT networks has been an active area of research in recent years.
Researchers have explored various techniques and approaches to address these challenges
while accounting for the computational and energy limitations of IoT devices. For instance,
ref. [21] proposed liteSAD, a novel and secure mechanism for addressing sybil attacks in
RPL-based IoT systems. liteSAD leverages Physical Unclonable Functions (PUFs) and a
lightweight Bloom filter to enable distributed sybil attack detection, aiming to enhance
security while maintaining efficiency compared to traditional methods that store complete
node identities. The core of liteSAD involves the DODAG root generating a Bloom filter
populated by hashing each legitimate node’s identifier along with its unique PUF response.
This Bloom filter is then distributed to all legitimate nodes through a new packet type
called BF-DAO. Each node uses the filter to verify other nodes’ PUF responses, enabling
distributed sybil attack detection.

While liteSAD demonstrates promise, the paper lacks a comprehensive analysis of its
scalability in large IoT networks. Specifically, the impact of network growth on the size
and performance of the Bloom filter needs further exploration. Additionally, the trade-off
between false positive rates and communication overhead as the network expands requires
investigation. Finally, a detailed analysis of how the Bloom filter and PUF integration
affects processing power, memory, and battery life of IoT devices is crucial for assessing the
feasibility of liteSAD in resource-constrained environments.

The authors of [15] introduced a novel Bloom filter variant called enhanced Bloom
filter (eBF) specifically designed to address intrusion detection challenges in resource-
constrained IoT environments. Their proposed filter tackles the limitations of traditional
Bloom filters regarding memory efficiency, processing speed, and accuracy in detecting
malicious activities. A key innovation of the eBF lies in its two-dimensional structure.
It utilizes two separate Bloom filters: the intrusion Bloom filter (iBF) stores intrusion
data packet information, while the benign Bloom filter (bBF) stores benign data packet
information. This design distinction helps to reduce false positives by ensuring that the
same data packet is not present in both filters simultaneously. The system categorizes a
packet as potentially benign, intrusion, or a false positive based on the responses from iBF
and bBF. In cases where both Bloom filters return true for the same packet, indicating a
potential false positive, the system employs a deep learning model for accurate classification.
This model analyses the packet’s features and determines whether it is an intrusion or
benign. After classification by the deep learning model, the data packet is either stored
in the iBF for future reference and blocking (if classified as an intrusion) or in the bBF for
further processing (if classified as benign). This combined approach employing Bloom
filters and deep learning intervention enables the system to effectively differentiate between
malicious intrusion attempts and harmless activities in IoT devices, enhancing overall
security and intrusion detection capabilities. While eBF presents a novel approach to
enhancing intrusion detection in IoT through improved memory efficiency and accuracy,
careful consideration of implementation issues and potential challenges is essential for
successful integration into real-world IoT environments.
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The study presented in [22] proposed a lightweight protocol for secure communication
in smart homes. This protocol leverages a technique called a cumulative keyed-hash chain
to achieve multiple security goals. One key feature is mutual authentication. The hash chain
establishes a challenge–response mechanism that verifies the identity of both the device and
the user attempting to communicate. This helps to prevent unauthorized access to the smart
home system. The protocol utilizes a hash chain to fragment and verify the integrity of
firmware updates for IoT devices. This ensures that the firmware remains unaltered during
distribution. Additionally, the protocol utilizes the hash chain to dynamically update secret
key values between communicating devices. This helps to prevent unauthorized access by
ensuring that the shared secret is regularly refreshed.

While the cumulative hash chain shares some similarities with blockchain technology
in terms of chaining hash values together, it is not considered a blockchain due to differ-
ences in the structure, decentralization, and consensus mechanism. The protocol instead
focuses on chaining hash values together to create a tamper-evident record. This approach
ensures data authenticity and prevents unauthorized modifications. Additionally, the se-
cret key is updated in every session, further enhancing the security of the communication
channel. By verifying the identities of communicating devices, ensuring the integrity of
data transmissions, and preventing unauthorized access attempts through dynamic key
updates, integration of the cumulative keyed-hash chain strengthens the security of the
proposed protocol. The proposed solution, while effective, may not be suitable for deploy-
ment in current smart home environments due to the inherent resource limitations of many
smart home devices, which often preclude the use of asymmetric cryptographic techniques.

