
Novel Resource Provisioning and Lightweight

Security Protocols for IoT Edge Networks

by

Amar Almaini

A thesis submitted in partial fulfilment of the requirements

of Edinburgh Napier University, for the award of

Doctor of Philosophy

School of Computing

Edinburgh Napier University

May 2024

Author’s declaration

I, Amar Almaini, hereby confirm that this thesis submitted for assess-

ment is my own work. All external sources, whether in the form of

ideas, equations, figures, text, tables, programs, or any other form,

have been duly acknowledged and referenced. This work has not been

submitted previously for any other degree or professional qualification.

Name: Amar Almaini

Matriculation Number:

SIGNED: DATE: ..

i

23.05.2024

Acknowledgements

First and foremost, I dedicate this thesis to the cherished memory of my father. His

unwavering belief in my potential has been a guiding force behind this significant

academic endeavor. While he may no longer be with us, his faith in me paved the

way for this journey. I also extend heartfelt gratitude to my mother and sister.

Their constant support and encouragement have been pillars of strength through-

out my academic journey. Without them, this accomplishment would remain a

distant dream. Special thanks are due to my director of studies, Prof. Ahmed

Al-Dubai. His accessibility during challenging times and his insights about my

research and writing have been invaluable. While he ensured this thesis remained

a reflection of my work, his timely guidance steered me in the right direction

whenever necessary. I am deeply grateful for his wisdom, patience, enthusiasm,

and unwavering encouragement. Prof. Dr. Martin Schramm deserves my profound

appreciation. His consistent guidance and invaluable feedback have significantly

enriched this work. His support and understanding have been instrumental to

the progression of this thesis. I extend my gratitude to Dr. Imed Romdhani for his

consistent guidance and invaluable insights throughout this journey. A heartfelt

acknowledgment goes to my colleagues at the ProtectIT institute at the Deggen-

dorf Institute of Technology. I am especially indebted to those who have supported

me over the years, contributed to my research, and co-authored scientific pub-

lications. I appreciate our enlightening scientific and technical discussions and

thank those who assisted in the implementation work, with special mentions to

Jakob Folz and Tobias Koßmann.

Lastly, my deepest thanks and love are for my daughter, Maya. Her presence has

been my most significant motivation, reminding me never to give up throughout

my studies.

ii

Abstract

This Ph.D. thesis introduces a novel dynamic resource allocation framework tai-

lored for Edge Computing (EC) in Internet of Things (IoT) networks, addressing the

pressing challenges posed by resource limitations and escalating user demands.

Edge-driven IoT networks, characterized by their reliance on locally available

computational resources from a heterogeneous ensemble of devices such as sen-

sors, vehicles, and mobile phones, present unique challenges. These resources,

in contrast to their cloud counterparts, exhibit inherent variability in terms of

processing power, distribution, and operating system diversity. Moreover, their

connectivity is subject to fluctuations, including failures, intermittent connec-

tions, and unpredictable network entry and exit events, rendering the EC network

inherently dynamic. The inadequacy of existing solutions to effectively manage

the dynamic nature of resource availability at the edge underscores the necessity

for a resource allocation framework capable of adapting to these dynamic con-

ditions. To this end, we propose a dynamic resource allocation framework that

dynamically assigns computational and network resources. This framework aims

to minimize average service delays and achieve resource utilization balance at

the edge. To realize this objective, two resource allocation models are developed

using TensorFlow: a classification-based approach and a regression-based ap-

proach. Experimental results in dynamic environments demonstrate remarkable

performance improvements, with the regression model achieving an 87% task

completion rate within specified time constraints and the classification model

achieving 56%. To underscore the practicality and efficiency of our proposed

framework, two real-world use cases are explored. The first use case deals with

the detection of spoofing attacks in autonomous vehicles (AVs) using Shadow-

iii

Analyzer, a technique that identifies ghost object attacks with reduced 2D data

derived from 3D point cloud information. The second use case focuses on the

implementation of homomorphic encryption for secure communication, present-

ing a novel distributed approach to Fully Homomorphic Encryption (FHE)-based

data processing. To validate the applicability and efficiency of our framework,

extensive simulation experiments are conducted across various scenarios and

operational conditions on a hardware testbed. These experiments yield promising

results, establishing the viability of our dynamic resource allocation framework in

addressing the dynamic challenges posed by resource availability at the edge in

IoT networks.

iv

Acronyms

AI Artificial Intelligence 6

AUC Area Under the Curve 152, 154, 156–158

BFV Brakerski-Fan-Vercauteren 23, 48, 113, 130

BGV Brakerski-Gentry-Vaikuntanathan 23, 113, 130

CC Cloud Computing 1, 2, 5, 7, 9, 10, 13, 25, 27–29, 54, 112, 162

CKKS Homomorphic Encryption for Arithmetic of Approximate Numbers (HEAAN)

23, 48, 113, 130

CLI Command Line Interface 104

CLRD Critical Low Range Distance 141

CNN Convolutional Neural Network 139, 140, 142, 143, 154–158

DHE Distributed Homomorphic Encryption 3, 112, 113, 175

DQN Deep-Q Network 33, 36, 37

DRA Dynamic Resource Allocation 2, 16, 26

EC Edge Computing 1–3, 7–18, 21, 23, 25, 27–32, 34, 35, 38, 39, 52–54, 56, 93,

94, 111, 112, 131, 132, 160–162, 174–176, 180

FHE Fully Homomorphic Encryption 20, 23, 32, 46–49, 112, 113, 130

FPR False Positive Rate 151, 152

FSM Finite State Machine 98, 101

v

Acronyms

GNN Graph Neural Network 140

HE Homomorphic Encryption 52, 112, 113, 117

IoT Internet of Things 1, 2, 6, 7, 9, 11, 13, 14, 16, 18, 19, 23, 24, 33–35, 47, 48,

55, 56, 111, 162, 173, 174

LiDAR Light Detection and Ranging x, 3, 12, 16, 17, 19–21, 23, 49–52, 131–140,

142, 149, 150, 152, 153, 159, 160, 175

MEC Mobile Edge Computing 33, 35

ML Machine Learning viii, 2, 6, 26, 32, 55, 56

NN Neural Network viii, xiii, 3, 18, 19, 56–59, 61, 64, 66, 71, 72, 174, 175

OTP One-Time Password 176, 177

P4 programming protocol-independent packet processors 3, 23, 39, 45, 46, 94–

96, 98, 101, 102, 104, 111, 175, 176

QoS Quality of Service 2, 28, 29, 36, 45, 55

ROC Receiver Operating Characteristic 151, 152

SDN Software Defined Networks viii, 3, 8, 21–24, 35, 37, 39, 45, 46, 94–97, 153,

163, 165, 166, 173, 175

SVMs Support Vector Machines 147

TMS Traffic Management Systems 12, 16–18

TPR True Positive Rate 151, 152

V2T Vehicle-to-Thing 19, 20, 23, 160, 161, 175

V2V Vehicle-to-Vehicle 50

V2X Vehicle-to-Everything 3, 36, 132

VM Virtual Machine 27, 29

vi

Contents

Author’s declaration i

Acknowledgements ii

Abstract iii

Acronyms v

List of Figures xiii

List of Tables xvii

List of Publications xx

1 Introduction 1

1.1 Cloud Computing . 5

1.1.1 Resource Management in Cloud Computing 5

1.2 Edge Computing . 6

1.2.1 Resource Management in Edge Computing 7

1.2.2 Computation Offloading . 7

1.2.3 Network Management . 8

1.2.4 Security and Privacy . 9

1.2.5 Edge Computing Aplications 10

1.3 Motivation . 13

1.4 Problem Statement and Research Question 14

1.5 Aims and Objectives . 16

1.6 Contributions . 18

1.7 Contributions Complementarity and Justification 21

vii

Contents

1.8 Thesis Structure . 22

2 Literature Review 25

2.1 Introduction . 25

2.2 Resource Management in Cloud Computing 25

2.3 Resource Management in Edge Computing 27

2.3.1 Resource Allocation . 28

2.3.2 Resource Placement . 28

2.3.3 Resource Provisioning . 29

2.3.4 Resource Pooling . 30

2.4 Security and Privacy . 30

2.4.1 Attack Detection . 30

2.4.2 Data Integrity . 31

2.4.3 Access Control . 31

2.4.4 Privacy . 32

2.5 Developments in Resource Management for Edge Computing . . . 32

2.6 Resource Management through Machine Learning 38

2.7 Developments in Edge Security for SDN 39

2.8 Developments in Homomorphic Encryption 46

2.9 Developments in the Detection of Spoofing Attacks in Autonomous

Driving . 49

2.10 Summary . 52

3 Neural Network-Driven Resource Management in Edge Computing 53

3.1 Introduction . 53

3.2 Traditional Techniques vs. ML Techniques for Resource Allocation 55

3.2.1 Challenges with Conventional Resource Allocation Techniques 55

3.2.2 Why Do We Need ML/NN . 56

3.3 AI Resource Allocation Structure . 57

3.3.1 State . 58

3.3.2 Action Space . 60

3.3.3 Network Setup . 61

viii

Contents

3.4 AI-Models . 61

3.4.1 Classifier Model . 63

3.4.2 Regression Model . 65

3.5 Primary Metrics . 67

3.5.1 Reward . 67

3.5.2 Loss . 70

3.5.3 Priority Fulfilled . 70

3.6 The experimental setup . 71

3.7 Training . 71

3.7.1 Training setup . 72

3.7.2 Fine-Tuning Model Parameters 74

3.8 Performance Comparison of Models in Dynamic Environments . . . 86

3.8.1 Network Adaptation for Optimized Dynamic Testing 87

3.8.2 Performance Analysis and Evaluation of Dynamic Behavior 89

3.9 Summary . 93

4 Efficient Edge Authentication for Software-Defined Networks 94

4.1 Introduction . 94

4.2 Delegating Authentication to SDN Switches 95

4.3 Centralized vs. distributed approach 97

4.4 Modeling Deterministic Port Knocking Authentication using Finite

State Machine . 98

4.5 Authentication and Port Knocking Implementation for Secure Net-

work Access . 99

4.5.1 Dynamic Switch Reconfiguration for Enhanced Authentica-

tion and Network Security . 102

4.5.2 Enhancing Network Security: Authentication-based Defense

Against Port Scans . 107

4.6 The experimental setup . 107

4.7 Evaluation . 108

4.7.1 Switch Performance Analysis: Evaluating Time Window Va-

lidity Check . 108

ix

Contents

4.7.2 Switch Performance: Evaluating the Impact of Authentica-

tion Functionality . 110

4.8 Summary . 111

5 Scalable Distributed Homomorphic Encryption for Complex Compu-

tational Models 112

5.1 Introduction . 112

5.2 Centralized vs. Distributed Approaches in Homomorphic Encrypted

Data Processing . 113

5.2.1 Centralized Approach . 114

5.2.2 Distributed Approach . 115

5.3 The experimental setup . 116

5.4 Evaluation . 116

5.4.1 Distributed Homomorphic Computation with OpenMPI and

SEAL . 117

5.4.2 Homomorphic Encryption Schemes 117

5.4.3 Time Analysis of Processing Steps 119

5.5 Experimental Evaluation of Homomorphic Operations 119

5.5.1 Comparative Evaluation of Homomorphic Cryptographic

Schemes . 120

5.5.2 Comparing Performance: Centralized vs. Distributed Ap-

proaches . 121

5.6 Discussion and Analysis . 129

5.7 Summary . 130

6 Shadow-Analyzer: Efficient Detection of Ghost Objects in Autonomous

Driving using Neural Networks 131

6.1 Introduction . 131

6.2 Fundamentals and Vulnerabilities of LiDAR Sensing Technology . . 132

6.2.1 Feasibility of Injecting False Points in LiDAR Systems 134

6.2.2 Attack Distance Feasibility 136

6.3 Attack Goal and Threat Model . 137

x

Contents

6.4 2D Shadow-Analyzer approach . 139

6.4.1 3D Object Detector . 140

6.4.2 2D Bird’s-eye View Generator 141

6.4.3 Shadow Verification . 142

6.5 Data Reduction . 143

6.6 Shadow-Analyzer Models . 143

6.6.1 CNN-Sigmoid . 144

6.6.2 CNN-Linear . 146

6.7 The experimental setup . 148

6.8 Training . 149

6.9 Metrics for performance measurement 151

6.10 Evaluation . 152

6.10.1 CNN-Sigmoid . 154

6.10.2 CNN-Linear . 156

6.11 Invalidation Attack . 159

6.12 Summary . 160

7 Empirical Validation of Usability: Extensive Evaluation of Our Ap-

proach in an Edge Computing Hardware Testbed 162

7.1 Introduction . 162

7.2 Testbed Setup for Resource Allocation Validation 163

7.2.1 Hardware Resources . 163

7.2.2 Virtualized Environments . 165

7.2.3 SDN-Based Resource Allocation and Client Request Flow . 166

7.3 Performance Benchmarking Using a Single Local Device 167

7.4 Remote Device Evaluation at the Edge and its Communication Delays168

7.5 Resource Allocation Between Jetson and Raspberry Pi 169

7.6 Image Distribution and Processing Time with Four Edge-located

Resources . 171

7.7 Summary . 173

8 Conclusions and future work 174

8.1 Thesis Summary and Objectives Review 174

xi

Contents

8.2 Future Directions . 176

8.2.1 Secure Authentication with Switch-based One-Time Pass-

words . 176

8.2.2 Queue Management . 178

8.2.3 Deep-Q-Network Approach 179

8.2.4 Federated Learning Applicability Evaluation 179

8.3 Concluding Remarks . 180

literature 181

xii

List of Figures

Figure 1.1 Conceptual Framework Illustrating the Interconnections

Among Various Topics . 4

Figure 3.1 Hierarchical Structure for Resource Allocation in the Edge –

An Overview . 54

Figure 3.2 Schematic representation of the AI-based resource alloca-

tion system model . 58

Figure 3.3 Schematic of Network Architecture and Connectivity Setup 61

Figure 3.4 Structure of the classification model, NN architecture and

input/output layers . 64

Figure 3.5 Illustration of the classification model workflow utilizing nine

resources . 65

Figure 3.6 Structure of the regression model, NN architecture and

input/output layers . 66

Figure 3.7 Illustration of the regression model workflow utilizing nine

resources . 67

Figure 3.8 Workflow for training the AI agent in the proposed system . 72

Figure 3.9 Hyperparameter Tuning Process: A Flowchart Illustrating

the Steps for Determining Optimal Hyperparameters 74

Figure 3.10 Impact of Normalization on Reward and Loss in Model Training 76

Figure 3.11 Relationship between the Number of Neurons, Reward, and

Percentage of Fulfilled Priorities in the Classification Model 77

Figure 3.12 Relationship between the Number of Neurons, Reward, and

Percentage of Fulfilled Priorities in the regression Model 78

Figure 3.13 Impact of Neuron Distribution on Priority Fulfillment in Clas-

sification Models . 80

xiii

List of Figures

Figure 3.14 Impact of Neuron Distribution on Priority Fulfillment in Re-

gression Models . 82

Figure 3.15 Impact of Learning Rate on Priority Fulfillment in Classifica-

tion Models . 84

Figure 3.16 Impact of Learning Rate on Priority Fulfillment in Regression

Models . 86

Figure 3.17 Comparison of Reward Functions in Dynamic Environment:

Time Evolution of Rewards in Two Models 89

Figure 3.18 Evaluation of the model’s ability to select resources match-

ing the task’s requirements . 91

Figure 3.19 Comparative Analysis of Model and Reward Function Perfor-

mance (Green denotes first test with the lowest difficulty level, yel-

low is the second with moderate difficulty level, and red represents

the third and most challenging test. The average performance

across all tests is represented by the orange curve) 92

Figure 4.1 State Transition Diagram of Deterministic Port Knocking

Authentication Using FSM . 99

Figure 4.2 A Visual Representation of the Reference Topology 100

Figure 4.3 Refining the Hit/Miss construct: Identifying trustworthiness

in node selection . 104

Figure 4.4 CLI commands to set the initial knock-sequence 105

Figure 4.5 CLI commands to change the knock-sequence 105

Figure 4.6 Visualizing H2’s Port Knocking Technique: Wireshark reveals

the port-sequence manipulation for secure ticket authentication . 106

Figure 4.7 Visualizing H2’s Port Knocking Technique: Wireshark reveals

the new port-sequence manipulation for secure ticket authentication106

Figure 4.8 Comparing Throughput of H2 and H3 TCP Streams to H4

(H2: Dotted Curve, H3: Solid Curve) with H2 Authentication Delayed

Initially . 109

Figure 4.9 Doubled Instances of Ticket Expiration Within a Two-Minute

Frame (Validity Time of 50 Seconds) 109

xiv

List of Figures

Figure 4.10 Average throughput for fifty measurements in different sce-

narios . 110

Figure 5.1 Centralized model . 114

Figure 5.2 Distributed model . 116

Figure 5.3 Composition of different used times 118

Figure 5.4 Comparison of centralized and distributed approaches at

different vector sizes with BVF scheme. 126

Figure 5.5 Comparison of centralized and distributed approaches at

different vector sizes with BGV scheme. 127

Figure 5.6 Comparison of centralized and distributed approaches at

different vector sizes with CKKS scheme. 128

Figure 6.1 A Rotating LiDAR System for 360-Degree Environmental

Detection . 133

Figure 6.2 Critical Safety Zone: Importance of 10-15m Ahead of Au-

tonomous Vehicles in Spoofing Attacks. 138

Figure 6.3 Graphical Representation of LiDAR Spoofing Technique. . . 139

Figure 6.4 LiDAR Shadow Verification: 2D Image-Based Approach for

Detecting Ghost Attacks. 140

Figure 6.5 Visualization of 2D Image Generation for Scene Objects. . . 141

Figure 6.6 LiDAR point separation to mitigate shadow adulteration:

Removing points above object height (shown in red). 142

Figure 6.7 Comparison of 2D image generation results with genuine (a)

and spoofed (b) objects. 142

Figure 6.8 Effective Reduction of Point Cloud Data: Examining Single

Objects with 85% Less Data Volume. 143

Figure 6.9 Visualizing Cyclist Class Object Insertion in KITTI Benchmark

Point Cloud Dataset. 150

Figure 6.10 Visualization of Object Selection for LiDAR-Based Spoofing

Attack using 200 Points. 150

Figure 6.11 Presentation of a ROC curve (green) with an AUC score of

0.9. [256] . 152

xv

List of Figures

Figure 6.12 Training progress of the CNN-Linear model evaluated by the

metrics. 157

Figure 6.13 ShadowCatcher - Scoring Problem 160

Figure 7.1 Testbed components . 163

Figure 7.2 Testbed components . 164

Figure 7.3 GPU vs CPU Performance. 165

Figure 7.4 Visual Representation of a Hybrid Virtual-Physical Network

with SDN Control and Direct Hardware Resource Mapping. 166

Figure 7.5 Client-Controller-Resource Workflow. 167

Figure 7.6 Distribution of Images Between Jetson and Raspberry Pi. . . 171

Figure 7.7 Distribution of Images Between Jetsons and Raspberry Pis. 172

Figure 8.1 One-Time-Password Authentication Flow 178

xvi

List of Tables

Table 2.1 Machine Learning Methods and Their Potential Applications

in Resource Allocation [124]. 40

Table 2.2 [Continued] Machine Learning Methods and Their Potential

Applications in Resource Allocation. 41

Table 2.3 [Continued] Machine Learning Methods and Their Potential

Applications in Resource Allocation. 42

Table 2.4 Summary of Research on Machine Learning-Based Resource

Management: Detailing Algorithms, Simulation Tools, and Opti-

mization Objectives [124]. 43

Table 2.5 [Continued] Summary of Research on Machine Learning-

Based Resource Management: Detailing Algorithms, Simulation

Tools, and Optimization Objectives 44

Table 3.1 System Configuration . 71

Table 3.2 Task Prioritization and Value Range Assignment Overview . 73

Table 3.3 Input Features and Corresponding Value Ranges 75

Table 3.4 Overview of Formulas for Determining the Number of Hidden

Neurons in Neural Networks . 77

Table 3.5 Percentage of Priority Fulfillment for Classification and Re-

gression Tests . 79

Table 3.6 Resource Settings for Dynamic Testing Configuration 87

Table 3.7 Selected Models for Dynamic Testing and Associated Outcomes 88

Table 4.1 Port Knocking Authentication Process 102

Table 4.2 System Configuration . 107

Table 5.1 System Configuration . 116

xvii

List of Tables

Table 5.2 Processing time in (ms) of messages with vector size of 216

using the different schemes on a single resource 120

Table 5.3 Comparison of processing times in (ms) between centralized

and distributed approach with BFV scheme 123

Table 5.4 Comparison of processing times in (ms) between centralized

and distributed approach with BGV scheme 124

Table 5.5 Comparison of processing times in (ms) between centralized

and distributed approach with CKKS scheme 125

Table 6.1 Relationship between Object Distance and Point Density

within Bounding Boxes as Detected by LiDAR. 137

Table 6.2 Overview of the CNN-Sigmoid model architecture. 144

Table 6.3 Hyperparameters for the CNN-Sigmoid Model. 146

Table 6.4 Overview of the CNN-Linear model architecture. 146

Table 6.5 Hyperparameters for the CNN-Linear model. 147

Table 6.6 System Configuration . 148

Table 6.7 Performance Evaluation of the 3D Shadow Catcher Approach:

Training Results [201]. 153

Table 6.8 Training results of CNN-Sigmoid model evaluated on dataset 1.154

Table 6.9 Training results of CNN-Sigmoid model evaluated on dataset 2.155

Table 6.10 Performance analysis of CNN-Sigmoid model for classifica-

tion time duration. 156

Table 6.11 Training results of CNN-Linear model evaluated on dataset 1. 157

Table 6.12 Training results of CNN-Linear model evaluated on dataset 2. 158

Table 6.13 Performance analysis of CNN-Linear model for classification

time duration. 159

Table 7.1 Average Prediction Time for LiDAR Spoofing Attack Detection

on Jetson Device as a Benchmark. 168

Table 7.2 Average Prediction Time for LiDAR Spoofing Attack Detection

on remote Jetson Device. 169

Table 7.3 Distribution of Images and Processing Time across 2 Edge

Devices. 170

xviii

List of Tables

Table 7.4 Distribution of Images and Processing Time across 4 Edge

Devices. 172

xix

LIST OF PUBLICATIONS

Journal Articles

1. A. Almaini, A. Al-Dubai, I. Romdhani and M. Schramm, Lightweight edge

authentication for software defined networks. Computing 103, 291–311

(2021). https://doi.org/10.1007/s00607-020-00835-4

2. A.Almaini, J.Folz, A.Al-Dubai, M.Schramm, H.Heigl, T.Koßmann, I.Romdhani,

and B.Canberk, Adaptive Resource Management for Edge Computing in

IoT Networks via Neural Networks, Future Generation Computer Systems

(submitted), 2023.

3. A. Almaini, J. Folz, R. Boeder, A. Al-Dubai, T. Koßmann, M. Schramm, H.

Heigl, I. Romdhani, and A. Kerrouche, Shadow-Analyzer: An Efficient Neural

Networks-based Ghost Objects Detection for Autonomous Vehicles, IEEE

Intelligent Transportation Systems Transactions (in revision), 2023.

Conference Papers

1. Michael Heigl, Laurin Doerr, Amar Almaini, Dalibor Fiala, Martin Schramm,

Incident Reaction Based on Intrusion Detections’ Alert Analysis, 2018 In-

ternational Conference on Applied Electronics (AE), pp. 45-50, Pilsen, Sept.

2018, doi:10.23919/AE.2018.8501419

xx

List of Tables

2. A. Almaini, A. Al-Dubai, I. Romdhani and M. Schramm, Delegation of Au-

thentication to the Data Plane in Software-Defined Networks, 2019 IEEE

International Conferences on Ubiquitous Computing & Communications

(IUCC) and Data Science and Computational Intelligence (DSCI) and Smart

Computing, Networking and Services (SmartCNS), Shenyang, China, 2019,

pp. 58-65, doi: 10.1109/IUCC/DSCI/SmartCNS.2019.00038.

3. A. Almaini, J. Folz, D. Woelfl, A. Al-Dubai, M. Schramm and M. Heigl, A New

Scalable Distributed Homomorphic Encryption Scheme for High Computa-

tional Complexity Models, In IEEE International Wireless Communications

and Mobile Computing (IWCMC), June 2023, pp. 890-897.

Talks

1. Amar Almaini, Authentication and port scan mitigation in the Software

Defined Network Switches, Tag der Forschung 2019, Technische Hochschule

Deggendorf, Deggendorf, Germany, April 2019

2. Amar Almaini, Intelligent dynamic resource allocation across edge cloud

resources in secure manner, In: Konferenz des berufsbegleitenden Master-

studiengangs Cybersecurity: Ausgewählte Themen der Security Forschung,

Technische Hochschule Deggendorf (THD)/Technologie Campus VilshofenOn-

line, 19.01.2023 (2023)

xxi

1 Introduction

The ever-evolving landscape of technology continues to present remarkable

development and challenges in equal measures. At the heart of the current

technological revolution lies the Internet of Things (IoT), an intricate network

of interconnected devices that are embedded with sensors, software, and other

technologies to connect and exchange data with other devices and systems over

the internet. As the digital transformation accelerates, a surge in IoT devices

is expected, with projections indicating that over 29 billion IoT devices will be

connected to corporate networks by 2030 [1]. The automotive industry is also

a key contributor to this proliferation, with autonomous driving and e-mobility

trends. It is predicted that autonomous chips, which are essential for autonomous

vehicle functions, will generate a staggering revenue of $29 billion by 2030 [2].

The term IoT devices encapsulates a broad spectrum of devices connected to the

internet, either wirelessly or through wired connections. In the industrial context,

this predominantly refers to autonomous sensors, machines, and evaluation

systems. These devices, although essential, have limited power and depend

on auxiliary services for data storage and processing. A single modern vehicle,

for instance, generates about five gigabytes of data per minute, contributing

to the billions of terabytes of data generated annually. Cloud Computing (CC)

has traditionally been the go-to solution for these data storage and processing

needs. However, as data volumes balloon and requirements become increasingly

demanding, such as real-time processing for autonomous driving, CC providers

are reaching their capacity limits [3]. This challenge is further compounded when

IoT sensors are deployed in environments with poor or no internet connectivity.

When these devices are located far from the local vicinity of cloud servers, long

data transfer distances lead to untenable response times [4]. Edge Computing

(EC) emerges as a promising solution to these mounting concerns. By processing

data closer to the user, EC minimizes latency and meets real-time requirements.

1

CHAPTER 1. INTRODUCTION

Additionally, it mitigates the risks associated with outsourcing sensitive data to

third parties, thereby enhancing the control over information flow. Nevertheless,

EC is not without its challenges. Unlike its cloud counterpart, EC relies on locally

available computational capacity from nearby devices like cars, sensors, and

mobile phones. This locally available hardware, compared to cloud hardware, is

generally less powerful, more scattered, and supports a diversity of operating

systems. The hardware is not necessarily specialized for a particular task and

is connected via various modes, including wireless and direct connections of

varying quality. Moreover, these hardware devices can fail, exit the connectivity

radius, or connect to the network at unpredictable times, which results in a dy-

namic network. Resource allocation involves assigning each forthcoming task

to the most suitable edge server, whether physical or virtual, capable of hosting

it. Given the critical role of Quality of Service (QoS) in distinguishing EC from

CC, accurately determining the required amount and quality of resources for a

pending request is vital for EC’s success. Resource allocation in EC is challenging

due to the myriad variables and conditions that must be considered. The unique

characteristics of EC suggest that traditional resource allocation approaches

fall short. Given these challenges, exploring alternative methods for effective

resource management in edge networks is essential. Machine Learning (ML),

particularly deep learning methods, have shown promising results in various do-

mains, including autonomous vehicles and data and image processing. Thus, this

thesis aims to investigate the integration of ML approaches into edge networks

for efficient resource allocation and management. Through this research, we

seek to understand the extent to which ML can address the Dynamic Resource

Allocation (DRA) problem in EC and lay the groundwork for the next generation

of IoT devices and networks. The primary objective of this thesis is to contribute

significantly to the field of resource allocation, which is crucial for empowering

the IoT. We focuse on key resource allocation challenges within EC and IoT, aiming

to facilitate the seamless deployment of applications and services. To achieve

this, we consider a hierarchical environment where entities with computing power,

from user-level devices to the cloud, including mobiles, vehicles, sophisticated

network devices, and dedicated servers, can process requests. In the subsequent

chapters, we address these challenges and present various objectives and case

studies, collectively representing our solution and its real-world applicability.

2

CHAPTER 1. INTRODUCTION

The first main objective is to model and implement a dynamic resource manage-

ment approach in EC, analyzing existing strategies, identifying their limitations,

and understanding the need for dynamic, adaptable models considering edge

node heterogeneity. Chapter 3 proposes and implements a novel model based

on Neural Network (NN) for dynamic resource allocation, taking into account the

diverse and fluctuating capabilities of edge nodes. The second objective, which

also serves as a case study, is to enhance Intelligent Transportation Management

Systems through improved EC strategies. This includes exploring EC’s role in

enhancing Vehicle-to-Everything (V2X) communication, developing techniques

to counter security threats like LiDAR spoofing attacks using edge nodes, and

validating the proposed strategies through simulation. Chapter 6 introduces a

novel technique to counter LiDAR spoofing attacks, employing NN and object

shadow verification, requiring minimal data and focusing on 2D transformed

LiDAR images for predictions. The third objective addresses security and pri-

vacy in EC systems, involving a comprehensive literature review to understand

existing challenges and designing strong security measures for EC’s multi-layer

architecture to counter potential threats and attacks. Additionally, the thesis

aims to create mechanisms ensuring user data privacy and secure interactions

among edge nodes, especially in sensitive applications. Chapter 4 introduces

an innovative technique for client authentication and access to edge resources

through the integration of Software Defined Networks (SDN) and P4. Chapter 5

presents a Distributed Homomorphic Encryption (DHE) methodology, designed

to enhance data privacy and security while ensuring efficient applicability in EC.

This technique demonstrates how computing-intensive Homomorphic Encryption

requests can be effectively distributed as smaller subtasks across various edge

resources to significantly improve processing times. To further validate the suit-

ability of our approach for edge applications, Chapter 7 demonstrates, through a

hardware testbed that embodies the heterogeneity of the edge environment, a

scenario in which our resource allocation approach is implemented on an SDN

controller. In this scenario, clients send requests to detect spoofing attacks in

LiDAR images, utilizing edge computing nodes running the shadow analyzer appli-

cation. Figure 1.1 conceptually illustrates how the various contributions of this

thesis are interconnected and integrated.

3

CHAPTER 1. INTRODUCTION

Figure 1.1: Conceptual Framework Illustrating the Interconnections Among Vari-
ous Topics

4

CHAPTER 1. INTRODUCTION

1.1 Cloud Computing

The Cloud paradigm refers to a distributed system that remotely manages re-

sources and allows users to access those resources via the Internet. This inno-

vative approach has been transforming the IT industry by introducing greater

flexibility in the consumption of IT services, enabling organizations to only pay

for the resources they actually use [5]. Cloud infrastructure plays a vital role in

reducing business investment costs, including expenses related to money, energy,

time, and personnel. It grants businesses the ability to store, backup, and estab-

lish a private cloud network at a more affordable price. There is no longer a need

to purchase physical components for data management and storage; instead,

acquiring a suitable package is sufficient to efficiently handle large amounts

of data. CC services are provided by data centers situated in various locations

around the world.

1.1.1 Resource Management in Cloud Computing

Cloud Computing is a virtualized paradigm that enables flexible and dynamic

reservation and utilization of resources. It allows for scalability by offering addi-

tional computing resources to support data or compute-intensive applications.

Additionally, these resources are provided as services, enabling their sharing

among multiple users, which is a key profit factor for cloud providers [6]. The

demand for cloud resources is expected to increase both in personal and profes-

sional settings. However, the high demand for cloud services can lead to various

challenges related to resource allocation, necessitating efficient handling of re-

sources to cater to numerous users [7] [8]. Resource allocation in CC involves

assigning processing tasks to a pool of resources within the cloud infrastructure,

which comprises multiple computers.

5

CHAPTER 1. INTRODUCTION

1.2 Edge Computing

Over the past few years, there has been a significant increase in the number

of connected devices, leading to congestion problems. This has prompted the

consideration of processing more data at the network’s Edge. According to

Gartner [9], by 2025, 75% of enterprise-generated data will be handled at the

Edge rather than in the centralized Cloud. Additionally, Edge Computing (EC) offers

improved service in terms of latency and throughput, as highlighted by IBM [10],

reducing data circulation time from 20 ms to 10 ms. The benefits of EC present

lucrative market opportunities for various stakeholders, including Cloud providers,

internet service providers, and numerous hardware and software companies.

Research conducted by Grand View Research [11] predicts that the EC market will

expand from $3.4 billion in 2020 to $43.4 billion in 2027, with an annual growth

rate of 37.4%. Furthermore, EC has gained significant attention in academia

over the past decade, leading to a surge in published papers covering topics

such as EC architectures, deployment challenges, orchestration platforms, use-

cases, and related technologies. EC addresses the growing demand for computing

and memory resources with low-latency communication and provides solutions

to privacy concerns associated with cloud-based data processing. Essentially,

EC enables effective management, scalability, and security of resources at the

network edge, allowing them to serve as hosts for workloads received from end

devices [12]. EC is closely associated with several innovative technologies, notably

the IoT. Alongside the deployment of fifth-generation networks (5G), EC plays a

crucial role in enabling the proliferation of connected objects [13]. Furthermore,

the rise of Artificial Intelligence (AI) and ML technologies in novel applications

has created a growing need for computing resources. EC not only fulfills this

requirement but also facilitates the adaptation of AI models to the network edge

environment, promoting the concept of "Edge Intelligence" [14].

6

CHAPTER 1. INTRODUCTION

1.2.1 Resource Management in Edge Computing

Resource management involves the provision of appropriate and convenient

edge resources (such as CPU, memory, and I/O) to meet the needs of any edge

application requesting them. It also involves optimizing the utilization of the

available pool of resources. In CC, an effective resource management strategy

provides the cloud provider with a flexible and efficient means of managing their IT

resources, which is crucial for a successful cloud business. Resource management

plays a vital role in EC as it enables the consolidation of multiple dynamic, diverse,

and distributed edge nodes [15].

1.2.2 Computation Offloading

Computation offloading, a field in computer science, focuses on determining

whether a process should be executed locally or sent to an external commodity

server for processing. This concept gained popularity with the emergence of

mobile CC [16]. When mobile devices are unable to handle resource-intensive ap-

plications like Google Assistant or Apple Siri, voice recognition tasks are offloaded

to the Cloud. However, with the growing interest in EC, the decision of offloading

has become even more crucial and has taken on new forms. In addition to vertical

or unidirectional offloading, there is now horizontal offloading, which involves

transferring tasks between IoT devices, edge servers, and any destination server

within the continuum of mist-fog-cloud. The authors of work [17] presented a

literature review that addresses key questions in computation offloading: When

and where should offloading occur? And what factors should be considered in

making this decision? Offloading involves selecting suitable resources, filtering

them, and determining the most appropriate ones for a given task [18].

EC recognizes four types of offloading directions, as outlined below:

1. End-device-to-End-device: When IoT and end-user devices become more

powerful, devices in close proximity can collaborate. Tasks are executed

locally if feasible, or they are forwarded to nearby IoT devices with lighter

workloads [19].

7

CHAPTER 1. INTRODUCTION

2. End-device-to-Cloud: Incorporating the Cloud into the offloading process

significantly enhances system capacity, especially for tasks that are not

time-sensitive [20].

3. End-device-to-Edge-to-Cloud (hierarchical offloading): In this technique, an

end-device sends requests to suitable edge servers, and the edge server

determines which parts of the task should be executed locally and which

should be offloaded to the Cloud [21].

4. Vertical and horizontal offloading: End-devices can simultaneously transfer

tasks vertically (to edge/fog/cloud) and horizontally (to neighboring nodes).

This type of offloading is well demonstrated in Vehicular Edge Computing

(VEC) [22].

1.2.3 Network Management

Network management involves advancements in network infrastructure and ar-

chitectures to adjust network parameters to the evolving computing paradigm. Its

primary focus is to monitor, analyze, and dynamically adjust the network status

as required. For successful EC, it is crucial to enable resilient and cost-effective

network management methods, including access control, traffic engineering,

and the adoption of the latest network technologies. This can be achieved

and enhanced using, for example, Software Defined Networks (SDN) [23], an

abstraction technique that separates network control from data transmission

by logically centralizing network command functions in an SDN controller. The

controller provides instructions to the network’s forwarding devices regarding

data packet handling, including where and when to transfer data. To achieve

this, the Data Plane devices must support programmable switches that utilize the

innovative OpenFlow protocol [24]. Overall, SDN enhances network flexibility and

programmability. Furthermore, by designing optimal paths and employing efficient

packet forwarding procedures, SDN can be seamlessly integrated with the EC

environment [25]. In EC, various scaling functions, such as computation offload-

ing and load balancing, require the collaboration of multiple network data plane

components. In this context, SDN architecture proves beneficial as it allows the

8

CHAPTER 1. INTRODUCTION

SDN controller to optimally distribute bandwidth resources among different data

flows [26]. Additionally, due to SDN’s ability to have a comprehensive overview of

network topology and user movement, SDN controllers assist in determining the

ideal edge server destination for hosting migrated services [27]. Mobility scenar-

ios can incorporate other specifications like throughput or user preferences to

guide the SDN controller in executing optimal handovers for edge services [28].

Apart from mobility, a networking load balancing mechanism can be achieved by

configuring SDN switches across multiple edge servers [29], ensuring network

resilience and protecting against traffic spikes [30]. Moreover, SDN can enhance

the performance of various edge applications, such as Content Delivery Networks

(CDNs), as the SDN controller can leverage network aggregated information to

establish the shortest paths between users and content provider servers [31].

In addition to network-related decisions, the SDN controller can fulfill various

other essential decision-making tasks, including ML inference [32]. In this con-

text, the controller can determine, based on accuracy, whether to transmit the

ML task to the Edge or keep it at the IoT device level. Furthermore, one of the

improved functions facilitated by SDN architecture is traffic classification. Traffic

classification involves categorizing data flows, whether encrypted or not, into

different categories based on packet byte information. This differentiation allows

for distinguishing video surveillance traffic from e-health and email traffic. By

leveraging traffic classification technologies, SDN and its integration with MEC

(Multi-access Edge Computing) can enhance network congestion management

[33]. When MEC servers interact with SDN controllers, they can store delayed

tolerant traffic (e.g., email traffic) and redirect it after a reasonable delay.

Alternatively, for latency-critical tasks, the SDN controller can select reliable links

less prone to failure to handle critical traffic, such as the e-health forwarding

schema [34].

1.2.4 Security and Privacy

The significant differences in the network edge environment pose a major chal-

lenge when it comes to EC security issues. In conventional CC, data is stored in

secure large data centers with stringent physical protection measures such as

9

CHAPTER 1. INTRODUCTION

guards, fences, and security protocols. Furthermore, cloud providers invest heav-

ily in cybersecurity. However, the landscape in EC is quite distinct. The physical

edge devices are spread out and heterogeneous, making them more susceptible

to physical attacks. Moreover, the extensive data offloading and circulation at the

network edge make edge servers more vulnerable to cyber threats [35]. Despite

these vulnerabilities, EC offers better privacy protection compared to CC since

the data remains closer to the end users. Traditional CC requires all data to be

uploaded to the cloud for processing, which is a centralized method. This process

entails risks such as data loss and data leakage, compromising security and

privacy. In contrast, EC processes data locally within its own scope, eliminating

the need to upload data to the cloud and thereby avoiding the risks associated

with network transmission. Thus, the security of data can be more effectively

guaranteed. When data is compromised, the impact is localized, not affecting

the entirety of the data. For instance, when using various applications on smart-

phones that require user data, including private information, there is a high risk

of privacy leakage or attack when this data is uploaded to the cloud center [36].

1.2.5 Edge Computing Aplications

EC is applied in various fields, including:

• Smart Buildings

Smart buildings are a key component of smart cities, aimed to enhance

the efficiency, intelligence, and adaptability of buildings. These buildings

intelligently monitor and control devices such as kitchen appliances, light fix-

tures, and TVs based on user preferences. However, managing the building

environment can be computationally intensive, requiring modern intelligent

features to facilitate rapid user interaction. This is where EC becomes in-

valuable, offering fast response times and cost-effective solutions for smart

buildings. Advanced functionalities of smart buildings include estimating

room occupancy, conducting outdoor video surveillance, and tracking and

identifying individuals. An example of a smart building is the Burj Khalifa

in Dubai, one of the most iconic buildings globally and a pioneer in intel-

ligent construction. According to Honeywell, the nation’s smart building

10

CHAPTER 1. INTRODUCTION

score, which assesses a facility’s sustainability, safety, and productivity, is

65 out of 100. With a height of 2,716 feet and 160 floors, the Burj Khalifa

not only holds the title of the world’s tallest building but, with Honeywell’s

assistance, has also become one of the most advanced and environmen-

tally friendly smart building examples. Honeywell collaborated with the

building’s managers in its main venue to implement several smart building

features, enhancing residents’ access to better air quality, lighting, and

temperature control. Honeywell’s IoT platform receives real-time data from

the intelligent building automation system, using sophisticated algorithms

to identify anomalies and maintenance issues. Facility managers can use

this information to improve asset reliability and building maintenance [37].

• Smart Industry

Computing has successfully aligned itself with the latest requirements of

Industry 4.0, a integration commonly referred to as Industrial EC [38]. The

adoption of predictive maintenance has become crucial for emerging indus-

tries as it helps reduce their capital and operational expenses (CAPEX and

OPEX). This approach involves equipping machines with various Industrial

Internet of Things (IIoT) sensors, such as temperature, vibration, and pres-

sure sensors. These sensors collect data, which is then transmitted to edge

nodes for processing. The processed data is used to predict machine fail-

ures and errors [39].Furthermore, the fourth industrial generation aims to

incorporate Artificial Intelligence into its manufacturing processes. However,

due to the inability of industrial companies to transfer their private data

(e.g., production scene videos) to the cloud, they tend to rely on EC [40]. The

demand for IIoT-based technologies is expected to soar in the coming years,

especially in the Southeast Asian region. An example of smart industry is

Zuellig Pharma, representing the healthcare sector. Accenture and Singtel

teamed up to create a smart 5G-enabled warehouse for Zuellig Pharma,

one of Asia’s largest healthcare service providers. Technologies deployed

include 5G, edge computing for real-time data analytics, augmented reality

(AR) headsets and vision, and drones. The AR goggles were used for more

efficient product picking, while 5G-enabled drone technologies facilitated

11

CHAPTER 1. INTRODUCTION

a full inventory count of the warehouse in 20 minutes. By deploying these

smart technologies, Zuellig Pharma adopted a more data-driven, automated

approach. The AR Vision Picking solution resulted in a 30% improvement in

pick productivity and 100% pick accuracy. Moreover, the drone inventory

counting solution achieved a 95% counting accuracy [41].

• Smart Roads

EC has played a significant role in enhancing the safety and intelligence

of modern transportation systems. According to a survey referenced in

[42], intelligent Traffic Management Systems (TMS) integrated with smart

roads have promoted global awareness among various road components.

EC enables vehicles to communicate with each other, ensuring road traffic

safety and balance [43]. Vehicle-to-Thing communication allows for more

efficient management of special road scenarios, such as accidents or emer-

gencies involving vehicles like ambulances and police cars, by directing

vehicles to proactively free up road lanes. Edge Servers (ES) support func-

tions such as vehicle collision detection by utilizing aggregated data from

the road environment [44]. ES can provide real-time instructions and ad-

justments to vehicle speeds, trajectories, and lighting systems to prevent

collisions. Moreover, EC enhances the capabilities of road cameras for vehi-

cle detection and tracking [45]. Additionally, security concerns related to

autonomous driving, such as Light Detection and Ranging (LiDAR) spoofing

attacks, can be managed by edge nodes [46]. The concept of smart roads

encompasses a variety of technologies to improve road functionality. For

example, ‘Electrified Roads’ automatically charge electric vehicles through

specially designated charging lanes. Various pilot projects, notably in Ger-

many and Sweden, are testing this technology with different approaches. In

Sweden, around 2 kilometers of road near Stockholm have been transformed

into an electrified road as part of the eRoadArlanda project, recharging the

batteries of cars and trucks by connecting them to a rail system embedded

in the road. Meanwhile, Germany is exploring wireless induction systems

that install coils under the asphalt, transmitting power to the vehicle with-

out direct contact, utilizing the same electromagnetic induction technology

used for electric toothbrushes, mobile phones, and other devices [47].

12

CHAPTER 1. INTRODUCTION

• E-Health

By the onset of the current century, the health sector had already witnessed

the integration of electronic and information systems, leading to the emer-

gence of what is now widely known as E-Health. This evolving healthcare

model leverages electronic devices for diagnosing and treating patients,

alongside extensive use of computers for collecting and analyzing health

records. EC plays a pivotal role in advancing e-Health by facilitating medical

records storage, addressing privacy concerns, and mitigating delays in data

retrieval from the cloud [48]. Moreover, utilizing fog/edge computing for con-

tinuous remote health monitoring of patients [49] can significantly decrease

network bandwidth usage. EC is essential for developing next-generation

E-Health applications, such as Telesurgery [50], where doctors remotely

control surgical robots from their homes. Such procedures demand ultra-

low latency, achievable only through EC. E-health applications have seen a

surge in recent years, introducing many innovative solutions that ease the

workload of hospital staff and enhance patient care. For instance, Synappz

is an E-health application [51] that allows patients to monitor their health

at home. Patients can measure their own vitals and input the data, which

healthcare providers can then access through a portal and provide tailored

information relevant to the patient’s care pathway. Another example is Medi-

cus.ai [52], an application designed to help individuals better understand

their health by explaining medical reports and health data in a personalized,

comprehensible, and visual manner.

