
1

Novel Lagrange Multipliers-Driven Adaptive
Offloading for Vehicular Edge Computing

Liang Zhao, Member, IEEE, Tianyu Li, Guiying Meng, Ammar Hawbani, Geyong Min, Ahmed
Al-Dubai, Senior Member, IEEE, Albert Zomaya, Fellow, IEEE

Abstract—Vehicular Edge Computing (VEC) is a transportation-specific version of Mobile Edge Computing (MEC) designed for
vehicular scenarios. Task offloading allows vehicles to send computational tasks to nearby Roadside Units (RSUs) in order to reduce
the computation cost for the overall system. However, the state-of-the-art solutions have not fully addressed the challenge of
large-scale task result feedback with low delay, due to the extremely flexible network structure and complex traffic data. In this paper,
we explore the joint task offloading and resource allocation problem with result feedback cost in the VEC. In particular, this study
develops a VEC computing offloading scheme, namely, a Lagrange multipliers-based adaptive computing offloading with prediction
model, considering multiple RSUs and vehicles within their coverage areas. First, the VEC network architecture employs GAN to
establish a prediction model, utilizing the powerful predictive capabilities of GAN to forecast the maximum distance of future
trajectories, thereby reducing the decision space for task offloading. Subsequently, we propose an real-time adaptive model and adjust
the parameters in different scenarios to accommodate the dynamic characteristic of the VEC network. Finally, we apply Lagrange
Multiplier-based Non-Uniform Genetic Algorithm (LM-NUGA) to make task offloading decision. Effectively, this algorithm provides
reliable and efficient computing services. The results from simulation indicate that our proposed scheme efficiently reduces the
computation cost for the whole VEC system. This paves the way for a new generation of disruptive and reliable offloading schemes.

Index Terms—Vehicular Edge Computing, Result Feedback, Task Offloading, Resources Allocation, Swarm Intelligence.

✦

1 INTRODUCTION

MObile Edge Computing (MEC) is an emerging com-
putational paradigm that aims to push computing

and data storage capabilities towards the network edge in
order to be closer to end-users and mobile devices for local
and faster execution. It aims to alleviate the computational
burden on mobile devices [1]. MEC offers advantages such
as reduced network latency, alleviated network congestion,
and support for local data processing. Due to these advan-
tages, MEC has vast application prospects and potential [2].

Vehicular Edge Computing (VEC) is an emerging
paradigm that aims to transfer computing and data pro-
cessing capabilities closer to the vehicle in order to provide
faster, more dependable, and more secure vehicular applica-
tions and services [3]. Task offloading is a key technology in
VEC, which allows vehicles to offload partial computational
tasks to edge nodes or cloud servers for processing, thereby
reducing the computational load on vehicles themselves and
enhancing their computational efficiency [4]. For VEC task

• Liang Zhao, Tianyu Li, Guiying Meng and Ammar Hawbani are
with the School of Computer Science, Shenyang Aerospace Univer-
sity, Shenyang, China. Liang Zhao is also with the Shenzhen Insti-
tute for Advanced Study, University of Electronic Science and Tech-
nology of China, Shenzhen 518110, China. (e-mail: lzhao@sau.edu.cn,
13998798119@163.com,mengguiying@163.com, anmande@ustc.edu.cn)

• Geyong Min is with the Department of Computer Science, University of
Exeter, UK. (e-mail: g.min@exeter.ac.uk).

• Ahmed Y.Al-Dubai is with the School of Computing, Edinburgh Napier
University, UK. (e-mail: a.al-dubai@napier.ac.uk).

• Albert Y. Zomaya is with the School of Computer Science, University of
Sydney, Australia (e-mail: albert.zomaya@sydney.edu.au).

• Tianyu Li and Ammar Hawbani are the corresponding authors.

offloading, there are still some critical issues that are often
overlooked in current research.

It is worth noting that due to the high-speed mobility of
vehicles in the Vehicle to Infrastructure (V2I) scenario, V2I
offloading must deal with the network topology varying in
time. During the offloading process, vehicles can move out
of the coverage range of the current Roadsides Unit (RSU),
leading to the failure of task offloading [5]. In addition, one
of the most important objectives for offloading tasks is to
reduce delay and energy consumption. However, most of
the existing work on task offloading assumes that the size
of the computational results is small and the feedback delay
can be neglected. For example, individual gaming experi-
ences, such as those involving VR or other gaming devices,
can be processed locally by vehicles. Meanwhile, RSUs are
capable of storing and managing the broader environment
of Metaverse games, including elements like maps and
roads. They also support collaborative multiplayer gaming
tasks and act as platforms for virtual service transactions.
Given the limited computational capabilities of vehicles,
these tasks necessitate offloading to RSUs for processing.
In the case of VR video, each frame contains comprehensive
view information, yet a user only perceives a small segment
of the image within their field of view when viewing the
video. This results in a significant amount of redundancy
in each frame of the VR content. Such extensive redundant
data requires processing by the RSU.

In reality, the feedback delay poses significant challenges
to the offloading decision-making process [6]. Due to the
lengthy transmission time of large tasks and the high mo-
bility of vehicles, vehicles may undergo RSU handovers,
and the computed results need to be routed back through

2

the backhaul network, incurring additional delay. Feedback
delay also significantly affects the offloading decision and
resource allocation schemes [7]. Therefore, it is essential
to reconsider the scale of the offloading decision and the
allocation of computational resources among all vehicles.

In the context of the joint task offloadinG And resoUrce
allocatioN wiTh resuLt fEedback cosT (GAUNTLET) in
large-scale VEC scenarios, Reinforcement Learning (RL)
is commonly employed for its ability to quickly solve
large-scale problems with multidimensional state spaces
[8]. However, RL also faces certain challenges. For high-
dimensional environment, large-scale VEC scenarios often
involve a high number of vehicles, edge nodes, cloud
servers, and potential offloading tasks [9]. The resulting
state and action spaces can be extremely high-dimensional,
making RL training and convergence challenging. In VEC
scenarios, this can involve vehicle locations, task require-
ments, network conditions, and more. Finding the right state
representation can be non-trivia. When the number of tasks,
RSUs, or load capacities changes, the models need to be
retrained, incurring additional cost.

Taking into account the complexity of environmental
changes in the dynamic VEC network, we put forward a
task offloading scheme, named as a lAgrange multiplierS-
baSed adaptIve computinG offloadiNg with prediction
model (ASSIGN). This scheme leverages Generative Adver-
sarial Networks (GAN) to predict future vehicle positions
based on historical vehicle trajectories. Thus, addressing
the issue of unstable links caused by high vehicle mobility
and concurrently reducing the decision space for offloading
enhances algorithm efficiency. By constructing an adaptive
model and employing a heuristic algorithm based on La-
grange multipliers, we address the variability issues in real-
world scenarios. Our main goal is to reduce the average cost
in the entire VEC network, primarily targeting cost factors
related to task offloading, task transmission, and feedback.
In the following, we outline our main contributions.

• Develop an adaptive VEC-integrated distributed task
offloading scheme that copes with the time-varying
network conditions and diverse user requirements
in the VEC network. This architecture establishes an
adaptive optimization model to handle the dynamic
multi-dimensional features of the system and further
dynamically adjusts the system optimization objectives.

• To mitigate the influence of vehicle mobility on
the offloading efficiency of the overall system, we
employ GAN to predict the real-time future locations
of vehicles. This GAN-based prediction serves as a
pre-processing component, effectively reducing the
decision space for V2I offloading decisions while
further enhancing the efficiency and stability of the
system.

• Formulate the problem of GAUNTLET as a Mixed-
Integer NonLinear Program (MINLP) problem and
solve optimization problem using the Lagrange
Multiplier-based Non-uniform Genetic Algorithm
(LM-NUGA). This approach has high computational
efficiency to cope with dynamic scenarios. Through
extensive simulation experiments, we demonstrate that

the proposed scheme achieves efficient computation
services at a lower cost for solving the GAUNTLET
problem in highly dynamic scenarios.

2 RELATED WORK
This section provides a literature review on task offloading
in VEC through the implementation of diverse algorithms.
Additionally, we discuss several studies that consider result
feedback for task offloading. Finally, we highlight the inno-
vative aspects of our research in comparison to other works
in the field.

