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Abstract

Smartphones provide convenient access to online banking, social media, photos, and
entertainment, all of which have become integral to our daily lives. However, this
mobile nature also opens up new avenues for unauthorised access to user data. To
combat this, device manufacturers often provide a screen lock mechanism. Yet, tra-
ditional lock screen authentication can be inconvenient and only offers protection at
the point of user verification. Therefore, this thesis demonstrates the potential of
touch-based behavioural biometrics for continuous authentication, which could sig-
nificantly enhance smartphone security. The behaviours studied here are exclusively
modelled from smartphone touchscreen inputs obtained from publicly available data,
and the results show promising effectiveness in addressing security concerns.

The initial objective was to assess, through feature selection, the behaviours
universally exhibited by users and those unique to individuals to improve the per-
formance of the 60 different continuous authentication models being tested. Of the
30 features used over five feature selection methods, results showed that features
related to pressure appeared in 81% of models, demonstrating their importance for
most users while not negatively affecting performance when non-important features
were removed. The following research sought to model users independent of their
directional navigation and instead rely more on these essential features.

In this field, several models are typically produced for each user depending on
gesture direction when testing authentication methods. However, since features de-
scribe behaviour, this thesis demonstrates that the proposed single omni-directional
model can be employed while prioritising lesser complex hyperparameters. Results
show that using an omni-directional model to evaluate 35 users can achieve an AUC
score of 89% and 17.9% EER when authenticating using five gestures while outper-
forming more complex bi-directional techniques. Furthermore, the omni-directional
model performs better when using the oldest feature set than more recent efforts in
engineering new features.

When considering the necessary prioritisation of features unique to individuals,
it becomes immediately apparent that engineering and evaluating these manually is
impossible at scale. To address this, this thesis proposes a move towards automatic
feature extraction through the innovative TouchEncoding method. This method
transforms touch behaviour into image encodings that enable computer vision to
authenticate users. The results of this approach were superior to all the related work,
with AUC scores of 96.7% and EER of 8.5% across 74 users while authenticating
on a single gesture. The performance further improved to 99.1% AUC and 3.6%
EER when authenticating using five gestures. This underscores the effectiveness
and superiority of the TouchEncoding method, paving the way for future work in
this area.





Denne afhandling er dedikeret til min søster, Tine, hvis hjertevarme og 6.
juli-menu har været afgørende for succesen og en konstant p̊amindelse om, at alt
nok skal g̊a. Tusind tak for dit nærvær, selvom vi har været langt fra hinanden.
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Chapter 1

Introduction and Background

This first chapter aims to provide the necessary background information to grasp the

problem statement better and outline the challenges of authenticating smartphone

users. It also defines the problem and thesis statements and identifies the thesis con-

tributions. The first section provides a scope of the problem domain in the context of

user or device authentication, followed by an overview and background of the three

most common user authentication factors, namely Knowledge-Based Authentication

(KBA) in Section 1.2.1, Object-Based Authentication (OBA) in Section 1.2.2, and

Biometric-Based Authentication (BBA) in Section 1.2.3. The benefits, use cases,

challenges, and potential attack vectors are explained for each authentication factor.

Lastly, the behavioural biometric and the Continuous Authentication (CA) concept

is introduced in Section 1.2.5 before summarising the open challenges with CA in

Section 1.3.

1.1 Problem Statement and Motivation

In London, the capital of the United Kingdom, a smartphone is stolen every six

minutes; however, only about two per cent of these thefts result in the recovery of the

device [18]. This leaves users vulnerable to identity theft and unauthorised access to

their data, including potentially sensitive Personally Identifiable Information (PPI).

Since smartphones provide access to numerous apps, such as web browsing, banking,

social media, and private photos, the implications of such attacks are not limited to

1



CHAPTER 1. INTRODUCTION AND BACKGROUND

the loss of a physical device. Criminals can observe users before the theft through

shoulder-surfing [19], although this may not be necessary since many smartphone

users apply no protection to their device [20]. After stealing a smartphone, criminals

can explore the stolen devices to gain access to other user accounts stored on the

device. These credentials can then be sold or weaponised in credential-stuffing

attacks [21], [22], where the attacker may gain access to other accounts that use the

same username and passwords. Moreover, the criminal can extort victims if sensitive

data is on the device, such as private photos [23]. Mitigating shoulder-surfing or

credential-stuffing attacks typically involves additional authentication, such as a

secondary authenticator, to reduce the risk of unauthorised access through stolen

credentials. However, attackers can still bypass this defence, as seen in the recent

Uber breach [24], where a user was tricked into forwarding a secondary authenticator

due to too many pop-ups.

Consequently, securing smartphones is necessary to protect against device and

identity theft. As shown in Figure 1.1, this problem domain can be separated into

two concepts: machine-to-machine authentication protects the device’s digital com-

munication channel, and user authentication protects which human can access the

devices. For example, advanced mathematical protection such as encryption can

be implemented in the machine-to-machine domain, such as with Signal protocol

[25]. However, it is more challenging to establish the same mathematical protec-

tion between a device and the end user since humans cannot compute maths as

fast. Figure 1.1 shows the separation between the user and machine-to-machine au-

thentication domain. For example, User A may rely on the protocol protecting the

communication channel to User B’s device. Still, there is no guarantee that another

user cannot access the device without adequate user authentication. Thus, various

lock screen authentication techniques are used to prevent unauthorised users’ access

to a smartphone. E.g., passwords, fingerprints, pin patterns, or, more recently, a

proposed double pin pattern to enhance the security of pin patterns [26]. However,

unlocking and accessing the device with two rather than a single pattern would take

longer and harm the user experience. In a study by [27], users already spend up
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Figure 1.1: User versus machine authentication [6]

to 9% of their time using Explicit Authenticating (EA) and unlocking their smart-

phones. Annoying and long authentication processes exacerbate the frustration of

smartphone users since devices are frequently used for short intervals of about 50

seconds due to their portability and use in the wild [28]. Consequently, authentica-

tion mechanisms on a smartphone can quickly become a hassle for users, who might

opt for usability over security, which may explain why about 200 million devices

remain unprotected [20]. To address the drawbacks of traditional authentication

factors such as pin patterns and passwords, [20] suggests a shift towards Implicit

Authentication (IA). This involves using a user’s behaviour as a biometric to elimi-

nate shoulder-surfing issues and reduce users’ need to create strong passwords. The

benefits of using behavioural biometrics are two-fold. It makes it more difficult and

time-consuming for a potential attacker to observe while removing any demands for

users to consciously choose or enter their authentication information while protecting

their accounts over time. In the literature, IA is also called Passive Authentication

or CA. The remainder of this thesis will use the term CA since it implies the benefit

of protecting users over time. More specifically, accurately capturing and modelling

behaviour over time is the key to advancing and enabling CA. In 2016, Google at-

tempted to promote behavioural biometrics for smartphone authentication through

a Trust Application Program Interface (API), announced during the annual I/O

conference [29]. This API was meant to be powered by several behavioural modali-

ties. However, the API is yet to be released, suggesting that some challenges must

be addressed before the technology can be widely adopted. While this section de-

fines the problem and motivation, the following section provides more context and

background information concerning the three common authentication factors, how

behavioural differs from physiological biometrics, and the challenges with the former
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factors.

1.2 Background of Traditional Authentication

User authentication through a lock screen typically secures smartphone information,

ensuring the person accessing a device is genuine. Measuring the authenticity of a

user on a device can be achieved using one or more of three traditional authentica-

tion factors visualised in Figure 1.2, where each factor covers several authentication

methods in an overall category. The three factors are commonly known as “Some-

thing you know”, “Something you have”, and “Something you are” [6]. These factors

will be referred to as KBA, OBA, and BBA authentication, respectively. These three

authentication factors are explained in the following subsections, briefly describing

their strengths and weaknesses.

Typically, each of the traditional factors carries a weakness that another factor

overcomes, and when combined, results in Multi-Factor Authentication (MFA) or

Two-Factor Authentication (2FA). When combining factors, the strength of authen-

tication is assumed to be increased since attackers must gather multiple factors,

including secret knowledge, items in possession, and potential biometrics linked to

a user account. An example of a standard that enforces 2FA is the Payment Card

Industry Data Security Standard (PCI-DSS) [30], which defines multiple factors as

strong authentication by requiring at least two different factors to access systems

that store payment card data. However, as shown in the following sections, each

factor and MFA/2FA combinations can still be exploited. At the same time, the

user experience worsens for each factor required during the authentication process.

1.2.1 Knowledge-Based Authentication

The first authentication factor is “something you know”. It includes methods such

as passwords, Personal Identification Numbers (PIN), PIN patterns, and challenge

questions designed to be secret knowledge only known by the genuine user. These
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from National Institute of Standards and Technology (NIST) [34] also recommend a

minimum password length of eight characters, and although short, the standard now

specifies defensive measures. These include prohibiting passwords from previously

known breaches, dictionary words, repetitive characters, and context-specific words.

Furthermore, guidelines are defined to protect against offline attacks, such as crack-

ing, including salting techniques and more robust one-way functions on database

passwords [34].

1.2.1.1 Challenges with KBA

One of the challenges in verifying knowledge is that it can be widely shared, which

makes it challenging to authenticate whether the user is genuine or a malicious per-

son has obtained the secret knowledge. The issue is exacerbated by the prevalence of

significant data breaches and large password dumps appearing frequently, and crim-

inals can often reverse the one-way functions if implemented or chosen poorly [35].

Users often select passwords such as “123456” or “password”, which lack uniqueness

and are effortlessly deciphered using modern High-Performance Computing (HPC)

techniques despite applying one-way functions as protective measures [36], [37]. One

way to crack poorly protected passwords using HPC equipment is to apply Graphi-

cal Processing Units (GPUs) that can break any mixture of eight characters, digits,

or symbols as a password within an hour through brute force techniques [37], [38].

Another way is to guess the password using dictionaries and precomputed lookup

tables [39] or through more advanced guessing methods, including Markov Chains

[40]. Markov chains are used to build a probability algorithm which filters and at-

tempts the most probable passwords based on natural language. On the same topic,

[41] suggests that simple 16-character passwords are more effective than complex

eight-character passwords that require a mix of upper and lower-case letters, sym-

bols, and digits or may not include specified words. This contradicts outdated NIST

guidelines that considered both types of passwords equally strong. Despite the con-

tradiction, NIST recommends several defensive measures. These include prohibiting

passwords from previously known breaches, dictionary words, repetitive characters,
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and context-specific words. Furthermore, technical guidelines are defined to pro-

tect against offline attacks such as cracking, including salting techniques and more

robust one-way functions on database passwords [34]. In this context, a one-way

function seeks to cryptographically scramble passwords from plaintext into a unique

value that can only be produced with the original input.

Before focusing on a more practical smartphone example and attack, credential-

stuffing attacks [42] should also be considered, which involves reusing credentials

across different sites. To overcome the reuse, password managers offer a way for

users to create unique credentials across many websites, which is encouraged since

they can store and automatically fill in their credentials and avoid password reuse.

However, as seen in [43], various issues follow. These include the policy of which

auto-fill is supported and allowed in unencrypted communication channels, together

with potential malware able to log keystrokes or otherwise steal credentials. More-

over, password managers can become insecure when master passwords are weak,

enabling attackers to compromise multiple credentials simultaneously. A complex

master or lengthy password may also not be practical on smartphones with limited

user input interfaces. However, pin patterns could enhance the adoption of KBA

security by smartphone users who prefer usability over security [44]. Pin patterns

provide a quick swipe interface on touchscreens where a user selects a secret and

correct order of numbers in a single gesture. Unfortunately, shoulder surfing [45]

can enable a malicious user to observe the genuine user remotely while keying in

the unique pin pattern. The early work discussed in [7] also demonstrates how a

photo captured of an Android device and the residual oil left by a finger sliding over

the screen exposes the PIN pattern. An example from their paper is shown in Fig-

ure 1.3. Figure 1.3a presents a screen where the genuine user keyed in their pattern.

A clear pattern is observed in the oily residue, along with directional changes that

indicate the order of the pattern. Figure 1.3b presents another user who keyed in

their pattern, wiped the screen and pocketed the phone before the photo was taken.

In Figure 1.3a, an apparent smudge is observed, and results show that patterns can

be recovered from this information.
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Figure 1.3: Attacks against pin pattern-based authentication on smartphones [7]

1.2.2 Object-Based Authentication

The second factor refers to “something you have” and involves binding an object

to credentials, ensuring the genuine user possesses a specific physical token when

authenticating. For example, a token can be a device with an associated telephone

number or any other dedicated hardware or software token [6]. This factor can

be used independently with properties similar to traditional physical house locks.

In this case, a key is the object required to open the lock but suffers from be-

ing easily compromised by anyone obtaining the key. Because of this, combining

“something you know” with “something you have” is often used to protect against

the exploitation of individual factors, known as MFA or 2FA. NIST describes 2FA

as Authenticator Assurance Level 2 (AAL2), which is required for higher security

and risk levels [34]. By applying AAL2, the combined factors seek to define a high

confidence level in the authenticity of users since they must prove themselves using

at least two distinctively and cryptographically linked factors. In practice, SMS

authentication has been a common and cost-effective way to bind knowledge with

an object, e.g., the smartphone. It requires users to register a telephone number to

their credentials and verify initial possession of the registered number. Any future
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logins can then require SMS verification to increase confidence and mitigate the

KBA factor is not compromised. SMS authentication has understandable benefits,

such as no additional cost in user hardware or software requirements. However,

issues can arise where phone coverage is low, and the reception of SMS messages is

unavailable.

Instead, other ways to prove possession of an object involve using offline One-

Time Passwords (OTP) generators, either through hardware or software tokens.

Figure 1.4a is an example of a widely used RSA SecureID [46] hardware token,

generating passwords through the Time-based One-Time Password (TOTP) algo-

rithm [47]. Figure 1.4b pictures the Google Authenticator project [48], a software

token that implements TOTP and also supports the older HMAC-based One-Time

Password (HOTP) algorithm [49]. The algorithmic difference can be spotted in

Figure 1.4b, where the generated token “354 134”, associated with “Wikipedia”, is

timing out as indicated by a circle and specified by the TOTP algorithm. On the

contrary, HOTP token is not bound by time but by a counter. HOTP and TOTP

tokens are linked to accounts using cryptographic pairing and keys, ensuring no

other user may generate the same token and protecting it using time-boundaries

or counter-cycles uniquely, TOTP and HOTP, respectively. Users can apply these

tokens to establish trust beyond knowledge using the OTP algorithm, proving they

can generate a token verified against their account. Thus, the possession of a spe-

cific object becomes the secure factor. However, since OBA is typically used as 2FA,

the issues with credential and password overload [32] are exacerbated by demand-

(a) RSA SecureID (b) Google Authenticator

Figure 1.4: Example of hardware (a) and software tokens (b)
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ing users to spend even more time to authenticate. Regardless, the objective is to

require the second factor such that attackers must simultaneously compromise two

authenticators with different properties. The following section covers the challenges

and attacks against the design and implementation of this aspect.

1.2.2.1 Challenges with OBA

Using 2FA can help ensure user authenticity, but selecting appropriate methods to

combine factors is crucial [50]. For example, SMS verification can be problematic

due to phone coverage issues and vulnerabilities using interception and malware

attacks. A study by Dmitrienko et al. [51] highlights the weaknesses of SMS au-

thentication, particularly the risk of dual infection attacks that target both the login

device and associated phone receiving SMS tokens. Such attacks require targeted

malware deployment, but exploiting telephone provider network protocols to inter-

cept SMS messages is also possible [52]. Criminals can, therefore, remotely attack

and exploit SMS authentication mechanisms without deploying malware or physi-

cally infecting targets. Due to these potential threats, NIST recommends against

using SMS messages or Public Switched Telephone Networks (PSTN) for secure

out-of-band communication [34], [50].

Hardware or software tokens can add additional protection for credentials. How-

ever, adoption amongst Dropbox users is reported at about one per cent, indicating

low willingness from customers to apply the extra security factor to their accounts

[53], [54]. The additional step required when accessing accounts may cause low

adoption as users spend longer authenticating. SMS and OTP tokens are obtrusive

and take time away by asking users to either wait for SMS codes to arrive or to pre-

pare their tokens for use during login. Additionally, the protection provided by these

authenticators may be outdated, as cybercriminals are targeting victims to install

malware that intercepts and bypasses 2FA authentication, such as demonstrated in

[55]. Similarly, in a recent security incident, the ride-hailing company Uber [24]

also fell victim to a social engineering attack. The attacker fatigued a genuine user

with requests for MFA authentication and sent WhatsApp messages pretending to
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be from the IT department. Unfortunately, both authentication factors failed to

deny the attacker, and they were able to penetrate the internal networks and gain

unauthorised access to databases. While smartphones can be secured through lock

screens with passwords or pin patterns, the time and annoying components cause

users to choose usability over security [27], [53]. Thus, smartphone developers such

as Apple, amongst others, have adopted BBA through fingerprint scanners [56] or

facial recognition [57]. These methods allow users to unlock a smartphone with-

out entering knowledge or presenting an object but instead verifying “something

they are”. The following section provides an overview of the BBA domain and how

biometrics are separated into physiological and behavioural biometrics.

1.2.3 Biometric-Based Authentication

The third authentication factor involves “something you are” or something that can

be inferred from a person. Commonly, this is known as biometrics and is used to

accurately identify users based on physiological traits or behavioural patterns [8], as

seen in Figure 1.5. Compared to KBA and OBA, delegating or sharing biometrics

with others is more complicated. The biometric domain is divided into two groups:

physiological biometrics can be instantly captured from static body measurements,

and behavioural biometrics involves observing user patterns over time. Categorising

biometrics is essential because each category has unique strengths and weaknesses.