In [23], the authors addressed the critical security challenge of replay attacks within
IoT authentication schemes. Traditional defense mechanisms, which rely on timestamps or
extensive nonce storage, are often impractical due to the resource constraints of IoT devices.
Additionally, reliance on shared secrets such as session keys necessitates robust key man-
agement practices. These keys could be compromised if not securely stored or transmitted,
undermining the entire authentication process. Thus, they introduced a novel lightweight
user authentication scheme employing an improved challenge–response mechanism. The
approach was designed to resist replay attacks without requiring time synchronization or
large nonce lists, making it suitable for resource-limited IoT environments. By utilizing
randomly generated nonces during authentication, the scheme ensures message freshness
and mutual authentication between users and sensors, effectively mitigating the risk of
replay attacks. A performance evaluation demonstrated that the scheme significantly out-
performed existing methods in terms of storage and computational costs, making it efficient
for IoT devices. Although communication overhead is reduced in certain interactions, it
may increase slightly due to the absence of timestamps. However, the scheme’s dependence
on key management remains a critical consideration; any compromise in key storage or
transmission could jeopardize the security of the entire system.

Overall, the above paper presents a secure and efficient authentication solution tailored
to the unique challenges of the IoT environment while highlighting the essential need for
robust key management to ensure the integrity of the authentication process.

While the primary focus of the current paper is on sybil flood defence, we acknowledge
the importance of addressing other potential vulnerabilities such as replay attacks. To miti-
gate this risk, we have incorporated a timestamp mechanism into our proposed solution.

While a deeper discussion of replay attacks and their mitigation strategies is beyond
the scope of this work, the included timestamp mechanism provides a practical and effective
countermeasure. For additional context, readers may refer to the existing literature on
replay attacks in IoT environments, such as [24,25].

4. Overview of the Proposed Solution
4.1. Bloom Filter Initialization

This section details the initial setup phase of the proposed mitigation method, focusing
on the process of creating and distributing a Bloom filter for secure device enrollment within



Electronics 2024, 13, 3467 9 of 22

the network. This Bloom filter plays a crucial role in efficiently authenticating devices and
preventing unauthorized access.

• Hash Chain Creation: Each node generates a hash chain by repeatedly applying a
cryptographic hash function to a chosen random number (x times). This process
creates a chain of hash values, typically denoted as h0 (root) to h(k) (highest level).
These hashed values are then stored locally on the device.

• Root Hash Transmission: Subsequently, each device transmits the root hash value
(h0) of its locally generated hash chain to the designated LBR. This root hash acts as a
unique identifier for the device within the Bloom filter.

• Bloom Filter Construction: The LBR aggregates the root hash values from all connected
devices and integrates them into the Bloom filter data structure. The method of
integration varies depending on the specific Bloom filter implementation.

• Bloom Filter Dissemination: After the Bloom filter is constructed, the LBR broadcasts
it to all devices within the network. Each device then stores the Bloom filter locally to
enable future membership checks.

4.2. Device Authentication Process

The device authentication process is crucial for maintaining network security, partic-
ularly against blended attacks that combine sybil attacks (creating fake identities) with
flood attacks (overwhelming the network). This process ensures the legitimacy of devices
transmitting messages and prevents unauthorized or fabricated devices from disrupting
the network. The verification algorithm employed in this process is outlined below:

Before transmitting a message, the device generates an Enhanced Message Authenti-
cation Tag (E-MAT) using a novel multistep cryptographic process, as follows:

• Hash Chain Element Retrieval: The device retrieves the next hash value from its
precreated hash chain. This value is denoted as hy+1, where y represents the index of
the previous hash value used in a message (initially y = 0).

• Timestamp Inclusion: The device combines the retrieved hash value (hy+1) with the
current timestamp (ts). This ensures the freshness of the message in an effort to prevent
replay attacks.

• Hash Function Application: The device applies a cryptographic hash function

V = h(hy+1 || ts) (5)

to the combined data, creating a unique message authentication tag specific to the
message and the current time.

• The final MAT and the chosen combination of elements form the message payload that
is transmitted across the network; for instance, an example payload structure could be

h0, V, (hy+1 || ts).