2.1 Task Offloading in VEC
The offloading approaches include infrastructure-assisted
[10], vehicle-assisted [11], and a combination of both meth-
ods [12]. In [13], the authors employ convex optimization
techniques to decompose the joint optimization problem
into two decoupled sub-problems, addressing the issue of
synchronous offloading among multiple vehicles. In [14],
the authors utilize RL methods to address the problem
of vehicle offloading service assistance. Additionally, they
establish a migration decision model through Software-
Defined Networking to facilitate the offloading process. In
[15], they employ Deep Reinforcement Learning (DRL) to
solve the task offloading and resource allocation strategies
in highly dynamic environments, achieving the minimum
total system cost. In [16], the authors use a two-stage Stack-
elberg game model to address resource pricing and task
offloading issues, and they theoretically prove the existence
of a unique Nash equilibrium. For specific details, please
refer to supplementary file.

2.2 Task Offloading with Result Feedback
Recently, several studies begin to address the issue of result
feedback in task offloading [17]. In [18], the authors propose
an online learning framework based on Nash equilibrium to
address the peer-to-peer offloading problem with delayed
feedback in fog networks. In [19], in order to reduce the
energy consumption, the authors investigated a joint com-
putation and communication mechanism for computational
result downloading in an Orthogonal Frequency-Division
Multiple Access (OFDMA) system.

In VEC system, in [20], the authors employ a self-
learning algorithm to address the issue of timely service pro-
visioning for tasks subject to deadline constraints in vehicu-
lar cloud computing systems. In [21], the authors developed
a stable and efficient offloading method for edge computing
that does not terminate services despite the high mobility
of vehicles. In [22], the authors proposed a self-learning
offloading decision algorithm based on multi-armed bandit
theory to address the issue of link instability caused by
the high-speed mobility of adjacent vehicles during task
offloading. The aforementioned studies primarily focus on
efficient task offloading algorithms without considering the
allocation of computing resources. Additionally, they do
not address the joint optimization of delay and energy
consumption, nor do they consider the varying emphasis
on cost consumption in different scenarios.

3

2.3 Summary

From the analysis of the literature above, many current
studies do not offer almost real time services in dynamic
VEC network that take into account the result feedback.
The main factors contributing to the issue are the significant
motion of vehicles, which results in unreliable transmission
of links, a wide range of options for offloading decisions
that prevent algorithms from reaching a stable state, and
variable priorities placed on minimising computation cost
in different situations.

As for the challenges, we initially employs GAN to
construct a global predictive model, using historical vehicle
data to predict future positions and speeds of vehicles.
This approach reduces the offloading decision space com-
pared to traditional vehicle mobility models. By integrating
the global search capability of the NUGA and the precise
solution-finding ability of the Lagrange multiplier method
under specific conditions, the decision-making algorithm
LM-NUGA is proposed. Additionally, the mentioned adap-
tive model is integrated into the ASSIGN scheme, which
can provide on-the-spot services, simultaneously address-
ing both task offloading decisions and resource allocation
issues.

3 SYSTEM MODEL AND PROBLEM FORMU-
LATION
3.1 System Overview

In this section, the ASSIGN offloading scheme is introduced
to address the large-scale deployment of VEC-generated
vehicles. As depicted in Fig. 1, vehicles on the road gen-
erate various large-scale tasks, such as high-definition video
transmission, large online games, and metaverse, among
others. Offloading the extensive tasks requires a significant
amount of delay. Consequently, multiple RSUs are deployed
along the roads to facilitate the offloading of these large-
scale tasks. In an effort to minimize the computational
resources required for vehicular offloading decision-mak-
ing, in our ASSIGN architecture, the cloud serves as the
central execution platform for the entire predictive model
algorithm. This centralized approach enables the processing
and analysis of comprehensive vehicle data from various
sources, thereby facilitating accurate predictions of vehicle
positions and velocities for future time slots. Subsequently,
the predictive model is distributed to RSUs to assist in
the generation of offloading decisions. Each RSU possesses
both computational and communication capabilities. The
primary function of the RSU entails the optimization of task
offloading decision and computational resource allocations
for vehicular entities within its designated coverage area.
This optimization is conducted with consideration for both
the temporal halting parameters of the vehicles and the pre-
vailing conditions of the underlying network infrastructure
[23]. The most common notations are detailed in Table 1.

We investigate multi-task offloading across multiple
RSUs without sacrificing generality [24], where M =
{1, 2, . . . ,m} is a set of tasks generated by vehicles, each of
which generates a computational task that can be processed
either locally or offloaded to an RSU. If the vehicle stays
inside the coverage area of the current RSU after offloading,

it can directly get the calculation results from the RSU where
the work is offloaded. Nevertheless, in the event that the
vehicle departs from the coverage area of the current RSU,
the computation results must be communicated from the
originating RSU to the RSU located at the vehicle’s present
position. To illustrate this, Fig. 1 depicts two scenarios of
task offloading. For instance, vehicles v1 and v4 offload
their tasks to the RSU4 and RSU8 which situated at their
current location and subsequently transfer the offloaded
result to theRSU7 andRSU1. Vehicles v2 and v3 select other
available RSUs (i.e., RSU3 and RSU4) in their proximity to
offload the task and transfer the result to RSU9 and RSU2

after offloading.
Assuming that each task is indivisible and can only

offload to the local vehicle or RSU. Each vehicle has a
computation task defined as a tuple Wm = (Dm, Cm, Tm)
which can be processed either by the local vehicle or an
RSU, where Dm represents the size of task, Cm represents
the required CPU cycle, and Tm sets the maximum tolerate
delay. Regarding the decision variables, let amn ∈ {0, 1} to
denote whether the computation task Wm offloads to the
RSU. Specifically, amn = 1 indicates that the task Wm is
offloaded to the RSU n, while amn = 0 implies it is not.
Simultaneously, let bm ∈ {0, 1} indicate whether task Wm

is processed locally, where bm = 1 means that task Wm

is processed locally, whereas bm = 0 indicates otherwise.
The relationship between the decision variables amn and bm
is given by (1), ensuring a one-to-one assignment between
tasks and offloading destinations.

N∑
n=1

amn + bm = 1, 1 ≤ m ≤M. (1)

3.2 Transmission Model
3.2.1 Task Offloading
In V2I, a critical concern is the determination of the trans-
mission rate at which tasks are offloaded from vehicles to
RSUs. The adoption of OFDMA is shown to be an effective
strategy to address this concern [25].

Ru
m = log2

(
1 +

Pu |hm|2 l−β
m

N0 + Ium

)
(2)

In (2), Pu signifies the transmission power for the uplink, hm
denotes the coefficient of channel fading, lm is the distance
between RSU to vehicle m, β represents the exponent that
characterises the path loss, N0 and Ium denote noise power
and intercell interference, respectively. Intercell interference
can be mitigated through advanced techniques, including
interference alignment and continuous inference elimina-
tion [26]. In particular, when Ium = 0, the interference is
entirely nullified. Similarly, the downlink transmission rate
can be expressed as :

Rd
m = log2

(
1 +

Pd |hm|2 l−β
m

N0 + Ium

)
(3)

For the purposes of this paper, we posit complete elim-
ination of intercell interference. Consequently, the wireless
transmission delay for vehicle m is formally expressed as:

tumn =
Dm

Ru
m

(4)

4

…

𝒗𝟒
′

𝒗1

……

𝒗𝟒
𝒗𝟑

𝒗𝟐

𝒗𝟑
′

𝒗𝟐
′ 𝒗1

′

Prediction Model

𝑹𝑺𝑼𝟏𝟎 𝑹𝑺𝑼𝟗 𝑹𝑺𝑼𝟖 𝑹𝑺𝑼𝟐𝑹𝑺𝑼𝟑
𝑹𝑺𝑼𝟕 𝑹𝑺𝑼𝟒 𝑹𝑺𝑼𝟏

Result Feedback

Task Offloading

𝒗1𝒗𝟒 Result Routing

𝒗𝟐 Result Routing

𝒗𝟑 Result Routing

The Type of Massive Tasks

MetaverseOnline gaming Augmented reality-

assisted driving

Real-time map update HD video transmission

Cover of The RSU

Fig. 1. System illustration. v1 − v4 and v′1 − v′4 indicate the current position of the vehicle before and after the offloading task.

TABLE 1
TABLE OF NOTATIONS.