1.3 Motivation

As previously mentioned, EC plays a crucial role in realizing the IoT concept, partic-

ularly when combined with CC as a continuum. This combination opens up a wide

range of services and applications that can greatly enhance our lives, providing

increased convenience and flexibility. However, the successful implementation of

EC faces various challenges that can affect its performance. One of the main chal-

lenges is the efficient, secure, and dynamic allocation of resources, considering

13

CHAPTER 1. INTRODUCTION

the unique requirements of different application areas [53]. Therefore, numerous

efforts have been dedicated to designing and proposing resource allocation ap-

proaches that optimize computational and bandwidth expenses, while ensuring

timely response, cost-effectiveness, and task prioritization. Nevertheless, these

approaches lack a solid foundation for dynamic, secure behavior that can be

applied across different domains and handle the predicted exponential growth of

data. Hence, the objective of this thesis is to address some of the key shortcom-

ings in resource allocation for EC, specifically focusing on the requirements of the

IoT paradigm. Ultimately, this research aims to facilitate widespread deployment

of EC applications and services in diverse fields.

1.4 Problem Statement and Research Question

Resource management plays a crucial role in EC, and the subpar performance of

resource management significantly impacts the services that can be provided and

supported, thereby hindering the future deployment of EC. Despite the substantial

progress in research on resource management in EC, there are still significant

challenges that can impede its efficiency.

Firstly, the EC environment is complex and dynamic, characterized by heteroge-

neous devices with varying computation, storage, and communication capabilities.

This heterogeneity poses a critical challenge in achieving performance improve-

ment objectives, as limited resources in edge nodes lead to workload imbalances

and negatively affect system performance in terms of delays. Additionally, high

request rates can cause task queues to lengthen in powerful edge nodes, as lim-

ited resource edge nodes may struggle to process the entire input data. Moreover,

to minimize reliance on the cloud and maximize the utilization of edge resources,

there is a need to explore the concept of task division, which can potentially

reduce task execution delays through parallel subtask executions in limited re-

source edge devices [54].

Secondly, EC resources are subject to dynamic changes due to mobility. The

presence of mobile edge nodes like drones [55] and vehicles [56], [57] leads

to fluctuating EC resources over time. The joining and leaving of edge devices

14

CHAPTER 1. INTRODUCTION

further contribute to these changes. Additionally, the resource requirements

for executing tasks dynamically change based on various task types, specific

applications, time periods, and environmental conditions. Consequently, resource

allocation strategies must be adaptive and flexible to cope with such situations.

In general, resource allocation in EC systems involves three major computing

problems: resource sharing, task scheduling, and task offloading [58]. Resource

sharing refers to methods of distributing available resources among edge de-

vices to meet the computational demands of tasks [59], [60]. This is crucial in

EC environments where the heterogeneity of edge resources necessitates multi-

ple computing devices to complete a single task. Cooperation among nodes is

required to execute computational task demands, and mechanisms for edge-to-

edge collaboration must be established to facilitate resource sharing. However,

enabling cooperative edge-to-edge interactions is challenging due to the differ-

ences in hardware, software, and functionalities of practical devices [61]. Task

scheduling is typically performed without sufficient information support, as there

are no predictable patterns for the arrival of task profiles in terms of number,

size, and arrival rate. Consequently, scheduling algorithms must make prompt

decisions without prior experience or prepared information, while also optimizing

resource utilization based on changing demands. Task scheduling significantly

impacts the computing system’s performance, particularly in terms of task ex-

ecution delays. Balancing workload distribution among computing devices is a

challenging problem to ensure stable operation and prevent underutilization of

available resources in the limited resource edge. Efficient task offloading algo-

rithms need to consider various factors such as resource states of edge devices

and dynamic task requirements.

Thirdly, existing research on resource allocation has not adequately addressed

security and privacy concerns. The multi-layer architecture of EC renders the

edge system vulnerable to hostile attacks, which can jeopardize reliability and

robustness. Trustworthiness of offloaded edge nodes, user authorization for edge

services, and privacy protection of data generated by edge services are critical

issues. Presently, user data, edge node interaction data, and EC data are often

uncritically trusted and accessible [62]. However, in practical applications such as

15

CHAPTER 1. INTRODUCTION

smart homes and smart health, this data often contains private and commercial

secrets that could lead to significant losses if leaked [63], [64]. Consequently,

designing authentication and trust mechanisms, along with privacy preservation

policies for users covered by specific edge nodes is necessary.

Based on the above observations, the following research questions are to be

addressed:

• DRA in Heterogeneous EC Environment:

How can we devise efficient algorithms or models for dynamic resource man-

agement in EC environments that take into consideration the heterogeneity

and variability of edge nodes, thus reducing workload imbalance and op-

timizing task execution delays? What role can task division and parallel

execution play in optimizing the performance of EC environments?

• EC in Intelligent TMS:

What strategies and protocols can be established to enhance Vehicle-to-

Thing communication using EC, ensuring traffic safety and efficiency while

handling special road scenarios? How can we address the security issues

related to autonomous driving, such as LiDAR spoofing attacks, using edge

nodes?

• Security and Privacy in EC:

How can we design and implement robust security and privacy-preserving

measures in the multi-layer architecture of EC systems to prevent potential

threats and attacks? What mechanisms can be developed to ensure user

data and edge node interaction data are trusted and secure, particularly in

sensitive applications like smart homes and smart health?

1.5 Aims and Objectives

The principal aim of this thesis is to investigate, model, and propose innovative

solutions that enhance the performance, security, and privacy of EC systems

in various contexts such as intelligent Traffic Management Systems and other

IoT-enabled environments. Our intended research work comprises a series of

16

CHAPTER 1. INTRODUCTION

objectives that will pave the way toward achieving our overall aim. Each objective,

in turn, consists of several sub-goals aimed at achieving the specific objective.

1. Objective 1: Propose and implement an algorithm or model for dy-

namic resource allocation, taking into account the heterogeneity of

edge nodes:

• Analyze existing resource management strategies in EC, identify their

limitations, and provide a comprehensive understanding of the need

for dynamic and adaptable resource management models.

• Investigate the role of task division and parallel execution in enhancing

the performance of EC environments.

• Evaluate the effectiveness and efficiency of the proposed dynamic

resource management model.

2. Objective 2: Enhance the security of Intelligent Traffic Management

Systems by utilizing edge resources:

• Investigate the role and potential of EC in enhancing Vehicle-to-Thing

communication.

• Devise techniques to mitigate security threats, with a specific focus on

LiDAR spoofing attacks using edge nodes.

• Validate the proposed strategies and protocols through simulation.

3. Objective 3: Enhance Security and Privacy in EC Systems:

• Conduct an extensive literature review to understand the current secu-

rity and privacy challenges in EC systems.

• Design and implement robust security measures for the multi-layer

architecture of EC systems, aiming to counter potential threats and

attacks.

• Create mechanisms that ensure user data privacy and secure interac-

tion of edge nodes, especially in sensitive applications.

Each of these objectives contributes to the overall aim of the Ph.D. research and

addresses the research questions posed.

17

CHAPTER 1. INTRODUCTION

1.6 Contributions

This doctoral thesis focuses on the exploration, modeling, and proposal of novel

approaches to improve the performance, security, and privacy of EC systems. It

specifically targets diverse scenarios such as intelligent TMS and other environ-

ments enabled by the IoT. The goal is to go beyond existing standardized solutions

and advance the field of EC by addressing challenges related to efficient, dynamic,

and reliable resource management. By doing so, the thesis aims to facilitate the

widespread deployment of scalable, reliable, and secure applications within the

IoT domain. In addition to an extensive literature review, the main contributions

of this thesis can be summarized as follows:

• A framework for adaptive resource management in EC using Neural

Networks

The first major contribution of this thesis involves the design and implemen-

tation of an intelligent system based on NNs. This system is designed to

dynamically allocate resources in EC. Its primary objective is to tackle the

challenges associated with deploying EC on a large scale. These challenges

include the complex and dynamic nature of the edge environment, which is

characterized by a variety of devices with differing computation, storage,

and communication capabilities. To address these challenges, the proposed

framework utilizes dynamic resource allocation to reduce service delays and

balance resource utilization at the edge. By doing so, it mitigates workload

imbalances caused by limited resources at the edge, which can negatively

impact system performance in terms of delays and overloading powerful

edge nodes. Moreover, this framework aims to minimize reliance on cloud

resources and maximize the utilization of edge resources.

• An efficient lightweight approach for authenticating edge devices

The second major contribution of this thesis is the development of an effi-

cient and lightweight authentication method for edge devices. This method

addresses security and privacy concerns in EC and aims to enhance the

18

CHAPTER 1. INTRODUCTION

trustworthiness of edge devices. It facilitates user authorization for edge

services in a lightweight manner, conserving computing power and reducing

authentication time for a large and dynamic number of IoT devices. Impor-

tantly, as most IoT devices have limited battery power, the lightweight ap-

proach helps conserve battery life. Additionally, since authentication occurs

in close proximity to the IoT device, fewer devices are involved in forwarding

authentication packets, saving battery power for all devices not required to

be involved. However, the issue of power consumption is beyond the scope

of this thesis. The proposed method achieves these goals by delegating

some of the intelligence from the SDN-controller to the data plane. This

delegation enhances the overall network performance, reduces signaling

load, and offloads the controller, thereby meeting real-time requirements.

The method takes advantage of programming protocol-independent packet

processors (P4) language to ensure that only legitimate nodes can access

the network. Notably, this solution delegates the access control task to

the data plane in an SDN environment, relieving the controller from poten-

tial failures caused by overload. An important feature of this technique is

the fast authentication of edge devices, which is performed by a switch in

the data plane located near the edge device. Furthermore, this technique

exhibits scalability as the controller can deploy additional authentication

nodes at any time. This capability extends the coverage area, allowing for

the authentication of new edge devices within their immediate proximity.

• A technique for detecting objects using efficient and lightweight NNs

The third major contribution of this thesis involves the development and

evaluation of a novel real-time detection technique named "Shadow An-

alyzer." This technique is designed to enhance the safety and efficiency

of autonomous driving by effectively identifying LiDAR spoofing attacks.

Through its innovative approach, Shadow Analyzer has shown significant

improvements in managing special road scenarios and enhancing V2T com-

munication. It accomplishes this by minimizing the amount of data needed

for object detection, utilizing a condensed 2D dataset derived from the origi-

19

CHAPTER 1. INTRODUCTION

nal 3D point cloud. This data reduction allows for the detection process to be

executed onboard the vehicle or on edge nodes, facilitating rapid response

to potential threats. Furthermore, the method addresses critical security

concerns related to autonomous driving, particularly LiDAR spoofing at-

tacks, by allocating the detection and management of such threats to edge

nodes. This strategy not only reduces the computational load on the vehicle

but also enables efficient edge data processing and optimal utilization of

available computing resources. In line with the second objective of this

thesis, this technique mitigates security threats, specifically LiDAR spoofing

attacks. Additionally, by leveraging a reduced 2D dataset, it facilitates V2T

communication, a critical advantage given that many edge devices have

limited computing power and memory capacity.

• A scalable distributed security scheme through homomorphic encryp-

tion

The fourth major contribution of this thesis is the introduction of a novel

distributed approach to Fully Homomorphic Encryption (FHE) for process-

ing sensitive and confidential data while ensuring information security and

privacy. FHE enables computations to be performed on encrypted data, pre-

serving confidentiality even during data processing. Only authorized users

or those with the decryption key can access and interpret the data. This

allows secure outsourcing of data processing to powerful public computing

resources on the edge, even if they are untrustworthy. However, FHE-based

data processing faces scalability challenges due to its high computational

complexity. The main goal of this technique is to address the concerns

related to security, privacy, and scalability. The proposed distributed FHE-

based data processing approach aims to overcome the scalability issues

encountered in FHE-based computations by leveraging distributed comput-

ing techniques. This approach divides the computational workload among

multiple computing instances, thereby reducing the overall computational

burden on a single instance. Moreover, the distributed approach enhances

privacy by eliminating the possibility of meta-level inferences about the

20

CHAPTER 1. INTRODUCTION

computations being performed. By distributing the computations across

multiple nodes, it becomes challenging for any single entity to comprehend

the nature of the computation or gain access to sensitive information.

1.7 Contributions Complementarity and Justification

This thesis presents several contributions that individually enhance the applica-

bility of EC within specific domains. However, these contributions can also be col-

lectively implemented to achieve multiple objectives simultaneously. For instance,

our proposed lightweight authentication technique is designed for integration

into a SDN environment to enhance security while simultaneously offloading the

controller to manage other tasks. This is particularly advantageous in mobile

IoT-SDN environments, where mobile devices create highly dynamic topologies.

Our method facilitates lightweight network access for these devices for specific

durations. Furthermore, our dynamic resource allocation framework is versatile,

optimizing resource utilization to reduce costs, conserve energy, decrease re-

sponse times, and ensure load balance. The Shadow Analyzer, with its innovative

2D technique, offers high accuracy in a lightweight package, making it an ideal

tool for use in autonomous vehicles within intelligent transportation systems.

Similarly, our distributed Fully Homomorphic Encryption (FHE) scheme can effec-

tively address multiple scenarios, especially where data must be processed on

remote, potentially untrustworthy servers to maintain the security and privacy

of sensitive information. By integrating all these contributions, the widespread

adoption of EC could be facilitated, providing solutions for efficient adaptive re-

source management in dynamic environments, addressing security and privacy

concerns for sensitive data processed at the edge, offering scalable and light-

weight network access control, and mitigating specific attacks on smart vehicles,

particularly LiDAR spoofing attacks. To demonstrate how different contributions

can be collectively implemented to achieve multiple objectives, Chapter 7 of this

thesis presents a hardware testbed where both the resource allocation framework

and the Shadow Analyzer are complementarily implemented, showcasing how

the Shadow Analyzer benefits from the resource allocation technique.

21

CHAPTER 1. INTRODUCTION

1.8 Thesis Structure

The remainder of the thesis is organized into seven chapters as follows:

• Chapter 2: Literature Review

This chapter provides a comprehensive review of major studies that have

strong relevance to the central contributions of this thesis. We critically

evaluate the pros and cons of these works, emphasizing the pressing need

for the novel approaches introduced in our research. The discussion com-

mences by outlining works directly associated with the primary contribution

of this thesis, setting the stage for readers to understand the foundational

knowledge. Subsequently, we delve into contemporary, state-of-the-art re-

search that aligns with the broader contributions of this thesis, ensuring a

well-rounded discussion and reflection on the topic.

• Chapter 3: Neural Network-Driven Resource Management in IoT Edge

Computing (Contribution 1)

The chapter outlines the creation of an intelligent system for resource

allocation in an SDN environment using an AI agent and mininet for testing.

Different model types and reward functions were implemented and assessed

to find the best approach. Applications were developed to ready network

components for the desired goal. The study details the steps for making the

necessary dynamic behavior testing models, with thorough evaluations for

optimal settings. Notably, the regression model performs the best due to its

ability to assess resources individually and choose the highest rated one,

suited for dynamic systems. A classification model was also explored but

showed performance limitations due to fixed resource properties.

22

CHAPTER 1. INTRODUCTION

• Chapter 4: Lightweight edge authentication for SDN (Contribution 2)

The chapter presents a new approach that uses P4 for authentication and

port scan prevention in switches. The technique’s adaptability and real-

time capabilities are showcased, making it suitable for practical situations,

especially in EC. Additionally, a one-time password-based authentication

method is introduced. These methods collectively tackle security and pri-

vacy worries in EC, enhancing the reliability of edge devices. They enable

efficient user authorization for edge services, saving computing resources

and decreasing authentication time for a diverse range of IoT devices.

• Chapter 5: Scalable Distributed Homomorphic Encryption for Complex

Computational Models (Contribution 3)

This chapter introduces a novel approach for distributed FHE designed to

process sensitive data securely. The approach’s performance was evaluated

using virtual instances on an external server, employing three widely used

FHE schemes (CKKS, BGV, and BFV). The experiments involved arithmetic

operations on datasets up to 216 in size. By conducting fifty test runs for

each scheme and data size, comparing centralized and distributed methods,

the distributed approach exhibited time savings of up to 54%. These results

highlight the potential of the proposed approach in efficiently handling

confidential data in public environments while maintaining security.

• Chapter 6: Shadow-Analyzer: Efficient Detection of Ghost Objects in

Autonomous Driving using Neural Networks (Contribution 4)

This chapter focuses on improving V2T communication by using EC to en-

hance traffic safety and efficiency, specifically addressing the threat of

LiDAR spoofing attacks. The main goals are to reduce data requirements,

maintain accurate detection, and enable real-time responses. The approach

highlights efficient edge-based data processing near vehicles, crucial for

quick responses in time-sensitive situations. The chapter introduces a light-

weight LiDAR spoofing-attack detection method called the Shadow-Analyzer,

using 2D bird’s-eye view images. This method achieves a remarkable aver-

age accuracy of 97.8% in detecting ghost objects within 6ms, proving its

potential for real-time detection without compromising efficiency.

23

CHAPTER 1. INTRODUCTION

• Chapter 7: Empirical Validation of Usability: Extensive Evaluation of Our

Approach in an Edge Computing Hardware Testbed

The chapter investigates the practicality of the proposed solution using a

custom testbed with varied computing devices, representing diverse edge

IoT resources. The solution’s resource allocation framework is integrated

into the SDN controller, focused on managing these resources, especially for

the shadow analyzer task discussed in Chapter 6. The conducted tests, in-

volving different computing power resources, yield promising results. These

findings indicate that the resource allocation framework effectively opti-

mizes computing resource allocation, enhancing task completion efficiency.

• Chapter 8: Conclusions and future work

This chapter provides a concluding overview of the thesis, outlining the

primary research gaps that have been explored and discussing the principal

methodologies employed to address these gaps. Furthermore, it expounds

upon the principal findings made throughout the research and sheds light

on the key lessons learned highlighting future research prospects and direc-

tions.

24

2 Literature Review

2.1 Introduction

Resource management is a cornerstone in the realm of CC and EC, directly influ-

encing the efficiency and effectiveness of these technologies. In this chapter, we

delve into the multifaceted world of existing resource management strategies

within these domains. Our journey begins with a comprehensive exploration of

the techniques and methods currently in play, followed by a close scrutiny of

their characteristics and inherent limitations. One of the salient aspects that will

receive special attention is the dynamic nature of edge resources. To provide

a holistic perspective, the state-of-the-art works closely related to the central

contributions of this thesis will be evaluated. Through a critical analysis of their

strengths and weaknesses, we underscore the pressing need for our pioneering

contributions, all of which aim to bolster the efficiency of edge computing.

2.2 Resource Management in Cloud Computing

Resource management stands out as a major issue in CC, as highlighted in [65].

Another crucial problem is devising resource allocation techniques, particularly

for determining the optimal placement of modules [66] alongside other devices

to enhance throughput and reduce latency. Data centers in CC face challenges in

implementing methods for resource migration and allocation [67]. Inadequate

resource allocation leads to resource wastage and subpar service delivery within

data centers. Effective allocation and recognition of resources such as servers,

memory, and CPUs are essential. Various methods are employed to achieve

optimal resource allocation in CC. These can be categorized as follows [68]:

25

CHAPTER 2. LITERATURE REVIEW

• Numerical methods: These mathematical techniques are utilized to solve

numerical problems. For instance, in [69], the authors utilized the Exact

VM Allocation algorithm, an extended Bin-Packing approach, to address

power consumption concerns. To achieve efficient VM consolidation, they

employed a migration module to manage the state of unused hosts (such

as sleep or shutdown) and determine the placement of VMs.

• Numerical approximate methods: These methods rely on probability or oper-

ational search techniques to estimate excellent solutions for task scheduling

problems. In [70], Sandhu et al. proposed the KNN algorithm to calculate the

distance between data center locations. The distribution of queries within

the data center is adaptively performed based on the available resources

and the resource consumption anticipated for big data requests.

• Linear programming methods: This traditional analytical approach involves

mathematical formulation. Chaisiri et al. introduced the Optimal VMs Place-

ment algorithm (OVMP) in [71] to deploy VMs on hosts. Their architectural

system consisted of a user, VMs, cloud providers, and a cloud broker. The

OVMP aimed to select an optimal solution by solving stochastic integer pro-

gramming through two main steps: determining the number of provisioned

VMs in the first step and the number of VMs assigned for utilization in the

second step.

• Learning methods: Some researchers have utilized learning techniques to

address DRA issues. For example, in [72], a learning strategy-based dynamic

resource allocation was proposed for a virtual streaming media server clus-

ter in a multi-version VoD system. Similarly, [73] employed a ML algorithm to

determine optimal resource allocation. Moreover, [74] presented a solution

based on learning methods to optimize resource allocation. Learning meth-

ods have emerged as a dominant approach in various research fields and

hold promise for enhancing the performance of cloud environments. Con-

sequently, there has been an increased interest in developing new learning

techniques for DRA [75], [76].

26

CHAPTER 2. LITERATURE REVIEW

Numerous studies in the scientific literature have explored cloud technology,

specifically focusing on its key characteristics, features, and unresolved matters.

These studies have also investigated various approaches employed to optimize

resource allocation within this environment. In [77], the authors proposed a

classification of cost optimization methods for scheduling scientific workflows in

cloud and grid computing. Similarly, Challita et al. discussed different techniques

utilized for Virtual Machine (VM) placement, citing energy management, resource

utilization optimization, and traffic engineering as the driving factors behind such

scheduling practices [78]. Kalra et al. [79] deliberated on task scheduling tech-

niques based on Particle Swarm Optimization (PSO), Ant Colony Optimization

(ACO), Genetic Algorithm (GA), as well as two novel approaches, the League Cham-

pionship Algorithm (LCA) and BAT algorithm. Masdar et al. [80] conducted an

analysis of workflow scheduling approaches in CC, additionally highlighting works

involving Simulated Annealing (SA) and Cat Swarm Optimization (CSO). Further-

more, they examined Heuristic-based methods and Hybrid Algorithms. Another

study investigated job scheduling methods such as first-come first-served, Round

Robin, Min-Min, and Max-Min algorithms [81]. Nevertheless, these studies fail to

consider the dynamic nature of resource allocation within the cloud. Although

there are significant advantages associated with this new technology, there exist

significant worries and obstacles. The primary concern revolves around secu-

rity and privacy matters in cloud-based settings. Moreover, resource allocation,

load balancing, data management, data availability, scalability, compatibility, and

interoperability pose additional challenges in cloud-based environments, which

ultimately impact the effectiveness and dependability of this technology.

2.3 Resource Management in Edge Computing

The previous chapter highlighted the significance of resource management in

EC, emphasizing its role in unifying various dynamic, diverse, and dispersed

edge nodes [15]. Resource management can be conceptualized as a sequence

of interconnected actions. This begins with the formation and distribution of

resources, monitoring them, and strategizing for their future deployment. This

chapter delves into these steps, aiming for a deeper understanding of effective

resource management within EC.

27

CHAPTER 2. LITERATURE REVIEW

2.3.1 Resource Allocation

The task of resource allocation or planning involves assigning each forthcoming

task to the most suitable edge server, either physical or virtual, that can host it.

Given the importance of Quality of Service (QoS) in differentiating EC from CC,

determining the precise amount and caliber of resources needed for a pending

request is crucial to the success of EC [82]. Resource allocation in EC is complex

due to the need to take into account numerous variables and circumstances.

The following are a few of these considerations: Resource scheduling aims to

minimize computational and bandwidth expenses, while ensuring the requisite

response time is maintained [83], [84], making it cost-driven. In terms of crowd

management, it is important for a workload that is assigned to nearby-edge

resources to recognize the load percentage of adjacent edge devices, thus pre-

venting overloading of a particular host [85]. As for dynamic demand, apps and

services at the edge frequently exhibit varying needs in terms of quantity and

quality of resources over time and location. Therefore, the scheduler must take

these fluctuations into account, dynamically revising and adjusting the allocated

resources to avoid degradation in QoS or under-utilization of resources [86]. The

aspect of priorities plays a role in EC environments, where numerous users are

competing for a place in an edge node. Here, the scheduler must strive to treat

all user requests equitably. The research in [87] examines various scheduling

algorithms based on different priorities, such as the order of arrival, client type,

task nature, and so forth. Finally, fault tolerance is important since edge nodes

can lose power or connectivity at any moment. Providing backup versions of any

scheduled application would enhance the overall reliability of EC services [88].

2.3.2 Resource Placement

The allocation of resources involves designing and optimizing the strategy for

distributing physical and virtual edge servers. As edge/fog computing is still

in its early stages of real-world implementation, numerous current studies are

aiming to determine the most effective placement strategy for edge nodes. These

studies consider various criteria such as latency, reliability, and user preferences,

while also taking into account different scenarios like metropolitan networks and

28

CHAPTER 2. LITERATURE REVIEW

vehicular networks. In metropolitan areas, individuals and businesses can utilize

EC to meet their computational and memory requirements. In this context, edge

nodes are distributed similar to antennas, meaning that as the population density

increases, more edge servers are needed to meet the demand [89]. However,

a more precise approach involves considering not only the number of users

in a region but also their interest in using applications with low latency [90].

Additionally, in Multi-access Edge Computing (MEC) servers are distributed across

cells. It is recommended that when multiple users from different cells interact,

such as playing virtual reality games or streaming together, they should be served

by the same MEC server to avoid relying on a third-party aggregation server in

the cloud [91]. Placing edge servers as close as possible to access points is also

suggested to minimize latency, although this approach raises concerns about the

associated capital and operational costs. Researchers have explored finding the

optimal balance between offering QoS and reducing costs in the placement of

5G-MEC servers [92]. Furthermore, when distributing edge resources, it is crucial

to consider robustness as a criterion [93]. Robustness refers to the system’s

ability to continue functioning normally even if multiple edge nodes fail or come

under attack. The distribution of resources should be robust enough that if an

edge node fails, there is another one in that region capable of replacing it.

2.3.3 Resource Provisioning

Resource provisioning involves aligning the quantity and quality of resources with

the desired level of service for users. In the context of EC, provisioning resources

entails the tasks of planning, estimating, and pooling the necessary physical and

VMs. These resources need to be precisely customized in terms of processor,

memory, and network interfaces before being handed over to the scheduler for

utilization by upcoming requests [94]. However, unlike in CC, where resource

costs tend to remain stable, the edge environment experiences spatial-temporal

fluctuations in prices. Therefore, resource provisioning actions in this context

must adapt to recent changes and strike a better balance between QoS and costs

[95]. A notable example of spatial changes can be observed in vehicular EC, where

resource provisioning should be based on traffic conditions [96].

29

CHAPTER 2. LITERATURE REVIEW

2.3.4 Resource Pooling

The process of establishing a collection of resources that can be allocated or

planned based on upcoming demands is referred to as resource pooling. The

objective of resource pooling is to assemble diverse edge nodes together and

organize them into a unified community, enabling them to interact and utilize one

another’s computational and networking resources [97].

2.4 Security and Privacy

The preceding chapter emphasized the unique challenges posed by the distributed

and diverse nature of physical edge devices, making them particularly vulnerable

to physical attacks. Additionally, the high volume of data transfer and circulation

at the network edge increases the susceptibility of edge servers to cyber threats.

In this chapter, we will explore specific security concerns associated with EC.

2.4.1 Attack Detection

The field of attack detection involves the examination of various adversarial

attacks and vulnerabilities that specifically target edge devices and servers, par-

ticularly those that are embedded. Since certain lightweight edge devices lack

the capability to utilize defensive tools like anti-viruses or firewalls, it is neces-

sary to develop software detectors for unusual behavior and testing techniques

specifically tailored for these edge nodes [98]. One of the most widely recognized

threats to edge servers is Distributed Denial of Service (DDOS) attacks. These

attacks aim to overload the server’s capacity by bombarding it with requests

from numerous zombie machines. Such attacks are notably more effective when

targeted at the Edge as opposed to the Cloud. Furthermore, given that the ma-

jority of edge devices are fog/mist devices, which have limited energy resources,

certain attacks exploit this vulnerability by focusing on draining the batteries of

these edge devices, causing them to consume a significant amount of energy. An

example of such an attack is the Stretch attack [99], which involves sending data

packets with headers that contain extended routing and looping paths, compelling

these edge devices to consume energy on unnecessary data transmission routes.

30

CHAPTER 2. LITERATURE REVIEW

2.4.2 Data Integrity

Data integrity refers to the process of confirming the accuracy and consistency of

data that is spread across a network. It is crucial to ensure data integrity in EC due

to the possibility of intentional manipulation or corruption by adversaries, as well

as accidental errors caused by sensor malfunctions or transmission issues [100].

To verify data integrity, a protocol called EDI-V was introduced by the authors of

[101]. This approach involves assigning a unique tag to each data block before

storing it in an edge node. Subsequently, a reliable and trusted third-party server

is responsible for auditing data changes by comparing the initial tags with the

latest ones. However, incorporating a third party alone is insufficient to address

privacy concerns. To address this limitation, [102] proposed an approach for

distributed and lightweight auditing using Merkle Hash Trees.

2.4.3 Access Control

Access control is the process of permitting only authorized individuals to access

a specific edge server. To minimize latency caused by authentication, the chal-

lenge in EC lies in ensuring lightweight access control [103]. Additionally, the

authentication process becomes more difficult in EC due to user mobility and

the widespread distribution of edge servers. Almaini et al. [104] propose an

authentication mechanism that utilizes a port knocking service on the switch. Port

knocking is generally performed by firewalls to authenticate hosts by sending a

predefined sequence of ports (TCP SYN packets) before establishing a connection.

The suggested approach involves storing authenticated and unauthenticated

nodes (connections), represented by IP source and destination addresses, using

match-action table rules inserted by the SDN controller. The authors further ex-

pand their method in [105] to safeguard against replay attacks by implementing

One-time Password (OTP) authentication, where a password is valid for only one

transaction. [104] also introduce a timeout for the stored connections to man-

age available resources and prevent memory-exhaustion attacks. To enhance

security and customization, the approach allows network operators to determine

the length of the sequence, which refers to the number of ports that need to be

knocked. The OTP implementation relies on cryptographic hash functions (e.g.,

SHA3) to calculate the next expected password and is based on the Leslie Lamport

algorithm.

31

CHAPTER 2. LITERATURE REVIEW

2.4.4 Privacy

In today’s context, the issue of user privacy has become a subject of controversy,

particularly due to the increasing prevalence of camera surveillance systems and

the exploitation of confidential user data by social media platforms. The collection

of information by connected edge devices for service provision can potentially

compromise individuals’ privacy. In the field of data processing, specifically in

the domains of CC and EC, there are three primary stages: data cleaning, data

aggregation, and data analysis. The cleaned data often ends up being less

representative, with fewer attributes compared to the original dataset. To address

privacy concerns, a distributed data cleaning algorithm was proposed by [106],

which solely requires users to provide data representation without transferring the

actual data to the Cloud. Subsequently, for data analysis, it becomes necessary

to transfer the data to a centralized server to run analytic models. Numerous

approaches have been presented in existing literature to safeguard privacy during

this process. For instance, [107] introduced a novel distributed Fully Homomorphic

Encryption (FHE) approach, ensuring the security and privacy of sensitive and

confidential data. Another approach involves applying lightweight encryption

to the data before transferring it, as suggested by [108]. Furthermore, [109]

proposes the addition of noise to the data and training ML models with this noisy

data. Similarly, [110] suggests multiplying the data with projection matrices

before transmitting it to the Edge/Cloud for training purposes. When it comes to

data analysis, Federated Learning (FL) stands out as a promising solution that

allows the extraction of information from data without centralizing it [111].

2.5 Developments in Resource Management for Edge

Computing

The work by Nguyen et al. [112] presents a deep learning-based auction system

for allocating EC resources in mobile blockchain networks, aiming to maximize

revenue for service providers. This approach is innovative, leveraging an optimal

auction analytical solution to design a multi-layer neural network, setting a new

standard in resource allocation efficiency and financial optimization. However,

32

CHAPTER 2. LITERATURE REVIEW

the complexity and computational demands of the model raise concerns about

its scalability and transparency. The deep learning aspect, while powerful, could

obscure the decision-making process, potentially affecting fairness and partic-

ipant confidence. Additionally, the model’s adaptability to the rapidly evolving

landscape of blockchain and mobile technologies is yet to be fully tested. The

paper [113] introduces a solution for optimizing task offloading and bandwidth

allocation in Mobile Edge Computing (MEC) using Deep-Q Network (DQN). The

approach effectively tackles the mixed integer nonlinear programming challenge

inherent in such problems, achieving near-optimal performance in resource allo-

cation and cost minimization. This DQN-based method stands out for its efficiency

in managing complex scenarios and adapting to varying requirements, such as

task sizes and energy consumption patterns. However, it does come with its set of

challenges, including the computational intensity required for training the DQN

model, the complexity in setting up the model including the intricacies of defining

state and action spaces, and a sensitivity to the tuning of hyperparameters like

learning rates and batch sizes. Despite these drawbacks, the paper showcases

the promising application of deep reinforcement learning in enhancing mobile

computing environments by improving efficiency and reducing operational costs.

It is worth noting that three prior investigations, partially authored by the same

group of researchers and addressing related issues, have contributed to this

area of research. These studies collectively introduce a system designed for

task management across a diverse user base. They also focus on identifying

the optimal timing and type of tasks to offload to the network. To achieve these

objectives, Q-Learning is employed to devise an optimal task processing strategy,

with a particular emphasis on minimizing energy consumption [114]. The second

study [115] focused on leveraging multi-agent reinforcement learning (MARL) to

tackle the challenges of computation offloading in the IoT networks through edge

computing. The proposed Independent Learners based Multi-Agent Q-learning

algorithm facilitates distributed decision-making, enabling each agent or user

to independently learn optimal decisions based on local observations without

global network state information. This approach not only emphasizes energy

efficiency by aiming to minimize the long-term system cost, which encompasses

33

CHAPTER 2. LITERATURE REVIEW

energy consumption and task execution delay, but also enhances the robustness

and scalability of the system, making it well-suited for environments with numer-

ous IoT devices. However, the implementation of such MARL algorithms can be

complex due to the necessity for each agent to learn and adapt based on partial

network state information, leading to a significant challenge in achieving optimal

solutions. Since agents operate independently without comprehensive knowledge

of others’ actions or the overall system state, there’s a risk of converging to

suboptimal solutions compared to centralized approaches that globally optimize

decisions. Additionally, the decentralized nature of computation offloading could

introduce considerable communication overheads for exchanging state, action,

and reward information among agents and the central gateway, especially as the

number of IoT devices increases. Despite these challenges, the paper offers a

promising solution for enhancing energy efficiency and supporting distributed

operation in IoT networks. The third study [116] tackles the issue of efficiently

managing computation tasks within IoT networks enhanced by EC, using machine

learning approaches for optimal resource allocation. This innovative framework,

leveraging centralized user clustering and distributed task offloading algorithms,

aims to optimize computational resource distribution between local IoT devices

and edge servers. By employing machine learning techniques, specifically deep

reinforcement learning, the system is designed to dynamically adapt to changing

network conditions and user demands, improving its efficiency without manual in-

tervention. This approach ensures minimized system costs, incorporating energy

consumption and task execution latency, thereby enhancing energy efficiency

and reducing operational expenses. However, the implementation of such a ma-

chine learning-based resource allocation system introduces complexity due to

the intricate nature of training models and ensuring real-time responsiveness. Ad-

ditionally, there’s a risk of suboptimal performance if the models fail to capture all

nuances of the network environment or user behavior. Moreover, the effectiveness

of the algorithms heavily relies on the quality and quantity of training data, where

inaccuracies or data insufficiency can adversely affect model performance and,

subsequently, the efficiency of resource allocation. The authors in [117] introduce

a collaborative Q-Learning framework known as the Multi-Agent Reinforcement

34

CHAPTER 2. LITERATURE REVIEW

Learning network (MARL). This framework aims to reduce energy consumption ef-

ficiently. The study employs reinforcement learning to empower an SDN controller

in devising a policy that optimizes the overall system’s energy usage. Through

the MARL framework, agents cooperate and exchange information to enhance

their training. In a related work, the authors in [118] propose a novel algorithm

called Deep Reinforcement Learning based Resource Allocation (DRLA). This algo-

rithm is designed to ensure the efficient utilization of network and computational

resources, aiming to minimize the service time for processing tasks. This service

time includes both routing and computing durations. In this proposed approach,

time-sensitive or computationally demanding tasks generated by various devices

are directed towards the nearest MEC nodes. If a task cannot be processed by

the current MEC due to unsuitability, it is rerouted to the next available MEC node

until a compatible one is found. The routing decisions are guided by an SDN

controller that has been trained through reinforcement learning to make optimal

allocation choices. The system exhibits intelligent routing behavior based on

network conditions, following a training period. In [119] a novel approach to

enhance the efficiency of vehicular ad hoc networks through the integration of EC

and software-defined networking for optimized resource allocation. By proposing

a three-tier EC framework and utilizing a reinforcement learning algorithm, the

model aims to dynamically allocate computational resources and efficiently route

to edge servers for real-time vehicle monitoring. This integration significantly

reduces latency and maximizes system utility, offering an adaptive solution to

resource management in IoT networks for vehicular applications. However, im-

plementing such a system introduces complexities, notably in the continuous

learning and adaptation required by the reinforcement learning algorithm, which

demands significant computational resources and expert knowledge in network-

ing and machine learning. The reliance on centralized SDN control also raises

concerns about scalability and potential bottlenecks in large-scale deployments.

Despite these challenges, the model’s promise of improved latency and resource

utilization presents a compelling case for further exploration in smart vehicular

network management. The paper [120] presents a novel approach to dynamic

resource allocation for cloud computing environments. This approach is designed

35

CHAPTER 2. LITERATURE REVIEW

to offer QoS guarantees across multiple classes of clients, addressing the chal-

lenge of efficiently provisioning virtual machine (VM) instances with varying ser-

vice requirements and cost considerations. By employing a reinforcement learn-

ing (RL) algorithm, the proposed model adapts the allocation of VMs to meet QoS

demands for all client classes while maximizing cloud provider (CP) profits under

changing conditions, such as service costs, system capacity, and demand for

services. The primary advantage of this approach lies in its ability to dynami-

cally adjust resource allocation in response to fluctuating market conditions and

system demands, ensuring QoS guarantees and optimizing CP profits simultane-

ously. The model’s use of an RL algorithm allows for a sophisticated and adaptive

strategy that can navigate the complex trade-offs between client satisfaction and

cost efficiency. However, the implementation of this model brings with it several

challenges. Firstly, the complexity of the RL algorithm and the need for continu-

ous adjustment based on real-time data may require significant computational

resources and expertise in machine learning. Secondly, the model’s reliance on

accurate predictions of service demand and cost can introduce uncertainties,

particularly in rapidly changing or unpredictable market environments. Lastly,

while the model aims to balance the interests of both clients and CPs, there is a

risk of suboptimal outcomes if the RL algorithm does not adequately learn from

the environment or if the model parameters are not appropriately tuned. In the

study [121], a novel multiagent deep reinforcement learning resource allocation

algorithm is introduced to address the challenges of decentralized radio resource

management within 5G vehicular networks. This approach leverages an actor-

critic technique, employing centralized training to facilitate information sharing

among agents, thereby enhancing their ability to learn each other’s policies. Dur-

ing decentralized execution, agents utilize their actor networks in conjunction with

local observations to make optimal decisions regarding transport block selection

and transmission power. The proposed method showcases a notable improve-

ment, with an 18% higher packet reception ratio when compared to a spectrum

allocation scheme based on double DQN, and a remarkable 33% higher reward

when compared to prior state-of-the-art Multi-Agent Reinforcement Learning

(MARL) techniques. In another study [122], deep learning techniques are explored

for predicting vehicle mobility patterns in Vehicle-to-Everything (V2X) networks,

36

CHAPTER 2. LITERATURE REVIEW

with the ultimate goal of optimizing channel allocation and enhancing network

performance. The proposed architecture combines centralized decision-making

with distributed channel allocation strategies. This is achieved by employing DQN

and Advantage Actor-Critic (A2C) techniques in conjunction with Long Short-Term

Memory (LSTM) networks to effectively account for the dynamic nature of user

mobility. To validate the efficacy of the resulting LSTM-DQN and LSTM-A2C al-

gorithms, extensive simulations were conducted using real data sourced from

the California State Transportation Department. The researchers in [123] have

tackled the challenges associated with cloud computing when it comes to ap-

plications that require low latency and energy efficiency. They have done so by

introducing a novel approach, which involves the deployment of a distributed

deep neural network (DNN) within an Intelligent Software Defined Networking

(ISDN) framework. This ISDN framework effectively manages network resources,

including bandwidth and computational capacity, using the SDN paradigm. To

ensure high-quality communication and efficient DNN task offloading, the team

has devised a dynamic routing technique for optimizing the quality of service.

Additionally, they have developed a task offloading model based on the Markov De-

cision Process, aiming for the optimal distribution of DNN tasks. In general, prior

efforts were centered around devices and tasks, with a primary focus on whether

a task should be offloaded from a client and how much computing power a task

should receive from a resource [113]–[117]. In contrast to prior works, this thesis

emphasizes the efficient distribution of tasks from different clients to available

resources. Specifically, we address the challenges of resource volatility, where

resources may appear or disappear from the network at any time. While previous

works have considered managing multiple resources, these were often controlled

by a central or small intelligent controllers that managed local areas [114]–[116],

[118], [119], we aim to organize AI controllers in a hierarchical manner. This

approach enables a controller to manage other controllers or devices at lower

levels. This hierarchy provides the ability to acquire additional resources from

other networks by requesting assistance from higher-level controllers. Moreover,

in the event of a controller failure, another controller can assume management

responsibilities.

37

CHAPTER 2. LITERATURE REVIEW

2.6 Resource Management through Machine

Learning

In the evolving landscape of EC, Machine Learning and Deep Learning technologies

are revolutionizing the approach to resource management, optimizing resource

allocation, enhancing task offloading strategies, and improving computational

efficiency across EC environments. EC aims to minimize latency and boost pro-

cessing power at the network’s edge, closer to the sources of data generation, the

end-users and IoT devices. However, this advancement introduces complex chal-

lenges in efficiently managing resources. Key issues include the need for dynamic

task offloading, computational resource allocation, and adapting to fluctuating

application demands under variable network conditions and user mobility. ML and

DL emerge as transformative tools within EC, capable of learning from historical

data, predicting future system demands, and making informed decisions. These

technologies enable EC systems to dynamically adjust to changing conditions,

optimizing resource use, minimizing energy consumption, and reducing latency

effectively. ML/DL models excel in making informed offloading decisions, choosing

between local processing and offloading to the edge or cloud based on current

network conditions, device energy constraints, and application requirements. This

dynamic decision-making is crucial for maintaining operational efficiency and

user satisfaction. Through analyzing data traffic patterns and resource demands,

ML/DL algorithms guide the strategic distribution of computational resources

across EC servers, enhancing system efficiency and ensuring that user experi-

ences remain uncompromised due to potential resource shortages. The dynamic

nature of EC, characterized by changing network topologies and user mobility,

necessitates adaptive models. Reinforcement learning models, in particular, allow

systems to evolve based on continuous feedback, maintaining high performance

and reliability amidst environmental shifts. Practical applications of ML/DL in EC,

including smart city operations, IoT device management, and real-time analyt-

ics, showcase the significant benefits of these technologies. They demonstrate

ML/DL’s capability to enhance resource management, reduce latency, and improve

user experiences in edge computing contexts. The convergence of ML/DL with EC

38

CHAPTER 2. LITERATURE REVIEW

marks a new era in computing, where systems not only respond more efficiently

but also predict and adapt to future scenarios. As EC supports an expanding range

of applications, from autonomous vehicles to augmented reality, ML/DL’s role in

developing intelligent, efficient, and adaptive resource management strategies

becomes ever more critical. Insights from extensive surveys and case studies

highlight ML/DL’s pivotal role in advancing the EC ecosystem, paving the way

for future innovations in edge computing. This integrated approach to ML/DL

applications in EC resource management underscores the potential of these tech-

nologies to revolutionize edge computing, offering a roadmap for navigating the

challenges and leveraging the opportunities within the EC landscape [124] [82].

Tables 2.1 to 2.3 present various studies that explore machine learning methods

and their potential applications in resource management. Additionally, these

tables outline the advantages and disadvantages of each method in relation to

the specific objectives of the study. Furthermore, table 2.4, followed by table 2.5,

provides a comprehensive summary of recent studies on Machine Learning-Based

Resource Management, detailing algorithms, simulation tools, and optimization

objectives.

2.7 Developments in Edge Security for SDN

In recent years, the field of SDN has seen significant advancements in exploring

programmable data planes to overcome the limitations inherent in traditional

SDN paradigms, such as OpenFlow. These traditional paradigms often require

controller involvement in every decision-making process. Moreover, these in-

novations aim not only to address latency issues but also to enhance security

functions within the data plane. One of the notable advancements in this field is

the development of the P4 language, a domain-specific programming language

designed for describing how packets are processed by the network data plane.

P4 allows programmers to specify the packet processing behaviors of switches,

routers, and other network devices, independent of the specific hardware or soft-

ware platform. This capability enables the customization of network forwarding

behavior, facilitating the implementation of high-level policies for traffic manage-

39

CHAPTER 2. LITERATURE REVIEW

Ta
bl

e
2

.1
:M

ac
hi

ne
Le

ar
ni

ng
M

et
ho

ds
an

d
T

he
ir

Po
te

nt
ia

lA
pp

lic
at

io
ns

in
Re

so
ur

ce
A

llo
ca

ti
on

[1
2

4
].