Biometric authentication, although stable and fast, is susceptible to replay attacks

where an attacker can present a copied biometric, observed and replicated from

traces left in the public domain, e.g., fingerprint on glass, to bypass the authenti-

cator [58]. More details on replay and this particular presentation attack are in the

following Section 1.2.3.1. On the contrary, behavioural biometrics can be complex

to model accurately and take time to capture. It also makes it challenging for a

malicious attacker to observe and replay instantly [6], [59]. The overall weaknesses

of behavioural biometrics define the gaps and reasons for this researcher, while the

strength supports a password-less future powered by CA on smartphones. Some-

thing that Google hoped to roll out in 2016 but has yet to be released seven years
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Figure 1.5: Difference between physiological and behavioural biometrics [8]

after [29]. In pursuing more precise and secure biometric identification methods,

workshops such as “Applying Measurement Science in the Identity Ecosystem” [60],

organised by NIST, focus on enhancing biometric performance. The evaluation of

biometrics took centre stage in these discussions. However, the discussion avoids dis-

tinguishing between physiological and behavioural biometrics. Similarly, the NIST

digital identity guidelines refrain from specifying best practices for each category

and mainly focus on the physiological biometrics [34], [61]. The identity workshop

[60] also highlights a need to consider usability and user experience to ensure users

adopt security, and more critically, the biometric signals must resist replay attacks

and accurately verify that the presented biometric signal belongs to a live human

(liveness) [60]. These aspects are discussed in the following subsection.

1.2.3.1 Challenges with BBA

Physiological biometrics provide users with accurate and quick smartphone authen-

tication due to their stability. Nevertheless, unlike behavioural biometrics, they
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Figure 1.6: Afghan girl identified by iris patterns [9]

pose two distinct issues. The main issue with using physiological biometric signals

for authentication is that they are inherently stable and cannot be easily revoked

or changed, leading to privacy and security compromises. For example, Figure 1.6

presents two photographs taken for National Geographic by Steve McCurry, to-

gether with iris codes [62] used to identify an Afghan girl [9]. Figure 1.6a is taken in

1984 when the girl was 12 years old, and Figure 1.6b is photographed 18 years later.

Using the iris recognition codes, it is almost statistically impossible to reject that

the person on Figures 1.6a and 1.6b are different humans. Thus, iris codes have the

potential to identify an individual despite their privacy preferences unless they cover

their eyes. The second issue is identifying whether a physiological biometric signal

is from a live human, defined explicitly as “liveness detection”. Liveness detection is

a complex task for fingerprint and facial recognition technologies. The reason lies in

the static nature of these traits, which makes them vulnerable to copying and used

to replay an otherwise genuine user’s fingerprint through this type of presentation

attack. A replay or presentation attack is designed to compromise the effective-
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ness of liveness detection by replicating the original signal and tricking the system

into believing it is provided by a genuine human, as illustrated in Figure 1.7. The

figures present clear evidence of detection challenges experienced by TouchID [56]

and FaceID [57], which are physiological biometric authentication techniques used

for Apple smartphones. In Figure 1.7a, a high-resolution photograph of the residue

from a fingerprint has been used to generate a dummy finger using household items

such as pink latex mild or wood glue [58]. The researcher claims the technique can

bypass several modern fingerprint scanners. Slightly different, Figure 1.7b demon-

strates how a pair of glasses with tape on can evade the liveness detection of Apple’s

FaceID as presented at BlackHat in 2019 [63]. In this case, the researcher places

the glasses on a sleeping or unconscious victim, and the glasses can trick the au-

thenticator into thinking the person is alive and attentive. Additionally, two other

issues can affect the usefulness of BBA. Firstly, Failure to Acquire (FTA), inter-

changeably called Failure to Capture (FTC), refers to issues with the quality of the

captured biometric signal. Secondly, Failure to Enroll (FTE) relates to problems

with a biometric system’s ability to model users’ biometric template accurately [64].

The former relates to instability in the provided biometric signal compared to the

model known by the system. This can happen due to changes in finger humidity

that can severely affect the ability of fingerprint scanners to record an accurate sig-

(a) TouchID exploit [58] (b) FaceID exploit [63]

Figure 1.7: Fooling liveness detection on physiological biometrics
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nal. For example, when trying to unlock a smartphone after taking a long shower or

in the case of facial recognition, obscuring part of the camera lens may prevent the

system from working. The prevalence of high FTA rates could also indicate issues

with liveness detection or attackers trying to spoof, such as in the example shown

in Figure 1.7. On the contrary, FTE happens when a user is incompatible with

the biometric system. For example, some fingerprints may lack sufficiently unique

characteristics to allow enrolment. This can happen due to tissue damage or other

kinds of wear and tear to the fingers. Beyond these metrics, further performance

metrics describe how accurately a user is detected versus impostors. However, fur-

ther discussion on the different methods to measure this aspect is better suited in

the literature review alongside comparing the other works, as seen in Section 2.2.

1.2.4 Summary of Traditional Authentication Challenges

With KBA, users must choose a secret they only know. However, the effectiveness of

this secret in providing protection depends on its uniqueness. Unfortunately, users

often choose simple and easily memorable passwords, such as “123456”, without fully

comprehending the potential consequences. This preference for weaker passwords

arises from the difficulty of remembering and inputting more complex ones, leading

to convenience but compromising security. Consequently, attackers can exploit these

weak passwords through guessing, cracking, or eavesdropping methods, thus gaining

unauthorised access to user accounts. The latter threat is particularly significant for

smartphones, where mobility and frequent use in various environments make users

vulnerable to shoulder surfing attacks. To address these challenges, employing mul-

tiple and diverse authentication factors, such as 2FA, to enhance confidence in user

authenticity is possible. However, this can add stress to the end user. In a 2FA set-

ting, combining KBA and OBA requires users to provide knowledge as a secret and

then confirm possession of an object by keying in a generated token. For example,

using the Google Authenticator app, as depicted in Figure 1.4b, generates secure

out-of-band 6-digit pin codes with a short expiry, aligning with NIST guidelines for

secure identity management [34].
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The Google Authenticator project, as depicted in Figure 1.4b, provides an open-

source software solution for generating TOTP tokens. Although cryptographi-

cally protected and time-restrained, implementing cryptographic algorithms requires

careful attention to security. Bardou et al. [65] demonstrate the potential risks

of side-channel attacks on hardware tokens. Moreover, the Google Authenticator

database can be copied from one phone to another, enabling attackers to generate

valid codes on different devices [51]. Additionally, TOTP tokens rely on time-based

passwords, necessitating synchronisation and attention between the user and the

authentication process when keying in the token. Nonetheless, OTP technology

has gained widespread adoption as a secure second factor. Prominent companies

such as Dropbox recommend OTP to enhance security, especially after experiencing

breaches caused by users choosing weaker passwords [66], [67].

To overcome the issues of KBA and OBA on smartphones, manufacturers have

increasingly incorporated BBA into devices since it can overcome some of the usabil-

ity concerns relating to remembering complex passwords and the challenges associ-

ated with keying such passwords in on a smartphone with a limited input interface.

However, the stable nature of physiological biometrics authentication is also a risk

for systems with poor liveness detection. For example, the fingerprint reader on

Apple iPhones can be tricked into accepting a replica of a dummy finger, as seen in

Figure 1.7a. Additionally, and shared between the traditional authentication fac-

tors, each factor cannot ensure user authenticity over time due to being a one-off

process. Once a user has been authenticated, each process completes, and sessions

either timeout or the user manually logs off.

Instead, behavioural biometrics and CA seek to overcome these challenges by

providing confidence in the user over time through monitoring and analysing changes

in their behaviour. However, several challenges arise in monitoring and learning indi-

vidual users’ behaviour, which provides the overarching motivation for this research.
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Figure 1.9: Smartphone sensors capable of collecting behaviour [10]

keyboard, enters navigational swiping patterns, or a combination of both. The

fusion of behaviour from different sensors is also possible with careful consideration

towards increased modelling complexity, which is the responsibility of point two. In

this second step of the continuous loop, a comparison against the owners’ template

behaviour must be stable enough to not require any fallback to EA factors. The last

step defines the evaluation criteria based on a policy decision that depends on the

quality of the input signal, the performance of the behavioural modelling approach,

and selecting a trade-off between erroneously misclassifying the genuine user or an

impostor. Section 2.2 further define the performance metrics, evaluation criteria,

and how these differ amongst the related work.

1.3 Challenges and Opportunities for Research

Despite Google’s efforts [29], behavioural biometrics’ commercial deployment and

adoption still appear limited. While no public records explain why Google decided

not to release their implementation, issues such as authentication performance or

the ability to generalise on many users may play a significant role. However, con-

sidering the attention from researchers and Google’s motivation, further research

is necessary to advance the field and meet the demand for accurate behavioural

biometric solutions, as defined in previous studies [10], [68], [69].
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Close to the announcement of Google’s trust API [29], Patel et al. [10] surveyed

the recent progress and remaining challenges of continuous smartphone user authen-

tication. The work defined eight directions of future research. The first challenge is

domain adaptation and transfer learning, as authentication models should support

adaption to changing behaviour, and the knowledge of overlapping behavioural pat-

terns should be transferable between users. However, privacy concerns also arise in

cases where third parties handle behavioural data, highlighting the need for secure

processing of sensitive information. Similarly, protecting biometric templates repre-

senting user behaviour is essential for preventing unauthorised access and potential

misuse. Another suggested direction involves improving feature engineering and se-

lection to ensure CA systems accurately capture user behaviour. Nevertheless, the

absence of a standardised evaluation framework makes it difficult to compare and

assess different approaches. Additionally, the limited availability of comprehensive

and high-quality datasets for training and evaluation further exacerbates the issue of

comparing studies. Considering usability and acceptability from the end-users per-

spective is crucial to developing user-friendly and widely adopted systems. Lastly,

the author reiterates issues with physiological biometrics being susceptible to replay

attacks.

More recently, Zaidi et al. [68] also surveyed the challenges and opportunities

specifically for touch-based CA. Their observations repeat some of the challenges

identified by Patel et al. [10] and expand on other issues. To begin, they find a

demand for more accurate detection of genuine users, and fast detection of impostors

is crucial, necessitating a clear definition of “fast”. For impostor detection, research

should not rely solely on other classes’ random attacks to develop a robust threat

model [69], [70], e.g., draw samples from the negative class at random and use

these for testing attacks. Furthermore, good inter-class variance but high intra-

class variance requires domain adaptation and a stable classifier capable of handling

the potential of concept drift. This aligns with Patel et al. [10] first point.

Additionally, Zaidi et al. [68] highlight several other interesting challenges where

three are related to this thesis: (i) Without addressing and learning the diverse na-
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ture of touch interactions, models may become unstable and cause poor classification

performance with specific interactions. (ii) Feature engineering and selecting qual-

ity behaviour are critical to ensure the system’s effectiveness. To this end, datasets

must support extraction, analysis, and proper evaluation of distinct features. The

dataset should also be publicly available to enable transparent performance com-

parisons across research. Moreover, investigating computational time and resource

consumption is necessary to ensure the feasibility and practicality of the research

implementation, e.g., how many parameters to test when training and what the

impact is on performance. (iii) Lastly, Zaidi et al. also observe a lack of studies

utilising Deep-Learning (DL) and suggest “more research is needed to explore the

potential of newer DL techniques in this context”. Their survey also discusses issues

relating to computational time and resources required and that DL often demands

more data than Machine-Learning (ML). However, recent advancements in DL may

have changed these demands, and it could be attractive to investigate further the

application of DL.

To advance the field and guide further research, the following literature review in

Chapter 2 will centre on current solutions, specifically emphasising essential topics

to shape the thesis. Firstly, the study will closely examine the criteria researchers

employ to evaluate their work, facilitating fairer comparisons based on similar per-

formance metrics and any additional methods that can impact performance over

time, such as authenticating users within a specific window of observations rather

than at any given time. Secondly, the related work will be thoroughly assessed con-

cerning the data sets utilised and their availability to the public. Additionally, the

review will quantify the number of extracted behavioural features and their potential

analysis, inclusion, or exclusion in performance evaluation. Lastly, considering the

diverse nature of smartphone interactions, each article under examination should

describe the specific scenarios considered and how these scenarios influence the cho-

sen modelling approach. Thus, the literature review aims to illuminate existing

solutions by delving into these aspects and establishing a foundation of knowledge

to improve and contribute to the research domain.
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1.4 Thesis statement

This thesis states that smartphone touch inputs can exclusively and accurately

authenticate benign users from malicious ones by monitoring and extracting be-

havioural biometrics over time. Because traditional authentication factors can be

exploited, users are vulnerable to impersonation attacks during and after logging

into their devices. A behavioural biometric solution can passively generate user

profiles and form a more robust, less susceptible platform to bind users closer to

their devices while reducing the burden and attention users require while passively

authenticating over time.

This thesis focuses on improving authentication performance by recognising dis-

tinctive behavioural traits specific to each user. By analysing data collected from

mobile devices based on user touch behaviour, the aim is to enhance authentication

performance by creating a more personalised user model. Similarly, a model should

be able to verify a user independent of their directional use as long as their features

are descriptive enough. Lastly, relying solely on manual feature engineering and

selection restricts the ability to generalise to a broader population. Therefore, this

thesis answers these issues and ultimately showcases how touchscreen behaviour

can be transformed into images, enabling automatic and personalised feature ex-

traction. This breakthrough could encourage greater technology adoption by the

research community since there is no longer a need for manual feature engineering

and selection, which tackles a significant challenge with the traditional approaches.

1.5 Research Objectives and Contributions

The thesis statement presented three aspects of challenges and improvements to

drive better performance of touch-based CA. (i) behaviour is personal, and this

context should be considered in the modelling phase when including features; (ii)

the directional navigation of users’ behaviour should be captured by features and

not overly complex individual models; and (iii) features should be automatically

extracted to accommodate personal behaviour better. Consequently, three distinct
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contributions build on the continued knowledge gained from the literature, and each

contribution supports the claim in the thesis statement. These contributions provide

compelling evidence for the advancement of touch-based CA, especially with the

touch-based computer-aided design that automatically extracts personal behaviour

from image encodings, as presented in Chapter 5.

The following subsections describe each contribution and the overall research

objective for each. Further research questions and motivation for the individual

contribution are located within their respective chapters.

1.5.1 Research Objective 1

The main objective of this contribution is to demonstrate how behaviour may be per-

sonal and, therefore, should be carefully considered during behavioural modelling.

To demonstrate this hypothesis, an initial experiment is implemented to compare

the baseline performance of the original features and expert knowledge presented

by [1] against the proposed approach. Rather than using expert knowledge to select

features for all users, several feature selection methods are implemented and eval-

uated for each user against the baseline performance. The results are expected to

improve in cases where users expose personal behaviour through specific features.

Consequently, an evaluation is given around popular features selected by the differ-

ent feature selection algorithms and how the performance changes considering the

selected features.

First Contribution

This contribution studies the users with available intrasession, such as within a

single device usage session, and intersession gestures between sessions of usage from

the public dataset released by [1]. Considering CA and behavioural biometrics seek

to identify users based on unique patterns, the classic approach of using the same

behavioural features for any user is unwise. Instead, this contribution states that

behaviour should be considered on a personal user level in the context of a chosen

classifier and device usage. Analysis and selection of unique features can be achieved
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at different levels, such as with filtering techniques or wrapper methods that interact

with the classifier. Results demonstrate the importance of evaluating features since

some users’ behavioural features are more common, whereas others are unique.

Unsurprisingly, the performance also appears to improve when choosing personal

features for the individual user. The contribution was submitted, published, and

remotely presented at the Cyber Science and Technology Congress 2020 [71]. Further

details on this contribution can be found inChapter 3.

1.5.2 Research Objective 2

The performance of ML models depends on the quality of data and extracted fea-

tures. Popular approaches in this field create several models depending on the user

and the navigational direction of the interaction. However, this contribution investi-

gates whether a proposed single and exclusive omnidirectional model can accurately

authenticate users independent of directional movements while using a new hyper-

parameter selection approach. Specifically, the objective is to capture directional

behaviour through features rather than segregate models. To that end, an exper-

iment is designed to implement the traditional directional modelling approaches

alongside the proposed omnidirectional model to establish a comparison between

the two. Subsequent objectives involve quantifying which classifier performs better,

trains faster, and produces better results when aggregating gestures or without. A

final and essential objective evaluates the proposed hyperparameter tuning method

that prioritises less complex parameters, which may generate simpler models.

Second Contribution

Results from the first contribution highlighted the importance of personally select-

ing features in the context of users, classifiers, and directional modelling approaches.

With this knowledge, this contribution proposes an omnidirectional model that com-

petes with and often outperforms traditional multi-model approaches through a new

hyperparameter tuning approach favouring less complex hyperparameters. The pro-

posed approach is rigorously investigated using five different and broader feature sets
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while empirically exploring the technique on a richer data set published by Serwadda

et al. [2]. Results demonstrate that the proposed approach is faster and simpler to

model and that despite new research suggesting better features, the original feature

set offered by Frank et al. [1] in 2012 remains superior to others.

1.5.3 Research Objective 3

Since DL has been overlooked [68], this contribution takes the first steps towards

applying DL to automatically extract behavioural features from touch-data, rather

than relying on manual feature engineering and selection. Instead, the objective

is to utilise computer vision to overcome the issues of manual feature engineering

and selection. Thus, the main objective is designing the properties required for the

screen canvas dimension and image size to enable the encoding of touch behaviour

suitable for computer vision. The canvas should be large enough to represent the

raw device screen. At the same time, the image size should be fast to process for DL

models to avoid heavy resource demands to allow efficient smartphone deployment.