Notation/Unit Description Notation/Unit Description
M —— The number of tasks tumn s The upload delay of task m
N —— The number of RSUs trmn s The result routing delay of task m
Dm MB The input size of each task tlocm s The local computation delay of task m
Cm Gcycle/s The required CPU cycles tRmn s The RSU computing delay of task m
Tm s The maximum torlerable delay rbm Mbps The backhaul tranmission rate
amn —— The probability of task offload to RSU tqmn s The queueing delay for returning the result
bm —— The probability of task offload by local ν —— The coefficient of energy in loacl offloading
Ru

m Mbps The uplink data rate fmax
n Gcycle/s The max computing capacity of RSU n

Rd
m Gcycle/s The downlink data rate S m2 The road surface area covered by RSU

S∗ m2 The mean floor space of vehicle Pu W Uplink transmission power
β —— The path loss exponent K —— The number of vehicles and RSUs
N0 dBm/Hz Noise power Favg

loc Gcycle/s The average computing capacity of vehicles
Iu MHz The inter-cell interference Favg

off Gcycle/s The average computing capacity of RSUs

Here Pu indicates the rated power, and the transmission
energy consumption Eu

mn is calculated as follows:

Eu
mn = Put

u
mn (5)

3.2.2 Result Feedback

After finishing the task offloading at the RSU, in a situation
where the vehicle has moved outside the boundaries of the
present RSU, the result feedback delay, as articulated in (6),
is the sum of two components. The first delay is the routeing
delay between the offloading RSU and the RSU currently
hosting the vehicle. The second delay is the downlink trans-
mission delay from the current RSU to the vehicle [27].

trmn =
Dm

rbm
+ tdmn (6)

First is the delay from the offloading RSU to the RSU
presently hosting the vehicle, rb0m is the initial backhaul
transmission rate. If multiple tasks are transmitted simulta-
neously between RSUs, it may lead to network congestion,
thereby affecting communication efficiency.To simulate the
impact of piled tasks on parallel task offloading schemes, we
use rbm to represent the actual result feedback transmission
rate in practice.

rbm = rb0m × ℓ
(
1 +

Pd |hm|2 l−β
m

N0 + Ium

)
(7)

where ℓ is the adjustment coefficient which means the im-
pact on network congestion caused by parallel transmission.
Keep in mind that after offloading, if vehicle stay within the
RSU, the feedback delay is not exist.

The resulting downlink channel is unknown when the
decision is made about task offloading. The downlink trans-
mission rateRd

m is used as a proxy for the downlink channel
in order to keep the system model feasible. The delay
required for vehicle m to receive the results of its download
from RSU via wireless transmission can be expressed as:

tdmn =
Dm

Rd
m

(8)

3.3 Computation Model
3.3.1 Local Computation
We define f locm as the local computation resources of vehicle
m, with units in cycles per second, Cm is the total number
of CPU cycles required to compute one task, measured in
cycles. Therefore, the energy consumption E and the square
of the frequency f locm are indeed proportional. The delay and

5

energy consumption of vehicle m when it offloads a task to
itself can be expressed as by (9), and (10), respectively.

tlocm =
Cm

f locm

(9)

Eloc
m = νf loc

2

m Cm (10)

where ν represents the coefficient of energy utilization in
the local offloading, which means the proportion of compu-
tational resource f locm require task m to be computed locally.
In binary offloading usually set the coefficient to 1.

3.3.2 Computation at RSU
Here we address the allocation of computational resources
at RSUs for processing tasks generated by vehicles. Let fr >
0 denote the computational cost that RSU allocates to the
vehicle m in its coverage. Accordingly, we can define the
delay and energy consumption by (11) and (12), respectively.

tRmn =
Cm

frm
(11)

Er
mn = fr

2

m Cm (12)

We define the decision set S = {am0, am1, . . . , amn}. Draw-
ing from the equations (4), (6), (8), (9) and (11) above, we
introduce toffmn in (13).

toffmn ==

{
tlocm if amn = 0

tumn + trmn + tRmn if amn = 1
(13)

Next, we compute the maximum offloading delay T off
mn

as in (14). It reflects the collection of toffmn , indicates the
maximum offloading delay.

T off
mn = max

{
toffm1 , t

off
m2 , . . . , t

off
mn

}
(14)

Similarly, we derive the formula for energy consump-
tion:

Eoff
mn ==

{
Eloc

m if amn = 0

Putumn + P dtdmn + PRtRmn + Er
mn if amn = 1

(15)
Finally, based on (14) and (15), we can express the total

cost associated with the edge execution scheme for a given
RSU n and taskm as below, where βT and βE are the tuning
parameters.

Cmn = βTT off
mn + βEEoff

mn (16)

3.4 Adaptive Model
In the pursuit of optimizing the system while considering
Quality of Service (QoS) and energy-related factors, we
devise an adaptive relational model to assign appropriate
weights βT (i.e., QoS significance) and βE (i.e., energy
efficiency significance). The relationship between these two
weights is encapsulated in the following equation:

βT + βE = 1 (17)

Our proposed model dynamically balances these two
tuning parameters. We base our weight adjustments on a
set of key criteria.

• Consideration of overall QoS: Our fundamental ap-
proach is to holistically assess QoS, with varying as-
pects of QoS represented by ϖ ∈ [0, 1]. We propose a
metric, traffic density ϖ in (18), that takes into account
the road coverage area, the number of RSUs, and the
number of vehicles. Si and S∗ represent the road sur-
face area covered by RSU and the mean floor space of
vehicle. N is the number of total RSUs and n is the
number of vehicles in the range of RSU.

ϖ =

∑N
i=1 1−

Si−nS∗

Si

N
(18)

• Evaluation of RSU load: We evaluate the load degree
of RSUs. According to the relationship between RSUs
and the calculation capacity of vehicle numbers, the
load degree primarily determines the magnitude of the
influential factor σ ∈ [0, 1]. In (19), the parameter k
governs the steepness of the sigmoid curve. L denotes
the load level of RSUs, quantifiable through metrics like
CPU utilization or the length of the task queue. Lthreshold
serves as a critical threshold, identifying when RSUs are
deemed to be under high load, adjustable according to
system needs. This equation portrays σ as a sigmoid
function, with σ increasing as L exceeds the threshold.
indicating a higher load degree and a greater influence
of load on the QoS weight. It can adjust the parameters
and the threshold value to fit any scenario.

σ =
1

1 + exp(−k(L− Lthreshold))
(19)

• Comparison of computing capacity: Vehicles typically
have less computing capacity compared to RSUs. By
evaluating the average computing capabilities of both
vehicles and RSUs, the influence weight is established
as ϱ ∈ [0, 1]. The factors σ and ϱ are contrasting
influences that fulfill the condition σ + ϱ = 1. As the
QoS requirements increase, so does the demand for
higher computing capabilities in RSUs.

βE = ϖ

{
σ

(
1−

∑N
n=1 f

max
n∑K

n=1 f
max
n

)
+ ϱ

F avg
loc

F avg
off

}
(20)

In (20), K is the total number of RSUs and vehicles. fmax
n is

the maxium computing capacity of the RSU n. F avg
loc denotes

the mean computing capacity of the vehicles when locally
computing. F avg

off denotes the mean computing capacity of
the vehicles when offloading tasks to RSUs. There are nu-
merous elements that influence the link between the number
of RSUs and vehicles. For instance, when the RSUs’ number
increases, the percentage of weight βE decreases, and the
corresponding percentage of weight βT is higher, so delay
has a large impact on this situation.

3.5 Problem Formulation

In the whole VEC system, minimizing the total cost by
jointly the task offloading decision set S and the compu-
tation resource allocation f is our main objective, and in
order to deal with the GAUNLTLET problem, the objective
function C is given by (21):

6

C(a, b, frm, f
loc
m) =

M∑
m=1

N∑
n=1

amnC
r total
mn + bmC

loc total
m

(21)

where Cr total
mn and Cloc total

m denote the total cost at
RSU and local for task offloading. Thus, the problem with
optimization can be formulated as follows:

min
a,b,fr

m,f loc
m

C(a, b, frm, f
loc
m) (22)

s.t.
M∑

m=1

amnf
r
m ≤ F r

n , 1 ≤ n ≤ N (22a)

M∑
m=1

bmf
loc
m ≤ F loc, (22b)

amnT
r total
mn ≤ Tm, 1 ≤ m ≤M, 1 ≤ n ≤ N

(22c)

bmT
loc total
m ≤ Tm, 1 ≤ m ≤M (22d)

N∑
n=1

amn + bm = 1, 1 ≤ m ≤M (22e)

frm ≥ 0, 1 ≤ m ≤M, 1 ≤ n ≤ N (22f)

f locm ≥ 0, 1 ≤ m ≤M (22g)
amn, bm ∈ {0, 1} (22h)

This formulation is suitable for addressing the complex-
ities of joint task offloading, resource allocation, and result
feedback cost in large-scale VEC scenarios. Constraints (22a)
and (22b) ensure that the sum of computing resources
allocated to tasks by the cloud server does not exceed its
computing capacity, where F loc and F r

n are the total com-
puting resource of the vehicle m and the RSU n. Constraints
(22c) and (22d) indicate that the total delay to complete a
computing task cannot exceed the maximum delay tolerance
of tasks in order to maintain balance and stability of the
system, and the constraint (22e) ensures that a computa-
tional task is only offloaded to a single RSU to complete the
computation to ensure the completeness of each task.