40

CHAPTER 2. LITERATURE REVIEW

Ta
bl

e
2

2
:[

C
on

ti
nu

ed
]M

ac
hi

ne
Le

ar
ni

ng
M

et
ho

ds
an

d
T

he
ir

Po
te

nt
ia

lA
pp

lic
at

io
ns

in
R

es
ou

rc
e

A
llo

ca
ti

on

41

CHAPTER 2. LITERATURE REVIEW

Ta
bl

e
2

.3
:[

C
on

ti
nu

ed
] M

ac
hi

ne
Le

ar
ni

ng
M

et
ho

ds
an

d
T

he
ir

Po
te

nt
ia

lA
pp

lic
at

io
ns

in
R

es
ou

rc
e

A
llo

ca
ti

on
.

42

CHAPTER 2. LITERATURE REVIEW

Ta
bl

e
2

.4
:S

u
m

m
a

ry
of

R
es

ea
rc

h
on

M
a

ch
in

e
Le

a
rn

in
g-

B
a

se
d

R
es

ou
rc

e
M

a
n

a
ge

m
en

t:
D

et
a

ili
n

g
A

lg
or

it
hm

s,
S

im
u

la
ti

on
To

ol
s,

a
n

d
O

pt
im

iz
at

io
n

O
bj

ec
ti

ve
s

[1
2

4
].

43

CHAPTER 2. LITERATURE REVIEW

Ta
bl

e
2

.5
:[

C
on

ti
nu

ed
]S

um
m

ar
y

of
R

es
ea

rc
h

on
M

ac
hi

ne
Le

ar
ni

ng
-B

as
ed

R
es

ou
rc

e
M

an
ag

em
en

t:
D

et
ai

lin
g

A
lg

or
it

hm
s,

S
im

ul
at

io
n

To
ol

s,
an

d
O

pt
im

iz
at

io
n

O
bj

ec
ti

ve
s

44

CHAPTER 2. LITERATURE REVIEW

ment, network monitoring, and security functions. P4 strives to offer a flexible and

efficient means to control and adapt the behavior of network devices in real-time,

optimizing network performance and functionality to meet specific needs and

applications. One notable contribution to this evolving landscape is the work

of F. Paolucci et al. [171], who proposed the integration of P4 technology into

SDN multilayer packet-over-optical networks, thereby facilitating advanced data

plane programmability. Their architectural framework introduced edge nodes

equipped with P4 switches boasting deep packet inspection capabilities. This

P4-enabled node operates autonomously, harnessing stateful processing at wire

speed without controller intervention. Furthermore, the research introduced dy-

namic P4-based traffic engineering solutions, such as traffic offloading, within a

multilayer network context. Notably, the incorporation of a P4-based DDoS miti-

gation proof-of-concept offered augmented firewall capabilities for safeguarding

internal edge resources without necessitating dedicated hardware. Experimental

results underscored impressive scalability, with minimal switch latency, showcas-

ing the feasibility and performance of P4 implementations. The work in [172]

tackled the issue of computation-resource constrained controllers, particularly

in scenarios characterized by heavy flows leading to substantial delays. Their

proposed solution, a hierarchical edge-cloud SDN controller system, sought to

enhance network scalability while meeting QoS requirements. By distributing

computational tasks across edge and cloud resources based on traffic loads,

their architecture provided an adaptable approach. Demonstrating the system’s

effectiveness, even at large scales, without compromising overall performance, it

maintained remarkable stability even under fluctuating traffic loads. Sivaraman

et al. [173] introduced HashPipe, a heavy hitter detection algorithm leveraging

programmable data planes with P4. Their approach advocated continuous heavy-

hitter monitoring at all network switches to promptly respond to transient traffic

fluctuations. The identification of flows contributing substantial traffic to a link

was deemed valuable for a variety of network applications. In [174], authors

proposed security enhancements in the data plane employing P4, manifesting as

a second-generation firewall. This firewall operated as a packet filter with stateful

memory, contributing to improved security within SDN environments. Addressing

45

CHAPTER 2. LITERATURE REVIEW

the critical concern of denial of service attacks, especially anti-spoofing tech-

niques in the SDN data plane, [175] introduced an SDN-based system designed to

mitigate such attacks effectively. Li et al. [176] presented LOSSRADAR, a light-

weight packet loss detection service capable of swiftly identifying the locations

and 5-tuple flow information of lost packets. Bianchi et al. [177] explored the

utilization of eXtended Finite State Machines (XFSM) in their OpenState study.

Their research contended that programming should allow specifying how states

on a switch are managed, directly executing these specifications without con-

troller interaction. Proposing modifications to OpenFlow 1.1, they enabled stateful

processing of flows within switches. Kabasele et al. [178] contributed a two-level

network-based Intrusion Detection System (IDS) tailored for Industrial Control Sys-

tems (ICS) utilizing SDN. The first level, implemented in P4 on network switches,

operated as a whitelist-based filter. If no matching whitelist entry was found,

the packet was forwarded to the second level of IDS, a security engine running

on a dedicated host. This engine determined the packet’s malicious or benign

nature, instructing the controller to update switch tables accordingly. In [179],

authors introduced an approach to secure access control systems by combining

SDN capabilities with RADIUS-based user authentication. Their approach initially

centralized security tasks within the controller, potentially creating bottlenecks

and vulnerabilities. However, in our work presented in chapter 4 of this thesis, we

proposed an innovative approach. This approach delegated authentication tasks

typically requiring sophisticated equipment to SDN switches, using port knocking

as a practical example. Demonstrating how a single SDN switch programmed

with P4 could efficiently perform port knocking and authentication at the network

ingress, this work represented a pioneering effort in delegating authentication

entirely to the data plane using P4 technology.

2.8 Developments in Homomorphic Encryption

Over the past decade, the landscape of cryptography has witnessed a remark-

able surge in research endeavors dedicated to exploring the diverse applications

of FHE technology. FHE, a groundbreaking encryption paradigm, offers an al-

46

CHAPTER 2. LITERATURE REVIEW

luring solution for the secure processing of sensitive user data within public

domains. It accomplishes this feat by enabling computations on encrypted data

without divulging its contents, thus preserving the utmost confidentiality and

safeguarding user privacy. Nevertheless, the widespread adoption of FHE has

been hampered by its formidable computational complexity and the substantial

time investment required for data encryption. These limitations have prompted

researchers to embark on a quest to unravel innovative strategies aimed at aug-

menting the efficiency and practicality of FHE. One of the most promising avenues

toward enhancing the efficiency of FHE revolves around the utilization of spe-

cialized hardware accelerators, such as Graphics Processing Units (GPUs) and

Field Programmable Gate Arrays (FPGAs), to expedite the execution of homomor-

phic encryption schemes. A pioneering work in this direction, as demonstrated

by the authors in [180], involved the implementation of an FHE scheme on an

NVIDIA C2050 GPU, harnessing the power of the Fast Fourier Transform (FFT)

algorithm to create a compact parameterized version of the lattice-based FHE

system originally conceived by Gentry and Halevi [181]. This pioneering effort

yielded substantial speed improvements, with encryption, decryption, and recryp-

tion operations achieving acceleration factors of 7.68, 7.4, and 6.59, respectively.

By effectively leveraging the parallelization capabilities of GPUs and harnessing

the FFT technique to address the computational bottleneck associated with large

modular multiplications, this work marked significant progress in FHE accelera-

tion. However, it still confronted practicality challenges, primarily attributed to

high latency during encryption and recryption operations. To alleviate the compu-

tational burden of FHE on hardware with limited processing capabilities, such as

IoT devices, the authors of [182] introduced two innovative techniques. The first,

termed SHE+FHE, entailed encrypting plaintext using Somewhat Homomorphic

Encryption (SHE) on the IoT device itself, which is computationally less demanding

than FHE. Subsequently, the SHE ciphertext was transformed into FHE ciphertext

on the more capable cloud service side, where computational constraints were

less of a concern. The second technique, dubbed SHE+TRIVIUM+FHE, incorpo-

rated the TRIVIUM secret key cryptosystem to encrypt the plaintext and SHE

public key cryptography to encrypt the TRIVIUM key. According to the results

47

CHAPTER 2. LITERATURE REVIEW

of their experiment, the authors confirmed that this technique can significantly

reduce the load on IoT devices. In [183], an extensive comparative analysis

of two prominent FHE schemes, namely BFV and CKKS, was undertaken using

the widely adopted Microsoft SEAL FHE library. This meticulous investigation

revolved around evaluating the performance of these schemes concerning the

time required to execute specific arithmetic operations. Through an exhaustive

examination of the time consumed by each scheme during these operations, the

study provided invaluable insights into their relative efficiencies, serving as a

foundational reference for future research in the field. Addressing the persistent

challenge of high computational overhead associated with FHE, [184] presented a

novel solution: F1, an FHE programmable accelerator. F1’s uniqueness according

to the authors lies in its design philosophy, which distinguishes it from other

FHE acceleration approaches. This accelerator capitalizes on high-throughput

functional units tailored to expedite fundamental computations commonly en-

countered in higher-level operations. Moreover, the co-design of the compiler and

hardware components minimizes data movement, a notorious bottleneck in tradi-

tional FHE acceleration schemes. In the pursuit of accelerating the encryption

and decryption operations of the BFV homomorphic encryption scheme, [185]

unveiled two innovative hardware architectures. By harnessing high-performance

polynomial multipliers, the authors achieved remarkable speed enhancements

for these critical operations. Employing a hardware/software co-design approach,

encryption and decryption tasks were offloaded onto an FPGA, while remaining

operations were executed within software on a conventional desktop computer.

This approach yielded a substantial reduction in encryption and decryption times,

with encryption time plummeting by a factor of approximately 12 and decryption

time by approximately 7. These outcomes underscore the immense potential

of hardware-accelerated homomorphic encryption schemes in substantially ele-

vating the performance of encryption and decryption operations. The collective

efforts of researchers to amplify the efficacy of FHE schemes are palpable in the

plethora of hardware architectures proposed in works such as [186] and [187].

These architectures aim to optimize the efficiency and speed of FHE operations,

showcasing the dedication of the scientific community to advance secure data

48

CHAPTER 2. LITERATURE REVIEW

processing. Furthermore, the integration of GPU accelerators, as evidenced in

[188], [189], and [190], has emerged as a potent strategy for enhancing FHE’s

performance, signaling a growing interest and substantial investment in the de-

velopment of more efficient and secure FHE solutions. In the context of this thesis,

we propose a novel distributed FHE approach [107] presented in chapter 5 tailored

to process sensitive and confidential data while steadfastly upholding the tenets

of security and privacy. Our innovative distributed FHE framework holds great

promise for handling extensive volumes of confidential data within untrustwor-

thy public environments, providing an exemplary solution that bridges the gap

between advanced encryption techniques and real-world application scenarios.

2.9 Developments in the Detection of Spoofing

Attacks in Autonomous Driving

Numerous studies have been conducted focusing on defenses against LiDAR

spoofing. The countermeasures proposed in these studies are based on a diverse

range of strategies, each with distinct design principles. The effectiveness of

these strategies varies, presenting certain advantages and disadvantages. In

this section, we will provide a concise overview of some relevant prior research,

organized into four primary categories:

Adjustment of the LiDAR sensor: LiDAR sensors commonly employ a broad

receiving angle on the receiver. However, a reduction in the receiving angle could

potentially minimize the LiDAR sensor’s attack surface. This alteration compels

an attacker to align more accurately with the LiDAR sensor’s line of sight to suc-

cessfully execute an attack. If the attacker’s pulse is delivered from an excessively

deviated angle, it will not be detected. For instance, the receiving angle of the

Velodyne VLP-16 LiDAR could be reduced to as low as 0.0048◦. Given the rapid

speed of the light pulse, the rotational speed of the LiDAR sensor becomes negligi-

ble, thereby allowing its own signal to be conveniently captured even with such a

reduced angle. However, this approach imposes constraints related to diminished

sensitivity and maximum range reduction. Furthermore, it does not provide abso-

lute protection since a strategically placed attacker could still conduct a spoofing

attack [191], [192].

49

CHAPTER 2. LITERATURE REVIEW

Redundancy and Sensor Fusion: The objective of redundancy is to enhance

the robustness of the entire system by increasing the count of identical sensors,

which monitor the same region. If an anomaly is detected by one sensor but not by

the others, it could be indicative of a malfunction or an attack. To execute a suc-

cessful attack, the intruder would need to compromise multiple sensors in order

to deceive the system [193]–[195]. In a parallel strategy, Sensor Fusion integrates

different types of sensors, such as cameras, radar, LiDAR, and others, to contrast

data from varied sources. This strategy elevates the complexity of a potential

attack, as the attacker would need to have extensive knowledge across diverse

sensor types and employ a wide range of attack tools to exploit them effectively.

However, both strategies carry the disadvantage of increased costs due to the

need for a larger sensor array [192], [193], [195]–[198]. These methods can also

be extrapolated to a Vehicle-to-Vehicle (V2V) paradigm, wherein vehicles within

the same environment exchange information. If there are discrepancies between

the data shared by two vehicles, this might suggest an ongoing attack [193], [199].

For the effective operation of the aforementioned three methods, it is essential

that the fields of view of the sensors or vehicles overlap, as non-overlapping fields

of view create opportunities for attacks.

Randomness: Several strategies can be employed to incorporate randomness

into a LiDAR sensor, thereby increasing the challenge for an attacker attempting

to synchronize with a target system. The most straightforward technique involves

randomly switching the sensor off and on, creating a variable number of pulse

signals sent within a specific time frame. The success of an attack depends on the

attacker’s ability to predict when a pulse is emitted from the victim’s transmitter,

as the deceptive pulse must reach the victim receiver within a defined time window

to be perceived as legitimate. However, pulse omission can negatively impact

the recording quality of the system [191]. Alternatively, the unpredictability of

the system can be enhanced by randomizing the rotor direction, complicating an

attacker’s ability to foresee the direction of the next pulse and thereby spoof it

effectively. Nevertheless, this strategy increases system complexity due to the

need for internal compensation of the introduced randomness [192]. Another pro-

posed strategy is waveform randomization of the laser pulses, with the receiver

50

CHAPTER 2. LITERATURE REVIEW

configured to only accept reflected signals sharing the same waveform. Although

this method can increase security, it does not provide comprehensive protection

against all spoofing attacks, leaving vulnerabilities that permit attackers to inject

points that are further away than the attacker’s actual position [191], [192].

Machine Learning (ML): Recent advancements in artificial neural networks have

popularized a novel method, particularly due to its outstanding performance in

image processing and object recognition. This ML approach has seen increasing

application in the autonomous driving sector of the automotive industry, specif-

ically for detecting active system attacks [191], [200]. In a study by [201], the

authors employ a 3D shadow effect to verify the authenticity of an object and

discern if it was inserted via a spoofing attack. The 3D shadow effect is described

as the void space behind an object when it’s scanned using a LiDAR sensor, as

the light pulses, unable to penetrate the object, fail to illuminate the area directly

behind it. These shadow regions, combined with the detected object, help verify

the object’s authenticity. A shadow-less object may indicate a spoofed insertion,

whereas a shadowed one likely points to a real entity. The entire procedure com-

prises two stages: preparation and subsequent shadow analysis. During the

preparation phase, the LiDAR-generated point cloud is transmitted to an object

detector, which identifies the presence of objects within the scene. Using a ded-

icated algorithm, the detector then envelops these objects in bounding boxes,

offering information regarding their width, depth, and height. Subsequent shadow

analysis examines the 2D shadows of these detected objects. A bird’s-eye per-

spective aids in identifying whether an object casts a shadow or not. Shadow

contamination, often due to noise such as a larger vehicle obscuring the shadow

of another, renders the 2D shadow analysis approach ineffective. Consequently,

this approach was rejected in favor of a 3D shadow method. This method calcu-

lates the volume of the unlit space behind a vehicle using the bounding boxes,

allowing for noise elimination within the shadow and achieving a more accurate

classification [201]. In this work, the same preparation phase is employed, but

with an alternate shadow analysis technique that uses the 2D shadow approach.

To mitigate the problem of noise contamination within the shadow, we introduced

a methodology that eliminates any object taller than the detected object. Con-

51

CHAPTER 2. LITERATURE REVIEW

sequently, if a taller object is located behind the detected object, it is removed

due to its size, thus revealing the shadow again. This procedure is repeated for

each object detected within a critical range. In our work presented in chapter 6 of

this thesis, we proposed a novel technique that leverages a reduced 2D dataset

derived from the 3D point cloud to detect ghost object attacks. The reduction in

data volume is a vital aspect, greatly impacting the optimal utilization of available

resources at the edge [202], [203]. Diverse computing resources possessing

varying computing power can more readily be allocated to process the reduced

data.

2.10 Summary

In this chapter, we conducted an in-depth examination of relevant literature

closely aligned with the primary objectives of this thesis. Our research focuses

on several key contributions, including the design and implementation of an intel-

ligent system for adaptive resource management in EC. Additionally, we present

an efficient lightweight approach for authenticating edge devices and introduce a

scalable distributed security scheme using HE. These latter contributions directly

address critical security concerns in resource allocation within the context of

EC environments. The chapter underscores the pressing need for our innovative

contributions, as we evaluate prior research in these areas. Our work not only

aims to enhance the overall efficiency of EC but also presents a novel real-time

detection technique. This technique is dedicated to improving the safety and

efficiency of autonomous driving by effectively identifying LiDAR spoofing attacks.

The synthesis of previous research findings and the introduction of our novel

contributions underscore the significance of our work in advancing the field of

EC.

52

3 Neural Network-Driven Resource

Management in Edge Computing

3.1 Introduction

The core focus of this thesis is presented in this chapter. We have previously ex-

plored the criticality of effective resource management and identified the unique

challenges in the context of EC, characterized by a dynamic environment of di-

verse devices with varying capacities. Additionally, we touched upon the fluid

nature of EC resources, resulting from factors such as device mobility, joining

and exiting of devices, and the dynamic resource requirements of different tasks.

Considering these complexities, we highlighted the need for adaptable and ver-

satile resource allocation strategies. In response, we propose a reinforcement

learning-based framework for resource allocation capable of dynamically assign-

ing resources to reduce service delays and ensure balanced resource utilization

at the edge. Reinforcement learning (RL) is a branch of machine learning where

an agent learns decision-making by taking actions in an environment to achieve

specific goals. The agent learns from the consequences of its actions, instead

of being explicitly instructed on what to do. Essentially, through trial and error,

the agent identifies actions that yield the greatest rewards by receiving feedback

in the form of rewards or penalties. Unlike supervised learning, which relies on

labeled data, RL learns through interaction with the environment. This approach is

particularly well-suited for scenarios where explicit examples of correct behavior

are difficult to obtain. Reinforcement learning agents are capable of adapting

to changes in their environment, making them ideal for dynamic and uncertain

contexts. Our approach stands in contrast with previous works [113]–[117], which

focused primarily on the offloading of tasks and allotment of computing power

from resources. Our work accentuates the efficient distribution of tasks from

53

CHAPTER 3. NEURAL NETWORK-DRIVEN RESOURCE MANAGEMENT IN EDGE
COMPUTING

multiple clients to available resources, with a particular attention to resource

volatility. We differ from past literature in the manner of organizing AI controllers,

we propose a hierarchical structure as opposed to a centralized or localized one

[114]–[116], [118], [119]. This hierarchical approach allows a controller to gov-

ern other controllers, ensuring effective management of dynamic changes, and

enabling the acquisition of additional resources when needed. The end goal is to

create a hierarchical organization of AI controllers, with this study presenting the

main component of the system, linking user space devices to an AI controller in

the EC layer. The proposed system is visualized in figure 3.1, designed to operate

on three levels: userspace, EC, and CC. Our framework aims to optimize task

allocation and resource utilization, with the ability to leverage the cloud’s power

when required. In this chapter, we delve deeper into the details of our proposed

framework, providing comprehensive insights into its structure, functionalities,

and potential benefits, thereby substantiating our solution as a pragmatic answer

to the challenges encountered in EC resource management.

Figure 3.1: Hierarchical Structure for Resource Allocation in the Edge – An
Overview

54

CHAPTER 3. NEURAL NETWORK-DRIVEN RESOURCE MANAGEMENT IN EDGE
COMPUTING

3.2 Traditional Techniques vs. ML Techniques for

Resource Allocation

Traditional resource allocation techniques are broadly divided into four cate-

gories: approximation-based, heuristic-based, metaheuristic-based, and game-

theoretic-based. Approximation methods aim to find a quasi-optimal solution to

NP-hard problems within polynomial time [204], with a guarantee of proximity

to the optimal solution [205]. Heuristic techniques, described as approaches to

problem-solving that utilize a practical method not necessarily optimal, perfect, or

rational, but sufficient for achieving immediate, short-term goals, are tailored for

specific problems and can identify reasonably good solutions within an acceptable

timeframe [206]. Unlike heuristics, which are problem-specific, metaheuristic ap-

proaches are designed for a broad range of optimization problems [206] and offer

the advantage of exploring a larger solution space, potentially leading to better

performance in terms of total execution times for applications. However, as the

number of tasks increases, the runtime of metaheuristic algorithms tends to esca-

late quickly, making them less suited for large-scale IoT applications [207]. Game

theory, an applied mathematics branch, explores interactive decision-making

scenarios where each player’s outcome is influenced by the collective actions of

all involved [208].

3.2.1 Challenges with Conventional Resource Allocation

Techniques

The complexity of resource allocation issues, classified as NP-hard, means that

solutions derived from traditional methods do not reach global optimality. These

conventional techniques struggle with meeting varied QoS demands and with

adaptation in dynamic settings. Broadly, the limitations of traditional resource

allocation methods include [124]:

• Computationally expensive: Traditional approaches see their execution

time increase in proportion to the application’s size, such as the number

of tasks, leading to significant computational time overheads. This makes

them unsuitable for applications sensitive to delays or those that are data-

intensive.

55

CHAPTER 3. NEURAL NETWORK-DRIVEN RESOURCE MANAGEMENT IN EDGE
COMPUTING

• Slow convergence: Conventional resource allocation strategies exhibit slow

convergence rates as they are unable to leverage learning from past sub-

optimal solutions.

• Limited adaptability: Solutions yielded through traditional methods are

prone to sensitivity towards changes in the environment. These methods

often assume a static and known computing environment by mobile users.

Changes in environmental parameters necessitate the reformulation of the

optimization problem to incorporate the new parameters and achieve the in-

tended outcomes. Consequently, traditional resource allocation frameworks

lack the flexibility needed for time-varying and dynamic environments.

3.2.2 Why Do We Need ML/NN

The increasing number of IoT devices connected to the Internet is producing vast

amounts of data, including pictures, audios, and videos. Given that this data origi-

nates at the network edge, it is more advantageous to process it there. ML/NN

techniques are crucial in this scenario because of their capability to efficiently

analyze and extract features from large volumes of data swiftly. Furthermore,

for effective execution and analysis of the generated data, it is essential to cor-

rectly allocate (offload and schedule) the data to edge computational resources

that can meet the data requirements, such as latency, privacy, and Quality of

Experience (QoE). ML/NN plays a key role in data prediction, enabling accurate

forecasts of both the data requirements and the EC nodes that will process the

data [124]. Particularly, NNs have several advantages over other machine learn-

ing models due to their architecture and operational principles. NNs excel at

capturing and modeling complex, non-linear relationships within data. This is due

to their layered structure, where each layer can learn different aspects of the data

and combine them in complex ways. Unlike traditional machine learning models

that often require manual feature engineering or selection, NNs are capable

of automatically discovering and learning the features directly from raw data.

Additionally, NNs are highly scalable to large datasets, thanks to their capacity to

learn from vast amounts of data. This is complemented by their adaptability to

various types of data (e.g., images, text, and sound) and tasks (e.g., classification,

regression, and sequence prediction) [209].

56

CHAPTER 3. NEURAL NETWORK-DRIVEN RESOURCE MANAGEMENT IN EDGE
COMPUTING

3.3 AI Resource Allocation Structure

This research study introduces the development of a comprehensive system

model, as depicted in Figure 3.2, formulated based on the defined objectives,

insights from previous research, and problem statement. The model consists of

three main components: resources, an AI agent, and clients. The clients are rep-

resented as a variety of devices within the network, denoted as Client1,Client2,

...,Clientn. Each client generates a series of tasks, T ask1,T ask2, ...,T askm, de-

picted by the squares above the respective clients in the diagram. These tasks

are distinguished by their unique features, as indicated by different numbers

and colors. To ensure efficient processing, tasks are assigned only to resources

equipped to handle their specific requirements. Upon creation, a task is immedi-

ately sent to the AI agent, which comprises two modules: the agent logic, forming

the core framework, and a NN responsible for selecting the appropriate resource

for each task based on task data and resource attributes. The agent logic com-

piles the task and resource information into a state, which is then processed by

the NN. Task information, contained within the task frame, includes application

type, priority, time constraints, and data to be processed. Resource information,

on the other hand, is gathered for each task, represented in the diagram by a

green line flowing from the resources to the agent logic. This includes details

such as power capacity, supported applications, and current task load. Utilizing

the provided input, the NN identifies the most suitable resource for each task

and relays this decision to the agent algorithm, which then routes the tasks to

the designated resources for processing. In this thesis, the agent was developed

to operate within the Mininet environment, employing TensorFlow for the pre-

dictive component and Python for additional implementation aspects. However,

the agent is a self-contained application capable of functioning in any suitable

environment. The overarching goal is to establish a hierarchical system of several

agents distributed across different levels between the edge and cloud. In this

system, an agent can request assistance from a higher-level agent, representing

a type of super resource, when no suitable resources are available to meet the

clients’ demands. This thesis demonstrates the functionality of a single agent,

with the extension to a cross-level multi-agent structure being straightforward

and envisioned for future work.

57

CHAPTER 3. NEURAL NETWORK-DRIVEN RESOURCE MANAGEMENT IN EDGE
COMPUTING

Figure 3.2: Schematic representation of the AI-based resource allocation system
model

3.3.1 State

The decision-making process of the NN is based on a specific set of information,

referred to as the state. This set includes a finite list of individual elements, each

corresponding to data processed by the neurons in the input layer. Specifically,

the state at any given time is represented as

statet = {Ot,Dt, Pt, P tt,U,P w,Rt}

, where the subscript t indicates the task to which the information pertains. As

demonstrated by the use case chosen in this thesis, the goal is to increase the

number of successfully completed tasks within a predefined timeframe (the ful-

fillment of priorities). A priority is considered fulfilled if the processing time for

a given task is less than or equal to a specified time limit for each task. Con-

sequently, this chosen set of characteristics represents the most relevant and

suitable features to train the model for optimal priority fulfillment. Detailed expla-

nations of the remaining variables are provided in the subsequent paragraphs.

Operation (Ot): This term specifies the arithmetic operation required for a given

task as defined by the client. Given the diverse resource capabilities, the AI agent

must select the most appropriate resource for executing the task. For the sake

of simplicity in this study, the focus is on two distinct operations, though it is

important to note that the types and numbers of operations in practical scenarios

58

CHAPTER 3. NEURAL NETWORK-DRIVEN RESOURCE MANAGEMENT IN EDGE
COMPUTING

can vary. These operations are used here to demonstrate the proof of concept.

The first operation is the computation of the factorial of the transmitted data (n),

defined by the formula n! =
∏n

k=1 k. The second operation involves exponentiation,

represented by nm =
∏m

k=1n.

Data (Dt): This term refers to the information that requires processing by avail-

able resources. It is also used by NN to estimate the duration of task processing,

which allows for the assessment of prioritization efficacy. In this study, the data

values are assumed to be integers within the range of 1 to 10,000.

Priority (Pt): This term refers to the level of importance assigned to a given task.

The assignment of priority is random and does not depend on the size of the

task. In this study, we define three distinct priority levels: ’1’ denotes the highest

priority, ’2’ indicates medium priority, and ’3’ signifies the lowest priority. It is

important to note that these designations are arbitrary and do not influence the

proof of concept demonstrated herein. Additionally, the priority given to a task is

inherently connected to the ’priority time’.

Priority Time (P tt): This is a measure of the time duration allocated to a resource

to complete a task with a specified priority level. Should this duration be exceeded,

the corresponding priority is considered unmet. In this study, durations of 2, 5,

and 8 seconds were assigned to priorities 1, 2, and 3, respectively.

Usage (U): This term refers to the extent to which a resource is utilized. To ensure

optimal usage, an AI agent must evaluate the utilization of each network resource

before task allocation. Initially, we estimated CPU utilization as a percentage by

employing the Psutil library’s ‘cpu_percent()‘ function [210]. However, this metric

does not invariably reflect the actual workload of a resource. To circumvent this

limitation, we devised a custom implementation that monitors the number of

tasks currently being processed by the resource. The AI agent gathers this data

and conveys it to the appropriate model, thereby facilitating more precise and

efficient resource allocation.

59

CHAPTER 3. NEURAL NETWORK-DRIVEN RESOURCE MANAGEMENT IN EDGE
COMPUTING

Power (Pw): This term refers to the power associated with a given resource that is

transferred to the AI agent. To ensure consistency during test runs, the power set-

ting must be established prior to the start of testing and remain constant through-

out. The Linux kernel’s control groups (cgroups) are employed to manage power

effectively. Specifically, the CPU subsystem uses ‘cpu.cfs_period_us‘ to define the

frequency at which a CPU resource can be accessed, while ‘cpu.cfs_quota_us‘

determines the maximum amount of time that a task is permitted to run in a

given period. For example, a ‘cpu.cfs_period_us‘ value of 1000000 coupled with a

‘cpu.cfs_quota_us‘ value of 700000 implies that a task may run for a maximum of

0.7 seconds within any 1-second period, which correlates to a performance rate

of 0.7 in our implementation.

Response Time (Rt): This is an important parameter in evaluating network perfor-

mance. It facilitates the simulation of network latency by introducing a predefined

delay prior to the commencement of task processing. Specifically, an Rt value of

2 denotes that the resource will wait for two seconds before starting to process

each task. It is important to note that the settings for each resource can be

individually configured prior to a test run and will remain constant throughout the

testing period. Moreover, it should be emphasized that the defined delay does not

necessarily represent the actual latency of the network but should serve merely

as a proof of concept in a test environment. This helps demonstrate how the

system might accommodate network latency in making the most appropriate

decisions under varying network conditions.

3.3.2 Action Space

Considering the input features delineated previously, which contribute to the

derivation of the current state, a suitable action may be elected from the action

space at hand. The action space, Sa, contemplated in this inquiry is crafted to

fulfill the goal of resource allocation and thus encompasses an array of selectable

resources. The action space is formally depicted as Sa = {Res1,Res2, ...,Resk}.

60

CHAPTER 3. NEURAL NETWORK-DRIVEN RESOURCE MANAGEMENT IN EDGE
COMPUTING

3.3.3 Network Setup

To establish a suitable environment for AI agents, we designed and implemented

a network, as depicted in Figure 3.3. This network is composed of clients capable

of transmitting tasks and resources allocated for processing these tasks. This

approach enables AI agents to collect real data, which can be used for both

training and evaluation purposes. Within this network, several devices run various

programs: clients execute a program that facilitates the creation of tasks and

maintain a switch-based connection to the AI agent. The AI agent operates a NN-

based resource allocation application and connects to the resources via switches,

acting as a proxy for the clients. Clients are unaware of the resource locations

and must contact the AI agent for directions. The resources, virtualized for

these experiments, are self-contained, encapsulated applications, each capable

of processing a specific task. Each resource was assigned specific properties,

such as power and usage, as mentioned in section 3.3.1. An interface links both

clients and resources, used to configure network devices or send start signals to

them. The network routing is managed by the RYU controller.

Figure 3.3: Schematic of Network Architecture and Connectivity Setup

3.4 AI-Models

Two distinct models were developed, differing in their design but sharing fun-

damental principles. The first model employs a classification approach, while

the second model adopts a regression approach. Both models utilized a fully

61

CHAPTER 3. NEURAL NETWORK-DRIVEN RESOURCE MANAGEMENT IN EDGE
COMPUTING

connected feedforward Neural Network, implemented using TensorFlow. Before

introducing the two models, a brief background on the different techniques is

provided.

• Fully connected feedforward neural networks: Also known as multilayer

perceptrons (MLPs), are a class of artificial neural networks where all neu-

rons in one layer are connected to all neurons in the next layer. There

are no connections within the same layer or backward connections. These

networks consist of an input layer, one or more hidden layers, and an output

layer. Each connection between neurons carries a weight, and each neuron

typically applies a non-linear activation function to its weighted input. Feed-

forward neural networks process information in a forward direction, from

the input layer through the hidden layers to the output layer, making them

well-suited for a wide range of tasks, including classification, regression,

and pattern recognition [211].

• Classification: In reinforcement learning, the classification approach in-

volves categorizing the possible actions or decisions an agent can take in a

given state into classes. The goal is to learn a policy that maps states to

actions by identifying which action (or class of actions) leads to the most

favorable outcome, based on the rewards received from the environment.

This approach contrasts with value-based methods, where the focus is on

estimating the value of each action in a state. In classification-based re-

inforcement learning, the agent uses experience to learn which actions

are best in different situations, essentially classifying states into action

categories to maximize the cumulative reward [212].

• Regression: The regression approach is a statistical methodology used for

modeling and analyzing the relationships between a dependent variable

and one or more independent variables. The primary purpose of regression

is to predict the value of the dependent variable based on the values of the

independent variables. This is accomplished by estimating the coefficients

of the regression equation that minimizes the difference between the actual

and predicted values of the dependent variable. Regression analysis can be

62

CHAPTER 3. NEURAL NETWORK-DRIVEN RESOURCE MANAGEMENT IN EDGE
COMPUTING

used for forecasting, estimating outcomes, and determining the strength

and nature of relationships between variables. Common types of regression

include linear regression, where the relationship is modeled as a straight

line, and nonlinear regression, where the relationship is modeled using more

complex equations [213].

• TensorFlow: Is an open-source software library for dataflow and differen-

tiable programming across a range of tasks. It’s designed for machine

learning and deep learning applications, providing a comprehensive, flex-

ible ecosystem of tools, libraries, and community resources that allows

researchers to push the state-of-the-art in ML, and developers to easily

build and deploy ML-powered applications. TensorFlow was developed by the

Google Brain team and is used for both research and production at Google.

It supports computations on multiple CPUs or GPUs, as well as mobile and

edge devices, making it a versatile library for developing and training ML

models.

3.4.1 Classifier Model

Architecture: The proposed model introduces a classification approach that in-

tegrates input features from a single task and multiple resources. This model

comprises multiple output neurons, each corresponding to an input resource.

These output neurons are responsible for calculating the probability that indi-

cates the most suitable choice, based on the input features. Figure 3.4 illustrates

the model’s architecture, which is structured into three layers. The topmost layer

is the input layer, responsible for receiving the earlier mentioned input features.

Specifically, the first four neurons, highlighted in orange, process the client’s

input features: Ot, Dt, Pt, and the time request of the priority (P tt). Each of these

features is assigned to an individual neuron. The neurons colored green are

designated for the input features of the resources. Each resource is allocated

three neurons, corresponding to utilization (U), performance (Pw), and (Rt). For

enhanced clarity, these resource input features are collectively labeled as ’re-

source features’ in Figure 3.4. The middle layer, depicted in blue, is the Hidden

Layer. Its composition in terms of the number of neurons and layers is flexible,

63

CHAPTER 3. NEURAL NETWORK-DRIVEN RESOURCE MANAGEMENT IN EDGE
COMPUTING

governed by hyperparameters. These hyperparameters are predefined before

training and can be adjusted in subsequent sessions. The section on training will

offer more details regarding the selection and adjustment of hyperparameters.

Figure 3.4: Structure of the classification model, NN architecture and input/output
layers

Functionality: Before training, it is essential to establish the model’s architecture,

including the number of layers and neurons. Initially, we designed the model

to accommodate six resources, making the integration of a seventh resource

challenging without architectural modifications. Each resource is represented by

three input neurons and one output neuron. Attempting to introduce a seventh

resource without adjusting the architecture would result in an error, as there

would not be enough neurons to process the additional data. Conversely, if fewer

than six resources are used, the model encounters issues as all neurons require

input. To address this, placeholders are used when fewer than six resources are

available. These placeholders are defined with fixed features: Pw = 0, Rt = 1000,

and U = 1000. These deliberately suboptimal features are ignored by the model,

which instead focuses on the actual resources. In scenarios with more than six

resources, such as nine, the model is invoked multiple times, each time with

the same task information. In the first invocation with six resources, the model

operates as usual. The second invocation incorporates the three additional

resources, along with the best resource selected from the first call, and two

placeholder resources. The four actual resources then compete, with one being

selected for task processing. This strategy allows for the utilization of the same

64

CHAPTER 3. NEURAL NETWORK-DRIVEN RESOURCE MANAGEMENT IN EDGE
COMPUTING

model, differing only in the frequency of invocation. Figure 3.5 illustrates the

model’s prediction flow with nine resources. Should more resources be available,

this process is repeated, allowing the optimal outcome from previous rounds to

compete against the new resources, until all have been evaluated.

Figure 3.5: Illustration of the classification model workflow utilizing nine resources

3.4.2 Regression Model

Architecture: The model presented herein, akin to the classification model, uti-

lizes input features from the client. However, it diverges in that it processes input

features from only a single resource at any given time, rather than handling

multiple resources simultaneously. The output is determined by a single neu-

ron responsible for selecting the appropriate resource. This model generates a

score that assesses the performance of the input features. The architecture of

the model comprises three layers: input, network, and output, as illustrated in

Figure 3.6. The input layer displays various input features, with those from the

client shown in orange and features from resources in green. However, features

from only one resource are input into the model at a time, consisting of four

values: resource operation (Or), utilization (U), performance (Pw), and response

time (Rt). Unlike the classification model, the regression model also needs to

recognize the supported operation (Or) by the currently considered resource. This

is because the regression model evaluates the resources one at a time, in an

arbitrary order, making it unable to know the operations supported by different

resources beforehand. In contrast, the classification model is set up in a way that

specific resources are assigned to specific neurons. This setup allows the model

to learn the operations supported by different resources over training iterations

65

CHAPTER 3. NEURAL NETWORK-DRIVEN RESOURCE MANAGEMENT IN EDGE
COMPUTING

and through the reward received. Since features from only one resource are input

into the model at a time, the network architecture requires a fewer number of

neurons and connections. Adding a new feature for a resource only requires the

inclusion of a single neuron, as opposed to the classification model, which would

need six input neurons and possibly several additional neurons in the hidden layer.

The output layer consists of a single neuron that is typical for regression models

and generates a score reflecting the quality of the input features.

Figure 3.6: Structure of the regression model, NN architecture and input/output
layers

Functionality: The regression model described in this study is constructed to

analyze one resource at a time. When multiple resources are employed, the

model is invoked for each resource individually, with the corresponding features

being provided for each instance. In contrast to the classification model, this

method does not necessitate the use of any placeholder resources. However,

it requires the more frequent updating of client-specific features. The scores

from the individual models are aggregated using a max function, which selects

the highest value as the ultimate decision, denoted by max(rs1, rs2, ..., rsk). The

application of the regression model to nine resources is depicted in Figure 3.7.

66

CHAPTER 3. NEURAL NETWORK-DRIVEN RESOURCE MANAGEMENT IN EDGE
COMPUTING

Figure 3.7: Illustration of the regression model workflow utilizing nine resources

3.5 Primary Metrics

In this study, various metrics were used to assess the efficacy of the models. In

addition to conventional metrics like loss, which are commonly used during model

training, we developed and utilized customized metrics such as reward functions

and the fulfillment of priorities. To ensure the findings are easily comprehensible

and reproducible, this section provides a detailed explanation of these metrics.

3.5.1 Reward

Rewards serve as a critical measure for evaluating the training process and overall

performance. The magnitude of the reward is determined by the efficacy of an

action. Actions with better outcomes receive higher rewards, while undesirable

67

CHAPTER 3. NEURAL NETWORK-DRIVEN RESOURCE MANAGEMENT IN EDGE
COMPUTING

actions may result in negative rewards or penalties. The value and calculation of

rewards are flexible and can be customized as needed. Consequently, we have

designed and implemented three reward functions. This section presents an

overview of the design and implementation of these functions, including their

structure and key concepts. We also discuss the impact of these functions on the

training process and final evaluation.

Reward A: The reward function was developed to achieve a compact and simple

design. In instances where a task is assigned to a resource incapable of perform-

ing the required operation, the resource responds with a value of 0, signifying a

failed computation and incurring a penalty of −5. Conversely, successful comple-

tion of a task within the specified time (Ct) and meeting a priority yields a reward

of 3. Failure to meet a priority results in a penalty of −3.

ra =


−5 result = 0

3 Ct ≤ P t

−3 Ct > P t

Reward B: Offers more refined granularity than its predecessor, Reward A. It

accounts for the speed at which a priority is fulfilled, thereby providing a more

comprehensive assessment of task completion quality. In Reward B, a −5 penalty

is applied when a task is sent to a resource incapable of performing the required

operation. However, the reward is not solely determined by task fulfillment but

also by the quality of completion. Specifically, the reward is proportional to the

task completion speed. A task completed in 50% or less of the allotted time

receives the highest reward. If completion time falls between 50% and 75%,

the reward is 2 points, reducing to 1 point for times between 75% and 100%.

Penalties, similarly, are assigned based on the severity of misdemeanors. A

minor misdemeanor, nearly exceeding the time limit, incurs a −1 penalty, while

misdemeanors exceeding the allotted time by more than 200% receive a more

substantial −3 penalty.

68

CHAPTER 3. NEURAL NETWORK-DRIVEN RESOURCE MANAGEMENT IN EDGE
COMPUTING

rb =



−5 result = 0

3 Ct ≤ P t × 0.5

2 P t × 0.5 < Ct ≤ P t × 0.75

1 P t × 0.75 < Ct ≤ P t

−3 Ct > P t × 2

−2 P t × 1.5 < Ct ≤ P t × 2

−1 else

Reward C: Has a structure and granulation similar to Reward B but differs in

reward distribution. Instead of offering a high reward for the best times, Reward

C provides better rewards for processing times that are closer to the priority

time. Specifically, the maximum reward, among three tiers, is attained for times

between 75% and 100%. Conversely, the lowest reward tier applies to times at

50% or below. The penalty structure remains unchanged from Reward B. The

primary objective of this reward function is to train the network to select resources

that are adequately sufficient for a task, rather than consistently opting for the

best available resources. This approach is intended to prevent the network from

unnecessarily claiming resources that may be required for more demanding tasks.

rc =



−5 result = 0

1 Ct ≤ P t × 0.5

2 P t × 0.5 < Ct ≤ P t × 0.75

3 P t × 0.75 < Ct ≤ P t

−2 P t × 1.5 < Ct ≤ P t × 2

−3 Ct > P t × 2

−1 else

69

CHAPTER 3. NEURAL NETWORK-DRIVEN RESOURCE MANAGEMENT IN EDGE
COMPUTING

3.5.2 Loss

Loss is a key metric for evaluating the accuracy of a model’s predictions. Each time

the training function is called, it processes a set of records that include both the

inputs and the desired outcomes. The model processes these inputs, generates

its outputs, and then compares these outputs with the desired outcomes. The

difference between the model’s output and the desired outcome is known as the

loss. This loss value is calculated and recorded with every training iteration,

allowing for monitoring of the model’s progress throughout the training process.

Ideally, the loss should decrease rapidly at the beginning of training and continue

to decline steadily. A slow decrease in loss might indicate a low learning rate,

leading to unnecessarily prolonged training durations. Conversely, if the loss

oscillates around a certain value without further reduction, it could suggest

either an inadequate model architecture or a high learning rate that causes

excessively large update steps. For effective decision-making, the loss needs to

reach a sufficiently low value. Monitoring the loss value during training enables

the process to be halted when further reductions become unlikely.

3.5.3 Priority Fulfilled

This metric evaluates the performance of a trained model. To this end, the model

is deployed in a production environment and tasked with processing a predefined

number of tasks. Performance is measured by the frequency with which the

model successfully meets the assigned priorities. The metric is calculated as

Presult = Pf ulf illed ·100/tasktotal , where Presult is the percentage of fulfilled priorities,

Pf ulf illed is the number of priorities successfully met, and tasktotal is the total

number of tasks. A priority is considered fulfilled if the processing time for a

given task (taskproc) is less than or equal to the assigned priority time (P tt). Thus,

Pf ulf illed is the count of tasks for which taskproc ≤ P tt. This metric focuses only on

the time during which a task actively utilizes resources, reflecting the period the

model can influence. The emphasis on resource processing time is justified by

the model’s role in selecting resources for task delegation, acknowledging that

different resources may have varying processing times.

70

CHAPTER 3. NEURAL NETWORK-DRIVEN RESOURCE MANAGEMENT IN EDGE
COMPUTING

3.6 The experimental setup

The experimental setup depicted is utilized for both training and evaluating our

proposed method.

Table 3.1: System Configuration

Hardware
graphic card Nvidia RTX 2080 TI, 11GB GDDR6
processor AMD Ryzen 7 1800x, 8 CPU Kerne, 3,6 GHz
RAM G.Skill Trident Z DDR4 32 GB (4x8)

Software Version Software Version

Tensorflow 2.4.0 Numpy 1.19.4
Mininet 2.3.0d6 Pandas 1.0.5
Ryu Controller 4.34 Dash 1.13.4
Flask 1.1.2 Plotly 5.1.0
Flask-Restful 0.3.8

3.7 Training

To equip an AI agent with the capability to perform resource allocation based on

logical decisions, it is essential to train the NN beforehand. Supervised learning

is not feasible in this context, as it requires the availability of labeled data. How-

ever, pre-determining the optimal resource choice based on input features is not

possible. To overcome this challenge, we developed a reinforcement learning

system. Figure 3.8 illustrates the training process flow, which involves three key

components: an agent, an environment, and a buffer. During training, the agent’s

task involves taking an action based on a given state, receiving a reward, and

subsequently improving. The environment provides the agent with a state and

determines a reward contingent on the action executed. The buffer stores all per-

tinent information, furnishing the agent with a series of experiences throughout a

training session. The training process commences with the environment present-

ing a state to the agent, which is then distributed among the respective neurons.