Further, the canvas must accommodate the majority of gestures in the dataset

for meaningful analysis. After designing the canvas, raw touch behaviour must

be transformed and scaled to fit into colour channels ranging from 0-1 or 1-255,

depending on the image format. With three available colour channels, considering

which behaviour should be encoded and which formula to use when deriving the

encoding is required. The final objective is to analyse different plotting styles using

the encodings in the context of selected neural networks and the performance impact

when tuning several hyperparameters. The contribution is compared against related

work using the same dataset for single or multi-gesture performance.

Third Contribution

As shown in the first two contributions, features are critical to performance, with

researchers attempting to engineer new and better feature sets that work on a per-

sonal level. The third contribution successfully addresses the challenges associated

with ML by introducing a novel approach to transform and encode touch behaviour
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into images. Consequently, the proposed approach enables automatic feature ex-

traction by applying DL techniques such as Convolutional Neural Networks (CNN)

on the behavioural images, eliminating the need to engineer and select personal fea-

tures. The methodology has been executed and rigorously assessed using a publicly

accessible dataset [2], and the results demonstrate that computer vision and DL

surpass all prior research. Despite the reluctance of some researchers to utilise DL,

this approach has proven to be exceptionally effective.

1.6 Publications

During this PhD, the following publications have been submitted, peer-reviewed,

and published in related conferences and journals. Each publication supports the

contributions and is presented as individual chapters for this thesis.

• P. Aaby, M. V. Giuffrida, W. J. Buchanan, and Z. Tan, ‘Towards Continu-

ous User Authentication Using Personalised Touch-Based Behaviour’, in 2020

IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf

on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data

Computing, Intl Conf on Cyber Science and Technology Congress, Calgary,

AB, Canada, Aug. 2020, pp. 41–48. doi: 10.1109/DASC-PICom-CBDCom-Cyb

erSciTech49142.2020.00023

• P. Aaby, M. V. Giuffrida, W. J. Buchanan, and Z. Tan, ‘An omnidirectional

approach to touch-based continuous authentication’, Computers & Security,

vol. 128, p. 103146, May 2023, doi: 10.1016/j.cose.2023.103146

• P. Aaby, W. J. Buchanan, Z. Tan, and M. V. Giuffrida, ‘TouchEnc: a Novel

Behavioural Encoding Technique to Enable Computer Vision for Continu-

ous Smartphone User Authentication’, in 2023 IEEE 22nd International Con-

ference on Trust, Security and Privacy in Computing and Communications

(TrustCom), 2023. doi: 10.1109/TrustCom60117.2023.00115
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1.7 Structure of the Thesis

The thesis is structured into six chapters. This first chapter introduces the topic area

and offers an overview of traditional authentication factors. The background section

aims to give readers a good grasp of conventional authentication factors, including

“something you know”, “have”, and “are”. The chapter also briefly introduces be-

havioural authentication as the potential solution to the challenges, emphasising the

need to improve model performance to identify smartphone users better over time.

Finally, the chapter sets out the problem and thesis statements, defines the contri-

butions and sets out the research objectives. The following outlines the remaining

structure of the thesis.

Chapter 2 contains a literature review focusing on accurately identifying smart-

phone users exclusively using touch-screen data. The chapter begins with an overview

of the performance metrics used to evaluate CA systems and how they differ before

surveying the related work. The literature review critically analyses the current

state-of-the-art in touch-based behavioural biometric authentication and compares

the related work from 2012 to date. The goal is to comprehend current approaches

and their challenges and recognise any shortcomings. From there, informed decisions

can be made, leading to the empirical analysis required to introduce new solutions

and fill the identified gaps.

Chapter 3 hypothesises that behaviour is unique to each user; thus, behavioural

features should be selected personally for each user model rather than in general.

This work builds on the foundations of public data and the seminal work introduced

by Frank et al. [1]. The chapter begins with a brief review of the most related

literature before proposing the suggested approach containing the following points.

User selection regarding the number of samples available for each, data cleaning and

filtering of poorly defined gestures, and class balancing to allow fair model selection

and parameter tuning. The last two sections analyse the personal features selected

for each user before discussing the experimental results.
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Chapter 4 builds on the contribution and findings from Chapter 3 but proposes a

different and less complex modelling approach. The chapter begins with a compar-

ison of modelling approaches and popular classifiers used in the related work. An

experimental setup describes the proposed parameter selection method focusing on

less complex models. Furthermore, five feature sets are summarised and compared

as part of the implementation. The results section discussed the selected modelling

parameters and the impact of combining gestures. Finally, modelling results are

ranked and analysed for statistical significance before discussing limitations in the

last section.

Chapter 5 overcomes the challenges of Chapters 3 and 4 and the issues around

manually engineering features. The chapter proposes image-based encodings en-

abling computer vision to extract personal user behaviour automatically. A brief

review of papers utilising the same data set but relying on manual feature engineer-

ing is given. The proposed approach is then described in terms of the data and

user selection, cleaning, preprocessing, and how the behaviour is encoded into im-

ages. The following section covers the implementation of DL models with training

recipes used for modelling. The evaluation describes the performance of two differ-

ent combinations of encodings, the performance of each DL architecture, whether

one plotting style is better, how merging gestures can improve performance even

further, and visual verification that the computer vision attention is not random

but focusing on the users’ gestures before concluding in the final section.

Chapter 6 summarises the work and discusses and draws together the overall

findings of this thesis. A section describes the limits of the work before finalising,

with a section presenting preliminary results showing a promising direction for future

work using the encodings from Chapter 5, but which has yet to be completed.
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Literature Review

2.1 Introduction

This chapter begins with a thorough discussion of the metrics utilised to evaluate

and measure the effectiveness of behavioural biometrics in Section 2.2. Section 2.3

provides an overview of the available datasets and their characteristics. Sections 2.4

and 2.5 elaborate on the relevant research, classified into feature-based and image-

based methodologies. Lastly, Section 2.6 concludes the literature review.

2.2 Performance Metrics

A brief outline of the pros and cons of standard performance and evaluation metrics

is required to effectively compare the touch-based CA across the related work. While

numerous metrics can be used to evaluate a model’s performance, some offer better

insights and are more effective in determining its broader effectiveness. For example,

certain metrics require a specific decision threshold, whereas the Area Under the

Curve (AUC) is independent of such and measures performance as a function of

several thresholds [72]. To classify the owner of a smartphone, touch data is typically

collected from a group of subjects using the same device. As such, multiple classes

exist in the form of a numeric identifier for each subject. However, the related work

typically applies One versus Rest (OvR) [73]. The objective of OvR is to transform

a multi-class problem into a two-class classification, which reduces the complexity
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of classifying and authenticating genuine users. The genuine user is considered the

positive class; collectively, all other users are the negative class. Naturally, this

can cause class imbalance since all the other users are grouped, often producing a

negative majority class. Fortunately, this can be overcome using sampling techniques

as seen in [1], [2], amongst others. However, various metrics have been used in the

literature and will be discussed in the following subsections using examples and

metrics on the same dummy data for comparison to help better describe, plot, and

inspect the difference between methods.

The performance metric examples can be applied to any datasets described in

Table 2.1. Still, visually observing the positive class and changes in metrics would

be more challenging due to a larger OvR class imbalance in these data sets. Thus,

dummy data with less imbalance is useful when visualising and describing the class

distribution in these examples while still reflecting the impact of changing the deci-

sion threshold and how it affects a given metric. The following subsections introduce

the performance metrics used through the literature with examples that reflect the

OvR scenario [73]. To help better describe, plot, and inspect the different perfor-

mance metrics found in the literature, an example count of observations is defined

for a genuine dummy user that should be identified amongst other users. Through-

out this literature review, the number of observations differs, and this section can

be used to reiterate why or how specific metrics are helpful or not.

2.2.1 Outline of Dummy Data

Rather than defining a specific experiment or proposing a hypothesis, a small set of

dummy data can be generated to simplify describing and discussing the performance

metrics in the context of CA. The dummy data must contain two classes because

the objective is to identify a genuine user from others. Class one (1) identifies

the genuine users as the positive class, whereas class zero (0) is the negative class

identifying others. Aggregating other uses in one class naturally causes imbalance;

thus, the example has a 20% skew in favour of the positive class to arbitrarily

demonstrate this. In reality, the skew is more prominent, but 20% is enough to
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demonstrate the impact while preventing the smaller positive class from visually

disappearing on distribution plots. Sci-Kit learn [74] provides functions to produce

dummy data points given a total sample size while accommodating the defined skew.

The dummy data has a total of 2500 data points and 28 features similar to [1], where

80% is used to train a Support Vector Machine with Radial Basis Function kernel

(SVM-RBF) classifier with default Sci-Kit learn parameters [74]. The classifier can

be substituted with any other classifier without changing the interpretation of the

difference between the performance metrics. Thus, the example and comparison of

metrics use the remaining 860 data points used in the following subsections when

describing each metric using this dummy data.

2.2.2 Decision Thresholds

During user authentication, interactions are classified based on predicted probability

scores from a classification algorithm. The scores range from zero, which indicates

that the classifiers have low confidence in predicting the class, to one, which suggests

a higher likelihood that the classifier recognised the class. Sometimes, classifiers can

be imperfect, and it can be challenging to model the data accurately. As a result,

there may be an overlap in predicted probability scores between the two classes,

and a decision must be made about which misclassification to accept. Figure 2.1

illustrate the probability distributions from the two classes after predicting the test

data created in Section 2.2.1.

In this example, Class 0 denotes other users, whereas Class 1 signifies the genuine

user. The classification of each observation in these two distributions is predicated

upon setting a decision threshold using the predicted probability scores. For in-

stance, any probability score that surpasses 0.5 is deemed to be Class 1, the genuine

user, whereas scores below this are classified as 0, another user. Based on the scores

and decision threshold, each observation can be evaluated against the true labels

to determine True Positives (TP), True Negatives (TN), False Positives (FP), and

False Negatives (FN). These are annotated in Figure 2.1 where FN results in the

rejection of the genuine user and FP falsely allows access to another user. TP and
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Accuracy = Number of Correct Predictions
Total Number Of Predictions = TP + TN

TP + TN + FP + FN (2.1)

In Figure 2.2, the impact of setting a decision threshold to 0.5 and evaluating the

classifier is shown using a Confusion Matrix (CM) each to visualise the relationship

between the TP, TN, FP, and FN when considering real and normalised numbers,

Figures 2.2a and 2.2b, respectively. The numbers from Figure 2.2a can then be used

with the formula in Equation (2.1) to produce an accuracy of 0.888. Considering

Figure 2.1, the visual impact of miss classification appears where the two curves

overlap. In the case of a 0.5 decision threshold, the number of miss classified samples

for the negative class is FP=9 (2.4%), whereas the genuine user is mistaken FN=47

times (35.9%). Since the dataset has more data for the negative class, the classifier

may have prioritised these samples, or the decision threshold is poorly configured.

While the performance is great on the negative class, balancing the error rates may

be more interesting since the objective is to predict the genuine user better while

also accurately rejecting the negative users. Thus, a low Equal Error Rate (EER) is

desired and often used to measure biometric authentication. The next section will

describe how shifting the decision threshold to balance error rates can impact the

accuracy score.

2.2.4 Equal Error Rate

The EER is a popular measure in biometrics since it balances the error rates for

both classes. More specifically, the EER happens where the False Acceptance Rate

(FAR) and False Rejection Rate (FRR) intersect. As such, it defines a balance

between incorrectly accepting or rejecting users during authentication at a particular

decision threshold. Figure 2.3 presents the false accept and reject error rates at

different thresholds for the dummy data created in Section 2.2.1. In the previous

section, the default threshold of 0.5 produced an accuracy of 0.888 but with skewed

misclassification between the two classes. Analysing the error curves in Figure 2.3, a

balance between the error rates of the two classes requires the decision threshold to
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Figure 2.2: Confusion Matrices when setting the decision threshold to 0.5

be set to 0.16 instead, resulting in EER=0.267 (2.67%). When the decision threshold

is adjusted from 0.5 to 0.16, the values for TP, TN, FP, and FN also change, as

depicted in Figure 2.4. This directly impacts the accuracy score, which is affected

in the following way: the FP increased from 9 to 98, while the FN decreased from

47 to 35. As a result, the number of errors increased from 56 to 133. Consequently,

this affects the accuracy score, which drops from 0.888 to 0.734, emphasising the

importance of reporting accuracy scores at different decision thresholds or preferably

reporting threshold-independent metrics such as AUC scores.
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Figure 2.3: Plotting and identification of the Equal Error Rate
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Figure 2.4: Confusion Matrices when setting the threshold according to the EER

2.2.5 Area Under the Curve

Unlike accuracy and EER, the AUC score is unique in that it considers a model’s

performance across various thresholds instead of just one. It is derived from the

ROC, which shows the relationship between true and false positives. If a classifier

detects both true and false positives correctly, it will receive a perfect AUC score

of 1.0, with the ROC curve reaching 1.0 on the y-axis and staying at 0.0 on the

x-axis. As the true positive rate decreases or the false positive rate increases, the

AUC score decreases. A model with a perfect AUC score can accurately accept or

reject users regardless of the decision threshold, but if the ROC is below the 50/50

chance line, the model is no better than tossing a fair coin with half the chance of

being right or wrong.

2.2.6 Half Total Error Rate

The EER and Half Total Error Rate (HTER) are commonly used metrics to evaluate

biometric systems and are sometimes mistakenly used interchangeably. However,

the EER represents the point at which the FAR equals the FRR, implying an equal

balance between accepting impostors and rejecting genuine users. In contrast, the

HTER is the average of the FAR and FRR, dividing the total error equally between

34



CHAPTER 2. LITERATURE REVIEW

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
False Positive Rate (Positive label: 1)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Tr
ue

 P
os

iti
ve

 R
at

e 
(P

os
iti

ve
 la

be
l: 

1) Classifier (AUC = 0.82)
50/50 chance

Figure 2.5: Receive Operation Characteristics curve

the two rates as shown in Equation (2.2) [76].

HTER = FAR + FRR
2 (2.2)

While both metrics provide valuable insights into the performance of a biometric

system, they describe different aspects. The EER highlights the balance between

security and convenience by discovering the decision threshold where both types of

errors are equal. On the contrary, the HTER offers a balanced view of the overall

system performance, giving equal weight to the two types of errors. Therefore, the

choice between EER and HTER depends on the specific requirements and priorities

of the evaluated biometric application. While the HTER can offer valuable insights

into system performance, it might be less commonly used due to its equal weighting

of FAR and FRR, which can obscure the specific trade-offs between security and

convenience in a system.

2.3 Data-sets and Availability

As part of developing reproducible results, the availability of high-quality datasets is

required in line with the findings by Patel et al. and Zaidi et al. [10], [68]. However,

as described in [77], many papers collect and experiment on private datasets with

incredible EER but unverifiable performance. By refraining from publishing the
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Table 2.1: Summary of touch-based data sets and availability. Public (Y=Yes,
R=Request, D=Declined). Operating System, OS (A=Android, I=iOS). Number
of Users, NU. Orientation, O (P=Portrait, L=Landscape). Pressure, P. Area, A.
Devices, Dev. Unknown setting, -

Release Name Public OS NU Sessions O Usage P A Dev

’12 [1] TA ✓ A 41 1 week P Text/Image ✓ ✓ 5
’13 [2] WVW R A 190 2 days P/L Text/Image ✓ ✓ 1

’15 [78] BioIdent ✓ A 71 4 weeks P/L Text/Image ✓ ✓ 8
’15 [79] Syed D A 31 2-3 weeks P/L Navigation - - 4
’16 [80] UMDAA-II ✗ A 48 2 months - Background ✓ ✗ 1
’19 [81] Brainrun ✓ A/I 2344 +1105 - Playing ✗ ✗ 2418
’19 [82] MobTouchDB R A 217 3 weeks P/L Draw numbers ✗ ✓ 94
’22 [69] CEP ✓ I 470 31 days P Social/Image ✓ ✓ 9

data, other researchers cannot confirm the experiments’ data, method, or outcome.

Furthermore, the size and quality of data sets must be adequate in terms of the

objective of the specific studies [10]. Additionally, size issues appear when studies

propose modelling n number of users, but not all users use the same device. In such

cases, comparing results fairly amongst all users or across other related work may

be challenging unless their data is gathered under similar conditions. Similarly, the

lack of adequate users or samples for specific users may prohibit meaningful analysis.

Thus, Table 2.1 summarises and compares the available public datasets. The table

lists the associated datasets and studies sorted by the year of release, from 2012

to date. Names in the related literature commonly refer to each study, and the

public nature of datasets has been confirmed by attempting to access the resources

freely or by direct contact with the corresponding author. For example, the Which

Verifiers Work (WVW) dataset is available on request, whereas the author of the

UMDAA-II did not respond to multiple access requests, and Syed denied access to

the raw datasets.

As shown in Table 2.1, eight datasets have been publicly released as of date or

previously. In the attempt to access these, it appears some are no longer available

or only on request to some. Thus, research relies on only a few options, with

further limitations depending on the experimental design or research objective. For

example, research on iOS is limited to one dataset if an experiment requires pressure

and area recordings. Similarly, the Android datasets are limited to three options
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when considering the same pressure, area constraints, and availability. The following

section reviews the feature-based approaches, and a column in Table 2.2 specifically

defines which dataset the method is tested on together with several other exciting

attributes when comparing the related work and advancements in the field.