Since the optimization problem (22) contains nonlinear
functions and integer variables, the optimization problem is
MINLP [28]. There are no polynomial-time algorithms avail-
able to solve the MINLP exponential explosion problem. To
overcome these obstacles, we use LM-NUGA, which con-
cludes the heuristic algorithm and the Lagrange multiplier
method in the next section to solve the offloading scheme
and the computing resource allocation, respectively.

4 PROPOSED SOLUTION
The preceding optimization problem (22) is a non-convex
optimization problem, which is challenging to solve with
conventional optimization techniques. In this paper, the op-
timization problem is solved by using the combination of an
improved NUGA and the Lagrange multipliers method. In
simple terms, we encode only the offloading scheme. Using
the Lagrange multiplier method can determine the near-
optimal resource allocation scheme under the offloading
scheme when a specific scheme is provided. In light of

the preceding, we employ LM-NUGA to conduct a global
search for better solutions.

4.1 Pre-prossessing of ASSIGN

We introduce the GAN-based pre-processing method, and
build the pre-processing architecture through prediction
model. The obtained prediction model can judge the num-
ber of target RSUs for task offloading, minimize the decision
space and improve the overall effectiveness in the whole
VEC system.

4.1.1 Preliminaries

GAN is a conventional model that differs from GSNs and
Boltzmann machines in that it relies solely on backpropaga-
tion without employing complex Markov chains [29].

The objective of GAN is to establish a predictive model
for future traffic conditions based on the current traffic
situation [30]. In this context, the driving conditions of
vehicles are denoted as V = {Vc ∪ Vr}, Vc is the vehicle
state and Vr is the road state. The data set for Vc is denoted
as Vc = {vid, x, y, vs}, where vid represents the quantity of
vehicles. (x, y) reflects the vehicle’s location, vs represents
the current velocity. Moreover, the road condition data
set Vr = {Ps, Pe, pf , pd, pv, N}. Ps and Pe are the starting
and ending places of the road, respectively. pf is a binary
variable that indicates if another vehicle is moving ahead of
the vehicle, pd is the distance from the vehicle to the vehicle
in front, and pv is the velocity of the vehicle ahead. N is the
total number of vehicles.

[Vt+1, Vt+2, . . . , Vt+T] = F (Vt) (23)

The relationship between current and predicted traffic con-
dition is defined in (23). The mapping function for predic-
tion model is defined as Vt = F (Vt), where Vt is vehicle
condition data and F is the mapping function at time t. Vt+1

is the driving condition date of the vehicle predicted by the
generated network 1 s later. Besides, to assess the accuracy
of the prediction model, we designate the loss function l as
below:

l = F̂ (Vt)− F (Vt) (24)

where F̂ (Vt) denotes the actual data on traffic condi-
tions. Based on the above definition, the prediction model
can solve the mapping function F , which is equivalent to
minimize the loss function l.

1) Generative Model : The function of the generator is to
generate the predicted vehicle trajectory and other param-
eters in order to deceive the discriminator. The mapping
function G of the generative model is based on the vehicle’s
driving state. Here, V̂tg represents the set of vehicle states
for the generative model, denoted as V̂tg = Gς (Vt−1).

2) Distribution Model : The responsibility of the discrim-
inator in GAN is to differentiate. If the calculated trajecto-
ries closely resemble real trajectories, then discriminator’s
output is near to 1, indicating difficulty in distinguishing
them. The discriminator cannot evaluate the output of the
generator based solely on criteria Vt−1 or V̂tg . The output
data of the generator regarding vehicle trajectories should

7

Algorithm 1: Pre-processing process for ASSIGN
Input : generator Gς , discriminator Dτ , learning

rate ωg and ωd, date set µ,
1 Initialize Gς , Dτ ;
2 o← φ;
3 repeat
4 for Generator do
5 Ẑt =

{
Vt−1 ∪ V̂tg

}
;

6 ∇ = log
(
1−Dτ

(
Ẑt

))
;

7 ς ← ς − ωg∇;
8 end
9 for Discriminator do

10 ∇ = log (Dτ (Zt)) + log
(
1−Dτ

(
Ẑt

))
;

11 τ ← τ + ωd∇;
12 end
13 o← ς ;
14 Return o;
15 until GAN converge;

Output: mapping function Go

Generator
Traffic

condition data

D1

D2

Discriminator

CostD

Real Sample

Fig. 2. Diagram of the Framework for GAN.

not be used as the sole input for the discriminator to check
accuracy.

Fig. 2 shows the system framework diagram of GAN,
which includes a generator and a discriminator. The com-
plete flow of GAN is presented in Algorithm 1. In essence,
the pre-processing process can be regarded as the vehi-
cle trajectory prediction process, which involves solving
mapping function F , with the objective of minimizing the
loss function l. Gς and Dτ undergo training subsequent
to the generator and discriminator being initialized. The
output mapping functionG0 is assigned ofGς after training.
After the values of the generator Gς and discriminator Dτ

has been initialized, lines 4–8 and 9–12 show the training
process of them, respectively.

4.1.2 Prediction Model of GAN
This section describes the GAN-based prediction model for
vehicle trajectory prediction. On the one hand, the predic-
tion model estimates the maximum distance that vehicles
will travel in the future, which helps to determine the num-
ber of RSUs selected for offloading decision and narrows
the decision space. It enhances the precision of the ultimate
offloading decision solution. On the other hand, the model
also provides the future average vehicle velocity as a dis-
criminatory metric for mobility detection. It serves as an

evaluation criterion for real-world scenarios by incorporat-
ing real-time vehicle positions into the penalty function of
the offloading decision algorithm. The following are the pri-
mary evaluation metrics for the prediction model:

ttransmax =
Dn

max

Rumin
m

(25)

tcomp
max =

Cn
max

frmin

(26)

ttotalmax = ttransmax + tcomp
max (27)

where (25) and (26) denote the maximum transmission
delay the computational offloading delay of the task. Dn

max

denotes the maximum data size of all tasks whose unit is
usually upto GB, Rumin

m is the minimum speed for transmis-
sion, which depends on the largest distance between RSUs.
The specific explanation of them is mentioned in subsection
3.2. Cn

max is the maximum number of CPU cycles, which
means the amount of computation required for task offload-
ing, and frmin is the minimum computing capacity of the
RSUs. ttotalmax is the maximum time that typically represents
the total time it takes to complete all tasks contained in
an application. Thus, we can obtain the maximum time
and predict the maximum distance traveled by the vehicle
within the maximum time, and select the RSUs within the
range of the distance as the offloading object to achieve the
purpose of reducing the decision space.

4.2 Offloading Scheme with LM-NUGA

In this section, we employ an improved Non-Uniform Ge-
netic Algorithm called LM-NUGA to deal with the problem
of offloading decision-making and resource allocation. We
focus solely on encoding the offloading scheme and utilized
the Lagrange multiplier method to determine the near-
optimal resource allocation scheme under a given specific
offloading scheme. This approach makes the entire system
better suited for highly dynamic VEC scenarios.

4.2.1 Preliminaries
Genetic Algorithm (GA) is a mathematical model of how
evolution happens in living things [31]. For specific details,
please refer to supplementary file.

First, we obtain the preliminary offloading decision by
using NUGA. By applying the Lagrange multiplier method,
we can determine the near-optimal resource allocation un-
der these decisions. Combining the advantage of NUGA in
global search that avoids getting trapped in local optima,
we can further optimize the process of solving offloading
decision within NUGA. This iterative process allows us to
obtain a more accurate offload decision.

4.2.2 Population Initialization
Population initialization is the process of creating an initial
group of random individuals at the onset of GA. It serves
as a starting point within the search space of the algorithm.
During initialization, various parameters are typically set
for each individual, including chromosome code, gene num-
ber, range of values, and fitness function. The choice of
population initialization method directly impacts the search

8

𝑎11 … 𝑎1N

𝑎M1

𝑏1

… 𝑎MN

… 𝑏M

𝑎M

𝑎1

𝑏

Fig. 3. The Encoding of an individual.

space, initial conditions, and search paths, thereby influenc-
ing the overall global and local search performance of GA.

1) Chromosome Encoding : the specific encoding for in-
dividuals is illustrated in Fig. 3. Since the offloading scheme
is a two-dimensional binary number, it can serve as a coding
scheme. It is important to note that only the offloading
scheme is involved in the crossover and mutation operations
of GA. Once the offloading scheme has been identified,
the optimization problem (22) and the remaining resource
allocation problem become convex optimization problems.
These problems may be effectively handled by using the
Lagrange multiplier method. If constants such as amn and
bm are involved and the other constraints are linear, the
optimization problem (22) turns into a convex optimization
problem. This approach significantly enhances the compu-
tational efficiency of GA.