Each neuron processes the requisite element, enabling the agent to make a deci-

sion based on a policy. This decision is relayed back to the environment. Following

this, the environment calculates the reward based on the action and its outcome,

71

CHAPTER 3. NEURAL NETWORK-DRIVEN RESOURCE MANAGEMENT IN EDGE
COMPUTING

transmitting this information to the buffer. The buffer compiles all data into an

experience, denoted as Expn = {state,action, reward}, but does not immediately

transfer it to the agent. Instead, the agent completes a predetermined number of

tasks while continuing to populate the buffer with experiences. Upon reaching this

predefined number, the agent initiates a training session, selects a set number of

random experiences, and uses these to train the NN. The policy is refined through

this training, leading to more informed subsequent actions by the agent. This

cycle is repeated continuously, resulting in progressive enhancements to the

policy with each training iteration.

Figure 3.8: Workflow for training the AI agent in the proposed system

3.7.1 Training setup

To optimize the models, a test setup was designed to assess the impact of various

parameters on the results and to identify the optimal parameters for the specific

use case. The best-performing models were then employed to evaluate the

dynamic behavior. The initial part of this section outlines the test setup and

procedure, while the subsequent part presents the characteristics of the training

and testing datasets.

Dataset Structure: To ensure the reliability and generalizability of neural network

models, it is widely accepted practice to maintain separate training and test

datasets [214]. Test sets provide data not previously encountered by the model,

enabling verification that the network has accurately learned underlying patterns,

rather than merely memorizing the training data. In this study, we utilized three

training datasets, each containing 20,000 tasks, and three test datasets, each

72

CHAPTER 3. NEURAL NETWORK-DRIVEN RESOURCE MANAGEMENT IN EDGE
COMPUTING

comprising 2,000 tasks. Each training iteration varied due to the initialization of

the model’s weights, leading to a gradual convergence towards the final result.

Employing multiple training sets of varying complexities enhanced the accuracy

and robustness of the model’s performance. Table 3.2 summarizes the properties

of each dataset, including the number of tasks with different priorities in each

dataset.

Setname Prio 1 Prio 2 Prio 3 Value range

train set 1 6580 6789 6631 1–10000

train set 2 6706 6687 6607 1–10000

train set 3 6740 6669 6591 1–10000

test set 1 657 645 698 1–10000

test set 2 833 775 392 2000–10000

test set 3 1007 802 191 4000–10000

Table 3.2: Task Prioritization and Value Range Assignment Overview

Test procedure: As previously mentioned, three reward functions are utilized in

both classification and regression models, resulting in six models that require

training and evaluation. Additionally, each model has a unique set of hyperpa-

rameters that must be specifically selected and evaluated. To ensure consistency

in the experimental procedure, the approach presented in Figure 3.9 is employed.

The first step involves hyperparameter tuning, where default values are initially

assigned to all hyperparameters. One hyperparameter is selected and adjusted

while keeping the other parameters constant. The resulting model is trained on

the three designated training sets, generating three models based on the respec-

tive training sets. Each model is then tested against the three designated test sets

to determine the optimal model. Training and testing results are documented, and

the process is repeated with the same hyperparameters but varying values. The

most promising values are selected after sufficient evaluations are conducted.

73

CHAPTER 3. NEURAL NETWORK-DRIVEN RESOURCE MANAGEMENT IN EDGE
COMPUTING

Figure 3.9: Hyperparameter Tuning Process: A Flowchart Illustrating the Steps for
Determining Optimal Hyperparameters

3.7.2 Fine-Tuning Model Parameters

This section presents the methods employed and the various hyperparameters

that were fine-tuned to enhance the performance of each model. The effect of the

modifications on the models is reported here for better clarity and understanding.

Normalization: The process of normalization involves transforming features to

maintain them within a similar range of values. This results in improved model

performance and training stability [215]. In the initial tests, it was observed that

satisfactory rewards could not be achieved, regardless of the number of hidden

neurons used. In the regression model, positive rewards could not be obtained

without normalization. Analysis of the inputs revealed that all features, except

the data input feature, fell within a similar value range (see Table 3.3).

74

CHAPTER 3. NEURAL NETWORK-DRIVEN RESOURCE MANAGEMENT IN EDGE
COMPUTING

Input feature Value range

operation 1,2

prio 1,2,3

prio_time 2,4,8

res_operation 1,2,3

usage 0,1,2,3,...,40

power 0.3,0.5,0.8,1.0

resp_time 0.5,1.0

data 1,2,...,10000

Table 3.3: Input Features and Corresponding Value Ranges

However, the size of the data input feature caused it to receive a higher priority

when multiplied with weights, leading to insufficient weighting of other features.

To address this issue, a normalization function:

datanormalized =
data− datamin

datamax − datamin

was applied, which mapped the data value range to (0,0.0001,0.0002, ...,1) based

on known value ranges in the network. The smallest and largest values corre-

sponded to 1 and 10000, respectively. The same equation was also applied to

(usage), but it did not affect the results and was therefore discarded. Two graphs

were generated to demonstrate the effects of normalization on training, as shown

in figure 3.10. The classification and regression models were initially trained

using different numbers of hidden neurons and then retrained with normalization,

with other parameters unchanged to solely display the effects of normalization.

The graph shows the average reward (left y-axis) and average loss (right y-axis)

achieved before (dashed line) and after (solid line) normalization. Tests were

performed using different models to show the effects on different model archi-

tectures. The classification model showed a decrease in loss by 57% on average,

with loss ranging from 0.5256 to 0.2944 after the normalization. Rewards, except

for the model with zero hidden neurons, improved by an average of 130%, with

75

CHAPTER 3. NEURAL NETWORK-DRIVEN RESOURCE MANAGEMENT IN EDGE
COMPUTING

negative rewards shifted to a positive range. A similar pattern emerged for the

regression model, with an average decrease in loss by 59% and improvement

from having value ranges between 2.9 and 27.6 to having value ranges between

1.1 and 13.58. Normalization significantly improved rewards in the regression

model by an average of 211%, making it possible to obtain positive rewards. It is

important to note that useful results in the regression model require more than

three hidden neurons.

(a) Classification model (b) Regression model

Figure 3.10: Impact of Normalization on Reward and Loss in Model Training

Hidden Neurons: This section presents an overview of the impact of hidden

neurons (Nh) on reward and the fulfillment percentage of priorities. The determi-

nation of the optimal number of hidden neurons in the hidden layer of a model is

a time-consuming task. The sizes of the input and output layers are determined

by the input features and the desired output, while the size of the hidden layer is

flexible and varies according to the problem being addressed. Although there is no

definitive formula for determining the optimal number of hidden neurons, various

methods have been proposed, as indicated in Table 3.4, to provide guidance. In

this work, we applied each formula to determine the optimal number of neurons

for classification (Nc) and regression (Nr) models. The Rule of Thumb method and

Prototyping formula yielded satisfactory results in our study.

76

CHAPTER 3. NEURAL NETWORK-DRIVEN RESOURCE MANAGEMENT IN EDGE
COMPUTING

Method Equation Nc Nr

Sheela, Deepa [216] Nh =
4N2

i +3
N2
i −8

4 5

Li et al. [217] Nh =
√
1+8Ni−1

2 6 4

Tamura, Tateishi [218] Nh =Ni − 1 21 7

Xu, Chen [219] Nh = C(Nt
(Ni logNt)

)
1
2 15 24

Rule of Thumb Nh = (Ni +No) ∗ 23 19 6

Shibata, Ikeda [220] Nh =
√
Ni ∗No 11 3

Hunter et al. [221] Nh = log2(Ni +1)−No - 3

Comp. Int. [222] Nh =
Ni+No

2 14 5

Luis Serrano [223] Nh = 2x 24-213 24-213

Prototyping Nh =Ni ∗ 130% 29 11

Table 3.4: Overview of Formulas for Determining the Number of Hidden Neurons
in Neural Networks

This thesis not only compares classification and regression models with varying

numbers of hidden neurons but also investigates the effects of reward functions

A through C to showcase their influence (refer to figure 3.11).

(a) Reward with classification model (b) Fulfilled priorities with classification model

Figure 3.11: Relationship between the Number of Neurons, Reward, and Percent-
age of Fulfilled Priorities in the Classification Model

The figures presented in this study provide an overview of the average reward

achieved across all test sets for each reward function (shown in the left figure), as

well as the average percentage of priorities fulfilled (depicted in the right figure).

77

CHAPTER 3. NEURAL NETWORK-DRIVEN RESOURCE MANAGEMENT IN EDGE
COMPUTING

The horizontal axis in both figures represents the number of neurons tested,

while the colors yellow, blue, and green correspond to reward functions A, B, and

C, respectively. The vertical axis in the left figure represents the reward score,

ranging from −4 to 3, whereas the right figure displays the percentage of fulfilled

priorities, ranging from 0% to 100%. The findings indicate that the inclusion of

at least one hidden layer is crucial for obtaining satisfactory results. With four

neurons, Reward B exhibited positive outcomes with a 69.09% satisfiability rate

and a reward score of 1.14. Similarly, Reward C achieved a 69.5% satisfiability

rate, albeit with a lower reward score of 0.5. However, Reward A did not yield

satisfactory results, displaying only a 27.73% satisfiability rate and a negative

reward score of −1.85. When the number of neurons was increased to six, the

performance of Reward B and C slightly improved, while Reward A started to show

promising results for the first time, with a 77.87% satisfiability rate and a positive

reward score of 1.72. Beyond fifteen neurons, all reward functions demonstrated

favorable outcomes, and additional neurons did not necessarily contribute to

improved results. Surprisingly, the results obtained with 8192 neurons were

comparable to those achieved with only fourteen neurons, but the architecture

becomes more complex with a larger neuron count.

(a) Reward with regression model (b) Fulfilled priorities with regression model

Figure 3.12: Relationship between the Number of Neurons, Reward, and Percent-
age of Fulfilled Priorities in the regression Model

Figure 3.12 illustrates the test results obtained from the regression model, indicat-

ing that a minimum of three neurons is necessary to achieve satisfactory priority

satisfiability. Among the reward functions, Reward Function B exhibits the poorest

performance in this regard, falling below the 70% threshold. Similarly, the re-

78

CHAPTER 3. NEURAL NETWORK-DRIVEN RESOURCE MANAGEMENT IN EDGE
COMPUTING

sults obtained from five neurons exhibit comparable behavior to the classification

model, with values falling within a relatively similar range. A comparison between

the classification and regression models is presented in Table 3.5, which summa-

rizes the results of separate tests conducted for the respective reward functions.

The values obtained are comparable, with the regression model demonstrating

slightly superior performance in most cases. Notably, the classification model

attains the highest values, reaching 87.5% for Reward B.

Class. A Reg. A Class. B Reg. B Class. C Reg. C

Test 1 84.73 86.43 87.16 86.53 86.29 86.25

Test 2 73.23 77.04 74.97 75.44 74.58 75.95

Test 3 59.38 64.24 60.66 62.05 59.44 61.72

Average 72.11 75.90 74.26 74.67 73.44 74.64

Table 3.5: Percentage of Priority Fulfillment for Classification and Regression Tests

Hidden Layers: In addition to considering the number of hidden neurons, the

arrangement of neurons across multiple layers can also be a crucial factor. As

mentioned previously, it is generally recommended to have between one and three

hidden layers. To streamline the testing process, this section of the study adheres

to this guideline and focuses on evaluating a specific number of arrangements.

From each model and reward function, the top three arrangements are selected,

resulting in a total of nine arrangements for classification and nine for regression

tasks. This approach aims to further enhance the already achieved results. The

classification model results are illustrated in figure 3.13.

79

CHAPTER 3. NEURAL NETWORK-DRIVEN RESOURCE MANAGEMENT IN EDGE
COMPUTING

(a) Classification model with reward A (b) Classification model with reward B

(c) Classification model with reward C

Figure 3.13: Impact of Neuron Distribution on Priority Fulfillment in Classification
Models

All figures, except for the color of the columns, depict the various reward func-

tions and models using the same color scheme as in the hidden neurons section.

The graphs illustrate the percentage of priority satisfaction on the vertical axis

and the number and arrangement of tested neurons on the horizontal axis. A

single number, such as „11“ represents a hidden layer with eleven neurons, while

„6/5“ signifies six neurons in the first hidden layer and five neurons in the second

layer. The combination „4/4/3“ indicates three hidden layers with four neurons

in the first and second layers and three neurons in the last layer. Each graph

is divided into three groups, each containing the best-selected neurons from

the previous section. These neurons are then tested in different combinations,

employing the same approach for each experiment. In the first test, the same

number of neurons is transferred to multiple layers, for example, „11“ becomes

„11/11“. In the second experiment, the neurons are distributed across multiple

layers, while maintaining the total number of neurons. For instance, „11“ is

80

CHAPTER 3. NEURAL NETWORK-DRIVEN RESOURCE MANAGEMENT IN EDGE
COMPUTING

divided into „6/5“. Figure 3.13 presents the results for the classification models.

The values fall within a similar range, and it is not possible to conclude directly

that a higher number of layers leads to better results. However, observations

indicate that if the number of neurons is already in a low range, further spread-

ing them across multiple layers may result in poorer outcomes. This is evident

in the middle figure (b), where distributing the „11“ neurons among „6/5“ or

„4/4/3“ leads to a decrease in satisfiability from approximately 80% to 70%. The

extent of this decrease may vary, as seen in the results for „15“ neurons. When

distributed among „8/7“, the result drops from 81.4% to 57.53%, but remains

almost the same (80.31%) when distributed among „5/5/5“. Similar trends are

observed for the reward function C in the right figure (c). However, exceptions are

observed in the left figure (a) with reward function A, where the outcome declines

from 79.89% to 60.98% when switching from „11“ neurons to a „4/4/3“ distri-

bution. Conversely, it increases to 81.12% for a „6/5“ distribution and to 82.20%

and 82.04% for „7/6/6“ and „22/21/21“ distributions, respectively. The results

for the regression model, along with the corresponding reward functions, are

summarized and displayed in figure 3.14.

81

CHAPTER 3. NEURAL NETWORK-DRIVEN RESOURCE MANAGEMENT IN EDGE
COMPUTING

(a) Regression model with reward A (b) Regression model with reward B

(c) Regression model with reward C

Figure 3.14: Impact of Neuron Distribution on Priority Fulfillment in Regression
Models

The presentation structure for the regression models follows a similar approach

to that of the classification models. Many of the previous observations can also

be applied to these models. However, unlike the classification models, we con-

ducted tests with higher numbers of neurons for the regression models. This

can be seen in figure (a) on the left, which represents the results for reward

function A, and figure (b) in the middle, which represents the results for reward

function B. In the left figure, the combination „4096/4096/4096“ on the right side

presented difficulties in the current implementation, leading to missing results

due to the extensive training time required for a model of this size. Consequently,

this test had to be canceled. Similarly, in the middle figure (b), the combina-

tions „8192/8192“ and „8192/8192/8192“ were not tested, as it was assumed

that they would yield similar results. Furthermore, the results demonstrate that

a higher number of neurons does not always result in better outcomes. This

can be observed in the left figure (a), where the models with „4096“ neurons

82

CHAPTER 3. NEURAL NETWORK-DRIVEN RESOURCE MANAGEMENT IN EDGE
COMPUTING

and „6/6/6“ distribution yielded nearly identical values of 82.33% and 82.36%,

respectively. As we move to a higher range of neurons, the results essentially

converge. This can be seen in the right figure (c) for the reward function C.

Learning Rate: This section explores the influence of the learning rate, the last of

the three hyperparameters examined in this study. Learning rate controls the size

of the steps the algorithm takes in updating the model’s parameters during train-

ing. It determines how much the weights in the network are adjusted in response

to the estimated error each time the model weights are updated. Choosing a

proper learning rate is crucial as it affects the speed and quality of the learning

process: too small a rate can lead to a very slow convergence, while too large a

rate can cause the training process to oscillate or even diverge, preventing the

model from learning effectively. This study explores nine combinations per model,

selected from previous tests that have yielded positive results. The learning rates

of 0.0001, 0.005, and 0.01 are tested to assess the impact of smaller or larger

weight adjustments on the results. Additionally, the default learning rate used

in previous tests (0.001) is included for comparison purposes. Three graphs are

presented, corresponding to specific models. Figure 3.15 illustrates the outcomes

of the classification model, with each diagram representing one of the reward

functions (A, B, or C) utilized in the respective test. These reward functions are as-

signed the colors yellow, blue, and green. Each diagram showcases the evaluation

of three neuron combinations with four different learning rates.

83

CHAPTER 3. NEURAL NETWORK-DRIVEN RESOURCE MANAGEMENT IN EDGE
COMPUTING

(a) Classification model with reward A (b) Classification model with reward B

(c) Classification model with reward C

Figure 3.15: Impact of Learning Rate on Priority Fulfillment in Classification Models

The neuron combination is presented on the x-axis, using the same representation

as in the previous section (e.g., „7/6/6“ indicates seven hidden neurons in the

first layer, six in the second, and six in the third). Above the neuron combination,

the learning rates are displayed from left to right, ranging from 0.0001 (slowest)

to 0.01 (fastest). The y-axis represents the satisfiability of the priority as a percent-

age, with each column corresponding to a tested learning rate. The influence of

the reward function on the results was found to vary. In particular, the left figure

(a) illustrates that Reward Function A has a more significant impact, producing

the best results when using a learning rate of 0.001, which was previously used

as a starting value. This learning rate achieved results above 80% for all three

neuron combinations, outperforming other learning rates within the same range.

It was observed that a value in the middle range worked best for the classification

in combination with Reward Function A. Even a slightly faster learning rate of

0.005 resulted in a loss of at least 5%. Increasing the learning rate beyond this

point led to higher losses, rendering the model unusable, as demonstrated by

84

CHAPTER 3. NEURAL NETWORK-DRIVEN RESOURCE MANAGEMENT IN EDGE
COMPUTING

the „6/5“ distribution, which achieved only 21.71% accuracy. Further reduction

of the learning rate did not improve the results. The response to variations in

the learning rate differs in the middle figure (b) and the right figure (c). In these

cases, the results tend to be more stable, with the best performance typically

achieved using a learning rate of 0.001. The variation in results with different

learning rates is generally smaller compared to reward function A. For a network

of 15 neurons, the difference between the best and worst results is only 2.69%.

Reward functions B and C demonstrate better performance across different learn-

ing rates than reward function A. However, appropriate tuning of the learning

rate leads to the best results for reward function A, with satisfiability exceeding

82% in two instances. Nonetheless, this improvement is minimal compared to the

other reward functions, and in some cases, the difference is less than one percent.

The regression model with reward function A exhibits distinctive behavior, as

depicted in figure 3.16. Notably, the regression model results are more consistent

regardless of the reward function. Learning rates have minimal effects on the

results, except for the left figure (a) in the „32/32/32“ distribution, where the

result declines to 54.86% at a learning rate of 0.005. However, this occurrence is

unique. The regression models achieve the best results in the „6/6/6“ distribution,

with a maximum value of 84.28%. Remarkably, the regression models consistently

achieve satisfiability values of over 80%.

85

CHAPTER 3. NEURAL NETWORK-DRIVEN RESOURCE MANAGEMENT IN EDGE
COMPUTING

(a) Classification model with reward A (b) Classification model with reward B

(c) Classification model with reward C

Figure 3.16: Impact of Learning Rate on Priority Fulfillment in Regression Models

3.8 Performance Comparison of Models in Dynamic

Environments

This section focuses on the performance comparison of classification and re-

gression models in the context of a dynamic environment characterized by a

fluctuating number of resources that can be added or removed over time. Specifi-

cally, the best-performing models identified during the training phase are chosen

and subjected to a comprehensive evaluation against each other. The ability to

manage a dynamic environment with varying resources is one of the primary

contributions of this thesis. Consequently, this section presents the experimen-

tal setup, including the test conditions, and provides an analysis of the results

obtained from testing the models within the dynamic environment.

86

CHAPTER 3. NEURAL NETWORK-DRIVEN RESOURCE MANAGEMENT IN EDGE
COMPUTING

3.8.1 Network Adaptation for Optimized Dynamic Testing

In order to adapt the network to the new test environment, the first essential

step is to address hardware limitations. As part of this process, adjustments

were made to the number of clients, which was reduced from 40 to 30, while the

number of resources was increased from 6 to 15. The configuration details for

the old and new resources are provided in Table 3.6. The settings for the old

resources remained unchanged and were utilized in the same manner as in the

previous tests. Conversely, the new resources were specifically configured to be

more appealing to the model, featuring zero response time and high performance.

This approach aimed to incentivize the model to assign tasks to the recently

introduced resources.

Resource Response time Performance Operation

0 0,0 0,3 1

1 0,0 0,3 2

2 0,0 0,5 1

3 0,0 0,5 2

4 0,5 0,8 1

5 1,0 1,0 2

6 0,0 1,0 1

7 0,0 0,4 2

8 0,0 0,6 1

9 0,0 0,8 2

10 0,0 0,4 1

11 0,0 0,6 2

12 0,0 0,8 1

13 0,0 1,0 2

14 0,0 1,0 1

Table 3.6: Resource Settings for Dynamic Testing Configuration

The previously trained models were utilized in order to save time on retraining

and ensure the application of the most effective classification and regression

models. Table 3.7 presents a summary of the chosen models and their respective

87

CHAPTER 3. NEURAL NETWORK-DRIVEN RESOURCE MANAGEMENT IN EDGE
COMPUTING

outcomes. Throughout the test procedure, as explained in section 3.7, three

distinct test datasets were employed for each model.

Model no. Model type Reward

function

Fulfillment

priority

1059 Classification A 82,20%

1284 Classification B 81,53%

1196 Classification C 80,41%

1108 Regression A 84,28%

1286 Regression B 83,14%

1236 Regression C 81,17%

Table 3.7: Selected Models for Dynamic Testing and Associated Outcomes

In order to evaluate each step under varying resource availability, a total of 4500

tasks were processed during each test. The following predefined steps were

executed based on the varying number of resources:

• After 500 tasks, resource 5 was taken down.

• After 1000 tasks, resources 4 and 3 were taken down.

• After 1500 tasks, resources 3, 4, and 5 were brought back up.

• After 2000 tasks, resource 6 was added.

• After 2500 tasks, resources 7 and 8 were added.

• After 3000 tasks, resources 9, 10, and 11 were added.

• After 3500 tasks, resources 12, 13, and 14 were added.

• After 4500 tasks, the test was finished.

The testing methodology employed in this thesis involved a progressive increase

in the resource load until a threshold was reached, triggering a subsequent

decrease and return to the initial state. It was anticipated that the introduction of

additional resources would lead to enhanced outcomes and improvements over

time.

88

CHAPTER 3. NEURAL NETWORK-DRIVEN RESOURCE MANAGEMENT IN EDGE
COMPUTING

3.8.2 Performance Analysis and Evaluation of Dynamic

Behavior

When assessing model efficiency, it is crucial to take into account the role of re-

wards. The reward function plays a significant role by assigning a positive reward

ranging from 1 to 3 when a priority is successfully fulfilled. Conversely, a negative

reward ranging from −1 to −3 is given when a task takes an excessive amount of

time to complete. Moreover, if a requested operation is assigned to a resource

incapable of handling it, a negative reward of −5 is assigned. The achieved re-

ward during the testing period serves as the basis for the initial evaluation and is

presented for both the classification and regression models (refer to figure 3.17).

(a) Dynamic Reward Classification (b) Dynamic Reward Regression

Figure 3.17: Comparison of Reward Functions in Dynamic Environment: Time Evo-
lution of Rewards in Two Models

The classification model demonstrates effective results with a positive reward

distribution for up to 500 tasks. However, beyond the 500 task threshold, when

the most powerful resource for operation two (resource number five) is no longer

available, the results start to decline significantly. Negative results in the range of

−4 indicate that the models frequently make incorrect decisions rather than just

being overloaded. The observation that all three reward functions exhibit poor

results in this range implies that the reward functions alone cannot be solely held

responsible. By the 1000 task mark, resource four, the most powerful resource for

operation one, also fails, resulting in no discernible change and further supporting

the occurrence of frequent incorrect decisions. However, when resources four and

five resume operation after 1500 tasks, the results promptly recover and settle

into a similar range of values as at the beginning of the test. The addition of the

89

CHAPTER 3. NEURAL NETWORK-DRIVEN RESOURCE MANAGEMENT IN EDGE
COMPUTING

first additional resource, resource six, after the 2000 task threshold does not have

the expected effect, as reward function B shows a negative trend. Similarly, the

addition of two more resources, resources seven and eight, after the 2500 task

threshold should have led to an improvement, but instead, it causes a notable

decline. Although the decline is not as severe as at the 500 task threshold, it is

unexpected considering that more resources are available, and a better reward

distribution was anticipated. Subsequently, every 500 tasks, three more resources

were added until the 3500 task threshold, but no further improvements were

observed up to the end of the test at 4500 tasks, and deterioration continued.

In contrast, the regression model on the right initially exhibits higher rewards.

However, a decline can be observed at the 500 task threshold, although smaller

in comparison to the classification model. It is noteworthy that reward functions

A and B can still yield positive rewards, while reward function C declines to a

slightly negative value of −0.3. The graph also illustrates the results of the

second failure, which led to the loss of resource number four, resulting in further

degradation of the model. Reward function B also slipped into the negative

range, similar to function C, while reward function A remained predominantly

positive. Notably, when the failed resources were restored, the results normalized,

as depicted in the graph. Reward functions A and B showed an upward trend

starting around task 2000, explained by the increasing number of resources

added in 500 task intervals until task 3500 when the last three resources were

added. This trend demonstrated a continuous increase in rewards until the

end of the test. The expected results of the regression model aligned with the

actual results. The classification model yielded unexpectedly poor results, even in

regions where improvement was anticipated. To understand the reasons behind

this decline in reward despite an increasing number of resources, an analysis

was conducted to determine if tasks were being sent to resources capable of

performing the appropriate operations. Figure 3.18 illustrates the applicability

of tasks to the resources, and it is evident that the classification model made a

significant number of incorrect decisions.

90

CHAPTER 3. NEURAL NETWORK-DRIVEN RESOURCE MANAGEMENT IN EDGE
COMPUTING

(a) Selected resources classification (b) Selected resources regression

Figure 3.18: Evaluation of the model’s ability to select resources matching the
task’s requirements

Notably, after 2500 tasks, there were frequent incorrect selections of specific

resources, namely 8, 11, and 14. These incorrect selections contributed to the

negative range of rewards shown in figure 3.18(a). Resource 13 was not selected

at all by the classification model, indicating that despite its strong performance,

it did not contribute significantly to the system’s value. Similar observations

were made for resources 0 and 1. The high penalty within the range of 500 tasks

suggests that the results were adversely affected by these two resources. To

determine the optimal model with the most effective reward function, a final graph

was generated. Figure 3.19 presents the models that performed the best in a

dynamic environment, based on the percentage of priority fulfillment.

91

CHAPTER 3. NEURAL NETWORK-DRIVEN RESOURCE MANAGEMENT IN EDGE
COMPUTING

Figure 3.19: Comparative Analysis of Model and Reward Function Performance
(Green denotes first test with the lowest difficulty level, yellow is the
second with moderate difficulty level, and red represents the third
and most challenging test. The average performance across all tests
is represented by the orange curve)

The horizontal axis in the graph represents the six models utilized for the dynamic

test, while the vertical axis represents the percentage of priority fulfillment. Each

bar corresponds to a specific set of test data, enabling the evaluation of a model’s

effectiveness on a particular test set. The color coding denotes the associated

test and provides insights into the difficulty level of each test. The results clearly

demonstrate the impact of issues with the classification model, as it exhibits

significantly poorer performance compared to the regression models. The most

effective regression model achieved an efficiency of 87.5%, which is 56.25%

higher than the best-performing classification model, with an efficiency of 56%.

Among the classification models, the reward function C demonstrated the highest

performance, followed by A and B. The three regression models displayed similar

levels of efficiency.

92

CHAPTER 3. NEURAL NETWORK-DRIVEN RESOURCE MANAGEMENT IN EDGE
COMPUTING

3.9 Summary

This chapter presents the development of an intelligent system for resource al-

location in an EC environment. The system utilizes an AI agent and a testing

environment created using mininet. Various model types and reward functions

were implemented and evaluated to determine the optimal approach. The study

outlines the necessary steps for creating the models required for dynamic behav-

ior testing. Each step was carefully evaluated to determine the best settings for

the intended use case. Several hyperparameters were introduced to influence

the model architecture and behavior, with three of them identified as having a

significant impact. The analysis reveals that the regression model outperforms

other models in terms of dynamic behavior. Its ability to evaluate one resource at

a time and select the highest evaluated resource makes it well-suited for dynamic

systems. Furthermore, this model requires minimal data preparation, resulting in

concise code. It is relatively small, with a limited number of inputs, outputs, and

hidden neurons, reducing the computational and storage requirements. However,

it is noted that the classification model can be optimized for better performance.

In the section on "Fine-Tuning Model Parameters," comparable results to the re-

gression model were obtained. The main difference lies in the use of a static

number of resources in the classification model, which may contribute to its lower

performance. The regression model, on the other hand, employs a rotation of

resources, allowing the model to learn the values of various resources. The

classification model employs specific input neurons that consistently represent

the properties of a particular resource. This approach leads to static properties,

such as power or response time, which remain unchanged during the training

process. However, when a new resource replaces an existing one in a given lo-

cation, the model struggles to accurately interpret the new values. As a result,

the model makes irrational decisions, as evidenced by the observations made

during dynamic testing. In conclusion, this chapter highlights the development

and evaluation of an intelligent resource allocation system in an EC environment.

93

4 Efficient Edge Authentication for

Software-Defined Networks

4.1 Introduction

In previous discussions, it was highlighted that EC extends both computational and

storage resources to the edge of a network to cater to applications with stringent

latency requirements and high demands. However, edge network environments

are susceptible to a heightened risk of malicious attacks. The dependability of

communication in networks is usually contingent upon the successful verification

of content and identity authenticity. Increasing the security level of authenti-

cation, although beneficial, invariably demands more computational resources,

time, and energy. This creates a paradoxical situation where there’s a trade-off

between the augmentation of security levels and the optimization of resources

during computational offloading. In this chapter, we introduce the implementation

of lightweight edge authentication technique, designed to ensure only verified,

legitimate nodes gain access to the network. This method exploit the opportuni-

ties provided by the programming protocol-independent packet processors (P4)

language support in SDN. In this arrangement, we delegate certain control logic

elements to the edge; more specifically, switches offload the controllers from

making local state-based decisions that do not necessitate a comprehensive

knowledge of the entire network. This approach specifically involves the dele-

gation of conventional security functions from specialized middleboxes to the

data plane. The lightweight nature of this approach stems from its operational

methodology. Unlike centralized authentication processes managed by the SDN

controller, this method operates in a distributed and scalable manner across

94

CHAPTER 4. EFFICIENT EDGE AUTHENTICATION FOR SOFTWARE-DEFINED
NETWORKS

multiple switches. This effectively offloads the controller and distributes the

workload among several authentication nodes deployed on the switches. Conse-

quently, each switch becomes responsible for authenticating a subset of the total

client base, allowing multiple clients to undergo authentication simultaneously.

Moreover, the system’s scalability is enhanced through the adaptable number

of authentication nodes; new nodes can be easily integrated by activating the

functionality on additional switches to meet growing demand, thus maintaining a

manageable load on each switch. Additionally, by conducting authentication di-

rectly on the switch, which is in closer proximity to the clients, latency is minimized,

leading to quicker authentication processes.

4.2 Delegating Authentication to SDN Switches

SDN is an emerging network paradigm that separates the control of the network

from the forwarding plane. In SDN, centralized controllers manage the data plane

and make packet forwarding decisions for the switches. The main interface used

to communicate with switches in SDN is OpenFlow [24], [224], which offers a

uniform abstraction for configuring different network devices. This allows con-

trollers to insert and update forwarding rules in flow tables, regardless of the

switch vendor. The primary goal of OpenFlow was to enable network administra-

tors to remotely reconfigure forwarding tables, collect network statistics, and

handle packets that do not match any rules by redirecting them to the controller

for further processing. However, this reactive approach introduces unwanted

latency. In OpenFlow, any stateful processing is typically handled by the central-

ized controller, while switches are limited to installing forwarding rules provided

by the controller. Although this centralized decision-making process is advan-

tageous when global network visibility is required and time constraints are not

critical, it can become a bottleneck [177]. In recent years, extensive research

has focused on offloading stateful processing to switches in order to alleviate

the burden on the controller and reduce signaling overhead between them. One

significant outcome of this research effort is P4 [225]–[227], a high-level lan-

guage that enhances the flexibility, extensibility, and power of software running on

95

CHAPTER 4. EFFICIENT EDGE AUTHENTICATION FOR SOFTWARE-DEFINED
NETWORKS

SDN switches. P4 enables SDN switches to perform advanced packet processing,

including stateful operations. It provides stateful memories such as counters,

meters, and registers that maintain state information across multiple packets.

By separating the control and forwarding planes and centralizing intelligence in

the controller, opportunities arise to reduce network control and management

complexity. However, in the context of security, there is no need to centralize

tasks that solely rely on local state, and therefore, there is no benefit from the

controller’s network-wide knowledge [173], [228], [229]. On the contrary, involving

the controller explicitly for each stateful processing operation and match/action

table update introduces extra signaling and overloads, which may lead to con-

troller failure. One such task that does not require the controller’s network-wide

knowledge is port knocking, an authentication technique used by network admin-

istrators [230]–[232]. Port knocking involves a specific sequence of closed port

connection attempts to designated IP addresses, referred to as a knock sequence.

When the exact sequence of packets is received, the firewall opens a specific port

for the requesting host. Before this event, all packets are dropped. As argued

earlier, we believe that equipping the data plane with intelligence can enhance

network performance, reduce signaling load, offload the controller, and meet

real-time requirements for certain applications. Consequently, many applications

that require sophisticated hardware can run inexpensively and in a distributed

manner on the data plane. In this thesis, we propose delegating security tasks

that typically rely on sophisticated equipment to SDN switches, using the port

knocking application as a practical example. For our use case, we generalize

the port knocking method to function as an authentication mechanism for hosts

or subnetworks intending to establish a connection with a specific server. We

demonstrate how a single SDN switch can be programmed with P4 to efficiently

handle the port knocking application and serve as an authentication unit at the

network ingress.

96

CHAPTER 4. EFFICIENT EDGE AUTHENTICATION FOR SOFTWARE-DEFINED
NETWORKS

4.3 Centralized vs. distributed approach

As previously mentioned, the centralized decision-making provided by the con-

troller in SDN offers advantages and can enhance system security, particularly

when the controller’s comprehensive network visibility is necessary and time is

not a critical factor. However, the explicit involvement of the controller in any

stateful processing poses challenges. In the most favorable scenarios, this could

lead to increased signaling load and processing delay. Should we examine the

scenario where our port knocking application is integrated directly into the log-

ically centralized controller, it becomes apparent that a potentially significant

amount of signaling information (theoretically, all packets directed to all n ports

in the sequence) would need to be sent to the controller. Furthermore, the con-

troller would have to provide timely instructions for packet forwarding following

a correct knocking sequence to prevent the loss of the initial legitimate packet.

Additionally, the controller must allocate memory resources to monitor the state

of all nodes attempts to initiate a connection. Both the surplus signaling and

memory consumption are proportional to the length of the sequence and the

number of nodes attempting to establish a connection. Moreover, embedding this

application within the controller provides no significant advantage, as it does not

exploit the controller’s global network visibility or high-level security policies [233],

but merely utilizes local states associated with specific flows on a single device.

Another argument for delegating some control to the data plane, especially when

applications rely solely on local flow/port states, is as follows: while stateful SDN

may move some states to the data plane, the core logic is still maintained by the

logically centralized control plane. Consequently, it faces potential issues arising

from an inconsistent global view of the network, such as in a physically distributed

controller setting due to controller crashes or disconnections [234]. However, by

moving states to the data plane, the vulnerability for specific applications can be

eliminated, and our port knocking application serves as an example. In this case,

the operations performed by the switch are entirely local and independent of the

potentially inconsistent global state maintained by the control plane.

97

CHAPTER 4. EFFICIENT EDGE AUTHENTICATION FOR SOFTWARE-DEFINED
NETWORKS

4.4 Modeling Deterministic Port Knocking

Authentication using Finite State Machine

We utilize the Finite State Machine (FSM) to model the intended deterministic

behavior of port knocking, functioning as an authentication unit within a switch.

An FSM consists of a limited number of states and can only exist in one state at

any specific time. Upon receiving external inputs, the FSM can transition from

one state to another. It is referred to as deterministic when, given an input at a

specific state, the machine will unambiguously transition to the next state [235].

This abstract model aligns perfectly with the intended behavior we aim to achieve.

Our primary objective was to design this feature and implement it in P4, thereby

facilitating switch authentication without controller involvement. To enhance the

design’s reconfigurability, we maintained a flexible port-sequence (both in length

and order) that must be knocked by the initiating node. This sequence can be

altered post-switch deployment, should it be cracked by a malicious node. We

further introduced configurability to two elements:

1. The set of untrustworthy nodes: This set consists of nodes that must knock

the correct secret sequence of ports before initiating a connection to the

server.

2. The set of nodes requiring authentication: These nodes mandate that all

connecting nodes be authenticated before establishing a connection with

them.

We adopted the FSM as an abstract model comprising various states, inclusive of

default and final states. The transition between states is triggered by two types of

events. The first occurs when the connection initiator, requiring authentication to

be considered a trustworthy node, knocks the correct port in sequence. This leads

to a transition to the subsequent state, as illustrated in figure 4.1. A transition

from the default to the first state is possible only if the connection initiator has

knocked the initial correct port in the sequence. Consequently, a transition from

the first to the second state can only occur if the connection initiator has knocked

the second correct port in sequence, and so forth. The second event transpires

98

CHAPTER 4. EFFICIENT EDGE AUTHENTICATION FOR SOFTWARE-DEFINED
NETWORKS

when the initiator knocks an incorrect port while in any state other than the

default or final. This triggers a roll back action, reverting the state to default,

as depicted in figure 4.1. If the initiator remains in the default state and has not

knocked the first correct port in the sequence, no transitions occur. The final

state can only be achieved when the connection initiator has correctly knocked

the sequence of ports.

Figure 4.1: State Transition Diagram of Deterministic Port Knocking Authentica-
tion Using FSM

4.5 Authentication and Port Knocking

Implementation for Secure Network Access

This thesis demonstrates the proposed ideas using the behavioral model (bmv2)

and mininet. A simple network topology consisting of one switch and four hosts

99

CHAPTER 4. EFFICIENT EDGE AUTHENTICATION FOR SOFTWARE-DEFINED
NETWORKS

was simulated, as shown in figure 4.2. This topology was chosen for two primary

reasons. First, we focused on developing an authentication node that operates

within a single switch. While a larger topology could accommodate multiple

authentication nodes on different switches, each responsible for a different sub-

network, it would not contribute significantly to the clarification of the concept.

Second, a larger topology becomes necessary to demonstrate switch failure. In

such a case, another switch with the pre-installed program can be dynamically

activated by the controller to take over the authentication task. However, this

particular scenario falls outside the scope of this work and is aimed at showcasing

the network’s resilience.

Figure 4.2: A Visual Representation of the Reference Topology

In our implementation, we designed a scenario where each host, except H2, can ini-

tiate connections to any other host, with the switch merely forwarding the packets

to their intended destinations. However, H2 is considered an untrustworthy node

and needs to authenticate itself before initiating a connection to the server H4.

To achieve this, we employed an authentication application based on the principle

of tickets. Nodes possessing a valid ticket are permitted to initiate connections

with other nodes. We distinguish between benign nodes and those suspected of

being untrustworthy. Initially, benign nodes are granted valid tickets, enabling

them to establish connections with any other node without authentication. In con-

trast, nodes suspected of being untrustworthy, potentially due to past abnormal

activities, are not granted valid tickets. This ensures that they must authenticate

100

CHAPTER 4. EFFICIENT EDGE AUTHENTICATION FOR SOFTWARE-DEFINED
NETWORKS

themselves through a port knocking process. Only if they successfully knock the

correct secret sequence of ports will they be granted a valid ticket, allowing them

to initiate a connection. In our scenario, once H2 successfully completes the port

knocking process, it acquires a valid ticket (permission) to establish a connection

with H4 for a specific predefined period of time. After this time elapses, the ticket

is invalidated, and H2 must authenticate itself again. This measure prevents

tampered nodes from using old tickets to initiate unauthorized connections to

the server. Motivated by the FSM, we have implemented an additional security

measure to prevent nodes from accidentally or intentionally bypassing the correct

sequence of ports by knocking arbitrarily long sequences. To achieve this, we

have defined a specific condition to trigger a transition to the subsequent state as

the pair [Port, state]. In our implementation, a knocked port is considered correct

only if it is the next expected port number in the sequence and the assigned state

in the P4 program for the knocking node matches the correct state in the [Port,

state] pair. This ensures that only nodes that knock the port sequence in the

predefined order can be successfully authenticated. Otherwise, authentication

fails, and the node needs to restart the port knocking process from the first port

in the sequence. Unless the correct port-sequence is provided and the ticket

granted, all packets dispatched by the node are discarded at the switch without

any feedback relayed to the node. Hence, packets are only forwarded to their

intended destination after successful provision of the correct port-sequence and

acquisition of the ticket. This strategy eliminates the possibility of a malicious

node deducing any correct sequences. To demonstrate the process, let’s consider

a secret port sequence of (5100, 6150, 7200). Initially, each suspected node that

needs to authenticate itself and obtain a ticket is assigned state 0 (Default). The

switch expects the initial pair [5100, 0]. When the node knocks on port 5100,

this results in the correct pair, triggering a transition to state 1. In the next step,

the switch expects the pair [6150, 1]. Therefore, only if the node knocks on port

6150, the condition is satisfied, and a transition to state 2 occurs. If the node

knocks on a different port, a rollback to the pair [5100, 0] is triggered, and state

0 is reassigned to the node as depicted in Table 4.1. If the rollback transition

is omitted, the switch retains state 1 assigned to that node, even if it knocks

101

CHAPTER 4. EFFICIENT EDGE AUTHENTICATION FOR SOFTWARE-DEFINED
NETWORKS

incorrect ports after knocking port 5100. Thus, if the node accidentally knocks

port 6150 at any time, it mistakenly transitions to state 2, which can erroneously

permit a node to manipulate the correct sequence via an arbitrary long sequence

of ports that may accidentally encompass the correct sequence. On the other

hand, implementing this functionality on the logically centralized controller would

result in a new packet-in message for each incoming packet to the switch, as the

switch would not have any installed rules to handle these packets. Roughly, this

would generate up to l (the length of the port sequence) additional messages

towards the controller for each new connection attempt by a node to the server.

Moreover, the controller must retain the state of each port knocking operation in

order to ultimately install a new rule in the switch, which then either forwards or

blocks packets from that node. An attacker could exploit such an implementation

to execute a DoS attack by consuming computational resources on the controller

through the use of a set of spoofed IP addresses.

Knocked

port

Assigned

state

Expected

pair

Resulting

pair

Resulting

state

Action Ticket

granted

5100 0 [5100, 0] [5100, 0] 1 Drop False

6150 1 [6150, 1] [6150, 1] 2 Drop False

6200 2 [7200, 2] [6200, 2] 0 Drop False

7200 0 [5100, 0] [7200, 0] - Drop False

* 0 [5100, 0] [∗, 0] - Drop False

5100 0 [5100, 0]]5100, 0] 1 Drop False

6150 1 [6150, 1]]6150, 1] 2 Drop False

7200 2 [7200, 2] [7200, 2] 3 Drop True

Any 3 - - - Forward True

Table 4.1: Port Knocking Authentication Process
(∗) All ports except the correct port 5100.

4.5.1 Dynamic Switch Reconfiguration for Enhanced

Authentication and Network Security

The implementation of an authentication application with P4 in the switch offers

several advantages. One significant benefit is the reduction of malicious traffic in

102

CHAPTER 4. EFFICIENT EDGE AUTHENTICATION FOR SOFTWARE-DEFINED
NETWORKS

the network. By filtering out traffic from suspicious nodes at the network ingress,

there is no need to forward this traffic to specialized middleware within the net-

work for filtering. Once the controller injects the authentication rules into the

switch’s designated table, it is no longer involved in the decision-making process

or the addition of new forwarding rules for successive incoming packets. This

reduces the load on the controller and improves overall network performance.