4.3. Verification Process

The verification process, see Algorithm 1, begins with a check against a Bloom filter
The receiving node extracts the root hash h0 from the incoming message and compares it
to the entries within the Bloom filter. Because the Bloom filter is probabilistic, a positive
result (presence of the root hash) suggests a high likelihood of the message originating
from a legitimate device; however, this is not a definitive confirmation. If the Bloom
filter indicates a potentially legitimate message, then the packet is allowed to proceed to
further verification steps. Messages that do not pass the Bloom filter check are discarded to
conserve resources.
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Algorithm 1 Verification Process

1: procedure INITIALIZE:
2: Set drop_counter = 0
3: procedure PACKET RECEPTION:
4: Set drop_ f lag = 0
5: Retrieve type f rom packet header.
6: procedure PACKET PROCESSING:
7: if type ̸= 155 then
8: Log Message arrived at tcpip_input
9: Call Bloom f ilter

10: procedure RETURN FROM BLOOM FILTER:
11: if drop_ f lag = 1 then
12: Drop Packet
13: drop_counter ++
14: if drop_counter > 3 then
15: LogPacket dropped more than 3 times.
16: procedure TIME CHECK:
17: if drop_ f lag = 0 then
18: Extract timestamp
19: if timestamp ̸= current period then
20: Drop Packet
21: procedure ROOT COMPARISON:
22: Extract root
23: Extract chain
24: Set loop_counter = 0
25: while loop_counter < x do ▷ x = # Iterations
26: if hash(chain) == root then
27: break
28: else
29: hash(chain) = chain
30: loop_counter ++

31: if loop_counter == x then
32: Drop Packet

After the Bloom filter check, the receiving node extracts the timestamp ts embedded
within the message. This timestamp is compared against the current timestamp maintained
by the node. If the comparison reveals that the message timestamp falls within an acceptable
time window (not too old), the node can be confident that the message is fresh and not a
replay attack attempting to resend an old message.

To ensure that the timestamp within the message has not been tampered with, the re-
ceiving node performs an additional verification. This involves combining the next hash
value hy+1 from the message’s chain with the included timestamp ts. A cryptographic
hash function is then applied to the combined data hy+1||ts and the resulting hash value is
compared to the message’s V value. Any alteration to the timestamp would change the
combined data, and consequently the resulting hash value.

As the final verification post-Bloom filter, the receiving node performs a final hash
comparison check. This involves extracting the hash chain value hy+1 from the message’s
MAT. The node then iteratively hashes this value (no more than x) used by the sending
device to create its original hash chain. After each hashing iteration, the resulting hash
value is compared to the message’s root hash h0. Because the root hash is created by
iteratively hashing an initial value h(k) a specific number of times x, any mismatch during
this verification process indicates that the message has been tampered with.

The Bloom filter acts as the first line of defense, filtering out potentially illegitimate
messages. Following this initial screening, a robust three-step verification process safe-
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guards network integrity. This process effectively filters out messages that appear legitimate
but are not (false positives) and thwarts attempts to reuse old messages (replay attacks).
Any message failing even one step of this verification is deemed unreliable and potentially
compromised. Consequently, such messages are dropped before reaching the LBR.

The network’s integration of new nodes and removal of inactive ones are facilitated
by leveraging the global repair mechanism in the RPL protocol at periodic intervals. This
approach additionally reduces the number of stored hashes required by each node, leading
to lower memory usage and potentially improved performance. However, the simplicity
and time-efficiency of the global repair mechanism for node management come at a cost;
because it is implemented by LBR and affects all network nodes, this method can be
resource-intensive due to the increased control traffic it generates.

4.4. Rapid Attack Detection via Mitigation Failure Monitoring

A simple counter mechanism can be implemented to monitor the number of packets
failing mitigation. This approach enables rapid attack detection by identifying nodes expe-
riencing a significant increase in mitigation failures. As illustrated in Figure 3, a threshold
can be set (e.g., three dropped packets in the target node, in this case Node 2) to trigger an
alert, indicating a potential attack.

Figure 3. Mote output showing that more than three packets have failed mitigation.

5. Performance Evaluation

To evaluate the effectiveness of our proposed mechanism against flooding attacks, A
multistage simulation scenario replicating a Denial-of-Service (DoS) attack was designed.
In the first stage, a single controlled attacker node launches a flooding attack against a
designated target node. In the second stage, the attack is further escalated by introducing
two attacker nodes,. In both scenarios, the message transmission frequency is progres-
sively increased.