2) Space Searching : according to constraints (22e)
and (22h), we set amn = {am1, am2, . . . , amN} and
b = {b1, b2, . . . , bM} as the smallest unit genetic fac-
tors, which ensures that the constraints are met during
the crossover and mutation processes. For convenience,
Ki = {ai1, . . . ,aiN,bi}⊤ is used to represent an individual.
For T loc total

mn ≥ 0 and T r total
mn ≥ 0 it is easily obtained from

constraint (22c) and (22d).

amn(t
u
mn+t

r
mn+t

d
mn+t

R
mn) ≤ Tm, 1 ≤ m ≤M, 1 ≤ n ≤ N

(28)

bm(tlocm) ≤ Tm, 1 ≤ m ≤M (29)

Here we will demonstrate that the search space C, which
satisfies constraints (28) and (29), can serve as the feasible
region for the mutation operation. Since the delay in (28)
and (29) are only affected by environmental variables, we
can preliminarily judge whether the offload scheme amn or
bm can satisfy constraints (22c) and (22d) when the compu-
tational resource allocation scheme is unknown, because if
constraints (28) and (29) are not established, then constraints
(22c) and (22d) must not hold. It also improves the efficacy
of the algorithm, i.e., ∀Ki ∈ C.

3) Fitness Function : the fitness function is a critical
component of NUGA used to assess the fitness or character
of each individual during the evolutionary process. The se-
lection and reproduction of superior individuals depend on
their fitness function. The fitness function plays a vital role
in the performance and convergence speed of NUGA. The

objective is to minimize total cost consumption in this work.
Once an offloading scheme is determined, the problem can
be formulated as below:

min
fr,f loc

M∑
m=1

N∑
n=1

(amnC
R total
mn + bmC

L total
m) (30)

s.t.
M∑

m=1

amnf
r
mn = F r

mn, 1 ≤ m ≤M, 1 ≤ n ≤ N

(30a)
M∑

m=1

bmf
loc
m = F loc

m , 1 ≤ m ≤M (30b)

0 < frmn ≤ F r
mn, 1 ≤ m ≤M, 1 ≤ n ≤ N (30c)

0 < f locm ≤ F loc
m , 1 ≤ m ≤M (30d)

where the constraints (30b) and (30c) are equality con-
straints because our objective function is to minimize the
total cost, and allocating all computing resources can reduce
the total delay.

(a) sufficiency condition : Problem (30) is a convex opti-
mization problem.

For simplicity, first we write gmn (fmn) as prob-
lem (30), then the objection function can be written as∑M

m=1 gmn (fmn). For gmn (fmn), when amn ̸= 0, its second
derivative is as follow:

∂2gmn (fmn)

∂f2mn

=
2âmncmdm

f3m,n

> 0,∀fmn > 0 (31)

gmn (fmn) is a convex function. Specially, when amn =
0, gmn (fmn) = 0, which is also a convex function. There-
fore, gmn (fmn) is a convex function with respect to fmn,
and the objective function is a sum of convex functions. In
conculsion, the objective function is a convex optimization
problem.

The equality constraint
∑M

m=1 amnf
r
mn = F r

mn defines
a hyperplane in terms of fmn, which is a convex set. The
constraint (30b) is in the similar way. Constraint (30c) and
(30d) are the intersection of an open interval and a closed
interval, which is also convex set.

(b) necessary condition : The first derivative of the La-
grange function is 0.

we can construct the Lagrange function as follow:

L(frmn, f
loc
m , λ, ψ) =

M∑
m=1

N∑
n=1

(amnC
R total
mn + bmC

L total
m)

−
N∑

n=1

M∑
m=1

λn(amnf
r
mn − F r

mn)

− ψ
M∑

m=1

(bmf
loc
m − F loc

m)

(32)

ψ are the Lagrange multiplier. Then the partial deriva-
tives are calculated for the parameters of the Lagrange
function respectively, and finally the near-optimal solutions
of fr

∗
and f loc

∗
are obtained.

9

fr
∗

mn =
F r
mn

M∑
i=1
i̸=m

√
ainCi

(33)

f loc
∗

m =
F loc
m

M∑
i=1
i ̸=m

√
biCi

(34)

To evaluate the fitness of an individual, the fitness func-
tion is defined as follow:

Fitness = −C(a, b, fr
∗

mn, f
loc∗

m)− Penalty (35)

where Penalty is the penalty function defined as

Penalty =

α
M∑

m=1

max (0, bmC
L total
m − Cm)

+ α
M∑

m=1

N∑
n=1

max (0, amnC
R total
mn − Cm),

(36)

α is a penalty factor which is generally a large positive num-
ber, usually set to 104. When α = 0, this implies that there
is no need to adhere to the constraints. Its role is to add
a penalty term to the fitness function to force the search
process during optimization to obey the constraints (22c)
and (22d).

4.2.3 The Basic Operation of LM-NUGA
In this section, we will introduce some basic operations of
NUGA, including selection, crossover, mutation, and the
design of non-uniform probability distribution functions.

1) Selection : the tournament selection method is em-
ployed to choose individuals with higher fitness values as
parents, generating the next generation of individuals [32].
To enhance the performance of NUGA, the concept of elite
preservation is employed, guaranteeing the participation of
individuals with the highest fitness in the reproduction of
the next generation. Furthermore, the individual with the
highest fitness is updated at each iteration. The detailed
process is presented in Algorithm 2.

2) Crossover : For detailed information regarding the
crossover, please refer to the supplementary file.

3) Mutation : For detailed information regarding the mu-
tation, please refer to the supplementary file.

4) Probability Distribution Function : the conventional
GA explores the search space in a uniform manner, which
can lead to the search getting trapped in local optima. In
contrast, NUGA is an evolutionary computation algorithm
that enhances the diversity of the search space by intro-
ducing non-uniform mutation operations. By modifying
the search scheme within the GA, the NUGA introduces
a non-uniform variation rate [33]. In our approach, the
non-uniform probability distribution function adopts an
exponential decay function, where the mutation probability
exponentially decreases with the increase in iteration count.

pm(t) = p(0)m e−λ t
tmax (37)

Algorithm 2: Near-optimal individual selection

Input : population K , elite Ki∗ , population size S
1 for s = 1 to S do
2 Randomly choose two individuals Ki and Kj ;
3 Calculate fr

∗

mn and f loc
∗

m corresponding to Ki

and Kj according to (33) and (34);
4 Calculate the fitness of two individuals according

to the (35);
5 Select an individual K∗ with better fitness to

insert into K ′;
6 end
7 if K∗ not in K ′ then
8 Replace the individual with the lowest fitness

with Ki∗ ;
9 end

Output: better population K ′

where pm(t) denotes the mutation probability at itera-
tion t, p(0)m represents the initial mutation probability, tmax
is the maximum number of iterations, and λ is a parameter
controlling the rate of exponential decay. In the experiment,
the values of λ and p

(0)
m need to be designed according to

the parameters in the adaptive model to achieve the best
algorithm performance and search performance.

4.2.4 Overview of LM-NUGA
The LM-NUGA mainly includes initial population, selec-
tion, crossover, and mutation operations, which are shown
in Algorithm 3. In the initial population stage, a set of solu-
tions is randomly generated according to the search space C,
which is the first generation population K . In the selection
stage, the algorithm selects excellent and elite individuals
as parents of the next generation population according to
the fitness function (35) and updates the optimal individual
Ki∗ . If the optimal individual is not in the population,
replace the worst individual in the population with the
optimal individual Ki∗ . In the crossover and mutation
stage, the algorithm designs the probability of crossover and
mutation through the non-uniform probability distribution
function. At the same time, the algorithm can always satisfy
constraints (22e) and (22h) in the process of crossover and
mutation, which reduces the search space and improves the
efficiency of the Algorithm 3.

For detailed information regarding the complexity anal-
ysis of LM-NUGA, please refer to the supplementary file.

4.3 The Complete Process of ASSIGN
we describe the pre-processing of ASSIGN in 4.1, the
offloading decision-making algorithm with LM-NUGA in
4.2 in order to integrate the complete ASSIGN offloading
scheme. Algorithm 4 outlines the entire ASSIGN task of-
floading process. It takes whole VEC network as input,
the total cost required for system task offloading as out-
put, along with the computation resource allocation and
offloading schemes for each vehicle and RSU. The whole
implementation of ASSIGN is outlined as below.