Furthermore, if the switch goes down, the authentication application can be acti-

vated at runtime on any other switch in the network without disrupting network

availability. Despite the numerous advantages, it is important to note that this

authentication method does not offer comprehensive protection. To demonstrate

this, we present an attack example that exploits the vulnerability of the authen-

tication function in the switch to a memory saturation attack. In this scenario,

an attacker with knowledge of the correct sequence of ports launches a large

number of connection attempts (packets) from spoofed IP addresses to the first

port in the sequence (e.g., port 5100). The switch, upon receiving these packets,

checks its state table to determine the incoming flow’s state. If there is no existing

record for the source IP address, the switch assigns the next state to that IP. Since

all incoming packets are destined for the correct port, the state of all the corre-

sponding IPs will be updated to the next state (e.g., State 1). Consequently, the

state table could be overloaded with entries, enabling an attacker to intentionally

create thousands of records and exhaust the switch’s memory [236]. The impact

of this vulnerability can be mitigated by configuring the switch with a timeout

mechanism. If the switch does not receive a second packet from the same flow

that progresses to the next port, it will reset the flow’s state and remove it from

the state table. Additionally, distributing the authentication functionality across

multiple switches in the network, with efficient load balancing between them, can

significantly reduce the impact of such an attack. To ensure our implementation

is realistic, scalable, and capable of handling network changes seamlessly, we

designed it to be dynamic and reconfigurable at runtime. Nodes suspected of

being untrustworthy and requiring authentication before initiating a connection

are defined as pairs of source and destination with IPv4 addresses. The source

represents the suspected node or subnetwork, while the destination represents

103

CHAPTER 4. EFFICIENT EDGE AUTHENTICATION FOR SOFTWARE-DEFINED
NETWORKS

the server or protected node. Hence, a node may be deemed suspicious when

initiating a connection to a specific node/server but may not be suspected when

connecting to another node/server. To add a node (connection initiation) to the

list of suspicious nodes, the controller merely needs to add a rule to the responsi-

ble table. Similarly, removing this rule effectively eliminates the node from the

list. This process can be dynamically managed at runtime, thereby enabling swift

reconfiguration of the switch to handle any new network incidents.To implement

this behavior, we have employed the Hit/Miss construct in P4 [24]. If a specific

node’s record exists in the table (Hit), it is considered suspicious and must au-

thenticate first to obtain a ticket. Conversely, if a node’s record does not exist

in the table (Miss), it is deemed benign and, by default, possesses a ticket (see

figure 4.3).

Figure 4.3: Refining the Hit/Miss construct: Identifying trustworthiness in node
selection

The proposed approach allows the controller to configure the secret sequence

of ports that need to be knocked in a specific order to obtain a valid ticket. This

configuration can be modified at runtime, providing flexibility and enhancing

security. The controller has the capability to delete the current sequence or a

subsequence at any given time, and replace it with a new sequence of the same

length or a longer one, thus increasing the difficulty of cracking the sequence.

Consequently, an attacker would need to correctly guess the sequence out of a

vast number of possible permutations, specifically 65535l (where "l" denotes the

length of the sequence). To demonstrate this capability, we utilized a Command

Line Interface (CLI). In the initial configuration, we set the sequence to be (5100,

6150, 7200) using the following commands (refer to figure 4.4).

104

CHAPTER 4. EFFICIENT EDGE AUTHENTICATION FOR SOFTWARE-DEFINED
NETWORKS

Figure 4.4: CLI commands to set the initial knock-sequence

In this sequence, 5100 represents the first port in the sequence, with 0 being the

initial state, 1 denotes the state after the transition, and the last 0 in the first line

represents the ticket validity (0 = not valid, 1 = valid). To modify this sequence,

the controller must delete these records and introduce new rules incorporating

the new sequence, depicted in figure 4.5. This results in a runtime sequence

modification, and only the potential nodes capable of knocking the new sequence

in the correct order will gain a valid ticket.

Figure 4.5: CLI commands to change the knock-sequence

In the primary configuration, node 10.0.1.10 (H2) was identified as potentially sus-

picious within the context of connection attempts to 10.0.3.10 (H4). Subsequently,

we dispatched a TCP stream using iperf from H2 towards H4. As illustrated in

figure 4.6, all packets were initially dropped since H2 had not yet authenticated

itself. Using a second terminal, we sent UDP packets from H2 to H4 with des-

tination ports 5100, 6150, and 7200 to obtain a valid ticket. The first attempt

failed due to the arrival of another packet with an incorrect port in between. This

triggered a rollback action, forcing the host to restart the sequence from the

beginning. Only when the sequence was correctly knocked in the proper order,

the host was authenticated, and the ticket was granted. Subsequent packets

were then forwarded normally to the destination. The issued ticket is only valid

for a predefined duration. Hence, the switch examines the arrival time of all

subsequent packets and invalidates the ticket once the validity period expires. All

packets are then dropped until the node secures a new valid ticket.

105

CHAPTER 4. EFFICIENT EDGE AUTHENTICATION FOR SOFTWARE-DEFINED
NETWORKS

Figure 4.6: Visualizing H2’s Port Knocking Technique: Wireshark reveals the port-
sequence manipulation for secure ticket authentication

While the switch was active, we reconfigured it with a new secret sequence, as

depicted in figure 4.5. This reconfiguration is typically conducted by the controller

in response to specific network incidents or anomalies. Thus, any potential node

that seeks to initiate a connection must first present the new sequence to procure

a valid ticket, as shown in figure 4.7. A previously cracked sequence is no longer

applicable.

Figure 4.7: Visualizing H2’s Port Knocking Technique: Wireshark reveals the new
port-sequence manipulation for secure ticket authentication

106

CHAPTER 4. EFFICIENT EDGE AUTHENTICATION FOR SOFTWARE-DEFINED
NETWORKS

4.5.2 Enhancing Network Security: Authentication-based

Defense Against Port Scans

Attackers frequently conduct arbitrary port scans on IP addresses, seeking vul-

nerable servers to exploit. Port scanning methodologies [236], [237] function by

dispatching requests to a broad range of port addresses on a host, and subse-

quently examining the responses to discern which ports on this node are open.

Our proposed application is equipped to mitigate such attacks initiated from un-

trusted nodes. Nodes not suspected of malicious intent are permitted to establish

a connection with the host/server without the need for authentication. Conversely,

nodes suspected of unscrupulous connection initiation to a particular node/server

are initially blocked. Any incoming packets from these suspected nodes are inter-

cepted and discarded by the switch before they reach their intended destination.

Essentially, as long as a suspected node has not authenticated itself, the node

it aims to exploit remains invisible to it. To illustrate this mechanism, we utilized

nmap from H2 to conduct a port scan on the safeguarded host, H4 (according

to the initial configuration). Since H2 had not yet authenticated at that point,

all packets sent from nmap were dropped by the switch, leading the scanner to

return the message "Host seems down".

4.6 The experimental setup

The experimental setup depicted is utilized for implementing and evaluating our

proposed method.

Table 4.2: System Configuration

Hardware
graphic card Nvidia RTX 2080 TI, 11GB GDDR6
processor AMD Ryzen 7 1800x, 8 CPU Kerne, 3,6 GHz
RAM G.Skill Trident Z DDR4 32 GB (4x8)

Software Version

Mininet 2.3.0d6
Ryu Controller 4.34
P4 14

107

CHAPTER 4. EFFICIENT EDGE AUTHENTICATION FOR SOFTWARE-DEFINED
NETWORKS

4.7 Evaluation

To evaluate the performance of our authentication technique, two methods will

be employed. The first method involves comparing the performance of packet

forwarding in two scenarios: one where the node is initially designated as benign,

requiring no secret sequence of ports to be knocked, and another where the node

is initially classified as untrustworthy, necessitating the knocking of the secret

sequence of ports to obtain a ticket. Once a valid ticket is obtained, the switch

only checks the arrival time of subsequent packets against the ticket’s expiration

time. This experiment aims to investigate whether the ticket validity check has

a negative impact on the switch’s performance. The second method focuses

on comparing the performance of two switches. The first switch implements

our proposed authentication technique along with packet forwarding, while the

second switch solely performs packet forwarding without any additional function-

ality. By comparing the performance of these two switches, we can evaluate the

effectiveness and efficiency of our proposed implementation.

4.7.1 Switch Performance Analysis: Evaluating Time Window

Validity Check

To evaluate the switch performance in both scenarios, we conducted a series of

measurements comparing the throughput under varying circumstances. This

involved transmitting fifty TCP streams from the benign host H3 to H4, and a simi-

lar number of TCP streams from the untrustworthy host H2 to H4. Each stream

lasted ten seconds and was initiated only after authentication via a ticketing

system had been established (refer to figure 4.2 for the network topology). We

computed the average throughput from these measurements. As illustrated in

figure 4.10 a and b, the average throughput remained relatively consistent, imply-

ing that the switch’s forwarding functionality performance remained unaffected

once a suspicious node has been successfully authenticated. In a separate test,

represented in figure 4.8, we studied the switch performance when both nodes,

H2 and H3, sent TCP streams to H4, nearly concurrently. In this scenario, H3

initiated transmission while H2 was still in the process of authentication. We

used a Python script from a secondary terminal to complete the authentication

108

CHAPTER 4. EFFICIENT EDGE AUTHENTICATION FOR SOFTWARE-DEFINED
NETWORKS

sequence, securing a valid ticket for H2, and subsequently returned to the primary

terminal to initiate the stream from H2 to H4. The manual process of switching

between terminals introduced a slight delay, resulting in a delayed start of the

stream from H2, as depicted in figure 4.8. We conducted another experiment,

this time with a two-minute duration for each stream, with H2’s authentication

already established. The goal of this experiment was to study the effect of ticket

expiry while the stream was in transit through the switch. Figure 4.9 reveals

two instances of ticket expiration within the two-minute window (given the 50-

second ticket validity period). This expiration led to a noticeable decline in overall

throughput, an expected outcome under such conditions.

Figure 4.8: Comparing Throughput of H2 and H3 TCP Streams to H4 (H2: Dotted
Curve, H3: Solid Curve) with H2 Authentication Delayed Initially

Figure 4.9: Doubled Instances of Ticket Expiration Within a Two-Minute Frame
(Validity Time of 50 Seconds)

109

CHAPTER 4. EFFICIENT EDGE AUTHENTICATION FOR SOFTWARE-DEFINED
NETWORKS

Figure 4.10: Average throughput for fifty measurements in different scenarios

4.7.2 Switch Performance: Evaluating the Impact of

Authentication Functionality

The objective of this evaluation was to assess whether our application has a

detrimental effect on the performance of the switch and, if so, to what extent.

To conduct the evaluation, we replaced the switch implementing our application

with an identical switch (bmv2) that lacked any additional functionality beyond

basic forwarding capabilities. To measure the impact, we conducted a test by

transmitting fifty TCP streams from the host H2 to H4, each lasting for ten seconds.

Subsequently, we calculated the average throughput across all streams. As

110

CHAPTER 4. EFFICIENT EDGE AUTHENTICATION FOR SOFTWARE-DEFINED
NETWORKS

depicted in figure 4.10 c, the average throughput improved by approximately 20%

compared to the switch running our application. However, as discussed previously,

despite the seemingly lower throughput, the implementation of the authentication

functionality within the switch offers several advantages over implementing it in

the logically centralized controller.

4.8 Summary

This chapter has introduced a novel technique that utilizes P4 for authentication

and port scan mitigation within switches. The technique’s runtime flexibility

and dynamic nature have been demonstrated, highlighting its applicability to

real-world scenarios, particularly in EC environments. This technique effectively

addresses security and privacy concerns in EC, while concurrently enhancing the

trustworthiness of edge devices. It enables lightweight user authorization for

edge services, conserving computing power and reducing authentication time for

a large and ever-changing population of IoT devices. In conclusion, this chapter

presents an innovative technique leveraging P4 for authentication and port scan

mitigation in switches, showcasing its adaptability in real-world EC settings.

111

5 Scalable Distributed

Homomorphic Encryption for

Complex Computational Models

5.1 Introduction

In chapter 1, we have highlighted the rapid growth of high-tech industries and the

resulting groundbreaking innovations, which have led to an exponential increase

in data volumes across various sectors such as healthcare, finance, and manufac-

turing. Managing these vast amounts of data effectively necessitates additional

computational resources. Consequently, we have acknowledged the significance

of CC and EC as potent solutions for handling the surge in big data. However, the

utilization of CC and EC raises significant concerns regarding data privacy and

security, particularly when sensitive user information is stored and processed

on publicly accessible cloud/edge servers. Traditional encryption techniques

are insufficient in addressing the conflict between processing large data sets in

powerful yet potentially untrusted CC and EC environments. HE, which allows

computations on encrypted data, emerges as a potential solution. Nonetheless,

the high computational complexity and lengthy processing times of FHE hinder its

widespread adoption, especially in scenarios with limited computational resources

and strict time constraints. To overcome these limitations, this chapter introduces

DHE as a promising avenue to address scalability issues. The DHE-based data

processing strategy leverages distributed computing techniques to partition the

computational workload across multiple instances, thereby reducing the overall

computational stress on a single instance. This approach is an ideal application

112

CHAPTER 5. SCALABLE DISTRIBUTED HOMOMORPHIC ENCRYPTION FOR
COMPLEX COMPUTATIONAL MODELS

scenario for our resource allocation framework. As discussed in Chapter 3, the

AI agent dynamically gathers information about available resources, such as

computing power and supported operations, before allocating the most suitable

resources for the task at hand. In the context of DHE), the AI agent can allocate

the most appropriate resources, which support HE operations, to the subtasks

that result from dividing the main task into several smaller subtasks. Since these

subtasks are smaller and require less computational power, the AI agent can

distribute them across a broader range of edge devices that are available at the

time of the request. Furthermore, allocating resources to the encrypted subtasks

enhances privacy protection, even when the resources are located in a public

domain. Furthermore, we evaluate the performance of our proposed approach by

comparing three commonly used FHE schemes (CKKS, BFV, and BGV) using the

Microsoft SEAL library and arithmetic operations on vectors up to size 216 in both

centralized and distributed approaches.

5.2 Centralized vs. Distributed Approaches in

Homomorphic Encrypted Data Processing

This section presents two approaches: the centralized approach and the dis-

tributed approach. In the centralized approach, all homomorphic encrypted data

is processed by a single resource, typically a central server. This approach offers

the advantage of simplified computation since all data is located in one place.

However, it also poses a single point of failure. If the central resource becomes

unavailable, the entire system fails. Furthermore, the central resource must

possess sufficient computing power to handle all computations, which can be

challenging for large-scale data processing. On the other hand, the distributed

approach involves parallel computations performed by multiple resources. Each

resource processes a portion of the encrypted data, which is divided into smaller

chunks and sent to different resources for processing. Once the computations

are complete, the results are merged to obtain the final output. The distributed

approach offers several advantages over the centralized approach. Firstly, it

enables a more scalable solution as the processing load can be distributed across

113

CHAPTER 5. SCALABLE DISTRIBUTED HOMOMORPHIC ENCRYPTION FOR
COMPLEX COMPUTATIONAL MODELS

multiple resources. This reduces the risk of a single resource becoming a bottle-

neck and improves overall processing times. Secondly, it provides greater fault

tolerance as the system can continue to function even if one or more resources

fail. In conclusion, both the centralized and distributed approaches have their

strengths and weaknesses. The choice between the two depends on the specific

requirements of each application.

5.2.1 Centralized Approach

In this thesis, we investigate a centralized approach (depicted in Figure 5.1) for

ensuring data confidentiality in a secure computation scenario. We consider the

generation of two messages, M1 and M2, where each message M is represented

as a list of integers, M = {i1, i2, ..., in}, with values ranging from 1 to 1000. The

length of the message, denoted by n, is determined based on the specific test

session and can vary from 27 to 216. To maintain data confidentiality, the client

encrypts both messages using a homomorphic encryption procedure, resulting

in the creation of encrypted messages, E1 and E2. Subsequently, the encrypted

messages, along with the required relinearization key, are transmitted to the

server for computation. On the server side, the addition of E1 and E2 is per-

formed, yielding a new encrypted message, E3. Further computation involves

multiplying each element in E3 by 0.5, resulting in the generation of the final en-

crypted message,E4. It is important to note that the client exclusively possesses

the decryption key required to decrypt the message. After the calculations are

completed, the encrypted message is sent back to the client.

Figure 5.1: Centralized model

114

CHAPTER 5. SCALABLE DISTRIBUTED HOMOMORPHIC ENCRYPTION FOR
COMPLEX COMPUTATIONAL MODELS

5.2.2 Distributed Approach

The primary focus of this thesis is the distributed approach, illustrated in Figure

5.2. In this approach, two messages, denoted as M1 and M2, are generated in the

initial step, exhibiting similar content and structure as the centralized approach.

However, the distinction lies in the availability of multiple workers for message pro-

cessing. The set of workers is specified as {Worker1,Worker2, ...,Workerk}. Based

on the chosen number of workers, messages M1 and M2 are divided into par-

tial messages M11,M12, ...,M1k and M21,M22, ...,M2k correspondingly, ensuring

that each worker receives a portion from both messages. These partial mes-

sages are encrypted using a homomorphic procedure, resulting in E11,E12, ...,E1k

and E21,E22, ...,E2k, which are then distributed to the respective workers. The

workers carry out the same operations as in the centralized approach, i.e., ad-

dition and multiplication, but on the partial messages, yielding partial results,

E31,E32, ...,E3k . These partial results are sent back to the client, where they are

decrypted and combined to form an overall result M3 =M31 ∥M32 ∥ ... ∥M3k . The

distributed approach offers several advantages over the centralized approach.

Firstly, it enables parallel processing of messages, leading to reduced processing

time. This feature is especially beneficial in large-scale computations, where

substantial time savings can be achieved. Secondly, the distributed approach

enhances security by encrypting the messages and distributing them among

multiple workers, thus increasing the difficulty of unauthorized access. Addition-

ally, this approach provides improved scalability since the number of workers can

be easily adjusted to meet the processing requirements, allowing for efficient

resource allocation.

115

CHAPTER 5. SCALABLE DISTRIBUTED HOMOMORPHIC ENCRYPTION FOR
COMPLEX COMPUTATIONAL MODELS

Figure 5.2: Distributed model

5.3 The experimental setup

The experimental setup depicted is utilized for implementing and evaluating our

proposed method.

Table 5.1: System Configuration

Hardware
processor Intel(R) Xeon(R) CPU E5-2630 v2 @ 2.60GHz
RAM G.Skill Trident Z DDR4 32 GB (4x8)

Software Version Software Version

mpi4py 3.1.4 kaleido 0.2.1
plotly 5.13.1 SEAL 4.0.0
pylatex 1.3.4 pySEAL 4.0.0
pandas 1.5.1 pybind 2.10.1
sympy 1.7.1 mpich 4.0.2

5.4 Evaluation

In this section, we present the findings of our scientific study. We provide a

comprehensive overview of the libraries used, the evaluated schemes, and the

time stamps applied. This detailed description aims to enhance understanding of

the outcomes and facilitate replication of the experimental setup.

116

CHAPTER 5. SCALABLE DISTRIBUTED HOMOMORPHIC ENCRYPTION FOR
COMPLEX COMPUTATIONAL MODELS

5.4.1 Distributed Homomorphic Computation with OpenMPI and

SEAL

In this thesis, two libraries, namely openMPI and SEAL, were employed to facilitate

distributed homomorphic computations:

OpenMPI: Is a communication framework that facilitates inter-process commu-

nication among multiple processes, including those distributed across different

hosts or virtual machines [238]. It allows computations to be divided into multiple

processes, which are then assigned priorities based on their ranks and processed

by different machines. In this study, OpenMPI was utilized to implement a dis-

tributed approach for HE.

SEAL: Is an open-source library developed by the Cryptography Research Group

at Microsoft Research, specifically designed to support homomorphic computa-

tions through various schemes [239]. As SEAL was originally designed for C++

platforms, a Python wrapper was employed in this study to enable Python support.

In order to test a broader range of values, the predetermined safety constraints

for SEAL, which enforce security standards proposed by [240], were deactivated

during the test runs. These constraints impose restrictions on the allowable

lengths of certain operations.

5.4.2 Homomorphic Encryption Schemes

In this study, we have implemented and evaluated three schemes based on a

common operating principle. The process involves message encoding, followed by

encryption. Subsequently, arithmetic operations are performed on the encrypted

data. The data is then decrypted, decoded, and the final result is obtained. Figure

5.3 illustrates a timeline of the homomorphic operations.

117

CHAPTER 5. SCALABLE DISTRIBUTED HOMOMORPHIC ENCRYPTION FOR
COMPLEX COMPUTATIONAL MODELS

Figure 5.3: Composition of different used times

BGV/BFV: The Brakerski-Gentry-Vaikuntanathan (BGV) schema, proposed in 2011,

and the Brakerski/Fan-Vercauteren (BFV) schema, introduced in 2012, belong to

the second generation of encryption schemes capable of computing messages

consisting of integers [241], [242]. Although these two schemes share struc-

tural similarities, they differ in their parameters. The BFV scheme is notable for

maintaining a constant ciphertext modulus throughout the evaluation process,

resulting in scaling independence. On the other hand, the BGV scheme utilizes

multiple smaller moduli to effectively control the noise generated during compu-

tations through modulo switching. Despite belonging to the older generation of

schemes, both BGV and BFV offer faster computational speeds compared to newer

schemes. However, it is important to note that they are limited to processing

integer values exclusively.

CKKS Scheme: The CKKS scheme, introduced in [243]–[245], demonstrates gre-

ater versatility compared to the previously proposed BGF and BFV schemes. Unlike

the latter, CKKS supports multiplicative inverses, allowing for the implementation

of divisions. Additionally, it facilitates computations involving complex numbers

by encoding messages into real and imaginary values, which are then represented

as polynomials. These polynomials serve as the basis for performing calculations,

with the resulting outcomes approximated after decoding. However, it is important

to note that this approach is more time-consuming when compared to the BGF

and BFV schemes.

118

CHAPTER 5. SCALABLE DISTRIBUTED HOMOMORPHIC ENCRYPTION FOR
COMPLEX COMPUTATIONAL MODELS

5.4.3 Time Analysis of Processing Steps

This section provides an in-depth analysis of the behavior of the two approaches

by presenting the time records associated with each approach. To facilitate com-

prehension, the recorded times have been categorized into various processing

steps, as illustrated in Figure 5.3. The initial steps involve the generation of keys,

encoding of data, and encryption. In accordance with the scheme, the key genera-

tion process produces keys that are of the same length as the polynomial intended

for encryption. Furthermore, scheme-specific functions, such as relinearization

(required after multiplication), also necessitate key generation. As the values

to be evaluated are provided as vectors, they need to be initially converted into

polynomials through a process called encoding. The subsequent steps involve

the mathematical operations of addition and multiplication. Finally, the data is

decrypted and decoded in the remaining steps, employing the same method used

during the encoding process.

5.5 Experimental Evaluation of Homomorphic

Operations

In this thesis, the homomorphic addition and multiplication operations between

vectors of varying sizes were investigated. The experiment focused on a set of

vector sizes 2n and employed suitable encryption parameters for each scheme. To

assess the performance of the schemes, the processing time was measured using

both centralized and distributed approaches. The evaluation was conducted by

averaging the results of 50 test runs for each distinct message length (vector size).

The results are presented in tables featuring a consistent format and acronyms.

The tables include the time taken for key generation (Key Gen.), encryption (Encr.),

which encompasses encoding time, communication (Com.), arithmetic operations

(Arith.), decryption (Decr.), and the total time (Total). Furthermore, to facilitate

comparison, an additional column (Impr.) was incorporated to indicate the per-

centage improvement achieved by the distributed approach in terms of total time

when compared to the centralized approach.

119

CHAPTER 5. SCALABLE DISTRIBUTED HOMOMORPHIC ENCRYPTION FOR
COMPLEX COMPUTATIONAL MODELS

5.5.1 Comparative Evaluation of Homomorphic Cryptographic

Schemes

The objective of this study is not to compare the different schemes. However, for

the purpose of demonstrating the variation in the time required for homomorphic

computations across different schemes, a comparison was conducted. The re-

sults, presented in Table 5.2, depict the comparison between BFV, BGV, CKKS in

the centralized approach. The experiment was conducted using 50 test runs with

a vector size of 216 (selected to be in the higher range for a better comparison

of the time values). The results indicate that BGV was the fastest in terms of

total time, attributed to its efficient multiplication time. The other times of BGV

are comparable to those of BFV. On the other hand, CKKS required the longest

time, with a higher overhead in key generation and encryption leading to the

longest time loss. In conclusion, our experimental setup demonstrates that BFV is

6.78% slower and CKKS is 103.60% slower than BGV for equivalent arithmetic

operations.

S
c
h
e
m
e

K
e
y
G
e
n
e
ra
tio
n

E
n
c
ryp

tio
n

C
o
m
m
u
n
ic
a
tio
n

A
d
d
itio

n

M
u
ltip

lic
a
tio
n

D
e
c
ryp

tio
n

To
ta
l

BFV 331.41 155.48 1251.63 1.67 186.78 17.23 1944.19

BGV 333.35 157.33 1218.63 1.62 84.95 16.47 1812.34

CKKS 630.86 437.47 2484.71 3.27 99.16 34.54 3690.00

Table 5.2: Processing time in (ms) of messages with vector size of 216 using the
different schemes on a single resource

120

CHAPTER 5. SCALABLE DISTRIBUTED HOMOMORPHIC ENCRYPTION FOR
COMPLEX COMPUTATIONAL MODELS

5.5.2 Comparing Performance: Centralized vs. Distributed

Approaches

The computation times for arithmetic operations, key generation, encoding, de-

coding, encryption, and the total time in the BFV scheme are detailed in table 5.3.

The data is organized into three categories: a centralized approach, a distributed

approach with four instances, and a distributed approach with eight instances.

This categorization serves to underscore the effect of augmenting computa-

tional resources on the performance of the scheme. The findings reveal that

computation times escalate with the increase in vector size across all methods.

Nonetheless, the distributed approach demonstrates shorter computation times

when compared to the centralized approach, leading to a decrease in overall time.

The BFV scheme reports a maximal enhancement of 54% in total time depending

on the vector size, and this enhancement climbs to 68% when the communication

time among the computational resources is excluded. Table 5.4 showcases the

computation times for all operations within the BGV scheme, paralleling the struc-

ture of the preceding table. The BGV scheme’s performance is on par with that

of the BFV scheme, considering the vector size and the count of computational

resources employed. An advancement in total computation time of up to 51%

for larger vector sizes was noted in the BGV scheme, and up to 65% excluding

communication time. Lastly, table 5.5 illustrates the computation times for all

operations in the CKKS scheme. This scheme’s performance mirrors that of the

other schemes. For the CKKS scheme, an enhancement in total time of up to 48%

was observed for larger vector sizes, and up to 58% without considering commu-

nication time. All three tables share the same structure and display similar trends.

The upper part of each table, representing the centralized approach, serves as

the baseline metric for the required times of different operations related to vector

size. To illustrate how to interpret the results, let’s consider an example from table

5.3. It is clear that the required times for different operations, and consequently

the total time, increase with vector size. For example, the total time required for a

vector size of 216 in the centralized approach is nearly 164 times that required

for a vector size of 27. The centralized approach, representing the traditional

scenario, involves the client sending a request to a single central server for data

121

CHAPTER 5. SCALABLE DISTRIBUTED HOMOMORPHIC ENCRYPTION FOR
COMPLEX COMPUTATIONAL MODELS

processing. It is also evident that the most time-consuming operations include

key generation, arithmetic, encryption, and communication (the time it takes for

data to travel from the client to the server and back). The improvement column

indicates the efficiency of the distributed approaches compared to the centralized

baseline for specific vector sizes. In the distributed approach with four computing

nodes (workers) for a vector size of 216, the workload is divided into four roughly

equal parts and distributed among the nodes. Consequently, all time-consuming

functions now require significantly less time. For instance, key generation now

takes only 88.82 ms to generate keys for four smaller vectors, each of size 214,

instead of 31.41 ms required for a single 216 vector. The total time required in

the distributed approach with four workers is 997.65 ms, compared to 1944.19

ms in the centralized approach, marking an improvement of nearly 49% a fact

highlighted in the improvement column. However, the distributed approach with

four workers shows disadvantages for smaller vector sizes like 27, where the

improvement is -22%, indicating that this approach was 22% slower than the cen-

tralized approach for a vector size of 27. This can be attributed to the additional

overhead of encryption and distributing the four smaller datasets to the workers,

which is not cost-effective for certain data volumes. In our experiments, it is ad-

vantageous to switch from the centralized to the distributed approach for vector

sizes of up to 29. The lower section of the tables, representing the distributed

approach with eight workers, can be interpreted similarly to the section for four

workers. The data indicates a consistent trend: as data size increases, it becomes

more advantageous to use a distributed approach with more computing nodes.

Conversely, for small data volumes, the distributed approach is less beneficial

due to the added load from key generation, encryption, and decryption for each

vector.

122

CHAPTER 5. SCALABLE DISTRIBUTED HOMOMORPHIC ENCRYPTION FOR
COMPLEX COMPUTATIONAL MODELS

V
e
c
to
r
S
ize

K
e
y
G
e
n
e
ra
tio
n

E
n
c
ryp

tio
n

C
o
m
m
u
n
ic
a
tio
n

A
rith

m
e
tic

D
e
c
ryp

tio
n

To
ta
l

Im
p
ro
v
e
m
e
n
t

(%
)

Centralized

27 3.13 0.57 7.73 0.35 0.07 11.86 -

28 3.78 0.85 10.23 0.63 0.09 15.58 -

29 4.97 1.35 15.01 1.22 0.15 22.69 -

210 7.68 2.38 24.63 2.46 0.26 37.41 -

211 13.24 4.57 43.24 5.05 0.50 66.60 -

212 23.80 8.90 90.01 10.13 0.95 133.79 -

213 44.23 17.36 194.02 21.03 1.91 278.56 -

214 87.28 35.42 309.65 44.2 3.85 480.41 -

215 169.05 73.57 584.52 90.82 8.15 926.11 -

216 331.41 155.48 1251.63 188.45 17.23 1944.19 -

Distributed with 4 Workers

27 3.00 1.44 9.71 0.13 0.15 14.44 -22

28 2.78 1.59 11.54 0.19 0.18 16.28 -4

29 3.14 2.00 14.35 0.36 0.22 20.07 12

210 3.88 3.17 20.17 0.65 0.32 28.20 25

211 4.99 5.01 29.82 1.29 0.52 41.63 37

212 7.82 9.11 55.91 2.68 0.94 76.46 43

213 12.97 17.48 95.71 5.13 1.84 133.13 52

214 23.68 34.18 193.48 10.17 3.59 265.10 45

215 45.99 68.36 377.39 21.35 7.30 520.38 44

216 88.82 136.85 712.99 43.93 15.05 997.65 49

Distributed with 8 Workers

27 2.93 2.59 12.2 0.09 0.26 18.07 -52

28 2.96 2.72 14.4 0.13 0.27 20.48 -31

29 2.91 3.22 18.58 0.20 0.33 25.25 -11

210 3.13 3.98 22.79 0.36 0.42 30.68 18

211 3.93 6.33 33.3 0.65 0.65 44.85 33

212 5.30 10.64 52.73 1.33 1.07 71.05 47

213 7.76 18.01 96.99 2.67 1.91 127.34 54

214 13.31 35.83 169.49 5.28 3.69 227.6 53

215 23.37 69.65 373.29 10.66 7.56 484.53 48

216 46.11 139.43 742.58 22.43 15.58 966.12 50

Table 5.3: Comparison of processing times in (ms) between centralized and dis-
tributed approach with BFV scheme

123

CHAPTER 5. SCALABLE DISTRIBUTED HOMOMORPHIC ENCRYPTION FOR
COMPLEX COMPUTATIONAL MODELS

V
e
c
to
r
S
ize

K
e
y
G
e
n
e
ra
tio
n

E
n
c
ryp

tio
n

C
o
m
m
u
n
ic
a
tio
n

A
rith

m
e
tic

D
e
c
ryp

tio
n

To
ta
l

Im
p
ro
v
e
m
e
n
t

(%
)

Centralized

27 3.15 0.57 7.77 0.17 0.07 11.73 -

28 3.79 0.87 10.20 0.28 0.09 15.23 -

29 5.10 1.38 15.04 0.54 0.14 22.20 -

210 7.69 2.41 24.48 1.07 0.24 35.88 -

211 13.11 4.64 43.13 2.18 0.47 63.52 -

212 24.03 9.14 88.16 4.46 0.91 126.7 -

213 44.99 18.18 186.25 9.38 1.82 260.62 -

214 87.57 36.14 314.24 20.00 3.67 461.62 -

215 170.67 74.12 592.95 41.33 7.66 886.74 -

216 333.35 157.33 1218.63 86.56 16.47 1812.34 -

Distributed with 4 Workers

27 2.98 1.45 9.18 0.07 0.15 13.83 -18

28 2.77 1.60 11.13 0.10 0.17 15.77 -4

29 3.10 1.99 13.73 0.17 0.21 19.20 14

210 3.81 3.11 18.89 0.32 0.30 26.43 26

211 5.03 5.08 29.34 0.57 0.50 40.52 36

212 7.78 9.21 52.73 1.07 0.90 71.70 43

213 12.82 17.37 92.72 2.22 1.73 126.86 51

214 23.77 34.50 192.10 4.48 3.42 258.27 44

215 45.24 68.69 380.40 9.48 6.93 510.73 42

216 89.34 139.72 742.75 19.95 14.34 1006.11 44

Distributed with 8 Workers

27 2.91 2.62 12.32 0.05 0.25 18.14 -55

28 2.96 2.75 14.24 0.07 0.27 20.29 -33

29 2.81 3.14 17.79 0.10 0.31 24.15 -9

210 3.26 4.21 23.49 0.17 0.42 31.55 12

211 3.90 6.33 33.90 0.32 0.62 45.07 29

212 5.08 10.14 51.66 0.60 0.98 68.46 46

213 7.75 18.25 98.22 1.19 1.77 127.19 51

214 13.23 35.68 170.74 2.37 3.50 225.53 51

215 23.30 69.48 392.43 4.72 6.83 496.76 44

216 45.54 136.52 729.15 9.95 13.75 934.92 48

Table 5.4: Comparison of processing times in (ms) between centralized and dis-
tributed approach with BGV scheme

124

CHAPTER 5. SCALABLE DISTRIBUTED HOMOMORPHIC ENCRYPTION FOR
COMPLEX COMPUTATIONAL MODELS

V
e
c
to
r
S
ize

K
e
y
G
e
n
e
ra
tio
n

E
n
c
ryp

tio
n

C
o
m
m
u
n
ic
a
tio
n

A
rith

m
e
tic

D
e
c
ryp

tio
n

To
ta
l

Im
p
ro
v
e
m
e
n
t

(%
)

Centralized

27 3.61 0.97 10.10 0.18 0.09 14.95 -

28 4.66 1.63 14.43 0.33 0.15 21.19 -

29 7.14 2.91 23.82 0.63 0.27 34.77 -

210 12.04 5.73 41.78 1.27 0.53 61.36 -

211 22.01 11.53 82.31 2.56 0.98 119.39 -

212 42.51 23.37 167.44 5.28 1.96 240.56 -

213 80.37 46.85 306.22 11.26 3.96 448.65 -

214 155.99 98.53 569.52 23.21 8.08 855.32 -

215 305.64 207.46 1211.48 48.34 16.76 1789.67 -

216 630.86 437.47 2484.71 102.43 34.54 3690.00 -

Distributed with 4 Workers

27 2.71 1.75 10.29 0.07 0.17 14.99 0

28 3.00 2.22 13.70 0.11 0.22 19.27 9

29 3.62 3.58 19.02 0.20 0.33 26.74 23

210 4.69 6.14 28.40 0.34 0.54 40.12 35

211 7.31 11.42 51.83 0.66 1.00 72.23 40

212 12.32 22.34 91.22 1.27 1.87 129.02 46

213 21.64 43.29 196.51 2.55 3.69 267.68 40

214 41.79 88.30 370.48 5.35 7.43 513.34 40

215 81.23 181.18 750.58 11.17 15.18 1039.34 42

216 157.05 376.06 1419.04 23.26 31.37 2006.78 46

Distributed with 8 Workers

27 2.94 3.00 14.35 0.05 0.29 20.63 -38

28 2.72 3.43 18.44 0.07 0.33 24.99 -18

29 3.09 4.65 23.03 0.11 0.43 31.30 10

210 3.76 7.44 33.21 0.22 0.66 45.30 26

211 4.84 12.51 51.40 0.39 1.10 70.24 41

212 7.30 22.58 98.15 0.70 1.99 130.71 46

213 12.43 45.66 170.76 1.38 3.95 234.19 48

214 21.92 88.40 392.42 2.80 7.70 513.25 40

215 42.11 184.91 737.99 5.58 15.65 986.23 45

216 83.99 373.96 1423.49 11.37 33.27 1926.07 48

Table 5.5: Comparison of processing times in (ms) between centralized and dis-
tributed approach with CKKS scheme

125

CHAPTER 5. SCALABLE DISTRIBUTED HOMOMORPHIC ENCRYPTION FOR
COMPLEX COMPUTATIONAL MODELS

The figures below illustrate the variations among the tested approaches. The

top figure displays the processing time in milliseconds (y-axis) for the three ap-

proaches: centralized (represented in blue), distributed with four workers (rep-

resented in orange), and distributed with eight workers (represented in gray),

as a function of the vector size of the messages (x-axis). The bottom figure

demonstrates the performance improvement of the distributed approaches (y-

axis) compared to the centralized approach in terms of percentage.

(a) Comparison of the processing times

(b) Improvement of the distributed approach over the centralized approach

Figure 5.4: Comparison of centralized and distributed approaches at different
vector sizes with BVF scheme.

The results of the BVF scheme, shown in Figure 5.4, reveal that adopting a dis-

tributed approach with four workers becomes advantageous in terms of pro-

cessing time once the message length reaches 29. Specifically, there’s a sig-

nificant reduction in processing time from 22.69ms to 20.07ms, corresponding

to a 12% improvement. Furthermore, for message lengths of 210 and above,

126

CHAPTER 5. SCALABLE DISTRIBUTED HOMOMORPHIC ENCRYPTION FOR
COMPLEX COMPUTATIONAL MODELS

a distributed approach with eight workers outperforms the centralized method,

achieving a processing time of 37.41ms compared to 30.68ms (an 18% improve-

ment). For message lengths of 4096 and beyond, employing eight workers rather

than four is advisable, as the benefits of larger message sizes outweigh the in-

creased overhead associated with eight workers. Overall, the results suggest that

up to a message size of 211, the different approaches perform similarly. However,

as the message size increases, the differences between the approaches become

more marked.

(a) Comparison of the processing times

(b) Improvement of the distributed approach over the centralized approach

Figure 5.5: Comparison of centralized and distributed approaches at different
vector sizes with BGV scheme.

The findings from the BGV scheme, depicted in Figure 5.5, show results similar to

those of the BVF scheme. Regarding processing times, the distributed approach

using four workers outperforms the centralized approach for a message size of 29,

with a processing time of 19.20ms compared to 22.20ms in the BVF scheme (a

127

CHAPTER 5. SCALABLE DISTRIBUTED HOMOMORPHIC ENCRYPTION FOR
COMPLEX COMPUTATIONAL MODELS

14% enhancement). Moreover, the distributed approach with eight workers in BGV

generally yields similar results to the eight-worker distributed approach in BVF,

leading to a closely resembling results curve between BGV and BVF.

(a) Comparison of the processing times

(b) Improvement of the distributed approach over the centralized approach

Figure 5.6: Comparison of centralized and distributed approaches at different
vector sizes with CKKS scheme.

The results presented in Figure 5.6 indicate that the CKKS scheme experiences

longer message processing times compared to BGV and BVF. Nevertheless, it

highlights the benefits of a distributed approach for smaller message sizes. Specif-

ically, the distributed approach with four workers improves processing time by 9%

(19.27ms vs. 21.19ms) for a message size of 28. Additionally, using eight workers

in the distributed approach surpasses the centralized approach’s performance

starting from a message size of 29, achieving a 23% improvement (31.30ms vs.

34.77ms). Notably, even at a message size of 211, the distributed approach with

128

CHAPTER 5. SCALABLE DISTRIBUTED HOMOMORPHIC ENCRYPTION FOR
COMPLEX COMPUTATIONAL MODELS

eight workers shows a 3% improvement over the performance achieved with four

workers (70.24ms vs. 72.23ms). This trend of improvement follows the pattern

observed in previous schemes but manifests at an earlier stage.

5.6 Discussion and Analysis

The analysis of processing times across different approaches—centralized, dis-

tributed with four workers, and distributed with eight workers—reveals significant

insights into optimizing computational performance based on the size of the

message vector. A critical observation from the data is the threshold effect in

the efficacy of distributed computing. Specifically, the transition points at which

distributed approaches with varying numbers of workers start to outperform the

centralized method provide practical guidelines for selecting an optimal com-

puting strategy. For example, for the BFV scheme at a message length of 29,

transitioning from a centralized to a distributed model with four workers yields

a 12% improvement in processing times. This enhancement becomes more pro-

nounced with message lengths of 210 and above, where employing eight workers

offers an 18% improvement over the centralized approach. The BGV scheme

shows a similar trend; at a message length of 29, shifting from a centralized to a

distributed model with four workers yields a 14% improvement, and for lengths

of 210 and above, the distributed model with eight workers yields a 12% improve-

ment. Notably, the CKKS scheme starts to outperform the centralized method at

a message length of 28, yielding a 9% improvement over the centralized model,

and 23% for message lengths of 29. With the CKKS scheme, the distributed model

with eight workers begins to outperform the centralized method at a message

length of 29, yielding a 10% improvement over the centralized model, and 26% for

the message length of 210. The CKKS scheme adds another layer of complexity,

indicating that for smaller message sizes, the benefits of distributed computing

are already evident. Such data suggest that the distributed model’s superiority

becomes more apparent as task complexity increases, highlighting the scalability

advantage of distributed computing. For large messages, the superiority of the

distributed approach is evident; for instance, for a message size of 216, the BFV

scheme outperforms the centralized method with a 49% improvement utilizing

the distributed model with four workers, and 50% with eight workers. The BGV

129

CHAPTER 5. SCALABLE DISTRIBUTED HOMOMORPHIC ENCRYPTION FOR
COMPLEX COMPUTATIONAL MODELS

scheme outperforms the centralized method with a 44% improvement utilizing the

distributed model with four workers, and 48% with eight workers. Finally, the CKKS

scheme outperforms the centralized method with 46% and 48% improvement

utilizing the distributed model with four and eight workers, respectively. These

findings collectively underscore the importance of context in selecting an optimal

computing approach. Factors such as the specific encryption scheme, message

vector size, and available computing resources play crucial roles in determining

whether and to what extent a distributed approach should be adopted. Addition-

ally, the data indicates a general trend toward greater efficiency with increased

distribution for larger tasks, suggesting that as computational demands grow, so

too does the benefit of leveraging more distributed computing resources.

5.7 Summary

This chapter presents a novel distributed FHE approach designed to process

sensitive and confidential data while ensuring information security and privacy.

To evaluate the performance of the proposed approach, a test environment was

set up using multiple virtual instances hosted on an external server. The CKKS,

BGV, and BFV, which are widely adopted FHE schemes, were employed to perform

arithmetic operations on datasets of varying sizes up to 216. Fifty test runs were

conducted for each combination of the three FHE schemes and different data

sizes, comparing the centralized and distributed approaches. The experimental

results demonstrated significant time savings of up to 54% in the distributed

approach as compared to the centralized approach. These findings indicate

that the proposed distributed FHE approach holds great promise for efficiently

handling large volumes of confidential data in untrustworthy public environments

while maintaining security and privacy. Additionally, scalability analysis was

conducted by increasing the number of virtual instances and dataset sizes. The

results revealed that the distributed FHE approach exhibits high scalability and is

capable of effectively managing substantial amounts of data. In conclusion, the

research presented in this chapter introduces a novel distributed FHE approach

for processing sensitive data with a focus on information security and privacy.

130

6 Shadow-Analyzer: Efficient

Detection of Ghost Objects in

Autonomous Driving using Neural

Networks

6.1 Introduction

In recent years, EC has emerged as a pivotal technology that enhances the safety

and intelligence of modern transportation systems. By enabling vehicles to com-

municate with each other, EC ensures the maintenance of road traffic safety and

balance [43]. Moreover, EC facilitates more efficient handling of special road

scenarios, such as accidents or emergency situations, through Vehicle-to-Thing

communication. This capability has proven crucial in enabling effective response

strategies and optimizing resource allocation in critical situations. Furthermore,

EC plays a vital role in enhancing the capabilities of road cameras by enabling

vehicle detection and tracking [45]. This integration empowers transportation

infrastructure with intelligent monitoring and surveillance systems, augmenting

overall traffic management and enabling proactive measures to ensure safety

and efficiency. While EC has demonstrated its potential in advancing transporta-

tion systems, certain security concerns remain, particularly in the context of

autonomous driving. LiDAR spoofing attacks, for instance, pose significant risks

that must be addressed to ensure the integrity and reliability of autonomous

vehicles. In this regard, offloading security-related tasks to edge nodes presents

a promising approach. The primary focus of this chapter is to explore strategies

131

CHAPTER 6. SHADOW-ANALYZER: EFFICIENT DETECTION OF GHOST OBJECTS IN
AUTONOMOUS DRIVING USING NEURAL NETWORKS

and protocols that can enhance Vehicle-to-Thing communication using EC, ulti-

mately aiming to improve traffic safety and efficiency while effectively handling

special road scenarios, including the threat of LiDAR spoofing attacks. To achieve

these objectives, several key areas will be addressed. First, it is crucial to reduce

the amount of data required for reliable and accurate detection. Efficient data

processing at the edge ensures optimal utilization of available computing power

nearby, thereby enhancing real-time response capabilities. However, it is essen-

tial to minimize the data that needs to be processed without compromising the

reliability and accuracy of object detection. In this chapter, we will delve into

the complexities of V2X communication and explore the role of EC in improving

traffic safety and efficiency. We will examine existing strategies, identify their

strengths and limitations, and propose a novel approach to address the chal-

lenges posed by LiDAR spoofing attacks. This approach involves using neural

networks and object shadow verification, requiring minimal data and focusing

on 2D transformed LiDAR images for predictions. As discussed in the following

chapter, this method serves as a case study to demonstrate the efficiency of

leveraging edge computing power to counter security threats like LiDAR spoofing

attacks, particularly when combined with efficient resource allocation.