2.4 Feature-based Approaches

The related literature for CA is vast, especially considering all the available sensors

that capture behaviour. However, this thesis exclusively focuses on touch-based

biometrics and further separates the area into feature and image-based approaches.

Feature-based refers to the work that relies on engineering or extracting features

from raw touch data to model user behaviour. In contrast, as the subsequent section

covers, only some researchers approach the topic by transforming touch input into

images.

Table 2.2 chronologically list the related work focusing on touch-based CA using

features. Each paper is analysed according to which dataset is used for the anal-

ysis and whether it is publicly available. Since not all papers use a public dataset

with a known user count, the number of users in the work is also listed. Despite

not being explicitly defined in most papers, the device orientation used for exper-

imental results regarding portrait and landscape is given. Further to the device

orientation, most researchers also model different behaviours exclusively depending

on directional navigation, such as up, down, left, right, or grouped as horizontal and

vertical.

Depending on the work, several classifiers may have been investigated, but only

the best-performing classifier is listed in the table for brevity. Another interesting

perspective is the number of features used to train the classifiers, whether multiple

gestures are required, and, if so, how many. Lastly, several metrics are used through-

out the literature, as covered in Section 2.2. In the table, the different metrics are

described as acronyms and reported as median or mean, depending on the author’s

choice. The following subsections will describe each paper, the objective, and group
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observations to contrast patterns and discrepancies in the literature.

2.4.1 Pitfall in Touch-based CA

While Table 2.2 begins with the seminal work published by Frank et al. [1], it

makes more sense to summarise the work by Georgiev et al. [69] first because it

covers several pitfalls that appear throughout the literature. Knowing these pitfalls

allows a better understanding of why some related work excels while others don’t,

despite using nearly the same experimental design or data. [69] explores six potential

pitfalls in touch-based CA and suggests best practices to improve reporting and

compatibility when comparing articles. To better support their claim, empirical

evidence is provided using a newly collected dataset from 470 subjects using one of

nine Apple iOS devices. The collected data contains up to 31 sessions for 68 users,

while the average user provided 13 sessions each. Each experiment is implemented

using an SVM-RBF classifier with default Sci-Kit learn [74] parameters, and the

same 28 features proposed by [1]. However, as seen in Table 2.1, the availability of

datasets collected using iOS is limited; thus, it may be difficult to directly compare

against others due to differences in hardware and software.

Regardless, the pitfalls encompass a range of factors, and the following state the

Pitfall (P) together with the observed results and recommended best practise. (P1)

Small sample sizes and population of users in the datasets. Results show that EER

improves when increasing the user sample count from n = 40 to n = 400, from

9.14 to 8.41%, a difference of 0.73% EER. Further, no evidence is found of users

needing to acclimatisation to sessions to improve performance, nor was there a clear

improvement in using excessive samples per user. However, there is no investigation

of the lower bounds required for reasonable performance. For comparison amongst

works, the author advises collecting and reporting results for a minimum of 40 users.

(P2) Mixing phone models. When training a genuine user’s behavioural model, other

users are aggregated and considered a single negative class. However, the different

phones used by the negative population can lead to an overestimated performance

of up to 8.9% EER. Thus, the author suggests that devices should not be mixed in
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Table 2.2: Overview of the related work. Notation: Public Dataset, PD. Number
of Users in the study, NU. Device Orientation, DO (P=Portrait, L=Landscape,
T=Tablet). Gesture ’Direction’ of modelled scenario. Best classifier, CLF. Number
of Features, NF. Number of Gestures combined, NG. Metric: measured in E=EER,
A=AUC, C=Accuracy, F=F1, H=HTER, and x̃=median, x=mean. Metric reported
for portrait orientation where possible

Release Data PD NU DO Direction CLF NF NG Metric(%)

’12 [1] [1] ✓ 41 P Hs,Vs SVM 28 1 Ẽ13.0
’13 [2] [2] ✓ 106 P(/L) Hs,Vs LR 28 10 E15.5

’13 [11] [11] ✗ 20 PSO-RBFN 21 10min H02.9
’14 [83] [1] ✓ 14 P Hs,Vs HMM 1 Ẽ09.3
’14 [84] [84] ✗ 10 Sliders NB 4 C88.9
’14 [85] [85] ✗ 23 U,D,L,R,ZI,ZO 1NN-DTW 8 C90.0
’15 [86] [78] ✓ 71 P Hs,Vs SVM+CPANN 15 2 C78.8†

’15 [87] [1] ✓ 41 XGBoost 64 C83.6
’15 [88] [88] ✗ 20 PSO-RBFN 14 E02.0
’15 [79] [79] ✗ 31 P(/L) Hs,Vs RF 18 5 E07.1
’15 [78] [78] ✓ 71 P Hs+Vs SVM 15 1 C64.0†

’15 [89] [89] ✗ 60 SVM 3 20 H0.04
’15 [12] [12] ✗ 80 PSO-RBFN 22 H04.3
’15 [90] [2]‡ ✓ 137 P(/L) Hs,Vs SVM-RBF 27 11 E05.9
’16 [80] [80] ✗ 48 RF 24 16 E22.1
’16 [91] [79] ✗ 31 T Hs RF 18 1 E11.5
’16 [92] [92] ✗ 84 RF 13 E08.3
’16 [93] [93] ✗ 71 P U+D+L+R RF 22-27 1 E35.0
’16 [15] [1] ✓ 41 RF 162 10 Ẽ02.6
’16 [94] [94] ✗ 30 P DT 32 E20.9
’17 [95] [2] ✓ P(/L) U,D,L,R GMM-UBM 5 10 E15.0
’18 [96] [2]‡ ✓ 104 P(/L) U,D,L,R GMM+SVM 5 10 E07.0
’18 [97] [97] ✗ 20 Hs,Vs KNN 8 1 E05.3
’18 [98] [98] ✗ 24 PSO-RBFN 21 10min H04.0
’19 [4] [4] ✗ 45 Hs,Vs,Os,Co OCSVM 16 9 C95.9

’19 [99] [2]‡ ✓ 106 P(/L) U,D,L,R Temporal RF 112 4 E07.9
’20 [100] [2]‡ ✓ U,D,L,R GMM+SVM 33 10 E15.0
’20 [101] [101] ✗ 10 T ANN 35 C92.0
’20 [102] [2]‡ ✓ P U,D,L,R DFS 33 10 E24.2
’20 [103] [2]‡ ✓ P Hs DNN 28 1 E20.0
’21 [104] [2]‡ ✓ RF 47 5 H06.0
’22 [105] [2]‡ ✓ P(/L) Hs,Vs DES-P 28 10 H16.8
’22 [69] [69] ✓ 40 U,D,L,R SVM-RBF 28 1 E10.1

’22 [106] [1]‡ ✓ 14 P SVM+RF+NN 125 1 E21.0†

†, Metric extrapolated from chart in publication
‡, Multiple datasets but reported for [2]
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training sets to avoid classifiers becoming biased towards other users and devices

rather than their behaviour.

(P3) Non-contiguous training data selection. Without care, randomly sampling

train and test sets from datasets can lead to data from the future becoming training

data. Experiments show that random sampling can lead to an overestimation of

up to 3.8% EER. Similarly, training and testing on intra-session yielded the best

results due to a lesser risk of changing behaviour over time, although this goes

against the design goal of CA. Refraining from testing on data collected before

the training data is recommended. (P4) Analysing adversarial data in training

sets. The negative class containing other users could be considered as random

attacking users. However, this consideration leads to better and lower EER than

excluding attackers during training. Results show 0.3-6.9% EER improvements

depending on the number of adversaries in the training set. Therefore, like excluding

test observations from training sets to prevent information leaks, the behaviour

of adversarial users must not be part of the negative class during training when

specifically analysing random adversarial attacks.

(P5) Different gesture aggregation methods and window size. Experimental re-

sults reveal that score-level fusion improves performance from 8.2 to 5.9% EER

when using two gestures while further decaying and improving with more gestures.

However, various aggregation windows and methods hinder meaningful comparison

of works when measuring authentication performance. E.g., comparing score-level

fusion with others who report feature-level fusion [2] or voting-base performance [3],

[79]. Thus, it is always recommended that the performance of models be reported

using individual gestures. When looking into aggregation, it’s crucial to consider

the method used compared to the same windows and method as the related research

when comparing. (P6) A lack of public datasets and non-existent code availability.

Similar to the observations in Table 2.1, they highlight that researchers may often

collect data but rarely make data available for free. Similarly, they found no exist-

ing source code to implement and replicate the experiments in any of the 30 related

works surveyed.
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2.4.2 TouchAnalytics

Frank et al. [1] published one of the seminal works, TouchAnalytics, in 2012. Their

paper can be seen as a catalyst for the research field by investigating the feasibil-

ity of authenticating smartphone users exclusively by their touch behaviour. More

importantly, they opened up for further research due to their data collection. As

part of the study, they collected data from 41 users and made the dataset freely

available for download along with source code to extract their features. An example

of raw data collected from eight unique users can be seen in Figure 2.6a, whereby

visual differences in the preference of screen area can be observed. For modelling

behaviour, they proposed 28 features designed to capture various user patterns dur-

ing interactions where users read or play an image comparison game. The image

comparison game can be seen in Figure 2.6b, requesting users to swipe horizontally

between the screens but with a blank screen injected between the two images to

provoke more gestures and to make the game more challenging. As part of their

evaluation, they measure the Mutual Information (MI) between the features and

user labels to better understand and explore the discriminate power of each feature.

According to their expert knowledge, some features are removed because they do

not benefit the classifier in deciding on the user label. Using the extracted features,

a K-Nearest Neighbours (KNN) and SVM-RBF classifier is trained while tuning hy-

perparameters. The performance is then evaluated for single and multiple gestures.

Results show that a single gesture achieves 13% median EER, where aggregating

gestures can reduce the error rate to around 4%.

Roy et al. [83] propose using Hidden Markov Models (HMM) instead of tradi-

tional classification algorithms for training and testing. They suggest setting the

decision threshold at FAR=0 and FRR=0 to test for extreme security and usability,

respectively. As discussed in Section 2.2.2 and visualised in Figure 2.1, selecting the

decision threshold can dramatically impact the performance. A policy to accept less

security for more usability may be more valuable for users getting mistakenly locked

due to misclassification. Regardless, Roy et al. trained two models using five-fold

Cross-Validation (CV) to group directional gestures into Horizontal Gesture (HG)
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Figure 2.6: Original figures from TA [1]

and Vertical Gesture (VG). Using a single gesture, they achieved intersession EER

of 7.42% and 8.17% for HG and VG, respectively. If less security is preferred, setting

FRR to zero will result in higher FAR. The median FAR was found to be HG=7.13%

and VG=6.78%. However, a high-security setting requires low FAR. Setting FAR

to 0 resulted in a median FRR of HG=19.19% and VG=18.28%. Therefore, their

method may be better suited for low-security settings since FRR increases roughly

twice as much as FAR in the low-security setting.

Using the TouchAnalytics (TA) dataset [1], Budulan et al. [87] model user be-

haviour, focusing on engineering 64 features, an increase of 36 features compared

to TA, but lacking detailed specifications on why and how these are engineered and

extracted. Seven classifiers are trained on the features using an unknown hyper-

parameter grid, including eXtreme Gradient Boosting (XGB), AdaBoost (AB) over

Decision Tree (DT), AB over Extra Tree (ET), ET, Random Forest (RF), Gradient

Boosting Classifier (GBC), and Bagging over DT. The ET classifier identifies ten

of the best features, with four related to pressure, such as the maximum, mean,

median, and initial pressure. Interestingly, the “document ID” is also included as

part of the best ten feature, although the authors of the dataset [1] argue that it

should have been considered a label. Despite this discrepancy, the XGB classifier

achieves the best performance, with 83.6% accuracy.

As a continued effort to improve performance using the TA dataset, a Deep
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Belief Networks (DBN) and RF approach is proposed by Lee et al. [15] in their

efforts to develop touch-based CA. They utilised the dataset collected by [1], which

contains 41 users but differs in their approach to modelling behaviour. Specifically,

they computed 37 stroke-based features and merged a group of ten gestures to

generate seven session-based features. Together, this is reported to form a 162-

dimension feature vector for training. However, the details of how the features are

fused are unclear. For classification, 80% of the data is used for training an RF

with 200 trees and DBN with two layers and dropout to classify the users. Results

show that RF consistently outperforms the DBN, 2.58 to 9.93% EER, respectively.

While providing excellent performance, the paper does not detail how much data

each user provided in natural numbers, whether results are computed for intra or

intersession, whether gestures are aggregated for authentication, or how the results

compare to the related work. Furthermore, the limited depth or configuration of

the DBN could affect its ability to match the performances of the RF classifier.

2.4.3 Analysis Conducted on Tablets

In the study called “LatentGestures”, conducted by Saravanan et al. [84], data was

collected from 20 participants using a custom application that recorded touch inter-

actions with user interface elements such as radio buttons, checkboxes and sliders

implemented in a custom Android application, which is deployed on smartphones

and tablets. The researchers suggest that training a multi-class classifier with ten

users is sufficient, as this is a natural limit for a single household. However, the

performance was evaluated on all 20 subjects, and it is unclear which data was used

for training, validation, and testing. Moreover, their Naive Bayes (NB) classifier

achieved 1.0 accuracy for five users, which may indicate overfitting and a lack of

generalisation of new users. It is also challenging to understand which users use a

phone or tablet and whether both are used for training. Lastly, the features used

in their approach are poorly described, making it difficult to comprehend their pro-

posed method fully. Despite the shortcomings, collecting data from tablet users had

yet to be investigated, and this work took early steps towards this objective.
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On the contrary, Syed et al. [79] rigorously investigate how different user pos-

tures affect the performance of touch-based CA and whether profiles can transfer

between smartphones and tablets. In their work, they collect data from 31 subjects

over eight sessions with an average length of nine minutes. The user models were

trained for four data sessions, which proved effective during a pilot study. To evalu-

ate the device posture, each user was tasked to use two different tablets and a phone

to record their interactions: (T10) 10” tablet, (T7) 7” tablet, and (S3) 4.7” smart-

phone, respectively. Further, each device is used in three different postures: (P1)

device on a table, (P2) device held in portrait orientation, and (P3) device held in

landscape orientation. They found that larger device sizes yield better results and

attribute this to more freedom for users to express their behaviour on the larger

screen area. Since this research focuses on smartphones, we report this particular

result in Table 2.2 but note the tablet performance achieves a mean EER of 5.16%

when held in portrait and 3.8% in the landscape mode.

Following the work by Syed, Palaskar et al. [91] use a subset of 31 users using a

tablet within the data gathered by [79]. They focus exclusively on horizontal ges-

tures to answer whether classifiers degrade over time and if retraining classifiers can

solve any degradation. Each user training data is divided into n blocks with equal

periods. The first block is used for training, and testing is done on subsequent blocks

to test degradation. Several classifiers are applied, including RF, Classification And

Regression Trees (CART), NB, SVM-Linear, KNNKNN (k=10 ) and Linear Percep-

tron (LP). RF consistently performs better than other classifiers with an average

EER of 11.48% without majority voting and using a ratio of 4-to-1; train-to-test

sample size, respectively. For optimal results when testing 74 samples using their

method, it is advisable to train with 300 gestures. Further, the error rate increases

by 32% when the distance between training and testing is 600 gestures, and the

author recommends retraining the classifier using the latest available data.

Rather than using the feature set collected by Syed [79], Sarhan et al. [101]

collected data from ten subjects using a Samsung Galaxy Note 10.1 tablet—each

of the ten subjects provided around ten touch sessions over two months of collec-
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tion. From the raw data, two categories of features are extracted: gesture-level and

session-level features. Gesture-level refers to the traditional modelling of each ges-

ture, whereas session-level aggregates a sequence of gestures within a time window.

For gesture-level training, 27 features are used along with 50 per cent of samples

for training, 25 for validation, and the remaining 25 per cent for testing. As part

of the modelling, the 27 features are compared against a reduced set of 13 of the

best Principal Components. For session-level training, 35 features are used to train

a model using 65 per cent, 15 for validation, and 20 per cent for testing. Thus, the

training, validation, and testing sample size differs between the gesture and session-

level experiments due to the sessions aggregating gestures, which causes the sample

size to shrink. Regardless, two classifiers are applied for each experiment. First,

an Artificial Neural Network (ANN) is built using an input layer, a single hidden

layer, and an output classification layer using the sigmoid function. Second, Support

Vector Machine (SVM) models using various kernel functions. Results show that

principal component analysis is generally ineffective independent of the experiment.

Further, the session-level classification results are 90% accuracy versus 70% gesture-

level accuracy. However, the results are difficult to verify due to being private, and

the number of users providing data is limited. Lastly, the ANN is configured as a

relatively simple network compared to the benefit deeper networks could provide.

2.4.4 Enhancing EA with CA

A study by [85] proposes a Touch-based Identity Protection Service (TIPS) to pro-

tect users post EA. TIPS creates individual models based on application context

and navigational direction, such as up, down, left, right, zoom in, and zoom out.

This requires six new models for each installed application. The study collected data

from 23 users who used eight different phone models and evaluated it on 123 partici-

pants. However, the author encountered pitfalls one and two, defined in [69], due to

assessing a small dataset and training on multiple devices. This may lead to over-

estimated results. Regardless, Dynamic Time Warping (DTW) is used to compute

the Euclidean distance between gestures over time, while the one-nearest neighbour
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is applied for classification. TIPS achieve roughly 90% accuracy when considering

a sequence of eight gestures but significantly degrades with shorter authentication

length. For example, the false positive rate is only ∼ 58% when considering single-

gesture authentication.