Our defence mechanism leverages the hash chain root to populate a Bloom filter
implemented on the target node. The root hash is then included within the legitimate
message payload (see Figure 4). This approach enables efficient message filtering at
the target node, allowing only messages with a valid hash (indicating pre-authenticated
sources) or potential false positives to pass through the filter.

Figure 4. Example of mote output showing legitimate traffic.

To model the possibility of false positives in the Bloom filter, random numbers were
injected into the attacker node’s message payload prior to implementation of post-filter ver-
ification, as shown in Figure 5.

This simulation serves two primary objectives. First, it assesses the target node’s
resilience against a DoS attack under increasing message loads. Second, it demonstrates the
efficacy of the Bloom filter in blocking messages that do not originate from authenticated
sources, thereby mitigating the impact of flood attacks. The Contiki operating system,
a popular choice for resource-constrained wireless sensor networks (WSNs) programmed
in C, served as the development platform for our proposed mechanism [26]. A 32-bit Bloom
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filter was implemented and integrated with the SHA-256 hashing library directly on the
target node. This approach facilitated efficient execution of the proposed mechanism within
the resource-constrained environment of the sensor network. To simulate the resource
limitations and communication characteristics of a low-power sensor network, the Cooja
simulator was employed. The Cooja simulator was chosen due to its extensive support for
various hardware platforms commonly used in WSN deployments, including TelosB, Z1,
and Tmote Sky nodes. Additionally, Cooja offers a visual representation of the simulated
network, which aids in understanding network behavior. Furthermore, it allows node
output to be displayed, facilitating analysis of sensor data and communication patterns.

Figure 5. Example of mote output showing false positive.

Figures 6 and 7 depict the simulated network topology; Node 1 represents the Link
Border Router (LBR), which is responsible for routing traffic between the sensor network
and the external network, Node 2 serves as the target node under attack, and Nodes 3 and
4 represent malicious attacker nodes attempting to disrupt network operations through a
flood attack.

Figure 6. Scenario 1 DODAG visualisation: One attacker.

The impact of the proposed solution was evaluated using the Contiki operating
system’s energest module [27]. This module provides detailed power consumption data
by tracking the active running time (in Contiki ticks) of the four key components through
hardware timers: CPU active time (CPU), CPU idle time (LPM), radio transmission time
(TX), and radio listening time (RX). By monitoring the duration of these states throughout
the simulation, the power consumption for each component can be calculated using the
formula presented in Equation (6). This allowed us to assess the overall power consumption
of the target node under varying network conditions, such as the when the attack intensifies
in frequency both with and without the proposed mitigation techniques in place.

EnergyConsumed =
Runtime × Amps × Volts

Tickspersecond
(6)
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Table 1 presents the current and voltage readings for the Tmote Sky nodes, along with
the Rtimer counter values and various other simulation parameters. Rtimer, a real-time
timer module in Contiki, provides the total number of timer ticks elapsed per second. In the
Cooja simulator, individual nodes can periodically print their running tick count. In all the
simulations, the target node was coded to print this value every 20 s, providing a snapshot
of the ongoing component usage.

Figure 7. Scenario 2 DODAG visualisation: Two attackers.

Table 1. Simulation parameters.

Operating System Contiki-OS
Simulation Environment Cooja
Simulated Area 100 m × 100 m
Power Analysis Energest Time Function

RAM 10 k, 48 k Flash
Voltage 3 V
TX Current 17.4 mA

Sky Mote RX Current 18.8 mA
LPM Current 0.023 mA
CPU Current 1.8 mA
Transceiver CC2420 2.4 Ghz (802.15.4)

RTimer 32,768 ticks per second
Simulation Time 240 s
Measurement Interval 20 s
Node Transmission range 50 m
Objective Function MrHof

The proposed solution was implemented on a target node within the sensor network.
The evaluation process focused on monitoring the power consumption of three key node
components within that node: CPU, radio transmission, and radio reception. Two addi-
tional key metrics were measured to assess the mitigation strategy’s effectiveness alongside
the main metrics: the number of messages dropped due to the defence mechanism, and the
number of false positive messages that passed through the Bloom filter.
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5.1. False Positives vs. Dropped Messages

As previously described, the simulation incorporated a random number generator
within the attacker node code to introduce false positives. This generator produced random
numbers for both the root and chain elements, which were then added to the message
payload. This approach stresses the Bloom filter’s ability to differentiate between legitimate
messages and unexpected data, beyond simply dropping packets with no payload. Table 2
presents the results.