6.2 Fundamentals and Vulnerabilities of LiDAR

Sensing Technology

The LiDAR sensor operates based on the fundamental principle of measuring the

travel time of optical light. This is achieved by emitting a focused laser beam of

specified intensity, which reflects back to the sensor upon contact with an object.

The distance d to the object can be calculated considering the speed of light

c = 299792458m
s , the refractive index of a non-vacuum medium n = 1.000292,

and the time ∆t required for the signal to return to the sensor, as illustrated in

Equation 6.1.

d =
c ∗∆t
2n

(6.1)

132

CHAPTER 6. SHADOW-ANALYZER: EFFICIENT DETECTION OF GHOST OBJECTS IN
AUTONOMOUS DRIVING USING NEURAL NETWORKS

The operational methodology of LiDAR bears similarities to radar systems, with

the primary difference lying in the nature of the emitted signal. The crucial

determinant is the type of laser beam used. Hence, a majority of contemporary

LiDAR systems predominantly operate in the near-infrared spectrum, within a

range of 850 to 950 nanometers. Various methods can be employed to generate

a LiDAR signal, with one of the oldest and most commonly used being the rotating

LiDAR system (see Figure 6.1).

Figure 6.1: A Rotating LiDAR System for 360-Degree Environmental Detection

This technique involves directing a laser pulse towards a rotating mirror by a

transmitter, which subsequently reflects the signal into the environment being

scanned. The signal, upon hitting an object, is reflected back to the LiDAR sensor

and directed to the receiver via the mirror, facilitating a 360-degree environmen-

tal scan around the vehicle [246]. However, a notable drawback of this setup

is the formation of numerous blind spots in the immediate vicinity of the vehi-

cle due to the sensor’s roof-mounted position. Being an optical technique for

environmental perception that relies on light, LiDAR sensors are susceptible to

deception or manipulation with relatively minimal effort. A typical spoofing attack

could be carried out by transmitting a signal at the same frequency as the LiDAR

sensor. Since there is no physical interaction with the sensor, such an attack is

undetectable by the system [247].

133

CHAPTER 6. SHADOW-ANALYZER: EFFICIENT DETECTION OF GHOST OBJECTS IN
AUTONOMOUS DRIVING USING NEURAL NETWORKS

6.2.1 Feasibility of Injecting False Points in LiDAR Systems

This is corroborated by various studies that have successfully conducted attacks

on LiDAR sensors under diverse conditions, yielding differing results. Petit’s work

[193] serves as an early significant contribution in this field. The study explored

multiple attack forms on LiDAR, including jamming, relay, and spoofing attacks.

The experimental setup comprised a victim LiDAR sensor, an attack transceiver,

and a pair of pulse generators functioning as control logic. Upon the transmis-

sion of a signal by the LiDAR, it was intercepted by the transceiver and relayed

to the control logic. The latter generated a series of delayed signals that were

then returned to the transceiver. These signals were then transmitted back to

the victim LiDAR with the intent of tricking it. The experiment managed to recre-

ate a detected wall multiple times and positioned it at distances of 40, 50, and

70 m from the LiDAR sensor. Subsequently, the object detector recognized and

classified these as objects. However, it is essential to highlight some limitations

observed in this experimental design. For instance, the study was unable to in-

troduce an object closer than 20 m, regardless of the signal delay. Moreover,

the distance between the spoofing equipment and the victim vehicle significantly

impacted the attack’s quality; a larger distance resulted in many attack pulses

falling outside the LiDAR’s recording time window and thus, not being registered.

It is also important to note that the experiments were conducted in a controlled

indoor setting on a stationary object. Shin [192] addresses the aforementioned

limitations, using a structure almost identical to that of Petit [193], but with the

added capability of inserting points closer than the spoofer tools themselves. Un-

der outdoor conditions, it was possible to insert 10 false points through an attack.

While this may seem insignificant, these points are adequate to represent an

object at a distance of 55 meters. It’s crucial to note that 55 meters corresponds

to the braking distance at a speed of around 100 km/h, implying a significant

risk under certain conditions. Moreover, the number of insertable points could be

expanded by the attacker increasing their spoofer tools. The reduced number of

points inserted in comparison to Petit’s method could be attributed to differences

in LiDAR sensors used. Petit employed an IBEO LUX3, while Shin used a VLP-16,

making a direct comparison challenging. Cao’s study [191] builds upon Shin’s

134

CHAPTER 6. SHADOW-ANALYZER: EFFICIENT DETECTION OF GHOST OBJECTS IN
AUTONOMOUS DRIVING USING NEURAL NETWORKS

work [192], adopting the same attack setup, while introducing enhancements in

the individual tools. The laser driver module was improved, enabling a markedly

superior pulse rate of 2.304µ in comparison to the 100µ from Shin’s work. This

high pulse rate is comparable to that of the VLP-16 sensor. Further enhancements

to the optical lens expanded the attack range beyond 5 meters. Consequently,

this allowed for the insertion of up to 100 fake points starting from a 10-meter

distance, although these were executed in a controlled environment. However,

it was observed that at 100 points, the points occasionally fail to land at their

intended locations, leading to instability. Optimal results were achieved within

the range of 60 points, where points could be inserted precisely. While Cao’s

research [191] successfully increased the number of points an attacker could

insert, certain limitations persist. These experiments, like their predecessors,

were conducted in secure, proprietary environments, lacking the realistic attack

performance and practical application in real-world traffic. This presents new

challenges, such as the dynamic targeting of the victim’s LiDAR sensor by an

attacker. Sun’s research [248] demonstrated the possibility of inserting as many

as 200 fake points into a LiDAR system, the VLP-16 sensor. This was achieved by

adapting the experimental setup of Cao [191] and enhancing it with a finely-tuned

comparator circuit that bridges the photodiode and delay components, which

offered a more controllable time delay. Also, by adding a COTS lens in front of

the attack laser, the laser beam’s refraction was improved, thereby extending

the azimuth range. This research predominantly relies on black-box attacks, in

contrast to previous studies that focused on white-box attacks, where the attacker

has extensive knowledge about the victim system’s internal processes. However,

it is worth noting that this study lacks testing in actual road conditions, marking

it as a potential limitation. To progress from the proof-of-concept stage, further

testing is imperative. Cao’s recent work [249] addresses the limitations identified

in his previous research [191], extending the attack scenarios to include moving

targets rather than just static or simulated scenarios. By leveraging the SSD In-

ception v2 COCO model, the attacker successfully located and spoofed the VLP-16

LiDAR sensor on a robot. Experiments under various conditions, including speed,

distance to the spoofer, and lighting conditions, were carried out. During the

135

CHAPTER 6. SHADOW-ANALYZER: EFFICIENT DETECTION OF GHOST OBJECTS IN
AUTONOMOUS DRIVING USING NEURAL NETWORKS

attack procedures, up to 100 fabricated data points were inserted while the robot

moved at speeds reaching 0.11 m/s towards the attacker. These outcomes offer

preliminary evidence regarding the viability of spoofing attacks under realistic

road conditions.

6.2.2 Attack Distance Feasibility

The study conducted by Hau, Zhongyuan, et al. [201] demonstrated a defined

distance beyond which an attacker could not effectively spoof an object while

simultaneously imitating a genuine shadow. In order to characterize the LiDAR

resolution, the researchers identified the point density within certain regions. A

thorough analysis was carried out on the average point-cloud density throughout

the entire KITTI dataset, as presented in Table 6.1. The findings reveal that, in

close proximity (5 meters) to the test vehicle, the number of points is remarkably

high, with 4858 points for a car, 1718 for a bicyclist, and 1187 for a pedestrian.

As the distance from the vehicle increases, there is a marked decline in the

average number of LiDAR points recorded per object. For example, at a range

of 20 to 25 meters from the test vehicle, the point count for a vehicle drops to

208. Bicyclists and pedestrians, being relatively smaller objects, have fewer than

100 points, considering the attacker’s capacity is restricted to 200 spoofed LiDAR

points [248]. This suggests that automobiles located at a distance of 20-25

meters and pedestrians and cyclists located at a distance of 10-15 meters are

likely to have an average of 200 points within their bounding box. Hence, at

a distance of 10 meters or more, an attacker could potentially spoof objects

that are indistinguishable from real objects in the LiDAR data. Consequently, for

the purposes of this study, the simulation of spoofing attacks was focused on

distances of 10 meters and beyond. This area in front of the targeted vehicle is

particularly relevant in terms of potential consequential damage, as discussed in

the next Section 6.3.

136

CHAPTER 6. SHADOW-ANALYZER: EFFICIENT DETECTION OF GHOST OBJECTS IN
AUTONOMOUS DRIVING USING NEURAL NETWORKS

Distance/Avg.

Points

Car Cyclist Pedestrian

0-5 4858 1718 1187

5-10 2040 651 455

10-15 865 263 207

15-20 405 125 99

20-25 208 78 62

25-30 117 53 42

35-40 73 37 27

40-45 51 17 29

45-50 36 12 16

Table 6.1: Relationship between Object Distance and Point Density within Bound-
ing Boxes as Detected by LiDAR.

6.3 Attack Goal and Threat Model

In our proposed approach, we investigate a scenario wherein an attacker seeks

to deceive LiDAR perception systems by generating the illusion of non-existent

objects within a short distance (10–15 meters) in front of the vehicle. This range

holds particular significance, especially in urban environments, due to the po-

tentially severe consequences it poses. Should a false object suddenly appear

within this proximity to an autonomously driven vehicle, it would trigger an im-

mediate emergency braking or evasive response. Such a reaction is critical, as

the calculated braking distance in an urban scenario, traveling at a speed of

50 km/h, amounts to 12.5 meters, as denoted by Equation (6.2). Consequently,

an emergency braking situation induced by such a spoofing attack could create

hazardous conditions for the vehicle’s occupants or other road users, as depicted

in Figure 6.2. It is essential to emphasize that the reaction time is negligible in the

case of an autonomously driven vehicle.

braking distance = (
speed2

100
)/2 (6.2)

137

CHAPTER 6. SHADOW-ANALYZER: EFFICIENT DETECTION OF GHOST OBJECTS IN
AUTONOMOUS DRIVING USING NEURAL NETWORKS

Threat model: To achieve the attack objectives outlined previously, our approach

utilizes the threat model proposed by [191], [201]. We consider an adversary with

expertise in deceiving an AV’s 3D object detector by spoofing LiDAR return signals.

There are various scenarios in which an adversary can execute such an attack.

In one scenario, the attacker can position a malicious device on the roadside,

sending deceptive laser pulses to passing AVs. Alternatively, the adversary may

operate an attack vehicle equipped with the malicious device, driving in front of

the targeted AV or in an adjacent lane [191].

Figure 6.2: Critical Safety Zone: Importance of 10-15m Ahead of Autonomous
Vehicles in Spoofing Attacks.

Our approach closely aligns with the spoofing attack method described by [248].

This attack involves three key components: a photodiode, a delay unit, and an

infrared laser (see Figure 6.3). This method can be categorized as a white box

attack, given the attacker’s comprehensive understanding of the victim’s system

in this scenario. The execution of the spoofing attack proceeds as follows: first,

the photodiode detects the light pulse emitted by the targeted LiDAR system.

Upon detection, the diode activates a delay unit, which triggers the infrared laser

after a precisely defined time. The timing is carefully chosen to coincide with the

next LiDAR pulse. Given the attacker’s comprehensive knowledge, the precise

interval between LiDAR pulse transmissions can be ascertained. As a result of this

well-timed activation, the laser beam emitted by the attacker is misinterpreted by

the LiDAR system as a legitimate reflection. This leads to the successful execution

of the spoofing attack, generating a deceptive point in the point cloud. The

location of these inserted points within the LiDAR’s field of view can be controlled

138

CHAPTER 6. SHADOW-ANALYZER: EFFICIENT DETECTION OF GHOST OBJECTS IN
AUTONOMOUS DRIVING USING NEURAL NETWORKS

by adjusting the duration of the laser pulse delay. By employing this spoofing

attack method, the adversary can deceive the AV’s 3D object detector, potentially

causing critical misperceptions that may compromise the vehicle’s safety and

performance.

Figure 6.3: Graphical Representation of LiDAR Spoofing Technique.

6.4 2D Shadow-Analyzer approach

The LiDAR shadow verification approach proposed in this study focuses exclu-

sively on 2D bird’s-eye view images (refer to Figure 6.4). The process begins with

object detection using a LiDAR sensor, which generates a 3D point cloud of the

surrounding environment. A 3D object detector is then employed to identify and

classify all objects within this point cloud. Each identified object is enclosed within

a “bounding box“, providing important information about its dimensions, such as

height, width, and length. Next, a 3D point cloud representing the environment

and its objects, along with their local positions and dimensions, is prepared. This

information is transmitted to the Shadow-Analyzer to generate 2D images imme-

diately. An object region proposal algorithm is utilized to select objects within

a critical distance from the vehicle, creating a bird’s-eye view image for each

object. The key step in 2D image generation involves masking out all points that

are above the respective object’s height. Once the 2D images of the objects are

prepared, a shadow check is performed using an artificial neural network based

on Convolutional Neural Network (CNN). This pre-trained network determines

whether the object has a genuine shadow (i.e., an authentic object) or if it is a

139

CHAPTER 6. SHADOW-ANALYZER: EFFICIENT DETECTION OF GHOST OBJECTS IN
AUTONOMOUS DRIVING USING NEURAL NETWORKS

ghost attack, which refers to an object without a shadow. CNNs are inherently

designed to recognize patterns directly from pixel images with minimal prepro-

cessing, making them highly suitable for tasks that involve image or spatial data,

such as the detection of shadows or the absence thereof to identify ghost objects.

The choice is further justified by the system’s requirements to make real-time

decisions to ensure safe driving and minimize risk. By using a reduced dataset, the

Shadow-Analyzer optimizes computational resources, enabling efficient process-

ing at the edge, which is critical for real-time detection in autonomous vehicles.

This efficient data processing capability of Convolutional Neural Network (CNN)s,

coupled with their proven success in image recognition and classification tasks,

makes them an ideal choice for the Shadow-Analyzer system, where speed and

accuracy are paramount.

Figure 6.4: LiDAR Shadow Verification: 2D Image-Based Approach for Detecting
Ghost Attacks.

6.4.1 3D Object Detector

In the domain of 3D object detection from LiDAR point clouds, the prevailing

approach involves the utilization of a Graph Neural Network (GNN) known as

Point-GNN. In this research, we have chosen to adopt the object detection method

proposed in [250]. The selected approach effectively identifies objects within

the point cloud and subsequently generates precise 3D bounding boxes for each

detected object. These bounding boxes encapsulate crucial data, including the

object’s height, length, and width, offering comprehensive information about the

objects present in the scene.

140

CHAPTER 6. SHADOW-ANALYZER: EFFICIENT DETECTION OF GHOST OBJECTS IN
AUTONOMOUS DRIVING USING NEURAL NETWORKS

6.4.2 2D Bird’s-eye View Generator

The generator for 2D images plays a crucial role as the final preprocessing step

before feeding data into the artificial neural network. It takes in the 3D point cloud

of the current scene, along with bounding box information, including height, width,

and length dimensions of objects. Subsequently, the scene is examined to identify

objects within the defined examination area, known as the Critical Low Range

Distance (CLRD), which is determined using the Pythagorean theorem as shown in

Equation (6.3). Subsequently, only objects within the CLRD are evaluated, while

the rest are disregarded. Notably, the assessment is limited to objects located in

front of the vehicle.

r2 = x2 + y2 (6.3)

After identifying objects within the CLRD, a bird’s-eye view image is generated for

each of them (see Figure 6.5).

Figure 6.5: Visualization of 2D Image Generation for Scene Objects.

To prevent distortion of the LiDAR shadow, any points above the object height

are concealed (see Figure 6.6). By doing so, the shadow of the object is clearly

exposed and can be accurately identified in the generated 2D image.

141

CHAPTER 6. SHADOW-ANALYZER: EFFICIENT DETECTION OF GHOST OBJECTS IN
AUTONOMOUS DRIVING USING NEURAL NETWORKS

Figure 6.6: LiDAR point separation to mitigate shadow adulteration: Removing
points above object height (shown in red).

6.4.3 Shadow Verification

After the image generator produces 2D images of the scene, each with dimensions

of 150 x 150 pixels, these images are subjected to a classification model for

verification. The purpose of this model is to perform binary classification on

each image derived from the current scene, with the goal of distinguishing the

presence or absence of shadows. This enables the model to identify whether each

image represents a legitimate object or a deceptive attack. This approach is now

feasible as all points above each object have been eliminated, thereby preserving

the purity of the shadow region. As a result, the existence or absence of a shadow

region corresponding to each object is evaluated (see Figure 6.7). To achieve this,

a verification procedure is implemented by utilizing a CNN. The CNN is specifically

designed to verify LiDAR shadow regions. The model is trained to recognize and

evaluate the existence or absence of a shadow region corresponding to each

object in the scene.

(a) Real object with clear shadow (b) Spoofed Object without shadow

Figure 6.7: Comparison of 2D image generation results with genuine (a) and
spoofed (b) objects.

142

CHAPTER 6. SHADOW-ANALYZER: EFFICIENT DETECTION OF GHOST OBJECTS IN
AUTONOMOUS DRIVING USING NEURAL NETWORKS

6.5 Data Reduction

The chapter begins by emphasizing the importance of minimizing the data re-

quired for reliable and accurate detection. Efficient data processing at the edge

enables optimal use of nearby computing power, leading to enhanced real-time

response capabilities. However, it was highlighted that the reduction in data

processing must not compromise the precision and reliability of object detection.

The Point Cloud Data (PCD) format, which stores the XYZ coordinates of a 3D

point cloud in ASCII format, proves highly effective for comparing volumes of

point cloud data. The average data volume of a 3D point cloud from the KITTI

benchmark dataset is approximately 1449.34KB (calculated from 100 scenes) in

PCD format. Thanks to the multiple reductions of the point cloud implemented

in our approach, the average data size for examining a single object is reduced

to 215.62KB. This represents a reduction of more than 85% in the size of the

original point cloud for each object. Although multiple objects can exist within a

scene, the entire 3D point cloud’s data volume does not need to be processed,

thanks to the reduction in point cloud size (refer to Figure 6.8).

Figure 6.8: Effective Reduction of Point Cloud Data: Examining Single Objects with
85% Less Data Volume.

6.6 Shadow-Analyzer Models

In this section of the PhD thesis, we present the development of two CNN mod-

els. While both models share a common architecture in their initial layers, they

demonstrate notable distinctions in their final layer configurations. The detailed

143

CHAPTER 6. SHADOW-ANALYZER: EFFICIENT DETECTION OF GHOST OBJECTS IN
AUTONOMOUS DRIVING USING NEURAL NETWORKS

structure and unique characteristics of each model will be elaborated in their

respective sections that follow. The choice of layers and convolution sizes was de-

termined through empirical testing and optimization to achieve high accuracy and

low processing time for the application in ghost object detection for autonomous

vehicles.

6.6.1 CNN-Sigmoid

The model is composed of five blocks, as illustrated in Table 6.2. The first four

blocks consist of alternating convolution and max-pooling operations.

Block Layer Activation

1
Convolution (32, (3 x 3))
MaxPooling (2,2)

ReLU

2
Convolution (64, (3 x 3))
MaxPooling (2,2)

ReLU

3
Convolution (126, (3 x 3))
MaxPooling (2,2)

ReLU

4
Convolution (128, (3 x 3))
MaxPooling (2,2)

ReLU

5
Flattening
Dense (512)
Dense (1)

ReLU
Sigmoid

Table 6.2: Overview of the CNN-Sigmoid model architecture.

The fifth block includes a Flatten Layer, a Fully-Connected Dense Layer, and the

Output Layer. The Flatten Layer takes the results of the feature extraction per-

formed by the preceding layers and converts them into a one-dimensional array.

Following this transformation, the data is forwarded to the Fully-Connected Dense

Layer for feature analysis. The final layer, designed for the binary classification

task, contains only one neuron and performs the ultimate classification to deter-

mine the presence or absence of a shadow.

Activation function: In the CNN sigmoid model, the activation function employed

is the sigmoid function, as the name implies. The sigmoid function is frequently

used for solving non-linearly separable problems in classification tasks. It is

characterized by its domain, which includes all real numbers, and its range, which

144

CHAPTER 6. SHADOW-ANALYZER: EFFICIENT DETECTION OF GHOST OBJECTS IN
AUTONOMOUS DRIVING USING NEURAL NETWORKS

lies within the interval (0,1) [251]. Due to this property, the sigmoid function is

often referred to as a squashing function because its output is always constrained

between 0 and 1, regardless of whether the input is a large positive or negative

value. This behavior holds true for any input value between −∞ and +∞. The

sigmoid function is typically applied in the final layer of the network to map the

prediction probability. The specific form of the sigmoid function used in this study

is provided in Equation (6.4).

σ (x) =
1

1+ e−x
(6.4)

Loss function: The selected loss function for this model is cross-entropy, also

known as log loss. It is used to evaluate the performance of a classification

model that produces output values ranging from 0 to 1. When calculating the

loss, the approach considers not only the accuracy of the predicted outcomes

but also the model’s confidence in differentiating between a real and a non-real

object. The cross-entropy function, specifically designed for binary classification,

is demonstrated in Equation (6.5).

Lossbinary = −(y ∗ log(p) + (1− y) ∗ log(1− p)) (6.5)

The variable y takes the value of 1 when the prediction aligns with the actual label,

while in all other cases, its value is set to 0. The variable p represents the out-

put probability of the model’s prediction, which is compared to the variable y [252].

Hyperparameter: Hyperparameters are user-defined settings that cannot be

determined by the model itself during a training session. These parameters are

crucial as they establish the general conditions for training.

The hyperparameters employed in this study are as follows:

• The batch size, which determines the number of training samples processed

before updating the internal parameters of the model.

• Steps per epoch refers to the number of batches utilized from a dataset to

complete a single epoch.

145

CHAPTER 6. SHADOW-ANALYZER: EFFICIENT DETECTION OF GHOST OBJECTS IN
AUTONOMOUS DRIVING USING NEURAL NETWORKS

• Epoch refers to the total number of complete passes through the entire

training dataset.

• The learning rate, which determines the extent of adjustments in response

to the error function during each update of the model weights.

The values for the CNN-Sigmoid model’s hyperparameters, as shown in Table 6.3,

were determined through several fine adjustments.

Hyperparameter Value

Epoch: 25

Steps per Epoch: 10

Batch Size: 28

Learning Rate: 0.0001

Table 6.3: Hyperparameters for the CNN-Sigmoid Model.

6.6.2 CNN-Linear

The structure of the second model is identical to that of the first model, with the

only difference being the activation function used in the last block, as illustrated

in Table 6.4.

Block Layer Activation

1
Convolution (32, (3 x 3))

MaxPooling (2,2)
ReLU

2
Convolution (64, (3 x 3))

MaxPooling (2,2)
ReLU

3
Convolution (126, (3 x 3))

MaxPooling (2,2)
ReLU

4
Convolution (128, (3 x 3))

MaxPooling (2,2)
ReLU

5
Flattening

Dense (512)

Dense (1)

ReLU

Linear

Table 6.4: Overview of the CNN-Linear model architecture.

146

CHAPTER 6. SHADOW-ANALYZER: EFFICIENT DETECTION OF GHOST OBJECTS IN
AUTONOMOUS DRIVING USING NEURAL NETWORKS

Linear activation function: The output from the dense layer is passed through,

resulting in the application of a simple linear activation function, as shown in

Equation (6.6):

f (x) = x (6.6)

Hinge loss function: The hinge loss function is specifically designed for training

classifiers in Support Vector Machines (SVMs). It penalizes predictions that fall too

close to or directly on the specified boundary, assigning a value up to 1. Correctly

classified predictions, located at an appropriate distance from the boundary,

receive a reward with a value of 0. Conversely, incorrectly classified predictions

that lie on the wrong side of the boundary are penalized with a value greater than

1, which depends on the distance to the boundary. Mathematically, the hinge loss

function can be expressed as shown in Equation (6.7).

Loss =max(0,1− yi(xi − b)) (6.7)

In the equation, the value yi corresponds to the label, representing the expected

result, while xi corresponds to the prediction made by the model in a single itera-

tion. If a bias b is present, it is subtracted from the prediction [252].

Hyperparameter: The parameters for this model are identical to those of the

CNN-Sigmoid model in terms of batch size and steps per epoch. However, there

are key differences characterized by a significantly higher number of epochs and

a slightly higher learning rate. The specific values are presented in Table 6.5.

Hyperparameter Value

Epoch: 100

Steps per Epoch: 10

Batch Size: 28

Learning Rate: 0.0002

Table 6.5: Hyperparameters for the CNN-Linear model.

147

CHAPTER 6. SHADOW-ANALYZER: EFFICIENT DETECTION OF GHOST OBJECTS IN
AUTONOMOUS DRIVING USING NEURAL NETWORKS

6.7 The experimental setup

The experimental setup depicted is utilized for both training and evaluating our

proposed method.

Table 6.6: System Configuration

Host Hardware

Processor AMD Ryzen 9 5900X

graphic card AMD Radeon RX 6900 XT

RAM 32 GB DDR4 (2x16)

VirtualBox Version 7.0.10

Main Virtual Machine

Used to train and test the ShadowAnalyzer

Prozessor 12 Logical CPU Cores

RAM 16GB

OS Ubuntu 20.04.6 LTS

Software Version Software Version

Mininet 2.3.0.d6 Open vSwitch 2.13.8

Ryu 4.34 Python 3.8.16

Tensorflow 2.10.0 Numpy 1.23.3

Pandas 1.0.5 Flask 1.1.2

Flask-Restful 0.3.8 sklearn 1.1.2

Dash 2.9.3

4xRyu Network Testing Machines

Used to test remote Machines with Ryu and Mininet

Prozessor 1 Logical CPU Cores

RAM 2GB

OS Debian 10.13

Software Mininet 2.3.0.d6

148

CHAPTER 6. SHADOW-ANALYZER: EFFICIENT DETECTION OF GHOST OBJECTS IN
AUTONOMOUS DRIVING USING NEURAL NETWORKS

6.8 Training

To ensure successful training, it is imperative to use a dataset that closely mirrors

real-world conditions. In this study, we utilized the KITTI (Karlsruhe Institute of

Technology and Toyota Technological Institute) dataset, which consists of six

hours of traffic scenarios recorded during a drive through Karlsruhe, Germany.

The data were gathered using two high-resolution color and grayscale video

cameras, a Velodyne laser scanner, and a GPS-equipped vehicle for localization.

The KITTI dataset is renowned for its applicability to a variety of research tasks,

including stereo vision, optical flow, visual odometry, 3D object detection, and 3D

tracking, making it a valuable resource for advancing algorithms in environment

perception for autonomous driving [253]. Our focus was on the Velodyne Lidar

Data and the 3D Tracklets provided by the dataset. The data is stored as floating-

point binaries. The first preprocessing step involves converting the tracklet.xml

data of a scene into a CSV file. To generate realistic Shadow Images, we use this

CSV BoundingBox file along with the Lidar data of the entire scene to create a

2D Bird’s Eye View of each object in front of the vehicle, cropped to a 150x150

pixel file, while excluding all points above the bounding box’s height. To assemble

a large and well-balanced dataset, we selected multiple scenes from different

environments and conditions within the KITTI dataset. To simulate realistic at-

tacks, we extracted point clouds of actual objects, such as cars, cyclists, and

pedestrians, from additional scenes within the same dataset. These are then

saved as X, Y, Z coordinates in a CSV file. If necessary, the number of points

saved can be adjusted to different values, for example, 60, 100, and 200. This

pattern can then be injected into a different scene in the shadow to simulate a

spoofed object, resulting in compromised Point Cloud Data. The result of such

a modification is demonstrated in Figure 6.9. In the image, the vehicle with the

LiDAR sensor is located in the central empty area. Due to its operational charac-

teristics, the LiDAR sensor is unable to detect points directly in front of the vehicle,

resulting in the characteristic empty white circle. In front of the vehicle, a cyclist

can be seen as a spoofed object, inserted into the scene and therefore without a

corresponding shadow. Conversely, real objects, such as the parked vehicles on

the side of the road, are visible, with empty white areas behind them, which we

define as shadows.

149

CHAPTER 6. SHADOW-ANALYZER: EFFICIENT DETECTION OF GHOST OBJECTS IN
AUTONOMOUS DRIVING USING NEURAL NETWORKS

Figure 6.9: Visualizing Cyclist Class Object Insertion in KITTI Benchmark Point
Cloud Dataset.

As mentioned in previous sections and supported by prior studies, the current

state of the art allows for the insertion of up to 200 fake points. Therefore,

we extracted target objects from datasets containing at least this number of

points. Figure 6.10 provides a visualization that demonstrates the appearance of

different objects with this number of points. It is evident that the number of points

is more than sufficient to accurately reproduce the shapes of pedestrians (a) and

cyclists (b), making them easily identifiable. While the shape of the vehicle (c)

can also be discerned, the larger object requires the points to be dispersed over

a greater area, resulting in an unnaturally low point density. Nonetheless, the

number of points ultimately depends on the distance to the LiDAR sensor, implying

that the vehicle (c) can be considered realistic at an appropriate distance.

Figure 6.10: Visualization of Object Selection for LiDAR-Based Spoofing Attack
using 200 Points.

150

CHAPTER 6. SHADOW-ANALYZER: EFFICIENT DETECTION OF GHOST OBJECTS IN
AUTONOMOUS DRIVING USING NEURAL NETWORKS

Using these methods, we generated two datasets, each consisting of 400 images.

The datasets were equally divided, with one half containing 200 images of real

objects accompanied by shadows, and the other half featuring 200 images with ar-

tificially inserted objects without shadows. For effective evaluation, each dataset

was further split into a training and a test dataset in a 70:30 ratio, resulting in 280

images for the training dataset and 120 images for the test dataset. In addition

to its role in training, the test dataset was utilized for the final evaluation of the

models, as elaborated in the subsequent evaluation section.

6.9 Metrics for performance measurement

In this section, we will discuss the performance metrics employed to evaluate the

results presented in the subsequent section. Performance metrics are utilized to

assess the effectiveness of a neural model and are conceptually similar to loss

functions. Within this study, we focus on two key metrics: Accuracy: Is one of the

most straightforward metrics used to evaluate the performance of a model. It can

be calculated using the following equation (see 6.8):

Accuracy =
Number of correct P redictions

Number of all P redicitons
(6.8)

Essentially, accuracy measures the percentage of correct predictions made by

a model. For instance, if a model yields 99 accurate predictions from a total of

100, the model’s accuracy is 99%. However, when a neural network is trained on a

dataset that exhibits class imbalance, this straightforward metric may not provide

a reliable evaluation of the model’s performance. More specifically, if data class 1

is overrepresented, the model may effectively identify it. However, if data class 2

is underrepresented, the model could struggle to accurately classify instances

from this less-represented class, thereby leading to poor performance [254].

ROC-Curve: This refers to the entire area under the Receiver Operating Charac-

teristic (ROC) curve. The construction of the ROC curve requires two values: the

True Positive Rate (TPR) and the False Positive Rate (FPR):

151

CHAPTER 6. SHADOW-ANALYZER: EFFICIENT DETECTION OF GHOST OBJECTS IN
AUTONOMOUS DRIVING USING NEURAL NETWORKS

explored two approaches: one based on 2D bird’s-eye views and the other focused

on 3D shadow regions. However, the 2D approach was discontinued early in the

research due to potential shadow contamination from larger objects situated be-

hind the detected objects. Such objects caused points within the shadow area that

could obscure or contaminate the shadow in the bird’s-eye view. As a result, for

the purpose of evaluation in this study, we refer to the results obtained using the

3D approach presented in [201]. Hau et al. reported accuracy and the AUC value

as the performance metrics for their final model, Shadow Catcher. The achieved

accuracy and AUC value were found to be 96.5% and 98.1%, respectively (refer to

Table 6.7). Furthermore, their research suggests that anomaly classification can

be effectively executed within a timeframe ranging from 3ms to 21ms.

Table 6.7: Performance Evaluation of the 3D Shadow Catcher Approach: Training
Results [201].

Despite the advancements made in previous work, our study addresses several

unresolved challenges related to the identification of shadow regions. These

challenges include objects occluded by other objects’ shadows, objects positioned

in front of larger objects (e.g., walls), objects situated far from the LiDAR unit

resulting in lower resolution, and overlapping shadow regions formed by multiple

aligned objects. To tackle these issues, we have developed and extended the

2D approach. Our novel solution for preventing contamination of an object’s

shadow region involves neglecting all points above the object’s height that could

potentially lead to contamination. By confining our method to the 2D dimension,

we also strive to optimize computational resources. Furthermore, the proposed

method is intended for integration within an SDN-controlled network, managed

by our intelligent resource allocator. The low computing power required by our

application empowers the resource allocator to deploy the application across

various resources, as we discuss in the subsequent chapter. To validate the

153

CHAPTER 6. SHADOW-ANALYZER: EFFICIENT DETECTION OF GHOST OBJECTS IN
AUTONOMOUS DRIVING USING NEURAL NETWORKS

efficacy of our approach, we developed and trained two CNN models, utilizing

multiple custom datasets. To ensure unbiased evaluation, we employed test

data extracted from these datasets, which were not previously encountered by

the models. Subsequently, the models were tested on two additional datasets,

and their results were compared with those reported by [201]. Our investigation

further sought to determine whether the newly developed 2D approach could

effectively address the aforementioned challenges related to shadow region

identification.

6.10.1 CNN-Sigmoid

In the first model, we employed a CNN with a sigmoid activation function in the

final layer. This model was evaluated using two distinct datasets: one on which

the model was trained and another new dataset. The evaluation considered vari-

ous metrics, including accuracy, AUC value, and the models’ losses. The model

produced exceptional results on both datasets, with a particularly notable perfor-

mance in accuracy and AUC value. For the first dataset, the average accuracy was

98.3% and the AUC value was 99.4% (see Table 6.8). The model’s performance on

the second dataset was comparable, yielding an average accuracy of 96.7% and

an AUC value of 99.4% (see Table 6.9).

Eval.-Nr. Loss Accuracy AUC-ROC

1 0.478 0.983 0.999

2 0.554 0.983 0.998

3 0.544 0.983 0.998

4 0.544 0.983 0.998

5 0.544 0.983 0.998

6 0.544 0.983 0.998

7 0.611 0.983 0.958

8 0.490 0.983 0.999

9 0.544 0.983 0.998

10 0.544 0.983 0.998

Total Average 0.597 0.983 0.994

Table 6.8: Training results of CNN-Sigmoid model evaluated on dataset 1.

154

CHAPTER 6. SHADOW-ANALYZER: EFFICIENT DETECTION OF GHOST OBJECTS IN
AUTONOMOUS DRIVING USING NEURAL NETWORKS

Eval.-Nr. Loss Accuracy AUC-ROC

1 0.505 0.967 0.996

2 0.460 0.967 0.997

3 0.460 0.967 0.996

4 0.563 0.967 0.997

5 0.518 0.967 0.967

6 0.518 0.967 0.996

7 0.494 0.967 0.996

8 0.460 0.967 0.997

9 0.460 0.967 0.997

10 0.518 0.967 0.996

Total Average 0.496 0.994 0.994

Table 6.9: Training results of CNN-Sigmoid model evaluated on dataset 2.

However, the promising performance of the trained model is overshadowed by

the high losses. The Loss for the first and second datasets was 0.597 and 0.496,

corresponding to 59.7% and 49.6% respectively. These high losses indicate that

the model’s accurate detection may be more serendipitous than systematic. Gen-

erally, a lower loss indicates a better model, except in cases of overfitting. As

the evaluations were conducted on test data rather than training data, we can

exclude overfitting as a factor. The observed high losses might be attributed to

several factors. For example, the simplicity of the network architecture might

cause it to recalibrate completely with each run, hindering observable learning

progress. Considering the high accuracy, it is plausible that the network effec-

tively recognizes a portion of the data but fails with others. Thus, the issue could

be related to binary classification. Another factor to consider is the duration of

classification, which affects the model’s suitability for real-time detection. The

CNN model classifies data within an average time of 5.322 ms (see Table 6.10).

However, despite this swift classification, the considerable losses compromise the

model’s reliability.

155

CHAPTER 6. SHADOW-ANALYZER: EFFICIENT DETECTION OF GHOST OBJECTS IN
AUTONOMOUS DRIVING USING NEURAL NETWORKS

Prediction time (ms)

Eval.-Nr. Dataset 1 Dataset 2

1 4.994 4.995

2 3.996 6.000

3 5.606 3.998

4 5.536 5.006

5 5.997 5.994

6 4.996 5.007

7 5.008 5.005

8 5.984 5.985

9 5.996 6.010

10 5.350 4.982

Total Average 5.346 5.298

Table 6.10: Performance analysis of CNN-Sigmoid model for classification time
duration.

6.10.2 CNN-Linear

We trained and evaluated a second model, referred to as the CNN-Linear model,

using the same datasets as the previous model. We conducted a detailed exami-

nation of accuracy, AUC values, and losses. The progression of the training can

be precisely tracked through the provided graphs (see Figure 6.12). The losses ini-

tially decrease dramatically and later plateau, signaling the cessation of further

learning progress. Accuracy displays a similar pattern, increasing rapidly at the

outset before stabilizing. The AUC value, in this case, exhibits optimal behavior,

closely mirroring accuracy.

156

CHAPTER 6. SHADOW-ANALYZER: EFFICIENT DETECTION OF GHOST OBJECTS IN
AUTONOMOUS DRIVING USING NEURAL NETWORKS

Figure 6.12: Training progress of the CNN-Linear model evaluated by the metrics.

An evaluation of the first dataset yielded an average accuracy of 97.7% and an

AUC value of 99.6% (see Table 6.11). The model’s low losses indicate successful

learning progress during training. Notably, the average loss for this model is 8.7%,

a marked improvement over the CNN model that utilizes the sigmoid function.

Eval.-Nr. Loss Accuracy AUC-ROC

1 0.106 0.958 0.993

2 0.053 0.983 0.999

3 0.036 0.992 0.998

4 0.139 0.986 0.994

5 0.068 0.967 0.999

6 0.096 0.987 0.988

7 0.110 0.975 0.999

8 0.099 0.988 0.995

9 0.103 0.975 0.998

10 0.059 0.958 0.996

Total Average 0.087 0.977 0.993

Table 6.11: Training results of CNN-Linear model evaluated on dataset 1.

In the evaluation of the second dataset, the results were comparable, with an

average accuracy of 97.9% and an AUC of 99.7% (see Table 6.12). The average

losses recorded were 9.1%.

157

CHAPTER 6. SHADOW-ANALYZER: EFFICIENT DETECTION OF GHOST OBJECTS IN
AUTONOMOUS DRIVING USING NEURAL NETWORKS

Eval.-Nr. Loss Accuracy AUC-ROC

1 0.121 0.979 0.994

2 0.060 0.983 0.999

3 0.062 0.983 0.998

4 0.082 0.992 0.999

5 0.088 0.983 0998

6 0.098 0.975 0.998

7 0.105 0.983 0.996

8 0.061 0.967 0.999

9 0.126 0.958 0.994

10 0.105 0.983 0.996

Total Average 0.091 0.979 0.997

Table 6.12: Training results of CNN-Linear model evaluated on dataset 2.

The outcomes achieved with this model surpass those reported in [201]. The

presented results yield an accuracy of 96.5% and an AUC of 98.1%. Our technique

outperforms these values with average scores of 97.8% (Accuracy) and 99.6%

(AUC). Furthermore, this model employs a 2D approach, which demands signifi-

cantly less computational power than the 3D approach used by Shadow Catcher

[201]. Nevertheless, it is crucial to establish whether the model is fit for real-time

operation. To this end, we scrutinize the classification duration. Shadow Catcher

[201] required a duration ranging from 3ms to 21ms for the classification process.

In contrast, the CNN-Linear model achieves an average classification duration of

5.856ms when evaluated on both datasets (see Table 6.13). This duration aligns

with the optimal case reported in the previous study. As a result, from a temporal

perspective, this model is well-suited for real-time applications.

158

CHAPTER 6. SHADOW-ANALYZER: EFFICIENT DETECTION OF GHOST OBJECTS IN
AUTONOMOUS DRIVING USING NEURAL NETWORKS

Prediction time (ms)

Eval.-Nr. Dataset 1 Dataset 2

1 5.993 5.008

2 6.082 5.983

3 6.994 5.994

4 4.983 5.994

5 5.550 4.987

6 6.996 4.992

7 5.719 5.997

8 4.954 6.288

9 6.995 5.002

10 6.624 5.989

Total Average 6.089 5.623

Table 6.13: Performance analysis of CNN-Linear model for classification time
duration.

6.11 Invalidation Attack

The 3D approach adopted by ShadowCatcher allows for LiDAR object verification

by inspecting their shadow regions. Similar to the 2D approach, it determines

the presence or absence of a shadow region. However, the potential for con-

tamination of legitimate shadow regions due to natural phenomena has led to

the implementation of a distance-based point weighting system within the 3D

approach. Points situated close to the object within the shadow region are allo-

cated a higher weighting, which subsequently raises the probability of a spoofing

attack. Conversely, points located at greater distances from the object within

the shadow region are given lower weights, thus only marginally increasing the

attack likelihood (see Fig. 6.13). This technique of shadow region verification

inadvertently generates a new attack surface that can be exploited by malicious

actors. In a white-box attack scenario, where the attacker has comprehensive

159

CHAPTER 6. SHADOW-ANALYZER: EFFICIENT DETECTION OF GHOST OBJECTS IN
AUTONOMOUS DRIVING USING NEURAL NETWORKS

knowledge of the victim’s system and defense tactics, the attacker could opt to

introduce false points into the shadow regions of legitimate objects rather than

injecting false objects into the point cloud. This action could effectively classify

these genuine objects as ghost entities within the victim’s system. Given that

the newly created attack surface in ShadowCatcher permits such an invalidation

attack, the 2D approach proposed in this study mitigates their feasibility by re-

ducing the attack surface. Our method initially eliminates all points above the

object’s height, thereby increasing the complexity of the attack as the spoofed

points must now be situated within a more confined area.

Figure 6.13: ShadowCatcher - Scoring Problem

6.12 Summary

In this chapter, we addressed the critical issue of enhancing V2T communication

through the use of EC to enhance traffic safety and efficiency, with a particular

focus on countering the threat of LiDAR spoofing attacks. The main objectives

were to reduce data requirements while ensuring reliable and accurate detection

and enabling real-time response capabilities. To achieve these goals, we first

emphasized the importance of efficient data processing at the edge, which allows

optimal utilization of computing power in the vicinity of vehicles. This edge-centric

approach improves real-time response capabilities and is crucial for handling

time-sensitive scenarios on the road. A central aspect of our approach was to

minimize data processing without compromising the precision and reliability of

object detection. To this end, we proposed a novel lightweight LiDAR spoofing-

attack detection technique based on 2D bird’s-eye view images. Our technique,

160

CHAPTER 6. SHADOW-ANALYZER: EFFICIENT DETECTION OF GHOST OBJECTS IN
AUTONOMOUS DRIVING USING NEURAL NETWORKS

the Shadow-Analyzer, demonstrated outstanding results, distinguishing ghost

objects with an impressive average accuracy of 97.8%. Moreover, it achieved

this detection within an average duration of just 6ms. These results provide

strong evidence that our solution meets real-time detection requirements while

significantly enhancing the performance of autonomous vehicles. The conclusion

of this chapter underscores the significance of EC in V2T communication, enabling

efficient data processing, and real-time detection capabilities.

161

7 Empirical Validation of Usability:

Extensive Evaluation of Our

Approach in an Edge Computing

Hardware Testbed

7.1 Introduction

In the previous chapters, we explored the significant growth of high-tech industries

and the groundbreaking innovations that have transformed our world. At the

heart of the ongoing technological revolution is the IoT, which has led to an era of

exponential data growth across various sectors. Managing these large volumes of

data requires additional computational resources. As a result, we have identified

the crucial roles of CC and EC as effective solutions to address the big data surge.

Efficient resource management is key to unlocking the full potential of the IoT

paradigm, offering a wide range of services and applications that improve our

lives with unmatched flexibility and convenience. To illustrate the effectiveness

and applicability of our proposed solution in chapter 3, we developed a hardware

testbed consisting of devices with varying computing capabilities, reflecting the

spectrum of IoT computing resources at the edge (see figure 7.1). This testbed

acts as a powerful proof of concept, demonstrating how our dynamic resource

allocation strategy, detailed in chapter 3, can optimally utilize available resources

for task execution. Specifically, we tailored our resource allocation to support

the shadow analyzer functionality discussed in Chapter 6. Through various

empirical tests, we evaluated our solution’s ability to efficiently use resources for

162

CHAPTER 7. EMPIRICAL VALIDATION OF USABILITY: EXTENSIVE EVALUATION OF
OUR APPROACH IN AN EDGE COMPUTING HARDWARE TESTBED

these tasks. The interaction between our resource allocation framework and the

shadow analyzer application in this testbed serves as a case study, illustrating

the feasibility and benefits of processing tasks at the edge with dynamic resource

allocation. In the following sections of this chapter, we will elaborate on the

structure and setup of our testbed and experimental procedures. We will then

present and extensively analyze the results of our empirical tests, highlighting

the efficiency and potential of our dynamic resource allocation method.

Figure 7.1: Testbed components

7.2 Testbed Setup for Resource Allocation Validation

In order to validate our resource allocation framework, we established a testbed

characterized by a hybrid configuration. This testbed integrates a mininet en-

vironment, which emulates client behaviors, a virtualized SDN Controller built

upon the Ryu platform, and various hardware resources interconnected with the

network.