Firstly, ASSIGN initializes its required parameters. Sec-
ondly, based on the extracted parameters, it calculates the

10

Algorithm 3: LM-NUGA
Input : population size S, iteration times T ,

crossover probability pc, mutation
probability pm, number of tasks from
vehicles m, number of RSU n, tasks Wm

1 According to the constraints (28) and (29) to get the
search space C;

2 Generate a new population K according to the
search space C;

3 for t = 1 to T do
4 According to Algorithm 2, update population K

to K ′;
5 Perform the crossover operation on population

K ′ with probability pc to get population K ′′;
6 To generate population K ′′′ from population K ′′

with a probability pm using the mutation
operation;

7 Calculate the fitness of K ′′′ and update the elite
individual Ki∗ ;

8 K = K ′′′;
9 t = t+ 1;

10 end
11 Use Ki∗ to calculate fr

∗

mn and f loc
∗

mn by (33) and (34);
Output: Ki∗ , fr

∗

mn, f loc
∗

mn

adaptive weights λE for different scenarios using (20).
Thirdly, ASSIGN constructs a prediction model. It calculates
the maximum delay required for vehicle task offloading and
determines the current location of vehicles. The information
is then used to determine the maximum number of RSUs
for task offloading, reducing the decision space and enhanc-
ing overall system efficiency. Finally, ASSIGN employs the
elite selection scheme from Algorithm 2 to choose suitable
individuals for optimizing the performance of LM-NUGA.
It utilizes Algorithm 3 to calculate task offloading decision
and allocate resources between RSUs and vehicles.

Algorithm 4: ASSIGN
Input: The entire VEC network

1 Extracts the raw data to initialize the parameters in
VEC network;

2 Calculate the adaptive model parameter βE by (20)
based on the parameters in the scene;

3 Calculates the maximum delay of vehicle to
complete the maximum task offloading by using
Algorithm 1 to constructs the prediction model.

4 Perform Algorithm 2 and 3 to compute the
allocation of computing resources and offloading
decision for RSUs and vehicles.

Output: The total cost to complete the offloading
task, including task decision-making and
resource allocation results of RSUs and
vehicles.

5 EXPERIMENTS
This section outlines the performance evaluation of ASSIGN
which can be divided into four subsection. The system

scenario and key evaluation parameters are introduced in
5.1. Subsection 5.2 evaluates the performance of the pre-
diction model based on GAN. Subsection 5.3 evaluates the
adaptive ability of ASSIGN in various scenarios, and finally
5.4 compares the efficiency of ASSIGN task offloading to
that of other mainstream schemes.

5.1 Evaluation Parameters and Scenarios

We evaluate a scenario where a 20-kilometer road is selected
and several RSUs are placed in VEC. The positions of each
vehicle are produced using the Simulation of Urban Mo-
bility (SUMO). A predictive model is employed to select a
subset of RSUs as examples for running the simulation. The
programming language employed is Python 3.7, while the
experimental simulation platform is a Windows 11 64-bit
system, incorporating libraries such as numpy, torch, and
matplotlib. We have uploaded the open source code of the
platform available on Github 1. For detailed information re-
garding the evaluation parameters, please refer to the sup-
plementary file.

5.2 Evaluation of Prediction Models

(a) (b)

Fig. 4. A comparison of the effectiveness of (a) test sets and (b) training
sets.

We evaluate the outcome of GAN-based predictive mod-
els in this section, and we will introduce the following two
performance metrics to evaluate the effectiveness of the
predictive model.

• Mean Absolute Error (MAE) : The average absolute er-
ror is the difference between the predicted and actual
values. The method of calculating the average absolute
error is to add the absolute errors of all samples and
then divide by the number of samples. The MAE rep-
resents the mean squared error between the actual and
predicted speeds, with units in meters per second.

MAE =
1

S

S∑
s=1

|ŷs − ys| (38)

• Average Accuracy (AA) : Average accuracy is a mea-
sure of the average performance of models in different
classes, and it is also the average accuracy of multiple
classes. It provides an overall performance measure,
which here represents the average accuracy of vehicle
trajectory predictions.

1. https://github.com/NetworkCommunication/ASSIGN

11

Fig. 5. Performance evaluation of GAN-based predictive model.

AA =
1

S

S∑
s=1

(
1− |ŷs − ys|

S

)
(39)

In our GAN model, both the generator and discrimi-
nator are based on a seven-layer neural network architec-
ture. Initial learning rates of 0.02 and 0.01 are set for the
generator and discriminator, respectively. In determining
the effectiveness of GAN adversarial learning, the number
of hidden neurons is crucial. The generator may produce
samples with low fidelity if the number is too small. Over-
fitting may occur if the quantity is excessively high. In our
experiments, between 100 and 500 hidden neurons were
selected for training. The final number of hidden neurons
was determined by selecting the values that yielded the
highest AA and the lowest MAE. In Fig. 4(a) and 4(b), the
adversarial learning process and performance of model are
optimal when the number of hidden neurons reaches 300.

Fig. 5 depicts the training set and test set evaluation met-
rics for the GAN-based prediction model. MAE measures
the accuracy of our predictions of model. When the number
of hidden layer neurons is set to 300, the MAE value reaches
its minimum after approximately 75 iterations, signifying
that the model’s training performance satisfies the specified
criteria.

5.3 Assessment of Adaptability in Different Scenarios
In this section, we evaluate the effectiveness of adaptive
models in three distinct situations. Fig. 6 depicts the impact
of the value of delay and energy consumption for various
scenarios on the experimental outcomes of total cost.

To address various scenarios in the VEC network, we
develop a more realistic scenario model to simulate task
offloading. We consider three different scenarios to verify
the effectiveness of adaptability of our model: Commercial
Trunk Road (CTR) , Village Trunk Road (VTR), and Residen-
tial Trunk Road (RTR). In the CTR scenario, there is a high
volume of traffic and vehicle density. Task offloading among
vehicles requires a high level of QoS to meet the demands.
On the other hand, in VTR scenario, the vehicle density is
lower, and vehicles are traveling at higher speed. In this
case, task offloading prioritizes energy efficiency considera-
tions to reduce energy consumption. The VTR scenario lies
between the CTR and VTR scenarios, encompassing both
aspects.

We analyse the overall computational cost in three
distinct environments, considering various factors such as

task’s number, data size, and task’s complexities. In Fig.
6(a), 6(b) and 6(c), the trends of curves are stability under
various conditions. This indicates that our algorithm allows
the adaptive model to consider the trade-off between delay
and energy consumption in real-world dynamic scenarios.

5.4 Comparative Performance Evaluation
We list six baseline schemes to compare with our pro-
posed ASSIGN scheme in this section, including Lagrange
multipliers-based NUGA (LM-NUGA), Prediction Model-
assisted GA (PM-GA), Prediction Model-assisted PGL (PM-
PGL), Prediction Model-assisted PSO (PM-PSO), Prediction
Model-assisted Loacl (PM-LOC), and Prediction Model-
assisted Greedy (PM-GRE). Our scheme is denoted as AS-
SIGN, and we set the pre-processing parameters to the
same values and controlled variables to conduct compar-
ative experiments. For detailed information regarding the
aforementioned baseline schemes, please refer to the sup-
plementary file.

Fig. 7(a) shows the computation cost of PM-LOC, LM-
NUGA, PM-PSO, PM-GA, PM-PGL, PM-GRE, and ASSIGN
with different data sizes for each task. The experimental re-
sults show that when the number of tasks is set between
10 and 50, as the decision space required by the algorithm
increases, the computational complexity also increases. In
this scenario, the ASSIGN scheme has the lowest cost among
the seven schemes. Furthermore, as the number of tasks in-
creases and the dimensionality of the problem increases, the
search space grows exponentially, and each dimension may
contain critical information. This makes it difficult for PSO
to cover sufficient search space within a reasonable time-
frame, thereby hindering its ability to find the global opti-
mum after 25 tasks.

Fig. 7(b) illustrates the effect of different schemes with
varying numbers of RSUs, further demonstrating the ex-
pandability of ASSIGN. Except for local computation, the
overall cost of all schemes increases with an increase in the
number of RSUs. Due to limited computational resources,
uplink transmission and task offloading computations in-
cur higher cost, and task offloading introduces additional
feedback cost. It is evident that ASSIGN shows the fastest
convergence speed and the lowest computational cost. The
reason is that the use of a pre-processing process based on
the predictive model computes the location of the maximum
displacement of vehicles during their future movement,
thereby determining the number of RSUs for task offloading
and reducing the decision space. In addition, GA improved
with the Lagrange multiplier method, allowing ASSIGN to
converge faster and avoid being trapped in local optima.