Table 2. Dropped messages vs. false positives.

One Attacking Node Mitigated

Message frequency every 8 s 4 s 2 s 1 s

Avg filtered messages dropped 28 56.8 116.8 232.8
Avg false positives 1 2.8 2.4 6

Two Attacking Nodes Mitigated

Message frequency every 8 s 4 s 2 s 1 s

Avg filtered messages dropped 57 116 235 465
Avg false positives 1.6 2 4 13

Despite the use of a random seed to generate these attached numbers, the number
of false positives across all simulation runs roughly doubled with two attacker nodes
compared to one, with only one exception. However, the overall ratio between dropped
messages and false positives remained below 5%. This difference, seen at the 4 s frequency,
can be attributed to the combination of the random number generator and the random seed
used for multiple simulation iterations.

5.2. Power Consumption

Power consumption is a paramount concern for LLNs due to their resource-constrained
nature and reliance on battery power. Any attack that elevates the network’s overall power
demand directly translates to a reduced network lifetime.

5.2.1. Active CPU Power Consumption

The power consumption of the active CPU can be calculated using Equation (6) and
the data presented in Table 1:

ActiveCPUpower =
Runtime × 1.8 mA × 3 V

32,768
. (7)

Equation (7) was used to calculate the active CPU power consumption for both the
single-node and two-node attack scenarios. This calculation was performed for three cases:
the baseline, an unmitigated attack, and a mitigated attack. The results of this comparison
are presented in Figures 8 and 9.

The proposed mitigation strategy demonstrates significant energy savings in terms
of CPU activity compared to the unmitigated attack scenario with a single attacker node
(Figure 8). On average, a 59% reduction in active CPU energy consumption was observed
across the various message frequency increments. The effectiveness of the mitigation
strategy diminished when the number of attacking nodes increased to two, as is clear from
Figure 9. In this scenario, the average power savings in terms of active CPU energy were
only 6.4%. This observation suggests that as the number of attacker nodes continues to rise,
the mitigated scenario’s active CPU power consumption might eventually surpass that of
the unmitigated scenario.
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Figure 8. CPU power consumption of target node in scenario with one attacker.

Figure 9. CPU power consumption of target node in scenario with two attackers.

5.2.2. TX Power Consumption

In energy-constrained IoT networks, minimizing radio transmission costs (TX costs) is
crucial for maximizing node lifetime. Data transmission, especially frequent transmissions
in large-scale deployments, significantly contributes to TX energy consumption. This is
because intermediate nodes expend energy forwarding received packets. Therefore, miti-
gating the transmission of illegitimate packets can substantially extend network longevity.

As evidenced in Figures 10 and 11, our mitigation strategy effectively reduces the
transmission of illegitimate packets by node 2. This is reflected in the near-identical TX
energy consumption observed between the mitigated scenario and the baseline. This
finding aligns with the observation that the Bloom filter of node 2 drops approximately
95% of the packets received from the attacker nodes, with the remaining 5% constituting
false positives.



Electronics 2024, 13, 3467 16 of 22

Figure 10. TX power consumption of target node in scenario with one attacker.

Figure 11. TX power consumption of target node in scenario with two attackers.

5.2.3. RX Power Consumption

While transmitting data (TX) involves short bursts, receiving data (RX) requires contin-
uous listening, making it a major power drain compared to the energy saving sleep mode.
This problem is amplified in nodes with high power consumption during listening, such
as Tmote Sky. Their radio hardware consumes significantly more power while receiving,
meaning that even brief listening periods significantly impact battery life. Because RX
operations are often more frequent than TX ones, especially in protocols with frequent
communication, high power consumption during listening dramatically reduces overall
network lifetime. Nodes deplete their batteries faster, requiring more frequent mainte-
nance or replacement. Therefore, reducing RX power consumption is crucial for extending
network lifespan, particularly for nodes with high listening currents.

Our mitigation strategy successfully reduced the RX duty cycle (the time the radio
spends in listen mode). In the worst-case scenario, an unmitigated two-node attack resulted
in an average duty cycle of 2.75%. By implementing our mitigation technique, the duty
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cycle dropped to 1.93%, translating to a significant energy savings of 49% on average in the
scenario with one attacker, as shown in Figure 12.

Figure 12. RX power consumption of target node in scenario with one attacker.