7.2.1 Hardware Resources

Our primary objective is to execute a variety of tasks on computational resources,

spanning from basic arithmetic computations to complex processes such as ho-

momorphic encryption and machine learning tasks. For a realistic representation,

163

CHAPTER 7. EMPIRICAL VALIDATION OF USABILITY: EXTENSIVE EVALUATION OF
OUR APPROACH IN AN EDGE COMPUTING HARDWARE TESTBED

we utilized two distinct computational platforms, each possessing unique capabil-

ities. Firstly, we employed the Raspberry Pi 3 B+, a Single Board Computer (SBC)

equipped with a Broadcom BCM2837B0, Cortex-A53 64-bit SoC @ 1.4Ghz, and

1GB of RAM. Its compact size and energy efficiency are notable. This platform

serves as a representation of less powerful computational resources. In contrast,

the Nvidia Jetson Nano was used to signify a more robust resource. The Nano

is equipped with an ARM® Cortex®-A57, complemented by a 128-core Maxwell

GPU that is CUDA-compatible, and 4 GB of RAM (see figure 7.2). Remarkably,

it maintains a footprint and power consumption akin to the Raspberry Pi 3 B+.

NVIDIA’s CUDA is an API that enables the delegation of computational tasks to

the GPU. Depending on the nature of the task, a GPU, utilizing CUDA, can often

accomplish tasks at multiple times the speed of traditional CPU computations.

Comparative performance data illustrates this distinction. The non-optimized

Shadow Analyzer, when run solely on the Raspberry Pi’s CPU, requires approxi-

mately 390ms to complete a given task, as depicted in Figure 7.3. In contrast, the

Jetson Nano, relying exclusively on its CUDA cores, completes the same task in

less than half the time, at 190ms.

Figure 7.2: Testbed components

164

CHAPTER 7. EMPIRICAL VALIDATION OF USABILITY: EXTENSIVE EVALUATION OF
OUR APPROACH IN AN EDGE COMPUTING HARDWARE TESTBED

Figure 7.3: GPU vs CPU Performance.

7.2.2 Virtualized Environments

In the given virtualized environment, a comprehensive mapping of the entire net-

work is achieved using the mininet network. This encompasses network nodes/-

switches, distinct network pathways, clients that exclusively make requests to

hardware resources, and the interface bridging real and virtualized hardware.

To this end, dedicated physical network ports are directly linked to particular

virtualized switches, thereby establishing a bridge between the simulated network

and actual hardware. The entire network is orchestrated by an SDN controller

that is based on Ryu. Our proposed resource allocation has been incorporated

into this controller. Figure 7.4 (visualized through the Mininet Topology Visual-

izer) illustrates a representative setup comprising two clients and four resources.

The network follows a straightforward tree topology: the first layer features a

centralized main switch (msw0), while the second layer is bifurcated into two

switches. One of these switches connects to resources (rsw0), and the other to

the virtualized clients (csw0). While there’s potential for connections to virtual-

ized resources, this hybrid configuration is specifically oriented towards hardware

resources rather than their virtualized counterparts. The depicted resources

are tangible, each being connected through a four-port network card, with every

port being mapped to a distinct port on rsw0. In this particular scenario, Jetson

Nanos serve as rs1 and rs3, while Raspberry Pi 3s are employed for rs2 and rs4.

165

CHAPTER 7. EMPIRICAL VALIDATION OF USABILITY: EXTENSIVE EVALUATION OF
OUR APPROACH IN AN EDGE COMPUTING HARDWARE TESTBED

Not illustrated in the figure is the SDN-Controller, based on Ryu. This OpenFlow

Controller manages the entire network, inclusive of switches, network routes, and

related components.

Figure 7.4: Visual Representation of a Hybrid Virtual-Physical Network with SDN
Control and Direct Hardware Resource Mapping.

7.2.3 SDN-Based Resource Allocation and Client Request Flow

Figure 7.5 illustrates the flow of a client request and its subsequent response.

Initially, the client issues a request, which is then directed to the resource alloca-

tion module operating on the SDN controller. Within the controller, a predictive

analysis takes place to ascertain the most suitable resource to address the re-

quest. Subsequently, the request is relayed to the identified resource where it

undergoes processing. The processed response is then channeled back to the

resource allocation module, which subsequently forwards it to the initiating client.

A notable advantage of this indirect communication method, as compared to

direct communication, is the client’s unawareness; it remains uninformed about

specific resource parameters such as suitability, utilization, and IP address. All

requisite information resides centrally within the resource allocation. Hence, it

suffices for the client to direct its inquiry to the SDN controller.

166

CHAPTER 7. EMPIRICAL VALIDATION OF USABILITY: EXTENSIVE EVALUATION OF
OUR APPROACH IN AN EDGE COMPUTING HARDWARE TESTBED

Figure 7.5: Client-Controller-Resource Workflow.

7.3 Performance Benchmarking Using a Single Local

Device

In order to assess the efficacy of our resource allocation framework, we examined

various configurations. The primary configuration involved the use of a single

local device. This scenario is intended to represent cases where the prediction

of LiDAR spoofing attacks is executed directly on the dedicated hardware of the

vehicle. This configuration serves as a benchmark against which other measure-

ments can be compared. To emulate this scenario, a Jetson was employed locally

as the dedicated hardware for the task. Table 7.1 details the average prediction

time for a single image. We conducted ten test runs, each encompassing 1,000

images. The average prediction time for each run was computed, with the overall

mean across all runs presented in the table as the reference value.

167

CHAPTER 7. EMPIRICAL VALIDATION OF USABILITY: EXTENSIVE EVALUATION OF
OUR APPROACH IN AN EDGE COMPUTING HARDWARE TESTBED

Round Average Time per Image in ms

1 191,792

2 190,510

3 190,554

4 191,215

5 190,108

6 190,277

7 190,050

8 189,924

9 189,786

10 190,611

Average 190,483

Table 7.1: Average Prediction Time for LiDAR Spoofing Attack Detection on Jetson
Device as a Benchmark.

7.4 Remote Device Evaluation at the Edge and its

Communication Delays

In the subsequent phase of our evaluation, we utilize a methodology akin to

the one delineated in the preceding section. However, the distinction lies in

the device’s location. While the prior test considered the device to be local and

on the vehicle, in this instance, the device is a remote entity situated at the

edge. When dealing with a singular remote resource without the mediation of

the resource allocation framework, a client dispatches requests straight to the

resource. This is done without interfacing with the resource allocation, implying a

potential increase in communication delays. The results presented in Table 7.2

indicate that the average time in this scenario is marginally higher than in the

former case. It is crucial to underscore that these experiments were conducted

under controlled laboratory conditions. Consequently, the communication time

observed here might deviate from actual communication latency encountered in

real-world scenarios.

168

CHAPTER 7. EMPIRICAL VALIDATION OF USABILITY: EXTENSIVE EVALUATION OF
OUR APPROACH IN AN EDGE COMPUTING HARDWARE TESTBED

Round Average Time per Image in ms

1 190,277

2 190,050

3 189,924

4 189,786

5 191,190

6 190,611

7 190,678

8 191,297

9 191,067

10 192,141

Average 190,702

Table 7.2: Average Prediction Time for LiDAR Spoofing Attack Detection on remote
Jetson Device.

7.5 Resource Allocation Between Jetson and

Raspberry Pi

In this section, we examine the influence of mediation within the resource al-

location framework using two distinct edge-located resources: a Jetson and a

Raspberry Pi. These devices were selected to represent the diverse computational

capacities available on the edge. Table 7.3 delineates the outcomes of ten itera-

tions, each encompassing 1,000 images, consistent with the testing method in the

preceding sections. Columns two and three of Table 7.3 highlight the distribution

of images across the two devices in each iteration. The data indicates that the

Jetson, being the more robust device, is consistently chosen by the framework

over the Raspberry Pi. On average, approximately 70% of all images are directed

to the Jetson. This image distribution is illustrated in Figure 7.6. This allocation

strategy results in an efficient overall processing time. As shown in the fourth

169

CHAPTER 7. EMPIRICAL VALIDATION OF USABILITY: EXTENSIVE EVALUATION OF
OUR APPROACH IN AN EDGE COMPUTING HARDWARE TESTBED

column of Table 7.3, the average processing time per image improved by 11.79%

compared to the reference value obtained in the initial test. The final column

details the average duration taken by the resource allocation framework in each

iteration to predict the optimal resource for the current task. The minimal time

recorded suggests its impact on the overall processing duration is negligible.

Round Jetson 1 Raspberry Pi Average

Time per

Image in ms

Average

Prediction

Time in ms

1 709 291 160,823 8,949

2 688 312 183,993 8,825

3 697 303 174,706 8,413

4 676 324 161,024 8,475

5 689 311 160,879 9,223

6 709 291 160,831 8,943

7 723 277 160,804 8,874

8 804 196 161,123 9,398

9 701 299 167,923 8,845

10 793 207 188,211 9,101

Average 718,9 281,1 168,032 8,905

Table 7.3: Distribution of Images and Processing Time across 2 Edge Devices.

170

CHAPTER 7. EMPIRICAL VALIDATION OF USABILITY: EXTENSIVE EVALUATION OF
OUR APPROACH IN AN EDGE COMPUTING HARDWARE TESTBED

Figure 7.6: Distribution of Images Between Jetson and Raspberry Pi.

7.6 Image Distribution and Processing Time with

Four Edge-located Resources

In this section, we expand upon the previous experiment by incorporating four

specific edge-located resources: two Jetsons and two Raspberry Pis. The ob-

jective is to assess the impact of increasing the number of available resources

on both the image distribution among these resources and the average image

processing time, which consequently affects the total processing time. Table

7.4 presents the results of ten iterations, with each iteration processing 1,000

images. This procedure aligns with the testing methodologies employed in the

preceding sections. Columns two through five in Table 7.4 depict the image dis-

tribution across the four devices for each iteration. Notably, the data reveals

a consistent preference by the framework for the Jetsons over the Raspberry

Pis, with an average of approximately 62% of all images being allocated to the

Jetsons. This distribution pattern is further visualized in Figure 7.7. As indicated

in the sixth column of Table 7.4, there was a 49.94% improvement in average

processing time per image when compared to the benchmark set in the initial test.

Furthermore, it was 43.25% more efficient than the previous experiment using

only two resources. The final column of the table offers insights into the average

time taken by the resource allocation framework in each iteration to determine

the optimal resource for the given task.

171

CHAPTER 7. EMPIRICAL VALIDATION OF USABILITY: EXTENSIVE EVALUATION OF
OUR APPROACH IN AN EDGE COMPUTING HARDWARE TESTBED

Round Jet. 1 RPI 1 Jet. 2 RPI 2 Avg. Time per

image in ms

Avg. Prediction

Time in ms

1 290 158 364 188 100,450 14,638

2 272 175 341 212 93,119 14,710

3 263 165 369 203 91,599 14,617

4 279 143 367 211 93,820 14,822

5 239 187 366 208 93,706 16,071

6 269 168 356 207 93,131 14,809

7 266 181 323 230 100,129 14,403

8 284 186 341 189 98,939 14,695

9 267 163 357 213 94,179 14,893

10 288 151 350 211 94,531 14,734

Average 271,7 167,7 353,4 207,2 95,360 14,839

Table 7.4: Distribution of Images and Processing Time across 4 Edge Devices.

Figure 7.7: Distribution of Images Between Jetsons and Raspberry Pis.

172

CHAPTER 7. EMPIRICAL VALIDATION OF USABILITY: EXTENSIVE EVALUATION OF
OUR APPROACH IN AN EDGE COMPUTING HARDWARE TESTBED

7.7 Summary

In this chapter, we have explored the practicality of our proposed solution through

a specially designed testbed. This testbed embodies devices that vary in their

computing capacities, representative of the diverse IoT computing resources

present at the edge. We integrated our resource allocation framework into the

SDN controller, which is responsible for managing these distinct resources. No-

tably, this framework has been tailored to facilitate the shadow analyzer task

(chapter 6). Through a series of tests involving resources of differing computing

powers, the results obtained are encouraging. They suggest that our resource

allocation framework is adept at efficiently allocating the available computing

resources, thereby optimizing the completion of the task at hand. In conclusion,

our research in this chapter has demonstrated the practicality and effectiveness

of our proposed resource allocation framework in an IoT environment at the edge.

By integrating this framework into the SDN controller, we have shown its ability to

efficiently allocate computing resources across diverse devices. The results of

our tests are promising, indicating that our framework optimizes task completion

in this context.

173

8 Conclusions and future work

This chapter provides an overview of the core problems addressed in this thesis,

along with a concise discussion of the contributions made and their associated

limitations. Additionally, potential avenues for future research are highlighted to

pave the way for further exploration in this field.

8.1 Thesis Summary and Objectives Review

The primary objective of this thesis is to make a significant contribution to the

field of resource management, which is essential in enhancing the capabilities of

the IoT. We aim to tackle the fundamental challenges of resource management

within the context of EC and IoT, with the ultimate goal of enabling the effortless

deployment of applications and services across these networks. To achieve this

overarching aim, the following specific objectives have been outlined:

The first objective was to model dynamic resource management in EC, taking

into account the heterogeneity of edge nodes. This involved analyzing current

resource management strategies in EC, identifying their limitations, and recog-

nizing the necessity for dynamic and adaptable resource management models.

Additionally, the impact of task division and parallel execution on improving the

performance of EC environments was examined, as detailed in Chapters 1, 2,

3, and 5. Chapters 1 and 2 provide a comprehensive background on resource

management in both Cloud Computing (CC) and EC domains, offering an overview

of resource management techniques, their characteristics, and limitations, with

a particular emphasis on the dynamic nature of edge resources. In Chapter 3,

a novel model based on NN for dynamic resource allocation is proposed and

implemented, considering the diverse and fluctuating capabilities of edge nodes.

The effectiveness of this model is thoroughly evaluated through experimentation

and analysis. Two TensorFlow models, a classification model, and a regression

174

CHAPTER 8. CONCLUSIONS AND FUTURE WORK

model, have been developed. Experimental results in a dynamic environment show

significant improvements; the regression model achieves an 87% task completion

rate within the specified timeframe, while the classification model achieves a

56% rate. Finally, Chapter 5 investigates and validates the significant role of

task division and parallel execution in enhancing overall performance within EC

environments. The empirical results indicate that the proposed approach leads to

a significant reduction in time, up to 54%, compared to the traditional centralized

approach. The second objective of the thesis was to enhance Intelligent Trans-

portation Management Systems through the improvement of EC strategies. This

involved exploring the application of EC to boost V2T communications, developing

techniques to counter security threats such as LiDAR spoofing attacks using edge

nodes, and validating the proposed strategies and protocols through simulation.

This objective is achieved and detailed in Chapter 6, where a novel technique

to counter LiDAR spoofing attacks is introduced. This method utilizes NN and

object shadow verification, requiring minimal data and focusing primarily on the

2D transformed LiDAR images for its predictions. The results demonstrate that

our technique can distinguish ghost objects with an average accuracy of 97.8%

within an average duration of 6ms, indicating that our solution is suitable for

real-time detection requirements. Chapter 7 further validates the applicability of

this technique for edge applications, demonstrated through a hardware testbed

that reflects the heterogeneity of the edge environment. The third objective of this

thesis was to ensure security and privacy in EC systems. This involved conducting

a comprehensive literature review to understand the existing security and privacy

challenges in EC systems. Additionally, the thesis aimed to develop mechanisms

that ensure user data privacy and secure interactions among edge nodes, partic-

ularly in sensitive applications. This goal is achieved and documented in Chapters

4 and 5. Chapter 4 introduces an innovative technique for authenticating trust-

worthy nodes and subsequently granting them access to edge resources through

the integration of SDN and the P4 programming language. Chapter 5 presents

a Distributed Homomorphic Encryption methodology, designed to enhance data

privacy and security, while also ensuring efficient applicability in EC. The empiri-

cal results show that the proposed approach leads to a significant reduction in

processing time, up to 54%, compared to the traditional centralized approach.

175

CHAPTER 8. CONCLUSIONS AND FUTURE WORK

8.2 Future Directions

This thesis primarily targets three objectives: devising an efficient resource man-

agement framework, advancing intelligent transportation management systems

through optimized EC strategies, and ensuring security and privacy in EC systems.

Although significant strides have been made towards these objectives, myriad

challenges and research directions remain to be explored. These are outlined in

the subsequent subsections.

8.2.1 Secure Authentication with Switch-based One-Time

Passwords

In Chapter 4, we have explored a lightweight authentication technique imple-

mented directly on the switch using the P4 language. This technique provides

an efficient method for ensuring security during data access in EC, allowing only

authorized devices to access the servers and services at the edge. In this sec-

tion, we introduce a second authentication technique known as the One-Time

Password (OTP). The OTP is an authentication/login system where a password is

valid for only one login or transaction. However, the challenge with this approach

lies in tracking the next correct password for both the switch and the client. Two

potential solutions exist to circumvent this issue. The first involves using a pass-

word generator, which generates and distributes the password for the next login

upon request. The second solution involves maintaining a password list on both

the server and the client, an approach commonly employed in online banking

through TAN-Lists. We propose employing this methodology for authenticating

between the switch and the client intending to access the network. The system

utilizes cryptographic hashing functions such as SHA-2, SHA-3, or BLAKE2 and

is based on the Leslie Lamport algorithm [257]. The core idea is to employ a

sequence of passwords x1,x2, ...,x100, where xi represents the password for the

client’s ith identification (100 is arbitrarily chosen). Our solution involves setting

the ith password xi as F100−i(x), where F is a cryptographic hashing function and

Fn denotes n successive applications of F. Hence, the sequence of 100 passwords

is [F99(x), ...,F(F(F(x))),F(F(x)),F(x),x], which is referred to as hash chains. With

176

CHAPTER 8. CONCLUSIONS AND FUTURE WORK

this foundation, we design an algorithm to achieve OTP authentication in the data

plane. The algorithm comprises several steps, as depicted in figure 8.1:

1. Generate a random initial value (seed) s.

2. Apply a cryptographic hash function f iteratively for n times to generate the

hash chain, for example, [f 100(s), ..., f (f (f (s))), f (f (s)), f (s), s]. The first n-1

values from the chain are stored on the client side in a table.

3. Store the value of f 100(s) on the switch as the target value T .

4. Before a client can access the network, it must authenticate itself with the

switch. For the first authentication, the client presents the first password

f 99(s).

5. On the switch side, compare the password sent from the client with the

target value. In the first authentication round, this involves comparing the

following values: f (f 99(s)) = f 100(s). If the authentication is successful, the

switch replaces f 100(s) with f 99(s) as its new target.

6. For subsequent successful authentications, the client needs to present

f 98(s), then f 97(s), and so on. Authentication can be established successfully

for n-1 times, where n is the length of the hash chain, until the chain is

exhausted and a new chain must be generated.

This approach, using a cryptographic hash function, possesses the inherent

property of being non-invertible. Therefore, an eavesdropper who successfully

intercepts one password has no means to calculate the entire chain. Additionally,

the system is resistant to Replay-Attacks, as each password is valid for one use

only. However, this process is vulnerable to man-in-the-middle attacks when an

attacker intercepts communication between the client and the switch, posing as

the legitimate switch. Another challenge is that the client must be aware of the

password currently in use, which can become problematic in the event of packet

loss. This issue can be addressed by sending acknowledgments for each received

password. By incorporating this approach, it can subsequently be compared with

the existing technique to examine any improvements in performance efficiency.

177

CHAPTER 8. CONCLUSIONS AND FUTURE WORK

Figure 8.1: One-Time-Password Authentication Flow

8.2.2 Queue Management

In its present configuration, the AI agent exhibits limited flexibility. Its function-

ality is primarily confined to receiving a task and determining the appropriate

resource for outsourcing. This mechanism operates on a First In – First Out (FIFO)

principle. To enhance the system’s effectiveness, it is suggested to introduce a

queue management mechanism, enabling the AI agent to process tasks based on

prioritization rather than chronological order [258], [259]. By doing so, the agent

gains the capability to choose which task to process first, thereby potentially

increasing efficiency. The revised system can subsequently be compared with the

existing FIFO model to examine any improvements in performance efficiency.

178

CHAPTER 8. CONCLUSIONS AND FUTURE WORK

8.2.3 Deep-Q-Network Approach

In the existing model, the AI agent perceives a given state and proceeds to make a

decision, thereby receiving a reward. This sequence continues until all tasks have

been accomplished. Within this framework, the subsequent state is not contingent

on its predecessor, thereby implying that the AI agent is rewarded solely for short-

term actions. Consequently, the long-term implications of these actions are

overlooked. This model could potentially benefit from the introduction of the

Deep-Q-Network (DQN) approach, an extension of the reinforcement learning

methodology. By incorporating this approach, a provision for future rewards

could be made, enabling a consideration of the long-term ramifications of each

action [121], [260]–[263].

8.2.4 Federated Learning Applicability Evaluation

In an effort to optimize resource utilization within edge environments, it could

be of significant value for AI agents to learn from each other by sharing their

respective experiences. This paradigm posits that each AI agent can contribute

to collaborative learning. However, traditional collaborative learning methods

may lack feasibility due to privacy concerns and challenges related to network

issues such as latency. In conventional scenarios, each AI agent is required to

share its entire dataset with its counterpart for collaboration, thereby increasing

the risk of data leakage. Federated learning can serve as an alternative, wherein

each AI agent shares its knowledge with others, but instead of transmitting the

entire dataset, only the updated models are transferred, thereby enhancing both

efficiency and security [264]–[266].

179

CHAPTER 8. CONCLUSIONS AND FUTURE WORK

8.3 Concluding Remarks

Enabling EC with efficient resource management techniques represents a signif-

icant stride towards realizing this paradigm. If such networks are to be widely

deployed, they must effectively meet user requirements, offering reliability, scal-

ability, security, and energy-efficiency even under challenging conditions. The

findings of this research lay the groundwork for such advancement by devel-

oping an efficient resource management framework that strives to fulfill the

aforementioned requirements. However, it is essential to acknowledge that the

accomplishments of this research are just one step towards achieving the vision

of a fully realized EC. Further research is necessary to bring this vision to fruition.

180

literature

[1] L. S. Vailshery, Iot connected devices worldwide 2019-2030, Nov. 2022.

[Online]. Available: https://www.statista.com/statistics/1183457/

iot-connected-devices-worldwide/ (visited on 09/07/2023).

[2] O. Burkacky, J. Deichmann, L. Rott, and A. v. Falkenhausen, Automotive

semiconductors for the autonomous age, Feb. 2022. [Online]. Available:

https://www.mckinsey.com/industries/industrials-and-electron

ics/our-insights/automotive-semiconductors-for-the-autonomou

s-age (visited on 09/07/2023).

[3] R. Hussain and S. Zeadally, “Autonomous cars: Research results, issues,

and future challenges,” IEEE Communications Surveys & Tutorials, vol. 21,

no. 2, pp. 1275–1313, 2019. doi: 10.1109/COMST.2018.2869360.

[4] W. Rudschies and T. Kroher, Autonomes fahren: So fahren wir in zukunft,

Mar. 2021. [Online]. Available: https://www.adac.de/rund-ums-fah

rzeug/ausstattung-technik-zubehoer/autonomes-fahren/technik-

vernetzung/aktuelle-technik/ (visited on 09/07/2023).

[5] M. D. Assunção, R. N. Calheiros, S. Bianchi, M. A. Netto, and R. Buyya, “Big

data computing and clouds: Trends and future directions,” Journal of

parallel and distributed computing, vol. 79, pp. 3–15, 2015.

[6] P. A. Abdalla and A. Varol, “Advantages to disadvantages of cloud com-

puting for small-sized business,” in 2019 7th International Symposium on

Digital Forensics and Security (ISDFS), IEEE, 2019, pp. 1–6.

[7] S. Mustafa, B. Nazir, A. Hayat, S. A. Madani, et al., “Resource management

in cloud computing: Taxonomy, prospects, and challenges,” Computers &

Electrical Engineering, vol. 47, pp. 186–203, 2015.

181

LITERATURE

[8] S. M. Parikh, N. M. Patel, and H. B. Prajapati, Resource management in

cloud computing: Classification and taxonomy, 2017. arXiv: 1703.00374

[cs.DC].

[9] Gartner, What edge computing means for infrastructure and operations

leaders. [Online]. Available: https://www.gartner.com/smarterwit

hgartner/what-edge-computing-means-for-infrastructure-and-

operations-leaders (visited on 09/07/2023).

[10] G. Vizzard, 5g network transforms the industrial, transportation and com-

mercial landscape with real-time ai and accelerated response times,

Feb. 2022. [Online]. Available: https://www.ibm.com/blog/iot-5g-

transforms/ (visited on 09/07/2023).

[11] Edge computing market size, share & growth report, 2030. [Online]. Avail-

able: https : / / www . grandviewresearch . com / industry - analysis /

edge-computing-market (visited on 09/07/2023).

[12] A. T. Atieh, “The next generation cloud technologies: A review on dis-

tributed cloud, fog and edge computing and their opportunities and chal-

lenges,” ResearchBerg Review of Science and Technology, vol. 1, no. 1,

pp. 1–15, 2021.

[13] J. Pan and J. McElhannon, “Future edge cloud and edge computing for

internet of things applications,” IEEE Internet of Things Journal, vol. 5,

no. 1, pp. 439–449, 2017.

[14] Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo, and J. Zhang, “Edge intelligence:

Paving the last mile of artificial intelligence with edge computing,” Pro-

ceedings of the IEEE, vol. 107, no. 8, pp. 1738–1762, 2019.

[15] H. D. Chantre and N. L. Saldanha da Fonseca, “The location problem for

the provisioning of protected slices in nfv-based mec infrastructure,” IEEE

Journal on Selected Areas in Communications, vol. 38, no. 7, pp. 1505–

1514, 2020. doi: 10.1109/JSAC.2020.2986869.

[16] A. S. AlAhmad, H. Kahtan, Y. I. Alzoubi, O. Ali, and A. Jaradat, “Mobile

cloud computing models security issues: A systematic review,” Journal of

Network and Computer Applications, vol. 190, p. 103 152, 2021.

182

LITERATURE

[17] C. Jiang, X. Cheng, H. Gao, X. Zhou, and J. Wan, “Toward computation

offloading in edge computing: A survey,” IEEE Access, vol. 7, pp. 131 543–

131 558, 2019. doi: 10.1109/ACCESS.2019.2938660.

[18] Z. Liao, J. Peng, B. Xiong, and J. Huang, “Adaptive offloading in mobile-

edge computing for ultra-dense cellular networks based on genetic algo-

rithm,” Journal of Cloud Computing, vol. 10, no. 1, pp. 1–16, 2021.

[19] X. Wang, J. Ye, and J. C. Lui, “Joint d2d collaboration and task offloading

for edge computing: A mean field graph approach,” in 2021 IEEE/ACM 29th

International Symposium on Quality of Service (IWQOS), 2021, pp. 1–10.

doi: 10.1109/IWQOS52092.2021.9521271.

[20] I. Kovacevic, E. Harjula, S. Glisic, B. Lorenzo, and M. Ylianttila, “Cloud and

edge computation offloading for latency limited services,” IEEE Access,

vol. 9, pp. 55 764–55 776, 2021. doi: 10.1109/ACCESS.2021.3071848.

[21] J. Long, Y. Luo, X. Zhu, E. Luo, and M. Huang, “Computation offloading

through mobile vehicles in iot-edge-cloud network,” EURASIP Journal on

Wireless Communications and Networking, vol. 2020, no. 1, pp. 1–21,

2020.

[22] M. D. Hossain, T. Sultana, M. A. Hossain, et al., “Fuzzy decision-based

efficient task offloading management scheme in multi-tier mec-enabled

networks,” Sensors, vol. 21, no. 4, p. 1484, 2021.

[23] T. Truong, Q. Fu, and C. Lorier, “Flowmap: Improving network manage-

ment with sdn,” in NOMS 2016-2016 IEEE/IFIP Network Operations and

Management Symposium, IEEE, 2016, pp. 821–824.

[24] N. McKeown, T. Anderson, H. Balakrishnan, et al., “Openflow: Enabling

innovation in campus networks,” ACM SIGCOMM computer communication

review, vol. 38, no. 2, pp. 69–74, 2008.

[25] J. L. Herrera, J. Galán-Jiménez, J. Berrocal, and J. M. Murillo, “Optimizing

the response time in sdn-fog environments for time-strict iot applications,”

IEEE Internet of Things Journal, vol. 8, no. 23, pp. 17 172–17 185, 2021.

doi: 10.1109/JIOT.2021.3077992.

183

LITERATURE

[26] J. Liu, G. Shou, Y. Liu, Y. Hu, and Z. Guo, “Performance evaluation of inte-

grated multi-access edge computing and fiber-wireless access networks,”

IEEE Access, vol. 6, pp. 30 269–30 279, 2018. doi: 10.1109/ACCESS.2018.

2833619.

[27] S. D. A. Shah, M. A. Gregory, S. Li, and R. D. R. Fontes, “Sdn enhanced multi-

access edge computing (mec) for e2e mobility and qos management,”

IEEE Access, vol. 8, pp. 77 459–77 469, 2020. doi: 10.1109/ACCESS.2020.

2990292.

[28] P. Zhao, W. Yu, X. Yang, et al., “Context-aware multi-criteria handover

at the software defined network edge for service differentiation in next

generation wireless networks,” IEEE Transactions on Services Computing,

vol. 15, no. 4, pp. 2032–2046, 2022. doi: 10.1109/TSC.2020.3031181.

[29] V. Chamola, C.-K. Tham, S. Gurunarayanan, N. Ansari, et al., “An optimal

delay aware task assignment scheme for wireless sdn networked edge

cloudlets,” Future Generation Computer Systems, vol. 102, pp. 862–875,

2020.

[30] P. Thorat and N. Kumar Dubey, “Sdn-based machine learning powered

alarm manager for mitigating the traffic spikes at the iot gateways,”

in 2020 IEEE International Conference on Electronics, Computing and

Communication Technologies (CONECCT), 2020, pp. 1–6. doi: 10.1109/

CONECCT50063.2020.9198356.

[31] R. Farahani, F. Tashtarian, H. Amirpour, C. Timmerer, M. Ghanbari, and

H. Hellwagner, “Csdn: Cdn-aware qoe optimization in sdn-assisted http

adaptive video streaming,” in 2021 IEEE 46th Conference on Local Com-

puter Networks (LCN), 2021, pp. 525–532. doi: 10.1109/LCN52139.2021.

9524970.

[32] R. Shinkuma, Y. Yamada, T. Sato, and E. Oki, “Flow control in sdn-edge-

cloud cooperation system with machine learning,” in 2020 IEEE 40th In-

ternational Conference on Distributed Computing Systems (ICDCS), 2020,

pp. 1304–1309. doi: 10.1109/ICDCS47774.2020.00169.

184

LITERATURE

[33] M. Nasimi, M. A. Habibi, B. Han, and H. D. Schotten, “Edge-assisted conges-

tion control mechanism for 5g network using software-defined network-

ing,” in 2018 15th International Symposium on Wireless Communication

Systems (ISWCS), 2018, pp. 1–5. doi: 10.1109/ISWCS.2018.8491233.

[34] D. Zhang, F. R. Yu, R. Yang, and L. Zhu, “Software-defined vehicular net-

works with trust management: A deep reinforcement learning approach,”

IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 2,

pp. 1400–1414, 2022. doi: 10.1109/TITS.2020.3025684.

[35] S. Forti, G.-L. Ferrari, and A. Brogi, “Secure cloud-edge deployments, with

trust,” Future Generation Computer Systems, vol. 102, pp. 775–788, 2020.

[36] K. Cao, Y. Liu, G. Meng, and Q. Sun, “An overview on edge computing

research,” IEEE access, vol. 8, pp. 85 714–85 728, 2020.

[37] N. Ghodsian, 9 smart building examples; 2024 reviews, Jan. 2024. [Online].

Available: https://neuroject.com/smart-building-examples/ (visited

on 03/26/2024).

[38] A. Willner and V. Gowtham, “Toward a reference architecture model for

industrial edge computing,” IEEE Communications Standards Magazine,

vol. 4, no. 4, pp. 42–48, 2020. doi: 10.1109/MCOMSTD.001.2000007.

[39] F. Liu, C. Liang, and Q. He, “Remote malfunctional smart meter detection

in edge computing environment,” IEEE Access, vol. 8, pp. 67 436–67 443,

2020. doi: 10.1109/ACCESS.2020.2985725.

[40] T. Hafeez, L. Xu, and G. Mcardle, “Edge intelligence for data handling and

predictive maintenance in iiot,” IEEE Access, vol. 9, pp. 49 355–49 371,

2021. doi: 10.1109/ACCESS.2021.3069137.

[41] 4 notable examples of smart factories exhibiting the industry 4.0 journey

in southeast asia, Sep. 2023. [Online]. Available: https://www.abires

earch.com/blogs/2023/09/05/smart-factory-examples-southeast-

asia/ (visited on 03/26/2024).

185

LITERATURE

[42] P. Arthurs, L. Gillam, P. Krause, N. Wang, K. Halder, and A. Mouzakitis,

“A taxonomy and survey of edge cloud computing for intelligent trans-

portation systems and connected vehicles,” IEEE Transactions on Intel-

ligent Transportation Systems, vol. 23, no. 7, pp. 6206–6221, 2022. doi:

10.1109/TITS.2021.3084396.

[43] Q. Yuan, J. Li, H. Zhou, et al., “Cross-domain resource orchestration for

the edge-computing-enabled smart road,” IEEE Network, vol. 34, no. 5,

pp. 60–67, 2020. doi: 10.1109/MNET.011.2000007.

[44] X. Xu, K. Liu, K. Xiao, L. Feng, Z. Wu, and S. Guo, “Vehicular fog computing

enabled real-time collision warning via trajectory calibration,” Mobile

Networks and Applications, vol. 25, pp. 2482–2494, 2020.

[45] X. Huang, P. He, A. Rangarajan, and S. Ranka, “Intelligent intersection:

Two-stream convolutional networks for real-time near-accident detection

in traffic video,” ACM Transactions on Spatial Algorithms and Systems

(TSAS), vol. 6, no. 2, pp. 1–28, 2020.

[46] A. Almaini, J. Folz, R. Boeder, et al., “Shadow-analyzer an efficient neural

networks-based ghost objects detection for autonomous vehicles,” IEEE

Transactions on Intelligent Transportation Systems [in revision], 2023.

[47] Smart roads explained, May 2022. [Online]. Available: https://www.nano

werk.com/smart/smart-roads-explained.php (visited on 03/26/2024).

[48] A. F. Subahi, “Edge-based iot medical record system: Requirements, rec-

ommendations and conceptual design,” IEEE Access, vol. 7, pp. 94 150–

94 159, 2019. doi: 10.1109/ACCESS.2019.2927958.

[49] I. García-Magariño, J. Varela-Aldas, G. Palacios-Navarro, and J. Lloret,

“Fog computing for assisting and tracking elder patients with neurode-

generative diseases,” Peer-to-Peer Networking and Applications, vol. 12,

pp. 1225–1235, 2019.

[50] S. Sedaghat and A. H. Jahangir, “Rt-telsurg: Real time telesurgery using

sdn, fog, and cloud as infrastructures,” IEEE Access, vol. 9, pp. 52 238–

52 251, 2021. doi: 10.1109/ACCESS.2021.3069744.

186

LITERATURE

[51] Jun. 2023. [Online]. Available: https://www.synappz.nl/?lang=en

(visited on 03/26/2024).

[52] [Online]. Available: https://medicus.ai/ (visited on 03/26/2024).

[53] R. Das and M. M. Inuwa, “A review on fog computing: Issues, characteris-

tics, challenges, and potential applications,” Telematics and Informatics

Reports, p. 100 049, 2023.

[54] H. Tran-Dang, S. Bhardwaj, T. Rahim, A. Musaddiq, and D.-S. Kim, “Re-

inforcement learning based resource management for fog computing

environment: Literature review, challenges, and open issues,” Journal

of Communications and Networks, vol. 24, no. 1, pp. 83–98, 2022. doi:

10.23919/JCN.2021.000041.

[55] N. Fernando, S. W. Loke, I. Avazpour, F.-F. Chen, A. B. Abkenar, and A. Ibrahim,

“Opportunistic fog for iot: Challenges and opportunities,” IEEE Internet of

Things Journal, vol. 6, no. 5, pp. 8897–8910, 2019. doi: 10.1109/JIOT.

2019.2924182.

[56] Y. Xiao and C. Zhu, “Vehicular fog computing: Vision and challenges,” in

2017 IEEE International Conference on Pervasive Computing and Commu-

nications Workshops (PerCom Workshops), 2017, pp. 6–9. doi: 10.1109/

PERCOMW.2017.7917508.

[57] H. A. Khattak, S. U. Islam, I. U. Din, and M. Guizani, “Integrating fog com-

puting with vanets: A consumer perspective,” IEEE Communications Stan-

dards Magazine, vol. 3, no. 1, pp. 19–25, 2019. doi: 10.1109/MCOMSTD.

2019.1800050.

[58] C. Mouradian, D. Naboulsi, S. Yangui, R. H. Glitho, M. J. Morrow, and P. A.

Polakos, “A comprehensive survey on fog computing: State-of-the-art and

research challenges,” IEEE communications surveys & tutorials, vol. 20,

no. 1, pp. 416–464, 2017.

[59] T. Nishio, R. Shinkuma, T. Takahashi, and N. B. Mandayam, “Service-

oriented heterogeneous resource sharing for optimizing service latency

in mobile cloud,” in Proceedings of the first international workshop on

Mobile cloud computing & networking, 2013, pp. 19–26.

187

LITERATURE

[60] J. Oueis, E. C. Strinati, S. Sardellitti, and S. Barbarossa, “Small cell clus-

tering for efficient distributed fog computing: A multi-user case,” in 2015

IEEE 82nd Vehicular Technology Conference (VTC2015-Fall), IEEE, 2015,

pp. 1–5.

[61] W. Masri, I. Al Ridhawi, N. Mostafa, and P. Pourghomi, “Minimizing delay

in iot systems through collaborative fog-to-fog (f2f) communication,” in

2017 Ninth International Conference on Ubiquitous and Future Networks

(ICUFN), IEEE, 2017, pp. 1005–1010.

[62] T. L. Duc, R. G. Leiva, P. Casari, and P.-O. Östberg, “Machine learning meth-

ods for reliable resource provisioning in edge-cloud computing: A survey,”

ACM Computing Surveys (CSUR), vol. 52, no. 5, pp. 1–39, 2019.

[63] M. Ghobaei-Arani, A. Souri, and A. A. Rahmanian, “Resource management

approaches in fog computing: A comprehensive review,” Journal of Grid

Computing, vol. 18, no. 1, pp. 1–42, 2020.

[64] E. K. Markakis, K. Karras, N. Zotos, et al., “Exegesis: Extreme edge resource

harvesting for a virtualized fog environment,” IEEE Communications Maga-

zine, vol. 55, no. 7, pp. 173–179, 2017. doi: 10.1109/MCOM.2017.1600730.

[65] S. Sharma and D. Parihar, “A review on resource allocation in cloud com-

puting,” Int. J. Adv. Res. Ideas Innovat. Technol, vol. 1, pp. 1–7, 2014.

[66] A. Saraswathi, Y. R. Kalaashri, and S. Padmavathi, “Dynamic resource allo-

cation scheme in cloud computing,” Procedia Computer Science, vol. 47,

pp. 30–36, 2015.

[67] A. Beloglazov, J. Abawajy, and R. Buyya, “Energy-aware resource alloca-

tion heuristics for efficient management of data centers for cloud com-

puting,” Future generation computer systems, vol. 28, no. 5, pp. 755–768,

2012.

[68] A. Belgacem, “Dynamic resource allocation in cloud computing: Analysis

and taxonomies,” Computing, vol. 104, no. 3, pp. 681–710, 2022.

188

LITERATURE

[69] C. Ghribi, M. Hadji, and D. Zeghlache, “Energy efficient vm scheduling

for cloud data centers: Exact allocation and migration algorithms,” in

2013 13th IEEE/ACM International Symposium on Cluster, Cloud, and Grid

Computing, IEEE, 2013, pp. 671–678.

[70] R. Sandhu and S. K. Sood, “Scheduling of big data applications on dis-

tributed cloud based on qos parameters,” Cluster Computing, vol. 18,

pp. 817–828, 2015.

[71] S. Chaisiri, B.-S. Lee, and D. Niyato, “Optimization of resource provisioning

cost in cloud computing,” IEEE transactions on services Computing, vol. 5,

no. 2, pp. 164–177, 2011.

[72] H. Zhao, J. Wang, Q. Wang, and F. Liu, “Queue-based and learning-based

dynamic resources allocation for virtual streaming media server cluster

of multi-version vod system,” Multimedia Tools and Applications, vol. 78,

pp. 21 827–21 852, 2019.

[73] J. Zhang, N. Xie, X. Zhang, K. Yue, W. Li, and D. Kumar, “Machine learning

based resource allocation of cloud computing in auction,” Comput. Mater.

Continua, vol. 56, no. 1, pp. 123–135, 2018.

[74] T. Thein, M. M. Myo, S. Parvin, and A. Gawanmeh, “Reinforcement learn-

ing based methodology for energy-efficient resource allocation in cloud

data centers,” Journal of King Saud University-Computer and Information

Sciences, vol. 32, no. 10, pp. 1127–1139, 2020.

[75] V. Ramasamy and S. Thalavai Pillai, “An effective hpso-mga optimization

algorithm for dynamic resource allocation in cloud environment,” Cluster

Computing, vol. 23, pp. 1711–1724, 2020.

[76] Z. Chen, L. Yang, Y. Huang, X. Chen, X. Zheng, and C. Rong, “Pso-ga-

based resource allocation strategy for cloud-based software services

with workload-time windows,” IEEE Access, vol. 8, pp. 151 500–151 510,

2020.

[77] E. N. Alkhanak, S. P. Lee, R. Rezaei, and R. M. Parizi, “Cost optimization

approaches for scientific workflow scheduling in cloud and grid comput-

189

LITERATURE

ing: A review, classifications, and open issues,” Journal of Systems and

Software, vol. 113, pp. 1–26, 2016.

[78] S. Challita, F. Paraiso, and P. Merle, “A study of virtual machine placement

optimization in data centers,” Apr. 2017. doi: 10.5220/0006236503430350.

[79] M. Kalra and S. Singh, “A review of metaheuristic scheduling techniques

in cloud computing,” Egyptian informatics journal, vol. 16, no. 3, pp. 275–

295, 2015.

[80] M. Masdari, S. ValiKardan, Z. Shahi, and S. I. Azar, “Towards workflow

scheduling in cloud computing: A comprehensive analysis,” Journal of

Network and Computer Applications, vol. 66, pp. 64–82, 2016.

[81] P. Salot, “A survey of various scheduling algorithm in cloud computing

environment,” International Journal of Research in Engineering and Tech-

nology, vol. 2, no. 2, pp. 131–135, 2013.

[82] Q. Luo, S. Hu, C. Li, G. Li, and W. Shi, “Resource scheduling in edge com-

puting: A survey,” IEEE Communications Surveys & Tutorials, vol. 23, no. 4,

pp. 2131–2165, 2021. doi: 10.1109/COMST.2021.3106401.

[83] A. Kiani, From geographically dispersed data centers towards hierarchical

edge computing. New Jersey Institute of Technology, 2018.

[84] H. Badri, Stochastic optimization methods for resource management in

edge computing systems. Wayne State University, 2019.

[85] J. Lim and D. Lee, “A load balancing algorithm for mobile devices in edge

cloud computing environments,” Electronics, vol. 9, no. 4, p. 686, 2020.

[86] Q. Fan and N. Ansari, “Application aware workload allocation for edge

computing-based iot,” IEEE Internet of Things Journal, vol. 5, no. 3,

pp. 2146–2153, 2018. doi: 10.1109/JIOT.2018.2826006.

[87] A. Madej, N. Wang, N. Athanasopoulos, R. Ranjan, and B. Varghese,

“Priority-based fair scheduling in edge computing,” in 2020 IEEE 4th Inter-

national Conference on Fog and Edge Computing (ICFEC), 2020, pp. 39–48.

doi: 10.1109/ICFEC50348.2020.00012.

190

LITERATURE

[88] H. Sun, H. Yu, G. Fan, and L. Chen, “Qos-aware task placement with fault-

tolerance in the edge-cloud,” IEEE Access, vol. 8, pp. 77 987–78 003, 2020.

doi: 10.1109/ACCESS.2020.2977089.

[89] M. Jia, J. Cao, and W. Liang, “Optimal cloudlet placement and user to

cloudlet allocation in wireless metropolitan area networks,” IEEE Transac-

tions on Cloud Computing, vol. 5, no. 4, pp. 725–737, 2017. doi: 10.1109/

TCC.2015.2449834.

[90] T. Lähderanta, T. Leppänen, L. Ruha, et al., “Edge computing server place-

ment with capacitated location allocation,” Journal of Parallel and Dis-

tributed Computing, vol. 153, pp. 130–149, 2021. doi: https://doi.org/

10.1016/j.jpdc.2021.03.007.

[91] Q. Vo and D. A. Tran, “Probabilistic partitioning for edge server assignment

with time-varying workload,” in 2019 28th International Conference on

Computer Communication and Networks (ICCCN), 2019, pp. 1–8. doi: 10.

1109/ICCCN.2019.8846932.

[92] A. Santoyo González and C. Cervelló Pastor, “Edge computing node place-

ment in 5g networks: A latency and reliability constrained framework,”

in 2019 6th IEEE International Conference on Cyber Security and Cloud

Computing (CSCloud)/ 2019 5th IEEE International Conference on Edge

Computing and Scalable Cloud (EdgeCom), 2019, pp. 183–189. doi: 10.

1109/CSCloud/EdgeCom.2019.00024.

[93] B. Li, Q. He, G. Cui, et al., “Read: Robustness-oriented edge application de-

ployment in edge computing environment,” IEEE Transactions on Services

Computing, vol. 15, no. 3, pp. 1746–1759, 2022. doi: 10.1109/TSC.2020.