Next, we consider the overall computational cost for
different scenarios and varying task sizes. In Fig. 7(c), x-
axis denotes task size, the total computational and commu-
nication resources increase with the growing task scale. It is
evident that the ASSIGN scheme exhibits significantly lower
computational cost compared to other schemes. Due to
the continuous increase in task size, ASSIGN demonstrates
superior convergence compared to other schemes, resulting
in lower computational cost. In addition, the adoption of
the pre-processing method in ASSIGN leads to a more pre-
cise decision space, contributing to its better performance
compared with other schemes.

12

(a) (b) (c)

Fig. 6. Performance for total cost with different task’s number (a), task’s size (b) and task’s complexity (c)

(a) (b) (c)

Fig. 7. Performance for total cost as the number of tasks (a), the number of RSUs (b), and the maximum computation capacity of vehicles (c).

(a) (b)

Fig. 8. The performance of total delay based on different complexity of
RSU (a) and complexity of each task (b).

Fig. 8(a) illustrates the impact of the maximum compu-
tation resources of RSUs on the overall scenario, comparing
the total computation delay for the vehicles in the seven
scenarios with different maximum computing capabilities of
the RSUs. As observed, the total delay for all scenarios tends
to decrease with increasing RSU maximum computation
capacity, except the local computation scheme. The increase
in computing resources may reduce the offloading delay for
tasks, leading to an overall reduction in delay. The ASSIGN
scheme achieves the minimum total delay among vehicles as
it excels in accurate space-based offloading decision without
pre-processing.

In Fig. 8(b), we evaluate the influence of task complexity
for the total delay. The total delay for every single scheme
escalates as the elevate in task complexity. The reason is
that tasks with higher computational complexity need more

computation delay compared with tasks with lower com-
putational complexity. Notably, the ASSIGN scheme signifi-
cantly outperforms with other schemes. This is attributed to
the adoption of the Lagrange multiplier method to improve
GA, enabling it to achieve fast convergence without getting
trapped in local or global optima. Moreover, integration of
the prediction model further enhances the performance of
ASSIGN compared with other schemes.

In Fig. 9, the execution time of ASSIGN is effected by
time complexity of the GAUNTLET problem, which con-
sequently determined by the number of populations and
iterations. We list the execution times of the ASSIGN scheme
under different numbers of populations and iterations. Ini-
tially, both the number of iterations and populations were
fixed at 300 and 60, respectively. The actual execution time
is clearly less than one second when the problem converges.
When the number of iterations reaches 300 and the popu-
lation reaches 60, the problem has already converged and
the minimum actual execution time recorded is about 0.79
seconds.

6 CONCLUSION
We explore the integrated challenges of task offloading and
resource allocation within VEC framework in this paper.
We proposed an adaptive offloading scheme assisted by a
prediction model to address the total computation cost as
a combined optimization problem, taking into account the
result feedback cost. The proposed scheme intends to offer
an efficient offload decision for large-scale V2I offloading
in practical vehicular scenarios. The entire scheme can be

13

(a) (b)

Fig. 9. The performance of execution time based on different number of
populations (a) and iteration (b).

split into several components. First of all, we establish a
prediction model using GAN to pre-process the vehicles and
RSUs in the VEC scenario, reducing the decision space while
assisting the task offloading process. Then, we apply an
effective offloading scheme based on a Lagrange multiplier-
improved non-uniform genetic algorithm to various dy-
namic scenarios. Next, we develop an adaptive model that
adjusts to change in density of vehicles, the load of network,
and computing capabilities of vehicles to handle the overall
cost in different scenarios. Comprehensive experimental as-
sessments are undertaken to ascertain the adaptability, flexi-
bility, and reliability of ASSIGN scheme. The comparison of
the experimental results suggests that our ASSIGN scheme
exceeds the alternative offloading scheme with respect to the
cumulative overall delay and computation cost. As a future
direction, it is interesting to study more realistic scenarios
under a wider range of operating conditions.

ACKNOWLEDGMENTS

This work is supported in part by the National Natural
Science Foundation of China under Grant 62372310, and
in part by the Liaoning Province Applied Basic Research
Program under Grant 2023JH2/101300194, and in part by
the LiaoNing Revitalization Talents Program.

REFERENCES
[1] N. Abbas, Y. Zhang, A. Taherkordi, and T. Skeie, “Mobile edge comput-

ing: A survey,” IEEE Internet of Things Journal, vol. 5, pp. 450–465, Feb
2018.

[2] K. S. Roy, S. Deb, and H. K. Kalita, “A novel hybrid authentication
protocol utilizing lattice-based cryptography for iot devices in fog net-
works,” Digital Communications and Networks, 2022.

[3] L. Liu, C. Chen, Q. Pei, S. Maharjan, and Y. Zhang, “Vehicular edge com-
puting and networking: A survey,” Mobile Networks and Applications,
vol. 26, pp. 1145–1168, Jul 2020.

[4] Q. He, Z. Feng, H. Fang, X. Wang, L. Zhao, Y. Yao, and K. Yu, “A
blockchain-based scheme for secure data offloading in healthcare with
deep reinforcement learning,” IEEE/ACM Transactions on Networking,
vol. 32, no. 1, pp. 65–80, 2023.

[5] L. Zhao, T. Li, E. Zhang, Y. Lin, S. Wan, A. Hawbani, and M. Guizani,
“Adaptive swarm intelligent offloading based on digital twin-assisted
prediction in vec,” IEEE Transactions on Mobile Computing, 2023.

[6] F. Zeng, Z. Zhang, and J. Wu, “Task offloading delay minimization
in vehicular edge computing based on vehicle trajectory prediction,”
Digital Communications and Networks, 2024.

[7] N. Eshraghi and B. Liang, “Joint offloading decision and resource allo-
cation with uncertain task computing requirement,” in IEEE INFOCOM
2019 - IEEE Conference on Computer Communications, IEEE, Apr 2019.

[8] L. Huang, X. Feng, L. Qian, and Y. Wu, “Deep reinforcement learning-
based task offloading and resource allocation for mobile edge com-
puting,” in Machine Learning and Intelligent Communications, pp. 33–42,
Springer International Publishing, 2018.

[9] X. An, Y. Li, Y. Chen, and T. Li, “Joint task offloading and resource allo-
cation for multi-user collaborative mobile edge computing,” Computer
Networks, p. 110604, 2024.

[10] J. Du, Y. Sun, N. Zhang, Z. Xiong, A. Sun, and Z. Ding, “Cost-effective
task offloading in NOMA-enabled vehicular mobile edge computing,”
IEEE Systems Journal, vol. 17, pp. 928–939, Mar 2023.

[11] F. Liu, J. Chen, Q. Zhang, and B. Li, “Online mec offloading for v2v
networks,” IEEE Transactions on Mobile Computing, 2022.

[12] W. Fan, Y. Su, J. Liu, S. Li, W. Huang, F. Wu, and Y. Liu, “Joint task
offloading and resource allocation for vehicular edge computing based
on v2i and v2v modes,” IEEE Transactions on Intelligent Transportation
Systems, vol. 24, no. 4, pp. 4277–4292, 2023.

[13] K. Tan, L. Feng, G. Dán, and M. Törngren, “Decentralized convex opti-
mization for joint task offloading and resource allocation of vehicular
edge computing systems,” IEEE Transactions on Vehicular Technology,
vol. 71, no. 12, pp. 13226–13241, 2022.

[14] Y. Ren, X. Chen, S. Guo, S. Guo, and A. Xiong, “Blockchain-based
vec network trust management: A drl algorithm for vehicular service
offloading and migration,” IEEE Transactions on Vehicular Technology,
vol. 70, no. 8, pp. 8148–8160, 2021.

[15] Y. Liu, H. Yu, S. Xie, and Y. Zhang, “Deep reinforcement learning
for offloading and resource allocation in vehicle edge computing and
networks,” IEEE Transactions on Vehicular Technology, vol. 68, no. 11,
pp. 11158–11168, 2019.

[16] Y. Chen, J. Wu, J. Han, H. Zhao, and S. Deng, “A game-theoretic
approach based task offloading and resource pricing method for idle
vehicle devices assisted vec,” IEEE Internet of Things Journal, 2024.

[17] T. Q. Dinh, J. Tang, Q. D. La, and T. Q. Quek, “Offloading in mobile edge
computing: Task allocation and computational frequency scaling,” IEEE
Transactions on Communications, vol. 65, no. 8, pp. 3571–3584, 2017.