Figure 13 reveals a similar trend in the scenario with two attackers. Our mitigation
strategy achieves an average of 46% energy savings in terms of RX energy consumption.

Figure 13. RX power consumption of target node in scenario with two attackers.

5.2.4. Total Power Consumption

Our mitigation strategy demonstrates significant energy savings when a single attacker
node is present. On average, the total energy consumption across all scenarios is reduced
by 58% compared to an unmitigated attack, as shown in Figure 14.



Electronics 2024, 13, 3467 18 of 22

Figure 14. Total power consumption of target node in scenario with one attacker.

However, the effectiveness diminishes when the number of attackers increases. With
two attacker nodes, the average total energy savings drop to 49%, as shown in Figure 15.

Figure 15. Total power consumption of target node in scenario with two attackers.

This decrease can be primarily attributed to the increased cost of active CPU power
consumption required to process and filter out a larger volume of malicious messages from
the additional attackers, as already discussed in Section 5.2.1 regarding the active CPU
power consumption.

5.3. Informal Security Analysis

The following informal discussion is provided to asses the resilience of the proposed
mitigation considering potential additional attack vectors and their potential impact on the
system’s security.
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5.3.1. First Pre-Image Attack

One potential attack vector against the proposed system involves capturing a hash
from the hash chain and attempting to reverse-engineer the seed used to generate the chain.
This attack aims to compromise the security of the system by gaining access to all messages
associated with the node.

To mitigate this threat, the system employs several defence mechanisms. First, the use
of a strong cryptographic hashing algorithm such as SHA-256 significantly increases the
computational complexity of reversing the hash function. Second, ensuring that the seed
generation process produces high-entropy random values reduces the likelihood of an
attacker successfully guessing or brute-forcing the seed. The combination of these defence
mechanisms provides a robust level of security, making it difficult for an attacker to reverse-
engineer the seed and compromise the system.

5.3.2. Replay Attack

A replay attack occurs when an attacker intercepts a legitimate message, re-sends it
at a later time, and attempts to deceive the recipient into processing it as if it were a new
message. To mitigate replay attacks, the proposed system employs a timestamp mechanism.
Each message is assigned a unique timestamp, which is verified by the recipient upon
receipt. If the timestamp is older than a predefined threshold, the message is rejected as a
potential replay attack.

One potential limitation of the proposed solution is the possibility of replay attacks
being launched against other nodes within the network if the attack is executed with
sufficient speed. To mitigate this risk, the time window for accepting messages can be
adjusted and fine-tuned to reduce the likelihood of successful replay attacks.

5.3.3. Eavesdropping Attack

While the proposed solution effectively addresses sybil flood attacks, it is essential
to consider the potential threat of eavesdropping attacks. Eavesdroppers can intercept
network traffic to gain unauthorized access to sensitive data, compromising the privacy
and security of IoT devices. However, even if an attacker were to intercept a message
and obtain its contents, they would be unable to fabricate a valid response from the same
node. The hash chain mechanism ensures that each message includes a unique one-time
password, making it infeasible for an attacker to generate a legitimate message without
possessing the corresponding secret key.

5.3.4. Routing Table Falsification Attack

A common attack vector against RPL-based IoT networks involves routing table
falsification. In this type of attack, a malicious node intentionally misleads other nodes
by advertising routes to nonexistent or unreachable destinations. By disseminating fake
DAO control messages to the parent node, the attacker can induce the parent to store
incorrect routing information, potentially disrupting network communication and leading
to security vulnerabilities.

To enhance the resilience of RPL-based networks against routing table falsification
attacks, nodes can implement a verification mechanism that requires child nodes to provide
the root hash of their sub-DODAGs. This root hash serves as a cryptographic fingerprint
of the sub-DODAG’s topology and membership. By comparing the received root hash
against existing Bloom filter entries, parent nodes can validate the legitimacy of the ad-
vertised route before storing it in their routing tables. This additional layer of security
can significantly reduce the effectiveness of falsification attacks, as malicious nodes would
need to compromise multiple nodes and manipulate their sub-DODAGs in order to create
a convincing fake route.
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6. Conclusions

This paper introduces a novel lightweight security framework designed to address
the prevalent challenges posed by sybil and flooding attacks in resource-constrained IoT
networks. By leveraging the strengths of hash chains and Bloom filters, we propose a
multilayered defense mechanism that effectively filters malicious traffic while ensuring
both device authenticity and message integrity. Our approach is meticulously tailored to the
unique constraints of Low-power and Lossy Networks (LLNs), making it highly suitable
for a broad spectrum of IoT applications where efficiency and security are paramount.