In 2015, Nader et al. [88] proposed combining a touch-based CA system with

implicit authentication, such as a pattern lock. Their study gathered five minutes of

data from 20 users and trained user models using DT, NB, JRIP, Back Propagating

Neural Network (BPNN), and an Radial Basis Function Network (RBFN). Fourteen

features are used to train each classifier, of which six are proposed by the author

and the remaining eight overlap with [12]. They achieve excellent performance

using Particle Swarm Optimisation Radial Basis Function Network (PSO-RBFN);

however, several details are missing, such as what data is used for training and

testing, whether the author authenticates users on single or multiple interactions,

and whether they model users per directional navigation or as a whole. The limited

amount of data may also suggest a lack of evaluation of unseen data, which can

result in overfitting the five minutes of user interactions.

2.4.5 Approaches using Random Forests

According to the surveyed literature in Table 2.2, a RF is the most common classifier

to perform well. Several articles successfully deployed the classifier using different

data, user count, device types, features, and evaluation criteria [15], [79], [80], [91]–

[93]. This section describes the majority of these papers, except [79], [91] who are

represented in Section 2.4.3, which relate to tablet use, and [15] who is described in

Section 2.4.2 relating to papers utilising the TA dataset.

Antal et al. [78] collected four datasets. Datasets one and two are for user

classification, where the former has horizontal and vertical, and the latter only

contains vertical gestures. Dataset three is used for gender classification, whereas

dataset four contains four labels that refer to different user experience levels. They

optimise the hyperparameters for KNN, RF, and SVM-RBF classifiers to perform

user classification with unknown parameter grids while training on 100 samples for
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each user model. Results show that the RF classifiers outperform the others when

combining gestures, but SVM appears superior, with 64% accuracy on a single

gesture. Performance converges when combining 16 or more gestures. However, RF

outperforms SVM when combining more than one gesture.

In 2016, Mahbub et al. [80] released the UMDAA-II datasets separated into

two pieces, face-detection and touch behaviour. The face-detection dataset is free

to download, whereas the touch data is restricted and unavailable due to miss-

ing responses by the author when requesting access [106]. While face detection is

interesting, this thesis exclusively considers their work’s touch-based CA compo-

nent. Their paper collected data from 48 users using an Android-powered Nexus

5 smartphone over two months. Touch data is preprocessed to filter clicks from

gestures using a minimum criteria of four touchpoints to qualify as a gesture. Sev-

eral classifiers and hyperparameters are trained using ten-fold CV, including KNN,

SVM-RBF, NB, Logistic Regression (LR), DT, RF, and Gradient Boosting Model

(GBM). The search space is not documented but details the best parameter for the

ensemble classifiers: “max tree depths = 10” and “the number of estimators = 200”.

The best classifier is RF, with 22.1% EER when merging 16 gestures using the mean

score-level fusion method.

Alariki et al. [92] collected data due to “no public data being available” and

enrolled 84 subjects for data collection. The users can perform gestures in any di-

rection, but once they are comfortable with the device, they are asked to complete

six gestures in any direction. Thus, it remains unknown which directions are gath-

ered and whether users must draw six gestures for each direction. Nevertheless, if

the user provides data for up, down, left, and right, then the dataset is estimated

to have a size of 84 (users) X 4 (directions) X 6 (samples) = 2016 samples, which is

relatively few compared to other publicly available datasets [1], [2]. They train and

test an RF classifier without specifying if or how the training and testing data are

separated. The results are evaluated using Sequential Forward Selection (SFS), but

the best result is reported using all features, with an accuracy of 91.67% and EER

of 8.33%.
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Shen et al. [93] propose using different feature sets for each navigational direc-

tion, up, down, left, right, and a holistic approach. They collected data from 71

users across three different smartphones during three sessions. The three sessions

are recorded with a minimum of one day between sessions one and two and a min-

imum of seven days between two and three. Several classifiers are trained using

ten-fold CV, including KNN where k in the range 2-20 with k = 11 as the best

parameter, SVM-RBF, linear, sigmoid, and polynomial kernels, BPNN with input

nodes, (2m + 1) first-hidden-layer nodes, three second-hidden-layer nodes, and one

output node—learning rate of 0.001. RF is trained with 1000 trees. The author

notes that two navigations are more common than others: sliding upwards and left-

ward, scrolling down on pages and moving to the next image, respectively. Further,

a limited number of gestures are available in the landscape since users prefer por-

trait mode; thus, the paper focuses on gestures recorded in portrait only. Results

show the model for left operations is superior to a holistic approach, with an EER

of 25% compared to 35%.

Temporal Regression Forests is proposed by [99], focusing on the relationship be-

tween interactions. In their work, they evaluate the suggested method on two public

datasets [1], [2] while comparing their Temporal RF against similar classifiers as [2]

and [96], SVM-RBF and Gaussian Mixture Models (GMM)+SVM-RBF, respec-

tively. To model temporal behaviour, their method fuses the features of consecutive

gestures into a flat feature vector, in contrast to [2], which averages the feature vec-

tor of ten gestures. Thus, the final feature vector considers nfeatures ∗ kgestures where

k = 4 and n = 28, thus producing a 112-dimension feature vector for each interac-

tion. Consequently, a minimum of four gestures are required for a single training

sample or authentication. Forty samples for the target user are used for training,

causing 2.8 times more features than samples for each target user when comparing

the ratio of features to samples. The other class size is not specified. Due to the

fusion of gestures, many features may positively impact the classification results at

the cost of increased model complexity.

Unlike the other authors advocating for RF, Alghamdi et al. [97] provide a
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contrarian view. Their work collected data from 20 subjects using a smartphone

that records touch input using the QWERTY and 12-digit keyboard and general

scroll and drag gestures over three sessions. Six features are extracted from the

QWERTY, five from the 12-digit inputs, and eight for drag and scroll features. As

such, the models contain a mixture of touch-biometrics and key-stroke analytics to

measure performance. They propose using Median Vector Proximity (MVP) for

single-gesture authentication but suggest KNN (k = 1) for multi-gesture authenti-

cation. They also evaluate RF (five trees) but do not find it to be “ideal for user

authentication” in contrast to several other works [15], [79], [80], [91]–[93]. The

models are trained on three sessions of data and tested on another two sessions.

However, it remains unclear how much data each session contains and how they

differ, either by the time between them or by different tasks. Regardless, when

authenticating with a single gesture, they achieve a remarkable 5.25% EER using

an MVP classifier.

2.4.6 PSO-RBFN Approaches

In 2013, Meng et al. [11], [12], [98] began working on three contributions that

ultimately let them develop TouchWB [98]. In the initial work, Meng et al. [11]

captured data from 20 users over 120 ten-minute sessions as part of the first work. In

difference to the related work, the data capturing application is embedded into the

Android system by modifying the source code and deploying a customised version of

the Cyanogen operating system where the pointer application records touch input.

An example of the application can be seen in Figure 2.7. The benefit of this data

collection approach is the ability to capture system-wide gestures rather than those

contained in a specific application.

Opposed to the studies by [1], [2], several touch inputs appear to be aggregated

into 21 features over ten minutes. The assumption is based on the proposed fea-

tures named “number of touch movements per session”, “number of single-touch

events per session”, and “number of multi-touch events per session”, which may

imply that statistics are gathered as a group of interactions. Regardless, they
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Figure 2.7: Data collector embedded into the Cyanogen OS as used in [11], [12]

model user behaviour by applying several classifiers, including DT, NB, K-star,

RBFN, BPNN.The best performance is achieved using RBFN with FAR=7.08%

and FRR=8.34%. However, optimising the model using Particle Swarm Optimi-

sation, the PSO-RBFN outperforms the former with FAR=2.5% and FRR=3.34%

using the proposed signatures.

In their second work, Meng et al. [12] further surveyed the literature and ex-

tended prior work [11] by collecting data from 80 users rather than the original 20.

For each user, they collect 25 sessions within three days, and each session includes

100 gestures. The main difference between this work and their prior study is the

different data collected from users and a different feature set consisting of 22 vari-

ables. However, they provide no comparison or discussion on why they needed new

data or changed the features. Similar to their original work, it is challenging to un-

derstand whether raw gestures are used for training or grouped into ten minutes of

device usage. Regardless, they achieve an average FAR=3.82 and FRR=4.79 with
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the PSO-RBFN classifier. Compared to their previous study [11], the error rates

slightly increased, which may be due to modelling more users.

The third article by Meng et al. [98] extends the preliminary work released in

[11]. However, this work collects data from 48 users using the same Android operat-

ing system and data collection as in [11], [12]. Compared to their previous work [12],

a similar number of features and training methods are taken. However, in this work,

the users were divided into two groups of 24, where Group A had all their gestures

recorded, but Group B only recorded during web browsing. Each user is required to

complete 20 sessions of ten minutes each over three days. Twelve sessions are used

for training and the remainder for testing. Each training set is then modelled using

the various classifiers, including DT, NB, K-star, RBFN, BPNN, and PSO-RBFN,

and parameters optimised using ten-fold cross-validation. They found that the error

rate for Group A is higher than Group B and argued that performance is better

when exclusively modelling web browsing due to fewer deviations in behaviour com-

pared to freely navigating and using the device freely. However, developing a single

model for each application would be costly and scale poorly when installing more

apps. Regardless, the performance of Group A. is FAR=3.67% and FRR=4.13%,

compared to Group B. with FAR=2.22% and FRR=2.54%.

While not the same author or applying the same classification algorithm, Kroeze

et al. [94] also collected data from 30 subjects using Cyanogen, a customised ver-

sion of Android. Fourteen raw features were gathered from the operating systems’

pointer location over 20-minute sessions. In contrast, 32 features were derived from

the gestures. Information gain was used to evaluate feature importance, ranking

pressure among the most important. They train DT and K-Star classifiers for each

user on the raw data and the computed gestures. Each classifier is trained on 70%

of the users’ data and tested on the remaining 30%. They note that testing sets

should not contain the same unauthorised users used in the negative class to train

the classifiers, in line with pitfall 4 [69]. Results show that the classifiers trained

on the raw data outperform those using the feature set, and the best classifier is

K-star for the raw data, whereas DT is better on the feature set, 14.8% EER versus
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20.9%, respectively. The author suggests and attributes this to two points: (i) the

features fail to describe the raw data efficiently, and (ii) there is more raw data

available than features that aggregate the touchpoints from each raw stroke into a

single vector. Further, they found a negative impact on performance when modelled

using a global maximum of training gestures for each user, according to the user

who provided the fewest gestures.

2.4.7 Statistical Modelling Approach

Many studies concentrate on classifiers that distinguish between classes based on

distances, like KNN and SVM, or tree ensembles like DT and RF. Nevertheless,

some researchers also explore using statistical modelling such as GMM, using the

models individually or improving distance-based classification results by combining

these with statistical models at the score level.

Pozo et al. [95] investigate statistical modelling using Gaussian Mixture Models

with Universal Background Model (GMM-UBM) as a classifier on the public data

collected by [2]. Besides using a different classifier, they also individually compute

directional models for up, down, left, and right. Sequential Floating Forward Selec-

tion (SFFS) is applied to individually discover the best five features for horizontal

and vertical gestures from 100 features designed for handwritten signature verifica-

tion and adopted from [107], published by one of the co-authors. For each directional

model, the training data is taken from the first session of data and testing is per-

formed in the second session. Since the dataset contains data collected in portrait

and landscape, a further separation is made between the two device orientations.

They observe that landscape generally outperforms portrait models slightly. Still,

the authors caution against the observation due to a lack of other public datasets

with landscape data to further support the claim. Regardless, ten strokes are ag-

gregated using an average over the scores to produce evaluation metrics. The best

performance ranges between 15 to 22% EER depending on the classifier’s configu-

ration and the gestures’ direction.

Fierrez et al. [96] is a coauthor of [95] and extends the work by including a SVM-
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RBF classifier and combining the two using score-level fusion. Furthermore, they

include an additional feature set [2], [107] and attempted to evaluate the approach on

four datasets [1], [14], [78], [80]. In line with their previous research, they employed

SFFS to identify the top five unique features for horizontal and vertical models across

all users. The datasets were analysed based on the number of gestures per direction

per user, revealing a preference for portrait usage over landscape orientation. Both

SVM-RBF and GMM-UBM classifiers are trained individually. Combining both

classifiers achieves the best performance at the score-level fusion between SVM-

RBF and GMM-UBM. Results show an average EER of 6.98% for portrait and

7.6% for landscape when using the WVW dataset from [2]. The other datasets did

not have enough landscape data, but portrait EER was 4.5% for the TA [1] dataset;

however, it had fewer users and training samples. The remaining two datasets did

not have intersession or enough data for meaningful evaluation [78], [80].

While not strictly focusing on statistical classifiers, Santopietro et al. [100]

sought to quantify the quality of gestures used for training touch-based CA using a

similar classifier as proposed by Fierrez et al. [96]. The paper states that models may

improve when excluding gestures of poor quality. The method in this study is tested

by incorporating features from two distinct sources [2], [96]. The GMM+SVM-RBF

fusion technique similar to [96] is employed as a classifier to train models for each

user to understand how models trained on low, medium, and high-quality gestures

perform. This approach’s effectiveness is evaluated on three public datasets [1], [2],

[78]. The study concentrates on portrait usage since the WVW [2] dataset is the

only experiment to have been collected in landscape mode. Furthermore, analysis

reveals insufficient data to model “down” usage for TA [1] users. Low, medium,

and high-quality gestures perform differently, averaging 23.48, 18.24, and 15.04%

EER. Thus, the author argues that error rates can improve when removing low-

quality gestures. On the contrary, it may also indicate that the classifiers have issues

learning from the features while also causing issues with further authentication of

users who may not always provide high-quality samples. It would be interesting

to see how the impact of their approach concerning the balance between FTE and
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users who provide low-quality gestures more often.

2.4.8 Stacking Classifiers

While most work focuses on individual classifiers or the fusion of these, others also

consider training multiple models and stacking those as a group of classifiers. In

[102], the author proposes a feature-level fusion classifier called Discriminative Fac-

torized Subspaces (DFS) and argues that their method performs well when the

training data is limited. They test the approach on four datasets [1], [2], [78],

[80], and compare against the following classifiers: Partially Shared Latent Factor

(PSLF), Generalised Multi-view Analysis (GMA), Score Level Fusion for Mobile

Authentication (SCF) such as the model presented in [96], Discriminative Correla-

tion Analysis, Sparse Multi-modal Biometric Recognition (SMBR), and Multi-View

Metric Learning (MVML). They combine the 28 swipe-based features from WVW

[2] and five signature-based features [107] to form a 33-dimension feature vector.

Models are computed using five repetitions of ten-fold CV. Due to limited data, the

smallest dataset from TA [1] cannot model the up direction. Nonetheless, the author

claims to perform better, but the results do not support this since TA [1] obtained

a median EER∼4% while this author reports a mean EER=7.44%. Similarly, they

report 26.16% for intersession portrait mode on WVW [2], but the original work

reported mean EER=15.5%. According to the author, their performance is strong

even with limited training data. However, the evidence provided fails to validate this

assertion. There may be several factors causing these differences, including distinct

ways of preprocessing data or including/excluding certain users from the dataset.

However, the paper lacks specific information regarding the implementation of these

aspects.

Opposed to DFS [102], Zaidi et al. [105] propose a Dynamic Selection (DS)

that implements a pool of classifiers and selects the best-performing classifier for

specific touch gestures. The pool comprises six traditional classifiers: KNN, SVM-

RBF, DT, NB, LR, and Multi-Layer Perceptron (MLP). The DS method is divided

into Dynamic Classifier Selections (DCS) and Dynamic Ensemble Selections (DES).
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DCS is designed to select a single classifier from a pool, whereas DES selects a

subset of classifiers and combines them for classification. They normalise the data

in the range of 0-1 and train using the full training set for validation to measure

the competence of classifiers. Four public datasets are used for training, including

[1], [2], [78], [80]. To meet the eligibility requirements for their analysis, each user

must provide a minimum of 60 samples. As seen in [96], some of the public datasets,

such as TA [1], contain limited data, and it may not be possible to model enough

users given the eligibility requirement. The author defines EER = F AR+F RR
2 in

equation three, but this appears to be the HTER as per [76] and as described in

Section 2.2.6. Regardless, the score is computed using score-level fusion over ten

gestures. The individual RF classifier achieves mean EER of 18.15% while taking

0.19 seconds to computer; in contrast, the best DS method is the DES-P classifier,

which achieves mean EER=16.58 but takes 2.40 seconds. Thus, the performance

may improve using DS but at the expense of computational resources.

2.4.9 Adversarial Concerns

Most related work focuses on detecting the genuine user, but another exciting aspect

is accurately rejecting other users and measuring the impact of adversarial attacks.

However, accurately measuring adversarial attacks must be done accordingly to

avoid over-estimating performance, as defined in the fourth pitfall category described

in [69]. One of the first works aiming to illuminate the adversarial aspects appears

in [13]. They developed a LEGO Mindstorms robot, shown in Figure 2.8, which is

custom-built to replay and forge touch gestures using electrically charged Play-Doh.

They use the WVW dataset [2] and select all users with a minimum of 80 gestures

in session one. Then, two classifiers are trained using KNN and SVM-RBF to see

how well users can be authenticated before attacking them with the robot. Any

users who already perform poorly are excluded from the robot attack since it would

take zero effort to bypass these models. Furthermore, they focus on portrait mode

since no new information can be gained from the landscape.