[18] M. Yang, H. Zhu, H. Qian, Y. Koucheryavy, K. Samouylov, and H. Wang,
“Peer offloading with delayed feedback in fog networks,” IEEE Internet
of Things Journal, vol. 8, no. 17, pp. 13690–13702, 2021.

[19] W. Wen, Y. Fu, T. Q. Quek, F.-C. Zheng, and S. Jin, “Joint up-
link/downlink sub-channel, bit and time allocation for multi-access
edge computing,” IEEE Communications Letters, vol. 23, no. 10, pp. 1811–
1815, 2019.

[20] L. Chen and J. Xu, “Task replication for vehicular cloud: Contextual
combinatorial bandit with delayed feedback,” in IEEE INFOCOM 2019-
IEEE Conference on Computer Communications, pp. 748–756, IEEE, 2019.

[21] M. Li, J. Gao, L. Zhao, and X. Shen, “Deep reinforcement learning for
collaborative edge computing in vehicular networks,” IEEE Transactions
on Cognitive Communications and Networking, vol. 6, no. 4, pp. 1122–1135,
2020.

[22] Y. Sun, X. Guo, J. Song, S. Zhou, Z. Jiang, X. Liu, and Z. Niu, “Adaptive
learning-based task offloading for vehicular edge computing systems,”
IEEE Transactions on vehicular technology, vol. 68, no. 4, pp. 3061–3074,
2019.

[23] Z. Ning, K. Zhang, X. Wang, L. Guo, X. Hu, J. Huang, B. Hu, and
R. Y. K. Kwok, “Intelligent edge computing in internet of vehicles: A
joint computation offloading and caching solution,” IEEE Transactions
on Intelligent Transportation Systems, vol. 22, pp. 2212–2225, Apr 2021.

[24] B. Yang, X. Cao, J. Bassey, X. Li, and L. Qian, “Computation offloading
in multi-access edge computing: A multi-task learning approach,” IEEE
Transactions on Mobile Computing, vol. 20, pp. 2745–2762, Sep 2021.

[25] R. Zhao, F. Zhu, Y. Feng, S. Peng, X. Tian, H. Yu, and X. Wang, “OFDMA-
enabled wi-fi backscatter,” in The 25th Annual International Conference on
Mobile Computing and Networking, ACM, Aug 2019.

[26] Q. Wu and R. Zhang, “Common throughput maximization in UAV-
enabled OFDMA systems with delay consideration,” IEEE Transactions
on Communications, vol. 66, pp. 6614–6627, Dec 2018.

[27] Z. Nan, S. Zhou, Y. Jia, and Z. Niu, “Joint task offloading and resource
allocation for vehicular edge computing with result feedback delay,”
IEEE Transactions on Wireless Communications, pp. 1–1, 2023.

[28] J. Kronqvist, D. E. Bernal, A. Lundell, and I. E. Grossmann, “A review
and comparison of solvers for convex MINLP,” Optimization and Engi-

14

neering, vol. 20, pp. 397–455, Dec 2018.
[29] E. D. L. Rosa and W. Yu, “Restricted boltzmann machine for nonlinear

system modeling,” in 2015 IEEE 14th International Conference on Machine
Learning and Applications (ICMLA), IEEE, Dec 2015.

[30] S. Eiffert, K. Li, M. Shan, S. Worrall, S. Sukkarieh, and E. Nebot, “Proba-
bilistic crowd GAN: Multimodal pedestrian trajectory prediction using
a graph vehicle-pedestrian attention network,” IEEE Robotics and Au-
tomation Letters, vol. 5, pp. 5026–5033, Oct 2020.

[31] M. Srinivas and L. Patnaik, “Genetic algorithms: a survey,” Computer,
vol. 27, pp. 17–26, Jun 1994.

[32] J. Tufto, “Genetic evolution, plasticity, and bet-hedging as adaptive
responses to temporally autocorrelated fluctuating selection: A quan-
titative genetic model,” Evolution, vol. 69, pp. 2034–2049, Aug 2015.

[33] M. V. B. Delgado and P. P. Marino, “Using non-uniform probability
distribution past to improve identification performance in dense RFID
reader environments,” in 2013 Seventh International Conference on Innova-
tive Mobile and Internet Services in Ubiquitous Computing, IEEE, Jul 2013.

Liang Zhao (Member, IEEE) is a Professor at
Shenyang Aerospace University, China. He re-
ceived his Ph.D. degree from the School of Com-
puting at Edinburgh Napier University in 2011.
Before joining Shenyang Aerospace University,
he worked as associate senior researcher in
Hitachi (China) Research and Development Cor-
poration from 2012 to 2014. He is also a JSPS
Invitational Fellow (2023). He was listed as Top
2 % of scientists in the world by Standford Uni-
versity (2022 and 2023). His research interests

include ITS, VANET, WMN and SDN. He has published more than 150
articles. He served as the Chair of several international conferences
and workshops, including 2022 IEEE BigDataSE (Steering Co-Chair),
2021 IEEE TrustCom (Program Co-Chair), 2019 IEEE IUCC (Program
Co-Chair), and 2018-2022 NGDN workshop (founder). He is Associate
Editor of Frontiers in Communications and Networking and Journal of
Circuits Systems and Computers. He is/has been a guest editor of IEEE
Transactions on Network Science and Engineering, Springer Journal of
Computing, etc. He was the recipient of the Best/Outstanding Paper
Awards including 2015 IEEE IUCC, 2020 IEEE ISPA, 2022 IEEE EUC
and 2013 ACM MoMM, etc.

Tianyu Li is a student at Shenyang Aerospace
University, China. He is currently studying for his
M.S. degree in Shenyang Aerospace University.
His research interests include mobile edge com-
puting, computation offloading and digital-twins.

Guiying Meng is a lecturer at the School of
Computer Science, Shenyang Aerospace Uni-
versity, and graduated from Northeastern Uni-
versity in 2006 with a master’s degree in com-
puter application technology. Her main research
direction is computer network application.

Ammar Hawbani is a Full Professor at the
School of Computer Science at Shenyang
Aerospace University. He earned his B.S. in
Computer Software and Theory from the Univer-
sity of Science and Technology of China (USTC)
in 2009. His academic journey continued with an
M.S. in 2012 and a Ph.D. in 2016, all from USTC.
Following his Ph.D. completion, he served as a
Postdoctoral Researcher in the School of Com-
puter Science and Technology at USTC from
2016 to 2019. Later, he worked as an Asso-

ciate Researcher in the School of Computer Science and Technology
at USTC from 2019 to 2023. Currently, he holds the position of Full
Professor at the School of Computer Science in Shenyang Aerospace
University. His research interests span IoT, WSNs, WBANs, WMNs,
VANETs, and SDN.

Geyong Min is a Professor of High-Performance
Computing and Networking in the Department
of Computer Science at the University of Ex-
eter, UK. He received his PhD in Computing
Science from the University of Glasgow, UK, in
2003, and a B.Sc. in Computer Science from
Huazhong University of Science and Technol-
ogy, China, in 1995. His research interests en-
compass Computer Networks, Wireless Com-
munications, Parallel and Distributed Comput-
ing, Ubiquitous Computing, Multimedia Systems.

Ahmed Y. Al-Dubai is a Professor of Networking
and Communication Algorithms in the School of
Computing at Edinburgh Napier University, UK.
He received his PhD degree in Computing from
the University of Glasgow in 2004. He leads
interdisciplinary research and initiatives in Group
Communications, High-performance Networks,
Internet of Things, Edge Computing, Future Net-
works, E-Health, Smart Cities, and Security. His
research has received support from EU, Uni-
versities UK, the Royal Society, Carnegie Trust,

EPSRC, and Scottish Funding Council. Ahmed has received several
international awards and has published widely in top-tier journals and
prestigious international conference proceedings. He has also served
on editorial boards and chaired and co-chaired over 40 international
conferences and workshops.

Albert Y. ZOMAYA is the Peter Nicol Russell
Chair Professor of Computer Science in the
School of Computer Science, Sydney University,
and serves as the Director of the Centre for Dis-
tributed and High-Performance Computing. Pro-
fessor Zomaya has published over 800 scientific
papers and articles and is the author, co-author,
or editor of more than 30 books. He is the past
Editor in Chief of the IEEE Transactions on Com-
puters, the IEEE Transactions on Sustainable
Computing, and the ACM Computing Surveys.

Professor Zomaya received numerous accolades, including Fellowships
of the IEEE, AAAS, and the IET. Also, he is a Fellow of the Australian
Academy of Science, a Fellow of the Royal Society of New South
Wales, a Foreign Member of Academia Europaea, and a Member of the
European Academy of Sciences and Arts. His research interests are in
parallel and distributed computing, networking, and complex systems.