3015316.

[94] H. M. Makrani, H. Sayadi, N. Nazari, et al., “Adaptive performance modeling

of data-intensive workloads for resource provisioning in virtualized envi-

ronment,” ACM Transactions on Modeling and Performance Evaluation

of Computing Systems (TOMPECS), vol. 5, no. 4, pp. 1–24, 2021. doi: 10.

1145/3442696. [Online]. Available: https://doi.org/10.1145/3442696.

191

LITERATURE

[95] Z. Zhou, S. Yu, W. Chen, and X. Chen, “Ce-iot: Cost-effective cloud-edge

resource provisioning for heterogeneous iot applications,” IEEE Internet

of Things Journal, vol. 7, no. 9, pp. 8600–8614, 2020. doi: 10.1109/JIOT.

2020.2994308.

[96] X. Xu, Z. Fang, L. Qi, X. Zhang, Q. He, and X. Zhou, “Tripres: Traffic flow

prediction driven resource reservation for multimedia iov with edge com-

puting,” ACM Transactions on Multimedia Computing, Communications,

and Applications (TOMM), vol. 17, no. 2, pp. 1–21, 2021.

[97] J. Liu, K. Luo, Z. Zhou, and X. Chen, “Erp: Edge resource pooling for data

stream mobile computing,” IEEE Internet of Things Journal, vol. 6, no. 3,

pp. 4355–4368, 2019. doi: 10.1109/JIOT.2018.2882588.

[98] A. Qasem, P. Shirani, M. Debbabi, L. Wang, B. Lebel, and B. L. Agba, “Auto-

matic vulnerability detection in embedded devices and firmware: Survey

and layered taxonomies,” ACM Computing Surveys (CSUR), vol. 54, no. 2,

pp. 1–42, 2021.

[99] R. Smith, D. Palin, P. P. Ioulianou, V. G. Vassilakis, and S. F. Shahandashti,

“Battery draining attacks against edge computing nodes in iot networks,”

Cyber-Physical Systems, vol. 6, no. 2, pp. 96–116, 2020.

[100] K. Matsui and H. Nishi, “Error correction method considering fog and

edge computing environment,” in 2019 IEEE International Conference

on Industrial Cyber Physical Systems (ICPS), 2019, pp. 517–521. doi: 10.

1109/ICPHYS.2019.8780317.

[101] W. Tong, B. Jiang, F. Xu, Q. Li, and S. Zhong, “Privacy-preserving data

integrity verification in mobile edge computing,” in 2019 IEEE 39th Inter-

national Conference on Distributed Computing Systems (ICDCS), 2019,

pp. 1007–1018. doi: 10.1109/ICDCS.2019.00104.

[102] B. Li, Q. He, F. Chen, H. Jin, Y. Xiang, and Y. Yang, “Inspecting edge data

integrity with aggregate signature in distributed edge computing environ-

ment,” IEEE Transactions on Cloud Computing, vol. 10, no. 4, pp. 2691–

2703, 2022. doi: 10.1109/TCC.2021.3059448.

192

LITERATURE

[103] H. Cui, X. Yi, and S. Nepal, “Achieving scalable access control over

encrypted data for edge computing networks,” IEEE Access, vol. 6,

pp. 30 049–30 059, 2018. doi: 10.1109/ACCESS.2018.2844373.

[104] A. Almaini, A. Al-Dubai, I. Romdhani, and M. Schramm, “Delegation of au-

thentication to the data plane in software-defined networks,” in 2019 IEEE

International Conferences on Ubiquitous Computing & Communications

(IUCC) and Data Science and Computational Intelligence (DSCI) and Smart

Computing, Networking and Services (SmartCNS), IEEE, 2019, pp. 58–65.

[105] A. Almaini, A. Al-Dubai, I. Romdhani, M. Schramm, and A. Alsarhan, “Light-

weight edge authentication for software defined networks,” Computing,

vol. 103, no. 2, pp. 291–311, 2021.

[106] L. Ma, Q. Pei, L. Zhou, H. Zhu, L. Wang, and Y. Ji, “Federated data cleaning:

Collaborative and privacy-preserving data cleaning for edge intelligence,”

IEEE Internet of Things Journal, vol. 8, no. 8, pp. 6757–6770, 2021. doi:

10.1109/JIOT.2020.3027980.

[107] A. Almaini, J. Folz, D. Woelfl, A. Al-Dubai, M. Schramm, and M. Heigl, “A new

scalable distributed homomorphic encryption scheme for high computa-

tional complexity models,” in 2023 International Wireless Communica-

tions and Mobile Computing (IWCMC), 2023, pp. 890–897. doi: 10.1109/

IWCMC58020.2023.10183131.

[108] Y. Wang and T. Nakachi, “Secure face recognition in edge and cloud net-

works: From the ensemble learning perspective,” in ICASSP 2020 - 2020

IEEE International Conference on Acoustics, Speech and Signal Process-

ing (ICASSP), 2020, pp. 2393–2397. doi: 10.1109/ICASSP40776.2020.

9052992.

[109] H. Zhong, Y. Zhou, Q. Zhang, Y. Xu, and J. Cui, “An efficient and outsourcing-

supported attribute-based access control scheme for edge-enabled smart

healthcare,” Future Generation Computer Systems, vol. 115, pp. 486–496,

2021.

193

LITERATURE

[110] L. Jiang, R. Tan, X. Lou, and G. Lin, “On lightweight privacy-preserving

collaborative learning for internet-of-things objects,” in Proceedings of the

international conference on internet of things design and implementation,

2019, pp. 70–81.

[111] Y. S. Can and C. Ersoy, “Privacy-preserving federated deep learning for

wearable iot-based biomedical monitoring,” ACM Trans. Internet Technol.,

vol. 21, no. 1, Jan. 2021, issn: 1533-5399. doi: 10.1145/3428152. [Online].

Available: https://doi.org/10.1145/3428152.

[112] N. C. Luong, Z. Xiong, P. Wang, and D. Niyato, “Optimal auction for edge

computing resource management in mobile blockchain networks: A deep

learning approach,” in 2018 IEEE International Conference on Communi-

cations (ICC), 2018, pp. 1–6. doi: 10.1109/ICC.2018.8422743.

[113] L. Huang, X. Feng, C. Zhang, L. Qian, and Y. Wu, “Deep reinforcement

learning-based joint task offloading and bandwidth allocation for multi-

user mobile edge computing,” Digital Communications and Networks,

vol. 5, no. 1, pp. 10–17, 2019. doi: https://doi.org/10.1016/j.dcan.

2018.10.003. [Online]. Available: https://www.sciencedirect.com/

science/article/pii/S2352864818301469.

[114] X. Liu, Z. Qin, and Y. Gao, “Resource allocation for edge computing in iot

networks via reinforcement learning,” in ICC 2019 - 2019 IEEE Interna-

tional Conference on Communications (ICC), 2019, pp. 1–6. doi: 10.1109/

ICC.2019.8761385.

[115] X. Liu, J. Yu, Z. Feng, and Y. Gao, “Multi-agent reinforcement learning for

resource allocation in iot networks with edge computing,” China Commu-

nications, vol. 17, no. 9, pp. 220–236, 2020. doi: 10.23919/JCC.2020.09.

017.

[116] X. Liu, J. Yu, J. Wang, and Y. Gao, “Resource allocation with edge computing

in iot networks via machine learning,” IEEE Internet of Things Journal,

vol. 7, no. 4, pp. 3415–3426, 2020. doi: 10.1109/JIOT.2020.2970110.

194

LITERATURE

[117] N. Kiran, C. Pan, and Y. Changchuan, “Reinforcement learning for task

offloading in mobile edge computing for sdn based wireless networks,”

in 2020 Seventh International Conference on Software Defined Systems

(SDS), 2020, pp. 268–273. doi: 10.1109/SDS49854.2020.9143888.

[118] J. Wang, L. Zhao, J. Liu, and N. Kato, “Smart resource allocation for mobile

edge computing: A deep reinforcement learning approach,” IEEE Transac-

tions on Emerging Topics in Computing, vol. 9, no. 3, pp. 1529–1541, 2021.

doi: 10.1109/TETC.2019.2902661.

[119] S. Goudarzi, M. H. Anisi, H. Ahmadi, and L. Musavian, “Dynamic resource

allocation model for distribution operations using sdn,” IEEE Internet of

Things Journal, vol. 8, no. 2, pp. 976–988, 2021. doi: 10.1109/JIOT.2020.

3010700.

[120] A. Alsarhan, A. Itradat, A. Y. Al-Dubai, A. Y. Zomaya, and G. Min, “Adaptive

resource allocation and provisioning in multi-service cloud environments,”

IEEE Transactions on Parallel and Distributed Systems, vol. 29, no. 1,

pp. 31–42, 2018. doi: 10.1109/TPDS.2017.2748578.

[121] O. Urmonov, H. Aliev, and H. Kim, “Multi-agent deep reinforcement learning

for enhancement of distributed resource allocation in vehicular network,”

IEEE Systems Journal, vol. 17, no. 1, pp. 491–502, 2023. doi: 10.1109/

JSYST.2022.3197880.

[122] A. S. Kumar, L. Zhao, and X. Fernando, “Multi-agent deep reinforcement

learning-empowered channel allocation in vehicular networks,” IEEE

Transactions on Vehicular Technology, vol. 71, no. 2, pp. 1726–1736,

2022. doi: 10.1109/TVT.2021.3134272.

[123] K. Lu, Z. Du, J. Li, and G. Min, “Resource-efficient distributed deep neu-

ral networks empowered by intelligent software-defined networking,”

IEEE Transactions on Network and Service Management, vol. 19, no. 4,

pp. 4069–4081, 2022. doi: 10.1109/TNSM.2022.3218173.

[124] H. Djigal, J. Xu, L. Liu, and Y. Zhang, “Machine and deep learning for

resource allocation in multi-access edge computing: A survey,” IEEE Com-

munications Surveys & Tutorials, 2022.

195

LITERATURE

[125] C. Mechalikh, H. Taktak, and F. Moussa, “A fuzzy decision tree based tasks

orchestration algorithm for edge computing environments,” in Advanced

Information Networking and Applications: Proceedings of the 34th Interna-

tional Conference on Advanced Information Networking and Applications

(AINA-2020), Springer, 2020, pp. 193–203.

[126] H. Guo, J. Liu, and J. Lv, “Toward intelligent task offloading at the edge,”

IEEE Network, vol. 34, no. 2, pp. 128–134, 2019.

[127] S. Imtiaz, H. Ghauch, G. P. Koudouridis, and J. Gross, “Random forests

resource allocation for 5g systems: Performance and robustness study,”

in 2018 IEEE Wireless Communications and Networking Conference Work-

shops (WCNCW), IEEE, 2018, pp. 326–331.

[128] M. E. Mavroforakis and S. Theodoridis, “A geometric approach to sup-

port vector machine (svm) classification,” IEEE transactions on neural

networks, vol. 17, no. 3, pp. 671–682, 2006.

[129] S. Wang, M. Chen, C. Yin, et al., “Federated learning for task and resource

allocation in wireless high-altitude balloon networks,” IEEE Internet of

Things Journal, vol. 8, no. 24, pp. 17 460–17 475, 2021.

[130] D. Ding, X. Fan, Y. Zhao, K. Kang, Q. Yin, and J. Zeng, “Q-learning based

dynamic task scheduling for energy-efficient cloud computing,” Future

Generation Computer Systems, vol. 108, pp. 361–371, 2020.

[131] Z. Tong, X. Deng, H. Chen, J. Mei, and H. Liu, “Ql-heft: A novel machine

learning scheduling scheme base on cloud computing environment,” Neu-

ral Computing and Applications, vol. 32, pp. 5553–5570, 2020.

[132] Z. Tong, Z. Xiao, K. Li, and K. Li, “Proactive scheduling in distributed com-

puting—a reinforcement learning approach,” Journal of Parallel and Dis-

tributed Computing, vol. 74, no. 7, pp. 2662–2672, 2014.

[133] T.-P. Pham, J. J. Durillo, and T. Fahringer, “Predicting workflow task execu-

tion time in the cloud using a two-stage machine learning approach,” IEEE

Transactions on Cloud Computing, vol. 8, no. 1, pp. 256–268, 2017.

196

LITERATURE

[134] J. Wang, J. Hu, G. Min, W. Zhan, Q. Ni, and N. Georgalas, “Computation

offloading in multi-access edge computing using a deep sequential model

based on reinforcement learning,” IEEE Communications Magazine, vol. 57,

no. 5, pp. 64–69, 2019.

[135] P. Yu, F. Zhou, X. Zhang, X. Qiu, M. Kadoch, and M. Cheriet, “Deep learning-

based resource allocation for 5g broadband tv service,” IEEE Transactions

on Broadcasting, vol. 66, no. 4, pp. 800–813, 2020.

[136] G. Rjoub, J. Bentahar, O. A. Wahab, and A. Bataineh, “Deep smart schedul-

ing: A deep learning approach for automated big data scheduling over the

cloud,” in 2019 7th International Conference on Future Internet of Things

and Cloud (FiCloud), IEEE, 2019, pp. 189–196.

[137] P. Goswami, A. Mukherjee, M. Maiti, S. K. S. Tyagi, and L. Yang, “A neural-

network-based optimal resource allocation method for secure iiot net-

work,” IEEE Internet of Things Journal, vol. 9, no. 4, pp. 2538–2544, 2021.

[138] J. Shi, Q. Zhang, Y.-C. Liang, and X. Yuan, “Distributed deep learning power

allocation for d2d network based on outdated information,” in 2020 IEEE

Wireless Communications and Networking Conference (WCNC), IEEE, 2020,

pp. 1–6.

[139] Z. Hu, J. Tu, and B. Li, “Spear: Optimized dependency-aware task schedul-

ing with deep reinforcement learning,” in 2019 IEEE 39th international con-

ference on distributed computing systems (ICDCS), IEEE, 2019, pp. 2037–

2046.

[140] J. Feng, F. R. Yu, Q. Pei, X. Chu, J. Du, and L. Zhu, “Cooperative computation

offloading and resource allocation for blockchain-enabled mobile-edge

computing: A deep reinforcement learning approach,” IEEE Internet of

Things Journal, vol. 7, no. 7, pp. 6214–6228, 2019.

[141] J. Yan, S. Bi, and Y. J. A. Zhang, “Offloading and resource allocation with

general task graph in mobile edge computing: A deep reinforcement learn-

ing approach,” IEEE Transactions on Wireless Communications, vol. 19,

no. 8, pp. 5404–5419, 2020.

197

LITERATURE

[142] L. Huang, X. Feng, C. Zhang, L. Qian, and Y. Wu, “Deep reinforcement

learning-based joint task offloading and bandwidth allocation for multi-

user mobile edge computing,” Digital Communications and Networks,

vol. 5, no. 1, pp. 10–17, 2019.

[143] A. Shahidinejad and M. Ghobaei-Arani, “Joint computation offloading and

resource provisioning for e dge-cloud computing environment: A machine

learning-based approach,” Software: Practice and Experience, vol. 50,

no. 12, pp. 2212–2230, 2020.

[144] S. Xu, Q. Liu, B. Gong, et al., “Rjcc: Reinforcement-learning-based joint

communicational-and-computational resource allocation mechanism for

smart city iot,” IEEE Internet of Things Journal, vol. 7, no. 9, pp. 8059–

8076, 2020.

[145] N. Kiran, C. Pan, S. Wang, and C. Yin, “Joint resource allocation and com-

putation offloading in mobile edge computing for sdn based wireless net-

works,” Journal of Communications and Networks, vol. 22, no. 1, pp. 1–11,

2019.

[146] L. Lei, H. Xu, X. Xiong, K. Zheng, and W. Xiang, “Joint computation offload-

ing and multiuser scheduling using approximate dynamic programming

in nb-iot edge computing system,” IEEE Internet of Things Journal, vol. 6,

no. 3, pp. 5345–5362, 2019.

[147] F. Jiang, K. Wang, L. Dong, C. Pan, W. Xu, and K. Yang, “Deep-learning-

based joint resource scheduling algorithms for hybrid mec networks,” IEEE

Internet of Things Journal, vol. 7, no. 7, pp. 6252–6265, 2019.

[148] H. Ye and G. Y. Li, “Deep reinforcement learning based distributed resource

allocation for v2v broadcasting,” in 2018 14th International Wireless

Communications & Mobile Computing Conference (IWCMC), IEEE, 2018,

pp. 440–445.

[149] N. Zhao, Y.-C. Liang, D. Niyato, Y. Pei, M. Wu, and Y. Jiang, “Deep reinforce-

ment learning for user association and resource allocation in heteroge-

neous cellular networks,” IEEE Transactions on Wireless Communications,

vol. 18, no. 11, pp. 5141–5152, 2019.

198

LITERATURE

[150] F. Xu, F. Yang, S. Bao, and C. Zhao, “Dqn inspired joint computing and

caching resource allocation approach for software defined information-

centric internet of things network,” IEEE Access, vol. 7, pp. 61 987–61 996,

2019.

[151] W. He, S. Guo, S. Guo, X. Qiu, and F. Qi, “Joint dnn partition deployment

and resource allocation for delay-sensitive deep learning inference in iot,”

IEEE Internet of Things Journal, vol. 7, no. 10, pp. 9241–9254, 2020.

[152] Y. Fan, Z. Zhang, and H. Li, “Message passing based distributed learning

for joint resource allocation in millimeter wave heterogeneous networks,”

IEEE Transactions on Wireless Communications, vol. 18, no. 5, pp. 2872–

2885, 2019.

[153] F. Jiang, K. Wang, L. Dong, C. Pan, and K. Yang, “Stacked autoencoder-

based deep reinforcement learning for online resource scheduling in

large-scale mec networks,” IEEE Internet of Things Journal, vol. 7, no. 10,

pp. 9278–9290, 2020.

[154] Z. Ning, P. Dong, X. Wang, J. J. Rodrigues, and F. Xia, “Deep reinforcement

learning for vehicular edge computing: An intelligent offloading system,”

ACM Transactions on Intelligent Systems and Technology (TIST), vol. 10,

no. 6, pp. 1–24, 2019.

[155] J. Zhou, “Real-time task scheduling and network device security for com-

plex embedded systems based on deep learning networks,” Microproces-

sors and Microsystems, vol. 79, p. 103 282, 2020.

[156] A. M. Kintsakis, F. E. Psomopoulos, and P. A. Mitkas, “Reinforcement learn-

ing based scheduling in a workflow management system,” Engineering

Applications of Artificial Intelligence, vol. 81, pp. 94–106, 2019.

[157] S. Shadroo, A. M. Rahmani, and A. Rezaee, “The two-phase scheduling

based on deep learning in the internet of things,” Computer Networks,

vol. 185, p. 107 684, 2021.

[158] T. Dong, F. Xue, C. Xiao, and J. Li, “Task scheduling based on deep rein-

forcement learning in a cloud manufacturing environment,” Concurrency

and Computation: Practice and Experience, vol. 32, no. 11, e5654, 2020.

199

LITERATURE

[159] W. Cui, K. Shen, and W. Yu, “Spatial deep learning for wireless scheduling,”

ieee journal on selected areas in communications, vol. 37, no. 6, pp. 1248–

1261, 2019.

[160] Q. Chen, Z. Zheng, C. Hu, D. Wang, and F. Liu, “On-edge multi-task transfer

learning: Model and practice with data-driven task allocation,” IEEE Trans-

actions on Parallel and Distributed Systems, vol. 31, no. 6, pp. 1357–1371,

2019.

[161] Z. Wei, F. Liu, Y. Zhang, J. Xu, J. Ji, and Z. Lyu, “A q-learning algorithm for

task scheduling based on improved svm in wireless sensor networks,”

Computer Networks, vol. 161, pp. 138–149, 2019.

[162] M. H. Moghadam and S. M. Babamir, “Makespan reduction for dynamic

workloads in cluster-based data grids using reinforcement-learning based

scheduling,” Journal of computational science, vol. 24, pp. 402–412, 2018.

[163] A. Chowdhury, S. A. Raut, and H. S. Narman, “Da-drls: Drift adaptive deep

reinforcement learning based scheduling for iot resource management,”

Journal of Network and Computer Applications, vol. 138, pp. 51–65, 2019.

[164] Y. Wang, H. Liu, W. Zheng, et al., “Multi-objective workflow scheduling with

deep-q-network-based multi-agent reinforcement learning,” IEEE access,

vol. 7, pp. 39 974–39 982, 2019.

[165] T. T. Sung, J. Ha, J. Kim, A. Yahja, C.-B. Sohn, and B. Ryu, “Deepsocs: A neu-

ral scheduler for heterogeneous system-on-chip (soc) resource schedul-

ing,” Electronics, vol. 9, no. 6, p. 936, 2020.

[166] J. Wang, J. Hu, G. Min, A. Y. Zomaya, and N. Georgalas, “Fast adaptive task

offloading in edge computing based on meta reinforcement learning,” IEEE

Transactions on Parallel and Distributed Systems, vol. 32, no. 1, pp. 242–

253, 2020.

[167] L. Huang, S. Bi, and Y.-J. A. Zhang, “Deep reinforcement learning for online

computation offloading in wireless powered mobile-edge computing net-

works,” IEEE Transactions on Mobile Computing, vol. 19, no. 11, pp. 2581–

2593, 2019.

200

LITERATURE

[168] W. Zhan, C. Luo, J. Wang, et al., “Deep-reinforcement-learning-based of-

floading scheduling for vehicular edge computing,” IEEE Internet of Things

Journal, vol. 7, no. 6, pp. 5449–5465, 2020.

[169] D. Rahbari and M. Nickray, “Task offloading in mobile fog computing by

classification and regression tree,” Peer-to-Peer Networking and Applica-

tions, vol. 13, pp. 104–122, 2020.

[170] Y. Zhan, S. Guo, P. Li, and J. Zhang, “A deep reinforcement learning based

offloading game in edge computing,” IEEE Transactions on Computers,

vol. 69, no. 6, pp. 883–893, 2020.

[171] F. Paolucci, F. Civerchia, A. Sgambelluri, A. Giorgetti, F. Cugini, and P. Cas-

toldi, “P4 edge node enabling stateful traffic engineering and cyber secu-

rity,” Journal of Optical Communications and Networking, vol. 11, no. 1,

A84–A95, 2019.

[172] F. P.-C. Lin and Z. Tsai, “Hierarchical edge-cloud sdn controller system with

optimal adaptive resource allocation for load-balancing,” IEEE Systems

Journal, vol. 14, no. 1, pp. 265–276, 2019.

[173] V. Sivaraman, S. Narayana, O. Rottenstreich, S. Muthukrishnan, and J.

Rexford, “Heavy-hitter detection entirely in the data plane,” in Proceedings

of the Symposium on SDN Research, 2017, pp. 164–176.

[174] P. Vörös and A. Kiss, “Security middleware programming using p4,” in Hu-

man Aspects of Information Security, Privacy, and Trust: 4th International

Conference, HAS 2016, Held as Part of HCI International 2016, Toronto,

ON, Canada, July 17-22, 2016, Proceedings 4, Springer, 2016, pp. 277–

287.

[175] Y. Afek, A. Bremler-Barr, and L. Shafir, “Network anti-spoofing with sdn

data plane,” in IEEE INFOCOM 2017-IEEE conference on computer commu-

nications, IEEE, 2017, pp. 1–9.

[176] Y. Li, R. Miao, C. Kim, and M. Yu, “Lossradar: Fast detection of lost packets

in data center networks,” in Proceedings of the 12th International on

Conference on emerging Networking EXperiments and Technologies, 2016,

pp. 481–495.

201

LITERATURE

[177] G. Bianchi, M. Bonola, A. Capone, and C. Cascone, “Openstate: Program-

ming platform-independent stateful openflow applications inside the

switch,” ACM SIGCOMM Computer Communication Review, vol. 44, no. 2,

pp. 44–51, 2014.

[178] G. K. Ndonda and R. Sadre, “A two-level intrusion detection system for

industrial control system networks using p4,” in 5th International Sym-

posium for ICS & SCADA Cyber Security Research 2018 5, 2018, pp. 31–

40.

[179] F. Kuliesius and V. Dangovas, “Sdn enhanced campus network authentica-

tion and access control system,” in 2016 Eighth International Conference

on Ubiquitous and Future Networks (ICUFN), IEEE, 2016, pp. 894–899.

[180] W. Wang, Y. Hu, L. Chen, X. Huang, and B. Sunar, “Accelerating fully ho-

momorphic encryption using gpu,” Sep. 2012, pp. 1–5, isbn: 978-1-4673-

1577-7. doi: 10.1109/HPEC.2012.6408660.

[181] C. Gentry and S. Halevi, “Implementing gentry’s fully-homomorphic encryp-

tion scheme,” in Proceedings of the 30th Annual International Conference

on Theory and Applications of Cryptographic Techniques: Advances in

Cryptology, ser. EUROCRYPT’11, Tallinn, Estonia: Springer-Verlag, 2011,

pp. 129–148, isbn: 9783642204647.

[182] M. Matsumoto and M. Oguchi, “Speeding up encryption on iot devices

using homomorphic encryption,” in 2021 IEEE International Conference

on Smart Computing (SMARTCOMP), IEEE, 2021, pp. 270–275.

[183] S. M. Fawaz, N. Belal, A. ElRefaey, and M. W. Fakhr, “A comparative study

of homomorphic encryption schemes using microsoft seal,” in Journal of

Physics: Conference Series, IOP Publishing, vol. 2128, 2021, p. 012 021.

[184] N. Samardzic, A. Feldmann, A. Krastev, et al., “F1: A fast and programmable

accelerator for fully homomorphic encryption,” in MICRO-54: 54th An-

nual IEEE/ACM International Symposium on Microarchitecture, ser. MICRO

’21, Virtual Event, Greece: Association for Computing Machinery, 2021,

pp. 238–252, isbn: 9781450385572. doi: 10.1145/3466752.3480070.

[Online]. Available: https://doi.org/10.1145/3466752.3480070.

202

LITERATURE

[185] A. C. Mert, E. Öztürk, and E. Savaş, “Design and implementation of encryp-

tion/decryption architectures for bfv homomorphic encryption scheme,”

IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 28,

no. 2, pp. 353–362, 2019.

[186] S. S. Roy, F. Vercauteren, N. Mentens, D. D. Chen, and I. Verbauwhede,

“Compact ring-lwe cryptoprocessor,” in International workshop on cryp-

tographic hardware and embedded systems, Springer, 2014, pp. 371–

391.

[187] R. De Clercq, S. S. Roy, F. Vercauteren, and I. Verbauwhede, “Efficient soft-

ware implementation of ring-lwe encryption,” in 2015 Design, Automation

& Test in Europe Conference & Exhibition (DATE), IEEE, 2015, pp. 339–344.

[188] W. Dai and B. Sunar, “Cuhe: A homomorphic encryption accelerator li-

brary,” in International Conference on Cryptography and Information Se-

curity in the Balkans, Springer, 2015, pp. 169–186.

[189] I. Syafalni, G. Jonatan, N. Sutisna, R. Mulyawan, and T. Adiono, “Efficient

homomorphic encryption accelerator with integrated prng using low-cost

fpga,” IEEE Access, vol. 10, pp. 7753–7771, 2022.

[190] W. Jung, S. Kim, J. H. Ahn, J. H. Cheon, and Y. Lee, “Over 100x faster

bootstrapping in fully homomorphic encryption through memory-centric

optimization with gpus,” IACR Transactions on Cryptographic Hardware

and Embedded Systems, pp. 114–148, 2021.

[191] Y. Cao, C. Xiao, B. Cyr, et al., “Adversarial sensor attack on lidar-based per-

ception in autonomous driving,” in Proceedings of the 2019 ACM SIGSAC

conference on computer and communications security, 2019, pp. 2267–

2281.

[192] H. Shin, D. Kim, Y. Kwon, and Y. Kim, “Illusion and dazzle: Adversarial optical

channel exploits against lidars for automotive applications,” in Interna-

tional Conference on Cryptographic Hardware and Embedded Systems,

Springer, 2017, pp. 445–467.

203

LITERATURE

[193] J. Petit, B. Stottelaar, M. Feiri, and F. Kargl, “Remote attacks on automated

vehicles sensors: Experiments on camera and lidar,” Black Hat Europe,

vol. 11, no. 2015, p. 995, 2015.

[194] M. Abdelfattah, K. Yuan, Z. J. Wang, and R. Ward, “Adversarial attacks on

camera-lidar models for 3d car detection,” in 2021 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), 2021, pp. 2189–

2194. doi: 10.1109/IROS51168.2021.9636638.

[195] J. Zhang, Y. Zhang, K. Lu, et al., “Detecting and identifying optical signal

attacks on autonomous driving systems,” IEEE Internet of Things Journal,

vol. 8, no. 2, pp. 1140–1153, 2021. doi: 10.1109/JIOT.2020.3011690.

[196] R. Ivanov, M. Pajic, and I. Lee, “Attack-resilient sensor fusion,” in 2014

Design, Automation & Test in Europe Conference & Exhibition (DATE), IEEE,

2014, pp. 1–6.

[197] R. S. Hallyburton, Y. Liu, and M. Pajic, “Security analysis of camera-lidar

semantic-level fusion against black-box attacks on autonomous vehicles,”

CoRR, vol. abs/2106.07098, 2021. arXiv: 2106.07098. [Online]. Available:

https://arxiv.org/abs/2106.07098.

[198] Y. Cao, N. Wang, C. Xiao, et al., “Invisible for both camera and lidar: Security

of multi-sensor fusion based perception in autonomous driving under

physical-world attacks,” CoRR, vol. abs/2106.09249, 2021. arXiv: 2106.

09249. [Online]. Available: https://arxiv.org/abs/2106.09249.

[199] K. Lim and K. M. Tuladhar, “Lidar: Lidar information based dynamic v2v au-

thentication for roadside infrastructure-less vehicular networks,” in 2019

16th IEEE Annual Consumer Communications Networking Conference

(CCNC), 2019, pp. 1–6. doi: 10.1109/CCNC.2019.8651684.

[200] J. Tu, M. Ren, S. Manivasagam, et al., “Physically realizable adversarial

examples for lidar object detection,” in Proceedings of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition, 2020, pp. 13 716–

13 725.

204

LITERATURE

[201] Z. Hau, S. Demetriou, L. Muñoz-González, and E. C. Lupu, “Shadow-catcher:

Looking into shadows to detect ghost objects in autonomous vehicle 3d

sensing,” in European Symposium on Research in Computer Security,

Springer, 2021, pp. 691–711.

[202] U. Saleem, Y. Liu, S. Jangsher, Y. Li, and T. Jiang, “Mobility-aware joint

task scheduling and resource allocation for cooperative mobile edge

computing,” IEEE Transactions on Wireless Communications, vol. 20, no. 1,

pp. 360–374, 2021. doi: 10.1109/TWC.2020.3024538.

[203] L. P. Qian, A. Feng, Y. Huang, Y. Wu, B. Ji, and Z. Shi, “Optimal sic or-

dering and computation resource allocation in mec-aware noma nb-iot

networks,” IEEE Internet of Things Journal, vol. 6, no. 2, pp. 2806–2816,

2019. doi: 10.1109/JIOT.2018.2875046.

[204] E. G. Coffman, J. Csirik, G. Galambos, S. Martello, D. Vigo, et al., “Bin pack-

ing approximation algorithms: Survey and classification.,” in Handbook of

combinatorial optimization, Springer, 2013, pp. 455–531.

[205] P. Festa, “A brief introduction to exact, approximation, and heuristic al-

gorithms for solving hard combinatorial optimization problems,” in 2014

16th International Conference on Transparent Optical Networks (ICTON),

IEEE, 2014, pp. 1–20.

[206] M. A. Rodriguez and R. Buyya, “A taxonomy and survey on scheduling

algorithms for scientific workflows in iaas cloud computing environments,”

Concurrency and Computation: Practice and Experience, vol. 29, no. 8,

e4041, 2017.

[207] F. Wu, Q. Wu, and Y. Tan, “Workflow scheduling in cloud: A survey,” The

Journal of Supercomputing, vol. 71, pp. 3373–3418, 2015.

[208] W. Lu, W. Wu, J. Xu, P. Zhao, D. Yang, and L. Xu, “Auction design for cross-

edge task offloading in heterogeneous mobile edge clouds,” Computer

Communications, vol. 181, pp. 90–101, 2022.

[209] K. Choudhary, B. DeCost, C. Chen, et al., “Recent advances and applica-

tions of deep learning methods in materials science,” npj Computational

Materials, vol. 8, no. 1, p. 59, 2022.

205

LITERATURE

[210] G. Rodola, Psutil documentation. [Online]. Available: https://psutil.

readthedocs.io/en/latest/ (visited on 09/07/2023).

[211] S. Abirami and P. Chitra, “Energy-efficient edge based real-time healthcare

support system,” in Advances in computers, 1, vol. 117, Elsevier, 2020,

pp. 339–368.

[212] L. Wen, X. Li, and L. Gao, “A new reinforcement learning based learning

rate scheduler for convolutional neural network in fault classification,”

IEEE Transactions on Industrial Electronics, vol. 68, no. 12, pp. 12 890–

12 900, 2020.

[213] A. Ayoub, Z. Jia, C. Szepesvari, M. Wang, and L. Yang, “Model-based re-

inforcement learning with value-targeted regression,” in International

Conference on Machine Learning, PMLR, 2020, pp. 463–474.

[214] R. Medar, V. S. Rajpurohit, and B. Rashmi, “Impact of training and testing

data splits on accuracy of time series forecasting in machine learning,” in

2017 International Conference on Computing, Communication, Control

and Automation (ICCUBEA), 2017, pp. 1–6. doi: 10.1109/ICCUBEA.2017.

8463779.

[215] D. Singh and B. Singh, “Investigating the impact of data normalization on

classification performance,” Applied Soft Computing, vol. 97, p. 105 524,

2020, issn: 1568-4946. doi: https://doi.org/10.1016/j.asoc.2019.

105524.

[216] K. G. Sheela and S. N. Deepa, “Review on methods to fix number of hid-

den neurons in neural networks,” Mathematical problems in engineering,

vol. 2013, 2013. doi: https://doi.org/10.1155/2013/425740.

[217] J.-Y. Li, T. Chow, and Y.-L. Yu, “The estimation theory and optimization

algorithm for the number of hidden units in the higher-order feedforward

neural network,” in Proceedings of ICNN’95 - International Conference on

Neural Networks, vol. 3, 1995, 1229–1233 vol.3. doi: 10.1109/ICNN.1995.

487330.

206

LITERATURE

[218] S. Tamura and M. Tateishi, “Capabilities of a four-layered feedforward

neural network: Four layers versus three,” IEEE Transactions on Neural

Networks, vol. 8, no. 2, pp. 251–255, 1997. doi: 10.1109/72.557662.

[219] S. Xu and L. Chen, “A novel approach for determining the optimal number

of hidden layer neurons for fnn’s and its application in data mining,” ICITA,

2008.

[220] K. Shibata and Y. Ikeda, “Effect of number of hidden neurons on learning

in large-scale layered neural networks,” in 2009 ICCAS-SICE, IEEE, 2009,

pp. 5008–5013.

[221] D. Hunter, H. Yu, M. S. Pukish III, J. Kolbusz, and B. M. Wilamowski, “Se-

lection of proper neural network sizes and architectures—a comparative

study,” IEEE Transactions on Industrial Informatics, vol. 8, no. 2, pp. 228–

240, 2012. doi: 10.1109/TII.2012.2187914.

[222] R. Kruse, C. Borgelt, F. Klawonn, C. Moewes, G. Ruß, and M. Steinbrecher,

“Computational intelligence: Eine methodische einführung in künstliche

neuronale netze,” Evolutionäre Algorithmen, Fuzzy-Systeme und Bayes-

Netze Vieweg+ Teubner, Wiesbaden, 2011.

[223] L. Serrano, Grokking Machine Learning. Simon and Schuster, 2021.

[224] F. von Tüllenburg and T. Pfeiffenberger, “Concepts for reliable communi-

cation in a software-defined network architecture,” in Computer Safety,

Reliability, and Security: SAFECOMP 2017 Workshops, ASSURE, DECSoS,

SASSUR, TELERISE, and TIPS, Trento, Italy, September 12, 2017, Proceed-

ings 36, Springer, 2017, pp. 173–186.

[225] P. Bosshart, D. Daly, G. Gibb, et al., “P4: Programming protocol-independent

packet processors,” ACM SIGCOMM Computer Communication Review,

vol. 44, no. 3, pp. 87–95, 2014.

[226] J. Hyun and J. W.-K. Hong, “Knowledge-defined networking using in-band

network telemetry,” in 2017 19th Asia-Pacific Network Operations and

Management Symposium (APNOMS), IEEE, 2017, pp. 54–57.

207

LITERATURE

[227] A. C. Baktir, A. Ozgovde, and C. Ersoy, “Implementing service-centric model

with p4: A fully-programmable approach,” in NOMS 2018-2018 IEEE/IFIP

Network Operations and Management Symposium, IEEE, 2018, pp. 1–6.

[228] F. Paolucci, F. Cugini, and P. Castoldi, “P4-based multi-layer traffic engineer-

ing encompassing cyber security,” in 2018 Optical Fiber Communications

Conference and Exposition (OFC), IEEE, 2018, pp. 1–3.

[229] Y. Afek, A. Bremler-Barr, S. L. Feibish, and L. Schiff, “Detecting heavy flows

in the sdn match and action model,” Computer Networks, vol. 136, pp. 1–

12, 2018.

[230] F. H. M. Ali, R. Yunos, and M. A. M. Alias, “Simple port knocking method:

Against tcp replay attack and port scanning,” in Proceedings Title: 2012

International Conference on Cyber Security, Cyber Warfare and Digital

Forensic (CyberSec), IEEE, 2012, pp. 247–252.

[231] J. Aycock, M. Jacobson, et al., “Improved port knocking with strong au-

thentication,” in 21st Annual computer security applications conference

(ACSAC’05). IEEE, 2005.

[232] M. Nabi-Abdolyousefi and M. Mesbahi, “Network identification via node

knockout,” IEEE Transactions on Automatic Control, vol. 57, no. 12,

pp. 3214–3219, 2012.

[233] A. K. Nayak, A. Reimers, N. Feamster, and R. Clark, “Resonance: Dynamic

access control for enterprise networks,” in Proceedings of the 1st ACM

workshop on Research on enterprise networking, 2009, pp. 11–18.

[234] D. Levin, A. Wundsam, B. Heller, N. Handigol, and A. Feldmann, “Logically

centralized? state distribution trade-offs in software defined networks,”

in Proceedings of the first workshop on Hot topics in software defined

networks, 2012, pp. 1–6.

[235] D. Lee and M. Yannakakis, “Principles and methods of testing finite state

machines-a survey,” Proceedings of the IEEE, vol. 84, no. 8, pp. 1090–1123,

1996.

208

LITERATURE

[236] T. Dargahi, A. Caponi, M. Ambrosin, G. Bianchi, and M. Conti, “A survey on

the security of stateful sdn data planes,” IEEE Communications Surveys &

Tutorials, vol. 19, no. 3, pp. 1701–1725, 2017.

[237] U. LACORE, “A review of port scanning techniques,”

[238] MPICH. “High-performance portable mpi.” (2008), [Online]. Available: htt

ps://www.mpich.org/ (visited on 09/07/2023).

[239] Microsoft SEAL (release 4.0), Microsoft Research, Redmond, WA., Mar.

2022. [Online]. Available: https://github.com/Microsoft/SEAL (visited

on 09/07/2023).

[240] M. Albrecht, M. Chase, H. Chen, et al., “Homomorphic encryption security

standard,” HomomorphicEncryption.org, Toronto, Canada, Tech. Rep., Nov.

2018.

[241] A. Kim, Y. Polyakov, and V. Zucca, “Revisiting homomorphic encryption

schemes for finite fields,” in International Conference on the Theory

and Application of Cryptology and Information Security, Springer, 2021,

pp. 608–639.

[242] M. Chase, H. Chen, J. Ding, et al., “Security of homomorphic encryption,”

HomomorphicEncryption. org, Redmond WA, Tech. Rep, 2017.

[243] B. Li and D. Micciancio, “On the security of homomorphic encryption on

approximate numbers,” in Annual International Conference on the Theory

and Applications of Cryptographic Techniques, Springer, 2021, pp. 648–

677.

[244] J. Cho, J. Ha, S. Kim, et al., “Transciphering framework for approximate

homomorphic encryption,” in International Conference on the Theory

and Application of Cryptology and Information Security, Springer, 2021,

pp. 640–669.

[245] B. Li, D. Micciancio, M. Schultz, and J. Sorrell, “Securing approximate ho-

momorphic encryption using differential privacy,” in Annual International

Cryptology Conference, Springer, 2022, pp. 560–589.

209

LITERATURE

[246] Y. Peng, Y. Qin, X. Tang, Z. Zhang, and L. Deng, “Survey on image and point-

cloud fusion-based object detection in autonomous vehicles,” IEEE Trans-

actions on Intelligent Transportation Systems, vol. 23, no. 12, pp. 22 772–

22 789, 2022. doi: 10.1109/TITS.2022.3206235.

[247] Y. Li and J. Ibanez-Guzman, “Lidar for autonomous driving: The principles,

challenges, and trends for automotive lidar and perception systems,”

IEEE Signal Processing Magazine, vol. 37, no. 4, pp. 50–61, 2020. doi:

10.1109/MSP.2020.2973615.

[248] J. Sun, Y. Cao, Q. A. Chen, and Z. M. Mao, “Towards robust {lidar-based}

perception in autonomous driving: General black-box adversarial sen-

sor attack and countermeasures,” in 29th USENIX Security Symposium

(USENIX Security 20), 2020, pp. 877–894.

[249] Y. Cao, J. Ma, K. Fu, R. Sara, and M. Mao, “Automated tracking system for

lidar spoofing attacks on moving targets,” The Network and Distributed

System Security, 2021.

[250] W. Shi and R. Rajkumar, “Point-gnn: Graph neural network for 3d object

detection in a point cloud,” in Proceedings of the IEEE/CVF conference on

computer vision and pattern recognition, 2020, pp. 1711–1719.

[251] M. M. Lau and K. H. Lim, “Review of adaptive activation function in deep

neural network,” in 2018 IEEE-EMBS Conference on Biomedical Engineer-

ing and Sciences (IECBES), IEEE, 2018, pp. 686–690.

[252] V. Verdhan, “Computer vision using deep learning,” Berkeley, CA: Apress,

2021.

[253] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics: The

kitti dataset,” The International Journal of Robotics Research, vol. 32,

no. 11, pp. 1231–1237, 2013.

[254] M. Grandini, E. Bagli, and G. Visani, “Metrics for multi-class classification:

An overview,” arXiv preprint arXiv:2008.05756, 2020.

210

LITERATURE

[255] M. H. Ferris, M. McLaughlin, S. Grieggs, et al., “Using roc curves and auc

to evaluate performance of no-reference image fusion metrics,” in 2015

National Aerospace and Electronics Conference (NAECON), IEEE, 2015,

pp. 27–34.

[256] K. Klahr, Performance-metriken des überwachten lernens für klassifika-

tionsprobleme, https://www.saracus.com/blog/performance-metrik

en-klassifikation-2-2/, Nov. 2018. (visited on 09/07/2023).

[257] L. Lamport, “Password authentication with insecure communication,”

Communications of the ACM, vol. 24, no. 11, pp. 770–772, 1981.

[258] C. Pan, S. Zhang, C. Zhao, H. Shi, Z. Kong, and X. Cui, “A novel active queue

management algorithm based on average queue length change rate,”

IEEE Access, vol. 10, pp. 75 558–75 570, 2022. doi: 10.1109/ACCESS.2022.

3189183.

[259] C. D’apice, M. P. D’arienzo, A. Dudin, and R. Manzo, “Admission control in

priority queueing system with servers reservation and temporal blocking

admission of low priority users,” IEEE Access, vol. 11, pp. 44 425–44 443,

2023. doi: 10.1109/ACCESS.2023.3273148.

[260] Y. Chiang, C.-H. Hsu, G.-H. Chen, and H.-Y. Wei, “Deep q-learning-based

dynamic network slicing and task offloading in edge network,” IEEE Trans-

actions on Network and Service Management, vol. 20, no. 1, pp. 369–384,

2022.

[261] C. Xu and W. Song, “Intelligent task allocation for mobile crowdsensing

with graph attention network and deep reinforcement learning,” IEEE

Transactions on Network Science and Engineering, vol. 10, no. 2, pp. 1032–

1048, 2023.

[262] B. Lim and M. Vu, “Distributed multi-agent deep q-learning for load balanc-

ing user association in dense networks,” IEEE Wireless Communications

Letters, 2023.

[263] W. Cheng, X. Liu, X. Wang, and G. Nie, “Task offloading and resource allo-

cation for industrial internet of things: A double-dueling deep q-network

approach,” IEEE Access, vol. 10, pp. 103 111–103 120, 2022.

211

LITERATURE

[264] J. Zheng, Y. Pan, S. Jiang, Z. Chen, and F. Yan, “A federated learning and

deep q-network based cooperative resource allocation algorithm for multi-

level services in mobile edge computing networks,” IEEE Transactions on

Cognitive Communications and Networking, 2023.

[265] Z. Tianqing, W. Zhou, D. Ye, Z. Cheng, and J. Li, “Resource allocation in iot

edge computing via concurrent federated reinforcement learning,” IEEE

Internet of Things Journal, vol. 9, no. 2, pp. 1414–1426, 2021.

[266] Y. He, M. Yang, Z. He, and M. Guizani, “Computation offloading and resource

allocation based on dt-mec-assisted federated learning framework,” IEEE

Transactions on Cognitive Communications and Networking, 2023.

212