Without the robot and under the zero-effort attack, the performance is between
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Figure 2.8: LEGO robot that replays and forges touch gestures proposed by [13],
[14]

3.5-13% EER depending on how many users are excluded according to their FTE

policy. However, results show that EER significantly increase under the robot at-

tack, while 20-40% of users show a reduced error rate. Interestingly, the author

argues that poor performance under the robotic attack is an issue and that 20-40%

of users are unique. They caution that the dataset, features, and classifiers all de-

pend on each other, and the attacks may be less effective on different variations,

especially concerning other features. The higher error rates positively indicate an

ongoing attack, which should prompt the locking mechanism to request further au-

thentication information from the user or lock the device. Later, [14] extended their

work [13] by adding population-based and user-specific attacks where 1, 5, and 10

gestures are stolen from the most resilient users. They also expanded with more

classification algorithms and demonstrated that their robot could be implemented

using essential software that school kids could program. Similar to their previous

observation, results show that 20-30% of users are immune to population-based at-

tacks, although these can be successfully compromised by observing five gestures. In

terms of the applied classification algorithm, they find no significant improvements

when using one classifier over another.

Lu et al. [89] collected data from 60 subjects over one month. The authors

utilise 14 features and deploy five classifiers: DT, NB, KNN, LR, and SVM-RBF.
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They found SVM-RBF performs well and tunes the γ and C parameters. The search

space is defined as C = {211, 213, 215, 217} and γ = {2−1, 21, 23, 25}. Data grouping

and filtering are performed using Cumulative Distribution Functions on a subset of

20 users to demonstrate the discriminate power of the selected “angle”, “distance”,

and “pressure intensity” features. While their performance is impressive and close

to 0% EER, it is unclear how they implement the training and testing process given

their data grouping and filtering.

In their paper, they describe grouping as a method to evaluate the direction

of a gesture into the four quadrants in a circle. However, the interaction between

these groups and the training or inference is not documented beyond their results in

Table II of their paper. In this table, two columns are labelled “Number of testing

movements”, where one may refer to the number of samples grouped when training

and testing, respectively. Regardless, the given number for those columns is shown

in ranges, but the resulting performance is a single number. Thus, it is difficult to

interpret whether the lower or higher “Number of testing movements” is used to get

their final result. Nevertheless, they achieve FAR=0.03% FRR=0.05% using 1-20

sliding movements. As the final part of their experiment, five users are chosen to

mimic target users by observing and attempting to emulate their behaviour. Each

of the five impostors provides 1000 samples, and results show that the FAR increase

slowly and reach 25% when considering 40% of training data. When considering

more training data, the FAR reduces to 10

In 2016, Gong et al. [108] proposed an Adaptive Touch-based Continuous Au-

thentication (ATCA) designed to be forgery-resistant and protect against adversarial

attacks. They collected data from 25 users and created five models for each user

according to varying screen settings that distort the raw user inputs. The input

is distorted on the x axis for horizontal and y for vertical every 30 seconds. Each

screen setting is denoted by setting sx where x ∈ {a, b, c, d, e}. The screen distortion

and transition between, e.g., sa and sb, is not noticed by the users, which indicates

that users are subconsciously adapting to the changes. As such, the distortion chal-

lenges attackers with an additional layer to attack beyond simply observing touch
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inputs. However, the mean sample size for each user and distorted setting sx is

around 64, which is relatively low compared to other works [2], [4], [91]. Neverthe-

less, several SVM-RBF models are trained for each user using the features proposed

by [2], and five-fold CV is applied to optimise parameters. The models are trained

for horizontal and vertical directions.

To train the ATCA models, each user is modelled five times according to the

different distortions. For each user, the individual distortion is used as the user’s

positive class, where the other distorted gestures are grouped with the other users

in the negative class. As part of feature analysis, the author applies MI [109] to

evaluate the importance of each feature. Analysis shows that features derived from

“pressure” are the most critical variables, and the “acceleration standard deviation”

is dropped due to being the worst-performing feature. Further, an additional five

“area” features are dropped due to correlation analysis with the “pressure” features.

The performance is measured exclusively on the validation set from CV and when

applying random and targeted attacks. Random attacks occur without the attacking

obtaining touch gestures from the target user but may have obtained gestures from

others. Targeted attacks are more sophisticated and require obtaining gestures

from the target user, similar to the user-specific attacks explored in [14]. Results

show an average EER of 4% for HG and 8% for VG during random attacks, while

the targeted attacks cause higher error rates, 32 and 33%, respectively. While the

results are impressive, the study’s sample size is relatively small, a potential issue

according to pitfall 1 [69]. It’s also unclear whether the authentication is evaluated

using individual gestures and whether the training includes adversarial users, which

goes against pitfalls 4 and 5 in [69].

Agrawal et al. [104] also focus on adversarial attacks against touch-based CA

systems. They investigate two attack types: the traditional zero-effort attack,

where the negative class aggregates other users as impostors. The second attack

is population-based, where behaviour is sampled from the entire data population

and synthesised using a generator and discriminator agent. All users are considered

at any given time; thus, the results may overestimate performance according to [69]
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due to adversaries being part of the training set. For their population-based attack,

they combine the touch data from two public datasets [2], [110]; it is unclear whether

that is the case for the zero-effort attack. To maintain a balance between legitimate

users and impostors, ADASYN [111] is employed for adaptive synthetic sampling.

The balancing involves selecting four samples from each impostor as input to the

negative class while the target users’ data make up the positive class.

SVM, RF, MLP, and XGB classifiers are trained using five-fold CV for zero-

effort, same population, and different population-based attacks. The paper does not

detail the “same” and “different” variations of the population-based attacks, but it

appears to be intra and inter-users between [13] and [110] datasets. Authentication

is evaluated using score-level fusion over five gestures and reported as FAR, FRR,

and HTER. Performance under zero-effort attacks is HTER=5% for RF and XGB,

independent of using their generative approach or not. Under the population-based

attacks, a RF classifier tested on inter-dataset performance with the generative

model presents more resilience than the others, resulting in HTER=5% versus 14%

without generating samples. Interestingly, the inter-dataset performance does not

degrade much, with HTER=13% for the standard method and 6% for the generative

approach. However, the models are still trained with adversarial users present,

causing the performance to be unreliable or over-estimated, according to [69].

2.4.10 Neural Network and Deep Learning Performance

While Neural Network (NN)’s are widely explored for facial recognition [112], the

prevalence of touch-based authentication taking this approach is limited. For most

research listed in Table 2.2, the best-performing classifier belongs to the machine

learning domain. However, a few researchers also successfully implement variations

of NN in their analysis, as seen in Section 2.4.6. The PSO-RBFN appears to work

well, but the depth of the network is unknown, and other researchers cannot verify

the results since the data and source code are private. Instead of the PSO-RBFN,

other researchers design and implement NN such as shown in Figure 2.9. However,

NN architectures require careful design regarding the provided features used as the
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Figure 2.9: Neural Network concept as described by [15]

input layer, the number of hidden layers and neurons, the activation function be-

tween layers, regularisation methods, attention modules, and the training recipe,

including the chosen optimiser, loss functions, and data augmentation. Liu et al.

[113] demonstrate some of these choices and their impact in the work towards up-

dating and optimising the ResNet [114] model, which is helpful for facial recognition

[112].

Serwadda et al. sought to answer which classifier works best in the seminal work

releasing the WVW [2] dataset. As part of the evaluation, they trained an MLP

classifier but provided no details of the number of hidden layers or neurons in each

layer. The performance of their MLP (NN) is HG=16.0% VG=20.7% EER, but the

LR is superior with HG=13.8% and VG=17.2%. Three years later, [93] implements

a BPNN with an input layer and two hidden layers. The paper provides no fur-

ther information about the network architecture besides fixed learning rate=0.001.

Results are measured using FRR with a fixed FAR set to 0.1% and combining 11

gestures for authentication. The BPNN achieves FRR=46.87% compared to 37.75%

for a RF classifier.

In the same year, Lee et al. [15] applied DBN with a single input layer and two

hidden layers. Additionally, they experiment with 0.05, 0.2, and 0.15 dropout rates

in the input layer, hidden layer one, and hidden layer two, respectively. The hidden
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layers use a tanh activation function. However, their DBN model is inferior to a RF

classifier and takes longer to train. More specifically, the RF achieves EER=2.58%

compared to 9.93% for the DBN. Fierrez et al. [96] also attempted to model users

with a MLP classifier. They obtained the best performances with two hidden layers

and 25 units each. The results reached 36% EER and concluded that more complex

architectures are required. Ooi et al. [99] configures a four-layer MLP and argues it

resembles a DL model. However, four layers are still shallow compared to popular

networks such as ResNet [114] with 50 hidden layers. Further, they experimented

with Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRU), but

the preliminary results were not in favour of the NN architectures.

Like other studies, Sarhan et al. [101] implement an ANN with a single hidden

layer and mention various configurable parameters but no detail or reason for the

settings. A lack of detail in NN implementation details appears to be standard across

the literature, with poor performance and missing discussion on why. However,

Keyhaie et al. [103] are among the few authors who argue in favour of NN in their

proposed Match-On-Card (MOC). The MOC method quantises data to reduce the

NN model size and allow storage on a SIM card. This study utilises the identical

28 features proposed by Fieres et al. [96], emphasising horizontal gestures as they

possess better distinguishing qualities. The approach is evaluated on the TA and

WVW [1], [2] public datasets with a focus on the portrait mode as the dominating

device orientation. The data is split into 80% training and 20% testing, and 20%

of the training data is used for validation during training. Deep Neural Network

(DNN) is used for classification and employs a single hidden layer with 14 neurons,

followed by a ReLu activation function and a one-node output layer. They optimise

the cross-entropy loss using the Adam optimiser. Similar to others, the depth of

the DNN is shallow, likely due to the size restrictions of the SIM card. The EER

performance for a single gesture is 20%, while it stabilises when aggregating 15

gestures, causing the performance to improve to 2.6%.

Georgiev et al. [69] design a feed-forward network with three hidden layers of

sizes 30, 30, and 15, adding batch normalisation and a dropout layer with a rate
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of 0.3 between the layers. The optimiser is Adam, and the activation function is

ReLU. However, the performance of the NN is dismissed because an SVM classifier

generally performs better. Despite this observation, Georgiev et al. [106] adopt

NN in a later work using a different configuration. In [106], they built a feed-

forward neural network with three hidden layers of 150, 150, and 75 neurons with

a ReLU activation function. The optimiser and loss function are the same as in

prior work. Thus, the number of hidden layers remains the same compared to [69],

but the number of neurons is more significant, but the author offers no insights as

to why. They also create an ensemble classifier consisting of SVM, RF, and NN.

Interestingly, the performance of the NN is 15.41%, and the ensemble is 14.73%

EER. Thus, the NN performs almost as well as the ensemble.

Despite not analysing or implementing NN in their work, Stefania et al. [87]

suggests NNs as a future direction, including DL methods such as recurrent learning

or auto-encoders for obtaining new features. Similarly, Kroeze et al. [94] also suggest

NN classification techniques in their future work. Pokhriyal et al. [102] also describe

how other areas successfully apply DL but decide not to pursue the method since it

often requires millions of samples. Lastly, Zaidi et al. surveyed the literature and

concluded that more work should investigate deeper architectures.

2.5 Image-based CA

While several authors focus on tabular data to create feature-based models, only

three articles take an image-based approach. Zhao et al. authored the first work,

Graphic Touch Gesture Feature (GTGF) [16]. They later extended the work by

proposing Statistical Touch Dynamics Images (STDI) [17], which relies on their

(GTGF) contribution. Lastly, Ahmad et al. [115] proposed “Trace Maps” as the

last image-based approach. In this section, a summary is given for each of the

methods. A similar lack of image-based approaches is identified by Georgiev et al.

[106].

Zhao et al. [16] collected six data sessions from 30 subjects with three days
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Figure 2.10: GTGF images from two different users [16], [17]

between. Each subject provided 20 navigational touch traces in the categorical

direction of Up (U), Down (D), Left (L), Right (R), Zoom-In (ZI), and Zoom-Out

(ZO) while allowing the users to decide how they hold and touch the device freely.

To model the user behaviour, each trace is converted into a Graphic Touch Gesture

Feature (GTGF) image with a dimension of 100x150 pixels and used for training

behavioural models. An example of the GTGF images can be seen in Figure 2.10,

where Figure 2.10a presents five touch gestures from a random user in their dataset,

whereas Figure 2.10b is five gestures from a different user. Differences can be spotted

between Figures 2.10a and 2.10b, but intra-image differences are more complicated

for the specific user.

The images are drawn on a 100x150 pixel canvas, aggregating information from

50 gestures. Each gesture is represented using three pixels in width, thus fitting

within the 150-pixel image width. Raw x-axis values from gestures are represented

on the canvas y-axis from 50 and upwards, whereas the raw y-axis is drawn on the

canvas y-axis from 50 and below. Colour intensity represents movement speed. To

authenticate, the distance between target and query sets is measured using Manhat-

tan (L1), Euclidean (L2), and Normalised Cross Correlation (NS). They found that

L1 distance was superior, with a mean EER score of 11.28% for verification when

considering all directional navigation, including up, down, left, right, right, zoom

in, and zoom out. The author notes that up and down gestures perform better than

the others.

The second work by Zhao et al. [17] extends and improves on the GTGF images
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by proposing Statistical Touch Dynamics Images (STDI). The new method applies

a Statistical Feature Model (SFM) and reduces the original feature vector through

a proposed and modified Principal Component Analysis (PCA). They varied and

grid-searched three parameters as part of the GTGF extraction, including Lp, Ux,

and Uy. Lp defines an upper bound for the tactile pressure, where Ux and Uy refer

to relative upper bounds in the x and y axes. Similarly, they search parameters

p and k for the STDI. k defines the number of eigenvectors to retain using PCA,

whereas p limits the “variability of synthesising new instances”. The average EER

for the six directional models is 9.7% when k = 0.9 and p = 1.0. Thus, they improve

the performance of GTGF from 11.28 to 9.7%. However, they do not publish their

data, so it doesn’t remain easy to replicate and verify the results.

Interactive Trace Maps (ITM) is proposed by Ahmad et al. [115]. to extract

textural and shape features for training an SVM classifier. They collect data from 25

users interacting with different applications, including the Android launcher, SMS

messaging, dialling numbers and navigating the phone book, interacting with Face-

book through browsing and liking photos, and finally, typing in URLs in the web

browser and scrolling on websites. Several models are trained for each application.

To construct the ITM, texture features are extracted using an adaptive Edge Ori-

entation Histogram (EOH) and applied over m × n sub-images depending on the

device screen size.

The shape features are extracted using w × h grid applied to the entire images,

and the rectangular shape of each cell in the grid is calculated. The texture and

shape features are then combined to form a single feature vector that can be used to

train classifiers. As such, it appears the author disregards any potential behaviour

observed from the tactile pressure exuded onto the screen. The method is evalu-

ated using NB, RF, DT, and an SVM, where the SVM slightly outperforms RF as

the superior classifier. They further compared the performance between different

application contexts and found scrolling, gestures, navigating the phone book, and

browsing web pages to outperform app launching, typing, and clicking. Results show

that ITM can obtain 88.5% accuracy when excluding poor-performing gestures, but
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whether gestures are evaluated alone or aggregated is unclear.

2.6 Conclusion

In conclusion, the adoption and deployment of touch-based CA face several chal-

lenges, primarily due to their poor performance. This chapter has provided an

extensive overview of evaluation metrics and a rigorous review of the related work,

as demonstrated in Table 2.2. The review focuses on feature-based approaches,

which currently dominate the field. However, it’s worth noting that two researchers

have explored an image-based approach, albeit with limited performance. Several

discrepancies have become apparent upon reviewing the articles and analysing Ta-

ble 2.2. Notably, there is an approximately equal ratio between research that eval-

uates private and public data. This discrepancy raises concerns as it goes against a

common pitfall that Georgiev et al. [69] emphasise the importance of research veri-

fication. Similarly, most papers conduct experiments on a small population without

providing adequate cautionary statements about the potential implications of the

validity of their results.

Personalised Modelling: The findings from the research reviewed in Table 2.2

also highlight the various approaches to modelling scenarios in the context of direc-

tional navigation. Some authors opt for grouping directions, such as up and down,

into VG models, while others focus on modelling individual directions. While either

approach may seem wise, it is crucial to recognise that the ultimate performance

of these models relies on the quality of data and feature sets used. Moreover, the

effectiveness of the models is greatly influenced by how well features capture user

behaviour through the collected data and engineered features. Thus, a key obser-

vation from the literature is the diverse usage of different feature sets in the models

without thoroughly discussing the rationale behind their engineering, extraction, or

selection. Whether these features perform optimally for all users or a certain com-

bination of features synergises better with different classification methods remains

unanswered. As a result, the motivation behind Chapter 3 is to address this gap
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and delve into the extent to which features are personalised. The ultimate goal is to

investigate whether individual feature selection can enhance personalised models.

Omni-directional Modelling: In addition to the observations related to person-

alised modelling, the literature review also reveals a limited focus on the complexity

and cost of modelling concerning different features and classifiers. For instance,

some papers train an explicit classifier for each directional action (e.g., up, down,

left, right, zoom in, and zoom out) and each application [85]. This approach raises

concerns about training time with hyperparameter search, feature selection, and the

relatively unstable performance of different models concerning directional naviga-

tion. To address these challenges, a high-quality model should be able to generalise

well to an individual user’s behaviour regardless of the gesture direction. Implement-

ing a single direction-independent model empowered by features that can accurately

model users irrespective of the direction of use becomes essential. Furthermore,

tuning models using different parameter selection methods may improve situations

where a model overfits according to specific behaviours. As such, Chapter 4 aims

to model each user with a single omnidirectional classifier and reduce parameter

complexity to minimise training time while achieving accurate and reliable results.