Simulation results within the Contiki operating system underscore the efficacy of our
proposed solution in mitigating these critical security threats, demonstrating its potential
to significantly enhance the resilience of IoT deployments. The lightweight nature of our
framework ensures that it can be seamlessly integrated into existing IoT infrastructures
without imposing substantial computational or energy overhead, thereby preserving the
operational longevity of resource-limited devices.

Overall, the proposed framework offers a robust and adaptable foundation for im-
proving the security and reliability of IoT networks. By addressing key vulnerabilities
through a combination of innovative techniques, this research lays the groundwork for
further exploration and refinement of security solutions tailored to the evolving needs of
IoT ecosystems. Future research building on this work could lead to even more comprehen-
sive and scalable security strategies, ultimately contributing to the widespread adoption of
secure and efficient IoT technologies.

Future Work

Future research should prioritize the complementary integration of the proposed
system with existing flood mitigation approaches, such as those employed by FloodDe-
fender [28]. Combining the strengths of multiple techniques could potentially achieve more
robust and efficient flood prevention. Additionally, optimizing the Bloom filter parameters
through adaptive mechanisms and exploring LLN-specific Bloom filter variants offers
promising avenues for further enhancing system performance and accuracy.

Another crucial area for future research is to investigate the performance of Bloom
filters as the network size increases. As IoT networks scale, the number of nodes and volume
of traffic can significantly impact the effectiveness of Bloom filters, potentially leading to
higher false positive rates and increased computational demands. Understanding these
scalability challenges is essential for optimizing Bloom filter-based security mechanisms
in large-scale IoT deployments. By analyzing how Bloom filters perform under varying
network sizes and conditions, future work can contribute to the development of more
robust and scalable security solutions that maintain efficiency and accuracy even as IoT
networks expand.

Another promising avenue for future research involves developing a comprehensive
defense strategy against DIS flooding attacks by combining Bloom filtering with other
robust countermeasures, such as rate limiting, anomaly detection algorithms, and machine
learning-based approaches. A rigorous evaluation of this integrated strategy is essential
in order to assess its performance under diverse conditions. Key metrics such as packet
delivery ratio, network latency, energy consumption, and computational overhead should
be employed to quantify the solution’s impact. Moreover, the evaluation should encompass
a variety of network topologies to accurately reflect real-world challenges, including both
indoor and outdoor environments. Crucially, hardware constraints and environmental fac-
tors must be considered in order to assess the solution’s practical feasibility and robustness.
By conducting comprehensive testing under real-world conditions, we aim to demonstrate
the applicability and effectiveness of the proposed solution in practical IoT deployments.

Author Contributions: Conceptualization, I.B.; Methodology, I.B.; Software, I.B.; Validation, I.B.;
Investigation, I.B.; Resources, B.G.; Data curation, I.B.; Writing—original draft, I.B.; Writing—review



Electronics 2024, 13, 3467 21 of 22

& editing, B.G., I.W., G.R. and W.J.B.; Supervision, B.G. and I.W. All authors have read and agreed to
the published version of the manuscript.

Funding: This work was supported by Edinburgh Napier University Research Starter Grants.

Data Availability Statement: The raw data supporting the conclusions of this article will be made
available by the authors on request.

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

Abbreviations
The following abbreviations are used in this manuscript:

2FA Two-Factor Authentication
BF Bloom Filter
bBF Benign Bloom Filter
CPU CPU Active Time
DoS Denial-of-Service
DIO DODAG Information Object
DAO Destination Advertisement Object
DIS DODAG Information Solicitation
DODAG Destination-Oriented Directed Acyclic Graph
eBF Enhanced Bloom Filter
h0 Root Hash
IBF Intrusion Bloom Filter
IoT Internet of Things
LBR Local Border Router
LLN Low-Power and Lossy Networks
LPM Low Power Mode
mJ Millijoules
PUF Physical Unclonable Function
RPL Routing Protocol for Low-Power and Lossy Networks
RX Radio Listening Time
ts Timestamp
TX Radio Transmission time
UDP User Datagram Protocol
WSN Wireless Sensor Network
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