Deep-Learning Opportunity: Although some articles have utilised neural net-

works, as seen in Section 2.4.10, they have predominantly employed shallow archi-

tectures, resulting in subpar performance. This limitation could be addressed by

leveraging the power of DL, where deeper architectures can automatically learn hi-

erarchical representations from the data, potentially enhancing model performance

significantly. By not fully exploring deeper architectures, the current research may

miss out on capturing touch-based data’s intricate patterns and complexities using

more up-to-date techniques, as further identified by [105] and highlighted in 1.3.

The related work also overlooks optimising hyperparameters for NN, which can also

impact the results. As such, an exciting opportunity lies in the potential application

of DL for touch-based authentication.

Moreover, the opportunity to integrate computer vision techniques with DL in
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touch-based authentication is largely untapped. While some articles have utilised

neural networks, they have mostly been limited to shallow depths, and feature sets

have often been used as the input layer without considering all the raw behavioural

inputs accordingly. The potential of computer vision in touch-based authentication

remains largely unexplored. Deep learning architectures utilising computer vision

have the potential to overcome the limitations observed in shallow neural networks

and offer more robust and accurate touch-based authentication models. Consider-

ing these factors, Chapter 5 seeks to further research and investigate the benefits

of embracing DL and computer vision techniques. By exploring novel architectures

and methodologies, new approaches could unlock the full potential of touch-based

authentication and pave the way for more secure, reliable, and user-friendly authen-

tication systems through computer vision. This opportunity represents a promising

frontier for future research and can lead to significant advancements in touch-based

authentication.
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Personalised Behavioural

Modelling

3.1 Introduction

Smartphones typically provide a range of KBA and physiological BBA authentica-

tion methods to secure access through lock screens. The former includes PIN codes,

passwords, and drawing patterns, whereas the latter integrates specific hardware,

such as biometric fingerprint scanners or facial recognition. However, such solutions

are typically used for one-off authentication, where the users authenticate once be-

fore starting a new session, with secrets being keyed in or by providing irrevocable

fingerprint/facial images for more user-friendly authentication. KBA methods are

inherently vulnerable since secrets can be shared, lost, or stolen, whereas physio-

logical BBA are susceptible to presentation and replay attacks [58], [63], [116]. In

these contexts, users must also actively engage with the authenticator, where up to

nine per cent of the time is spent unlocking devices, taking away valuable time and

requiring conscious attention by the user [27].

Instead, CA aims to ease the burden on users by binding their behaviour closer to

a digital profile by passively collecting sensory input and measuring signals against

known behaviour. CA then compares if an incoming stream of signals is within an

acceptable confidence level of an owner’s behaviour. As discussed in Figure 2.1, the
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acceptable level can be adjusted based on a decision threshold and tuned for better

usability or higher security depending on a desired security policy [83]. Thus, CA

attempts to address the shortcoming of traditional authentication by removing the

demand for active user input while following the user’s dynamic behavioural pattern,

making it more difficult to capture and replay. The popularity of smartphones

and their inherent mobility also present an increased risk of theft and consequent

property loss compared to computers. Smartphones may also carry more Personal

Private Information (PPI) data and allow financial transactions where users have

adopted mobile payment methods.

Consequently, by utilising high-quality models of observed behaviour, CA could

enable a paradigm shift from traditional one-off authenticators toward continuous

seamless and unobtrusive user authentication over time. However, the challenge

of uniquely creating a high-quality model remains since users behave differently;

therefore, the same solution can only be applied across some users. Different smart-

phone sensors support behavioural detection, such as accelerometer and gyroscopic

data that may be combined to detect hand movement, orientation, and grasp [117],

[118]. However, this chapter focuses on touch-based CA using information that can

be gathered exclusively from smartphone touchscreens. Touch data includes (x, y)

coordinates of finger touch-down movement and when the finger is lifted together

with auxiliary information, including timestamps, device orientation, pressure, the

area covered by a finger, and application IDs. Through collecting raw touch data,

researchers have focused on advancing CA by engineering features, selecting appro-

priate classifiers, and tuning hyperparameters while training models using varying

sample sizes. We extend the body of work by exploring and empirically evaluating

features for individual users. We also highlight that, within CA, a behaviour is

expressed through features. Thus, including or excluding specific features should

improve or decrease model performance depending on how well a feature aligns with

a user’s unique behaviour.
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3.1.1 Motivation and Challenges

CA is still in its infancy with several challenges [10]. We highlight two significant

challenges motivating this chapter: (i) human behaviour is unpredictable and sub-

ject to change over time as users adapt to various environments; (ii) different users

may expose individual behaviour through distinct feature sets. Therefore, feature

selection should be done at a user level.

3.1.2 Research Questions and Contributions

This chapter contributes answers to the following questions:

1. How does the user-level feature selection impact behavioural models’ perfor-

mance in context-aware applications?

2. Which features are more commonly important to most users, and which have

limited influence on performance?

This chapter thoroughly analyses user-level feature selection for CA applications.

A OvR approach is introduced to create a training set for each user of interest, al-

lowing for the analysis of feature importance in the context of unique and individual

user behaviour. OvR needs to be thoroughly explored in related work. Different

types of behaviour are expressed through 30 features, and since humans may be-

have differently, selecting the most discriminative features is essential. Selecting

minimal but highly discriminative features could reduce noise in behavioural mod-

els and improve performance. This work empirically tests features using KNN and

SVM-RBF classifiers while applying several feature-selection algorithms for each

classifier. We evaluate our method using a subset of the “TouchAlytics” dataset [1].

The experimental results show that our approach improves the state-of-the-art by

identifying SFS as the optimal feature selection technique in combination with an

SVM-RBF classifier for the selected users. The rest of the chapter is structured as

follows: Section 3.2 reviews the related work. Section 3.3 describes the proposed

method. Section 3.4 presents the feature selection techniques and analysis, with
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Section 3.5 extending through results and discussion before concluding the chapter

in Section 3.6.

3.2 Related Work

TouchAlytics. The dataset presented in [1] includes touch-based behavioural

data as a viable sensory input for CA. They acquired data by developing an Android

application that offers a user Wikipedia articles to read or a “find five differences in a

picture” game. Reading articles was designed to collect VG, while the game caused

users to slide horizontally between pictures. While using the app, touch data was

recorded and allowed the extraction of 32 features. The Pearson correlation and MI

were used to rank such features. Using expert knowledge obtained by evaluating the

two ranking methods, three features were removed, including the “average velocity”,

“length of trajectory”, and “orientation of end-to-end line”. KNN and SVM-RBF

classifiers were applied, producing results to support touch data as a viable sensory

input for CA with a median EER between 2-9% when combining 10-13 gestures.

Which Verifiers Work? Similar to [1], Serwadda et al. [2] collected data from

190 subjects focusing on which classifier works while separating behaviour into four

templates such that horizontal and vertical behaviour is modelled individually for

portrait and landscape modes. They trained models using 80 samples from a target

user while drawing 80 randomly chosen gestures from imposters, i.e., the OvR ap-

proach [73]. Each model uses the same 28-dimensional feature set. During testing,

ten gestures were averaged using a sliding window to allow for more stable authen-

tication. Individual classifiers achieved a mean EER between 10.5% and 42% using

LR and DT, best and worst, respectively. Interestingly, horizontal models gener-

ally outperformed the vertical ones in portrait mode, while there was little change

in horizontal or vertical scores in the landscape mode. Furthermore, SVM-RBF

seemed to be the most stable classifier when considering both mean EER and its

variance across all models, while KNN scored second worst.
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Horizontal Versus Vertical Behaviour. Fierres et al. [96] supported the ev-

idence found by [2], whereby HG are more discriminative. Their system of classi-

fication works by training a model using T randomly chosen samples from the le-

gitimate user and T/10 samples from an imposter population. Two classifiers were

trained using two different feature sets. The first model applied SVM-RBF with a

28-dimensional feature set proposed by [2]. The second model implemented a GMM

using another signature feature set comprising the five best features selected through

SFFS from a 61-dimensional feature set [107]. They tested behavioural models by

averaging ten gestures using a sliding window. They found that HG were faster

than VG with EER of around 10%, independent of device orientation. Additionally,

gestures performed in the portrait mode were more stable than in the landscape

mode.

Dot-To-Dot CA. In 2016, a hybrid authenticator called TMGuard was intro-

duced by Meng et al. [119], which combines Android’s dot-to-dot unlock patterns

with touch-based CA. Since users must draw patterns to unlock, this method must

be more transparent to qualify as CA fully. Nevertheless, the research surveyed

75 participants and demonstrated that individuals might expose stable but unique

behaviour when interacting with the dot-to-dot unlock pattern. TMGuard evalu-

ates gestures separately by grouping them up, down, left, and right. Contrary to

earlier work, this work defines unique behaviour only using two features: the Speed

of Touch Movement (STM) and the Angle of Touch Movement (ATM). Behaviour

is then evaluated using a statistic-based profile-matching approach over several ges-

tures, which distances the work from those applying ML methods. Regardless, the

work finds similarities by concluding that users may expose consistent behaviour

when performing the same gestures, although this varies across users.

Users and Their Devices. Zyed et al. [3] investigated the effect of user posture

and the difference in screen size across smartphones and tablets and provided in-

sights into inter-session variation. They extracted 18 features from their raw data

and discarded four features using MI similar to [1]. Their result shows that the

72



CHAPTER 3. PERSONALISED BEHAVIOURAL MODELLING

EER exponentially improves when increasing the training sample size from 10, 20-

30 per cent with a flat performance at 40 per cent and gradually decays using further

training data. After training, user authentication combines five gestures, providing

a mean EER between 3.8-8.8 per cent, min and max rates, respectively. Models from

tablets perform better than smartphones with smaller screen sizes, and transferring

user profiles between devices appears to degrade authentication performance.

One-Class Classifier Approach. In [4], the authors present an evaluation of 45

participants using WeChat over two weeks. This work differs by approaching CA

using One-Class Support Vector Machine (OCSVM) classification and categorising

behaviour into four significant groups: vertical, horizontal, oblique, and clicks. Up

to 16 features were extracted from each category and selected using Fisher scores

[120]. Models were also trained with varying sample sizes and hyperparameters, with

the best performance found by combining nine gestures and using 80 samples for

training. Results are presented using F-scores with oblique gestures outperforming

others while clicks are inferior.

Summary. CA has dramatically improved due to the engineering of behavioural

features tested against several classification approaches. KNN and SVM-RBF are

commonly used and provide a good foundation for comparability against the related

literature, using EER as a performance metric. At the same time, other classifiers

may also prove suitable, such as GMM, LR, DT, and Neural Networks [2]. In

this chapter, we limit our investigation to KNN and SVM-RBF classifiers as the

focus remains on identifying the distinctive features in the context of individual

users. While feature selection was mentioned in the related works, the application

should be more rigorously explored, especially in modelling individual users. In work

applying feature selection, statistical ranking techniques such as MI have been used

to estimate significant features before manual removal using expert knowledge; thus,

the correlation between features and applied classifiers still needs to be discovered.

Furthermore, applying feature selection combined with OvR distances this work by

uncovering features that may be important to most and only to some, potentially
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improving the EER score.

For most related works, EER is reported to describe model performance, which

defines the decision threshold where FAR and FRR are equal. Our results are

presented using the average EER score for all feature selection techniques for com-

parability. However, several related works [1], [2], [4], [96] consider multiple gestures

for authentication, which prohibits exact performance comparison between the work

of others. Our work will be pragmatic by reporting EER and authenticating users

using singular gestures. Consequently, all EER scores may be improved by consid-

ering multiple gestures, but it is currently beyond the scope of identifying the most

significant features for individual users.

3.3 Proposed Methods

In this section, we present the methods used to select users of interest, clean the

chosen data and ensure class balancing for model fairness, and the methods used

for model selection and hyper-parameter tuning.

3.3.1 Data Set and Users of Interest

The data used for this research is extracted from a public dataset collected by Frank

et al. [1], containing touch inputs from 41 subjects interacting with seven docu-

ments over two weeks. However, not all users participated in the entire experiment.

Thus, we only selected users who had provided data for the whole experiment du-

ration (2 weeks) because of the interest towards assessing model stability over time.

todoC3.8Consequently, the dataset is reduced to 14 users and separated into in-

trasession (week one) and intersession (week two). Amongst the 14 users, two more

were removed, namely, user IDs 5 and 35, as they exhibited inconsistent behaviour.

All users performed two general tasks: reading Wikipedia articles and playing an

image comparison game. The activities are referred to as document IDs. Documents

1, 2, 3, and 6 are Wikipedia articles, whereas 4, 5, and 7 are Gaming (comparing

pictures).
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Figure 3.2: Distribution of points within gestures across all users

first five points” over gestures with less than 10 points. Missing values also occur

for the last gesture performed by users, as intra-gesture times are unavailable due

to being the last interaction. Gestures with incomplete values are discarded as they

provide no value and rarely occur.

Finger Orientation. In contrast to the original feature set proposed by [1], we

remove the “change of finger orientation” feature, as the variable remains the same

across all samples and therefore provides no distinctive behavioural information.

However, all other features are kept for the feature selection technique to analyse,

which is contrary to the original work by Frank et al., who removed “average veloc-

ity”, “length of trajectory”, and “orientation of end-to-end line”. Section 3.5 further

highlights why these features should be included since they may present important

biometric properties for some users.

Stroke Direction. Similar to [1], each gesture is categorised as up, down, left,

or right by evaluating directional data. An example is shown in Figure 3.1b, high-

lighting the spread over pairwise vectors from a horizontal gesture. Each pairwise

vector reveals minutiae behavioural detail within a gesture. As such, extracting the

right features based on raw data and selecting the most discriminate features to

identify an individual user is essential. Overall, we evaluate 30 features, as shown

in Table 3.1, of which a subset is selected for each user individually. Further details

described in Section 3.4.
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3.3.3 Class Balancing and Model Fairness

Since the classification task remains to tell the device owner apart from a non-owner,

the multi-class challenge can be transformed into a two-class classification consisting

of n subsets with binary class labels. Binarising multi-class with this approach is

also known as OvR, signifying a single user as the positive class while grouping the

remaining users into another negative rest class. However, transforming a multi-class

problem into OvR causes class imbalance, as the negative samples are more than

the positive ones, which may cause classification bias. We overcome class imbalance

by applying OvR and down-sampling the majority class, as shown in Figure 3.3.

However, each user contributes a different number of samples, and balancing should

be fair amongst models to ensure the approach is stable and comparable between

users. As such, the user contributing the lowest maximum gestures will define an

upper limit of allowed gestures in the models per class. Thus, for each training

set, the positive class is limited to include only the 30 first gestures from a target

class and roughly three samples from each remaining user in the negative class.

The remaining gestures are discarded, allowing model fairness and comparability

between users despite some contributing more gestures than others. Furthermore,

the feature selection technique is quicker to evaluate when applying smaller sample

Table 3.1: Features included in the feature selection step

# Description # Description

1 Inter-gesture time 16 80 perc. Pairwise acceleration
2 Gesture duration 17 Median velocity at last 3pts
3 Start X 18 Largest dev. end-to-end line
4 Start Y 19 20 perc. dev. end-to-end line
5 Stop X 20 50 perc. dev. end-to-end line
6 Stop Y 21 80 perc. dev. end-to-end line
7 Direct end-to-end distance 22 Average direction
8 Mean resultant length 23 Length of gesture
9 Up/down/left/right flag 24 Ratio F7:F23

10 Direction of end-to-end line 25 Average velocity
11 20 perc. Pairwise velocity 26 Median acceleration first 5 pts.
12 50 perc. Pairwise velocity 27 Median pressure
13 80 perc. Pairwise velocity 28 Median area covered
14 20 perc. Pairwise acceleration 29 Median finger orientation
15 50 perc. Pairwise acceleration 30 Phone orientation
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essential when modelling users using the same two classifiers, KNN and SVM-

RBF proposed in the related literature [1]–[3], [96]. We evaluate the KNN setting

k = {3, 5, 7, 9} with neighbour weight estimated by the inverse of their Euclidean

distance or uniformly distributed. For SVM-RBF, all combinations of γ and C val-

ues of {0.0001, 0.001, 0.01, 1, 10, 100, 1000} are searched. The parameter grids are

defined following the original literature to make comparisons fairer and to limit the

resources required when running on mobile devices. For example, a high k setting

would demand comparing new gestures against more reference points, which may

not be ideal for resource-constrained environments like smartphones. For all cases,

models are selected and optimised to maximise the AUC since this score is thresh-

old independent while also allowing identification of the best error trade-off between

both classes [72].

3.4 Feature Selection and Analysis

This section presents several feature selection methods and our results for each while

analysing the different outcomes among the approaches. Feature selection is a type

of dimensionality reduction that aims to determine the smallest feature set required

to predict a target class. It not only allows faster computation but also reduces

model complexity. When modelling user behaviour, it may be necessary to consider

the importance of the feature concerning the target user dynamically. In the case

of CA, the positive class usually consists of the data produced by the owner of a

device. In contrast, other users are collectively considered to be the negative class.

In these experiments, the selected features returned by all selection techniques for

Wikipedia and Game interaction are always identical. We report only one feature

set for brevity.

3.4.1 Expert Knowledge

Features such as the “change of finger orientation” may logically provide valuable

information during feature engineering. However, all of the included users kept their
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finger orientation the same. Thus, the feature does not add any further information

and is removed. Similarly, “phone orientation” rarely changes but could identify

a few users orienting their phones differently. However, removing this feature is

not recommended as such behaviour may be highly discriminate for specific users.

Therefore, this feature is included and empirically tested as part of the implemented

feature-selection techniques. In this work, all features except the “change of finger

orientation” remain included for empirical testing by the selection algorithms. For

all users, features for Wikipedia and Game models are always the same. Thus, we

present feature maps that are valid for both models.

3.4.2 Univariate Feature Selection

Filtering techniques, known as univariate selection, rank each feature by applying a

scoring function. In the related work, MI is used as the scoring function [1], which

returns a statistical measure of information gained between an individual feature

and the class label. MI [109] is fast to compute since it does not apply a classification

algorithm, but at the same time is also unable to describe how features interact with

a classifier. Therefore, features are tested using the modelling approach in Figure 3.4

by iterating and including k highest-ranked features for hyperparameter tuning in

the range of k between 1 and 30. Our results are shown in Figure 3.5, which presents

the selected features by applying MI for both KNN and SVM-RBF classification,

where included features are marked with a black square. Overall, in Figure 3.5a, it

can be observed that KNN has selected fewer features than SVM-RBF, as shown in

Figure 3.5b.

(a) KNN MI (b) SVM-RBF MI

Figure 3.5: Selected features using Mutual Information
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3.4.3 Sequential Feature Selection

To overcome the drawbacks of univariate selection, such as the inability to mea-

sure feature interaction, applying Sequential Feature Selection provides insight into

such interaction between features and classification algorithms while testing differ-

ent subsets. Two modes are available, including or excluding features, forward and

backwards, respectively. For each method, a binary float option controls whether the

selector can add features from the exclusion list back during the incremental inclu-

sion steps as long as the decision function improves or maintains performance. This

section presents these four sequential selection techniques, including SFS, SFFS,

Sequential Backwards Selection (SBS) and Sequential Floating Backwards Selection

(SFBS) [121].

Forward Selection Using SFS, the feature selection technique begins with an

empty feature set and iteratively tests the performance of each feature for inclusion

in the forward selection step. If performance persists or increases, the feature re-

mains; Otherwise, the feature is marked as insignificant and excluded from the final

user model. As such, this approach attempts to find the least features possible. Fig-

ure 3.6a and Figure 3.6b present the selected features in search of the optimal AUC

score for each user. Like the SFS approach, Figure 3.6c and Figure 3.6d present

the impact of allowing the forward selector to float backwards. As such, the num-

ber of selected features increases only if the previously excluded feature positively

interacts with selected features. Selected features remain intact for eight out of 12

users. In contrast, the remaining four users are significantly affected, as seen with

user #32, reducing the selected features from 22 to four when comparing SFS with

SFFS, respectively.

Backwards Selection Contrary to the forward selection, SBS begins with a com-

plete feature set while iteratively testing and excluding insignificant features. This

approach aims to reduce a feature set by identifying noise. Figure 3.7 presents the

selected features using backward selection techniques, which, compared to a forward
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(a) KNN SFS (b) SVM-RBF SFS

(c) KNN SFFS (d) SVM-RBF SFFS

Figure 3.6: Selected features using Forward Selection methods

selection, such as seen in Figure 3.6, a significant increase in the included features

can be observed. Like SFS, SBS allows for floating operations, enabling previously

excluded features to be included in each step; thus, the exclusion list is considered

part of the floating stage until the decision function decays.

SFFS and SFBS are computationally more expensive since the methods rein-

troduce previously excluded features. However, the techniques also provide better

coverage regarding feature interaction and generally produce smaller feature sets.

Therefore, the touch behaviour of different users can be described with distinct

groups of features, which confirms research question (ii) Different users may expose

individual behaviour through personal feature sets.

3.5 Experimental Results and Discussion

In this section, we present the average results of all user models concerning the

selected features using the selection techniques presented in Section 3.4. To allow

for comparison with related work, Figure 3.8a and Figure 3.8b present the average

EER scores across all individual users, while Figure 3.9a and Figure 3.9b present the

average AUC scores. The results are separated into intrasession and intersession to
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(a) KNN SBS (b) SVM-RBF SBS

(c) KNN SFBS (d) SVM-RBF SFBS

Figure 3.7: Selected features using Backwards Selection methods

show model stability over time. For example, intrasession refers to instant authen-

tication after training. In contrast, intersession illuminates long-term performance

between sessions of device usage, e.g., training in week one and testing on data from

week two. All figures include error bars signifying the 95% confidence interval. We

find that SFS maintains or outperforms all other selection methods when applied in

an SVM-RBF classifier.

Personalised Behaviour As shown in Section 3.4, specific features are selected

for different users when applying our modelling approach as previously illustrated

in Figure 3.4. Our method highlights that users express behaviour through vari-

ous features, and reducing model complexity without affecting model performance

is possible. We observe in Figure 3.9a and Figure 3.9b that SFS generally out-

performs all other feature-selection techniques by maintaining or improving model

performance, even over time. Thus, some features can be removed as they likely

introduce noise, as users may not conform with specified behaviour calculated by

some features. Furthermore, floating options (SFFS and SFBS) only improve model

performance after consuming more computational resources. As such, it is not ad-

visable to use floating options when applying sequential feature selection on the
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(a) Intra-session models.

(b) Inter-session models.

Figure 3.8: Mean EER scores per feature selection technique with 95% confidence

selected users.

Cross-Model Performance We support the general hypothesis [2], [96] that HG

are more discriminate. However, we extend the work by observing that all feature-

selection techniques independently identify the same feature sets when measuring

HG and VG. As such, we compared model performance by testing predictive Game

behaviour against a trained Wiki model and confirmed that Game models could pre-

dict Wiki behaviour and vice versa. Thus, training two models may be unnecessary

as they could be interchangeable.

Stability Over Time The selection of features for each user may affect model

stability over time. Figure 3.9a and Figure 3.9b compare the AUC score over time,

expecting reduced performance because human behaviour tends to change over time,

and the proposed method is limited to one-off training. Despite the expectation,

most applied feature selection techniques sustain performance over time with a

85



CHAPTER 3. PERSONALISED BEHAVIOURAL MODELLING

(a) Intrasession models.

(b) Intersession models.

Figure 3.9: Mean AUC scores per feature selection technique with a 95% confidence

limited reduction.

Shared Feature Importance Figure 3.10 presents an overview of selected fea-

tures across all 60 models, 12 for each selection technique. The lowest occurrence of

a single feature is 15 times across all models, whereas the most common feature was

included 50 times. Interestingly, features 10, 23, and 25 were removed by Frank et

al. in their work [1]; however, the empirical evaluation shows these features may be

significant to specific users. Feature 25, “average velocity”, appears to be a robust

generic feature across all the selected users. Besides being robust, certain unique

features, such as those selected infrequently, might help identify specific people.

Therefore, models should be trained on a mixture of robust and unique features

while selected using an empirical technique. i.e. SFS.
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Figure 3.10: Frequency of feature across a total of 60 models trained

3.6 Conclusion

This research empirically evaluated standard features computed and used in touch-

based CA. Applying the proposed method confirms that features should be person-

ally considered for each user, while feature selection techniques reduce complexity

and often improve performance. On average, the best feature selection technique is

Sequential Forward Selection in combination with an SVM-RBF classifier, especially

over time. The final approach results in a horizontal (Game) average EER score of

15% and 22% for intrasession and intersession, respectively, while vertical (Wiki)

EER reached 37% for both intrasession and intersession. The EER scores are higher

than related work since each gesture is evaluated independently. As seen in related

work, combining gestures suggests that the error rates are conservative results.

The most common features amongst the selection techniques are “median pres-

sure” and “median area covered”, appearing in 81 and 73 per cent out of 60 models

tested, respectively. On the other hand, “inter-gesture time” was rarely included

but not necessarily insignificant. In the future, having a more extensive selection of

features and excluding screen-size-dependent ones would be interesting.
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Chapter 4

Omni-directional Modelling

4.1 Introduction

Apple caused a paradigm shift by releasing its first smartphone with a touch screen

in 2007. Since then, smartphones have become ubiquitous, with an 81 per cent

penetration rate in the US [122]. With the adoption of smartphones, a single device

can now provide access to the entire life of its owner, e.g., entertainment profiles

such as Netflix, social media accounts with instant messaging, and online banking,

amongst others. However, user authentication on touch devices is challenging due

to the limited input interfaces.

With facial recognition and smartphone fingerprint reading, biometric lock screen

authentication can confirm legitimate users conveniently but cannot continuously

maintain user authenticity through user sessions. These physiological biometrics

also require sensors, which are vulnerable to presentation and replay attacks [123],

[124]. Finally, active authentication methods are time-consuming and may interrupt

or delay productivity [20], [27]. The early work by [1] sought to establish the via-

bility of touchscreen data as input for behavioural biometrics and explicitly argued

for user authentication through touch gestures. Contrary to other types of CA, the

touch-based method only requires a touchscreen and may thus be applied across

any device with a touch interface. For instance, humans in smart factories could use

a touchscreen to operate a conveyor belt or pickers in a warehouse to use a smart-
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lowing section will detail each contribution related to these challenges.

4.1.2 Research Questions and Contributions

Following the challenges outlined, this chapter contributes answers to the following

questions:

1. What is the performance difference between the proposed approach versus a

typical bi-directional where parameters are highly optimised?

2. What is the impact of combining n gestures when using the typical and pro-

posed approach?

3. Which feature set should be used considering the different directional mod-

elling approaches?

We focus on balancing the model complexity and performance to answer these

questions while choosing the optimal feature set for a single omni-directional model

and two independent Hs and Vs models. Each user is modelled using five feature

sets to evaluate the best overall behavioural traits. We report the AUC since it is

threshold-independent while assessing the best trade-off between classes as a func-

tion of all thresholds [72]. We also report the EER since it is the most popular

metric across the literature, noting that such a rate only represents a specific de-

cision threshold. Finally, our results are reported for single-gesture and combining

gestures, measured by the AUC and EER scores when combining a sequence of

gestures in ranges 1 through 20. The rest of this chapter is structured as follows:

Section 4.2 covers the related work. Section 4.3 describes the experimental design

and the applied methods to implement and complete the experiment. Section 4.4

presents the results before concluding in Section 4.6.

4.2 Related work

Touch-based CA relies on distinct features to authenticate an owner from other

users. Several approaches from the literature have exhibited promising results using
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different feature sets. However, some overlap where others use existing feature sets

from the literature [1]–[5]. This work focuses on five different feature sets chosen

because they offer the best variation amongst the related literature. The study pre-

sented in [5] explains how to differentiate between child and adult smartphone users

using touch-based features. While their feature set is not used in authentication,

the features they extract could also define distinct behavioural features used for au-

thentication; thus, applying these in continuous authentication would be attractive.

The authors conclude that gestures perform better than clicks in differentiating chil-

dren from adults and that an ET classifier outperforms others. The ET classifier is

not commonly used for CA and could also be interesting in the context of CA. The

following sub-section will compare the classifiers often used for CA.

4.2.1 Classifier, Parameters, and Metrics

Rather than identifying children from adults, Table 4.1 presents work using various

classifiers to implement touch-based CA and specifies the parameters used across

the literature. Although each classifier behaves differently, they can also differ in-

ternally depending on parameter settings. The CA literature often evaluates several

classifiers with varying parameters [2]. However, it is challenging to characterise the

best overall classifier amongst the related literature without specifying comparable

parameter search space or using the same metrics. For example, [1] achieves a 13%

EER on a single gesture using a SVM-RBF. However, [78] finds RF superior, with a

single gesture accuracy of 65%. In [93], the RF classifier offers the best EER score

of 25% instead. Finally, [4] optimises for a balanced F-score with a single gesture

performance between 0.7 and 0.8 - depending on the type of gesture. Thus, the

related works are challenging to compare beyond their different approach due to

varying metrics.

4.2.2 Modelling Approach and the Impact of Training Size

When modelling touch-based CA, gestures can be categorised and processed depend-

ing on the direction of the trajectory or independent of the direction. For example,
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Table 4.1: Classifiers and parameters across related work. Bayesian Network (BN).
Undefined parameters (N/A)

Paper Classifier (parameter)

[1] SVM-RBF (C=N/A, γ=N/A), KNN (k=1,3,5,9)
[2] SVM-RBF (C=N/A, γ=N/A), KNN (k=9), RF (n=1000), LR, NB, MLP, DT
[5] SVM-RBF (C=1.4, γ=0.15), KNN (k=7), RF (n=200), ET (n=200)
[78] SVM-RBF (C=2,8, γ=8), KNN (k=3), RF (n=10, 100)
[93] SVM-RBF (C=0.03, γ=0.006), KNN (k=2-20. Best=11), RF (n=1000), BPNN (2 +

1 layers and learning rate=0.001)
[4] OCSVM (nu=0.1), iForest (contamination=0.1)

grouping left and right gestures in a HG model is used in [1], [2], [4], [78], [93]. In

contrast, [93] also models each direction individually while evaluating against mixed

directions. These papers approach the classification as a binary challenge using a

OvR scheme [73]. The device owner then forms the positive class, and the nega-

tive class groups the remaining users. OvR causes a class imbalance that can be

mitigated through sampling techniques [1], [2].

However, it becomes increasingly challenging to compare works since the direc-

tional approach differs, and OvR sampling may further affect the characteristics of

training data. Thus, we highlight the varying amount of training data used and

the potential effect on performance. Eighty samples are used for HG/VG models

in [2], 100 for HG/VG in [78], and roughly 160 per direction-specific models in [93]

for each class, respectively. The concept of model stability through varying training

data size is partially studied in [3], [78], with [4] showing minor improvement using

more than 80 training observations.

4.2.3 Removing clicks and combining gestures

Defining gestures from clicks is essential as a precursor to modelling since clicks

appear to cause poor performance [4]. There are different ways to identify gestures,

e.g., counting the points within a trajectory and removing gestures with less than

four [2] or five [1] touchpoints. Others assess the directional angle and exclude ges-

tures that change direction, such as sliding up and then down without releasing

the finger [3], [4], [93], or a minimum length can be required [78]. Since a user’s
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touch gestures may have slight variations, authenticating based on a single gesture

is challenging because it requires the classifier to identify each touch operation per-

fectly. In [1], 1-20 gestures are combined using different techniques based on KNN

neighbours’ distance and the SVM’s hyperplane, with 11 and 13 gestures working

well.

In contrast, [2] takes a sequence of ten feature vectors and applies a moving

average when predicting the user. Rather than averaging the feature vector, [78]

uses a moving average over the predicted probabilities of a sequence of gestures

and concludes that ten gestures are optimal. The latter approach can be seen in

Figure 4.1 with a moving average window of two gestures. However, [93] found 11

gestures a reasonable trade-off. [3] groups gestures by five and authenticated based

on a majority vote. Lastly, [5] combines 9-11 gestures. Consequently, improving

performance by combining around ten gestures is common, but the method and

outcome vary across the literature. As such, we seek to answer research question

two by varying the number of combined gestures in the context of the different

approaches and feature sets. The following section presents the experimental design

and describes the proposed omni-directional method, training size, data set, and

the implemented behavioural feature sets.

4.3 Experimental setup

The central hypothesis of this chapter argues that behaviour can be generalised by

an omni-directional model - matching or outperforming the traditional approach

where the horizontal and vertical gestures are modelled independently. If true,

the time to model a user can be reduced by roughly half. Further, selecting and

evaluating essential behavioural features may be more straightforward as only one

model needs to be inspected. The traditional approach is configured as a base-

line and omni-directional as the contender to evaluate our method. We define an

omni-directional model to process any gesture independent of the direction of the

gesture. In contrast, bi-directional models separate gestures depending on the un-
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derlying direction. Furthermore, five different feature sets are used to illuminate

which behaviour works in the context of the proposed method.

4.3.1 Data and feature sets

This chapter uses the raw data collected by [2] as it contains more users, observa-

tions, and extended periods of data compared to others [1], [70], [78], [80], [117],

[125], [126]. The data was collected over two sessions to enable intersession authen-

tication. The raw data includes a user ID, swipe ID, timestamp, (x, y) coordinate

pairs, pressure, and the area covered by the finger for each recorded touch point.

Portrait and landscape data are separated into different sets. We exclusively focus

on the portrait mode as the most preferred smartphone orientation [96]. In Fig-

ure 4.2, a single gesture is visualised and shows a user moving their finger from

Point

Figure 4.2: Visualisation of the touchpoints from a single gesture and three features.

4.3.2 Compatible users and raw data

Since this work is not looking to vary the training data, we follow the recommen-

dation by [4]. Thus, eligible users must provide more than 80 training observations

with each horizontal and vertical direction to establish the two models for the bi-

directional approach. An even number of observations is selected for each direction

among up, down, left, and right gestures. In contrast, the omni-directional model

uses all directions. When authenticating, users must also provide enough test data

to combine a sequence of n gestures. [1] combined up to 20 gestures with ten ges-
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tures producing good results; thus, we combine gestures in the range of 1 through

20 for comparability.

4.3.3 Features

Figure 4.2 presents a single gesture drawn between a finger down and up, Point A

and Point B, respectively. A blue line is illustrated as the trajectory, which defines

the length between the 16 points collected as part of the Android operating system

when capturing touch interactions. An orange dotted line is also shown to high-

light the End-to-End (E2E) length feature, which defines the flight distance. The

Largest Deviating Point (LDP) is another feature at point 12, measured by the

dotted green line. Several feature sets have been proposed throughout the literature

to describe behaviour, as seen in Table 4.2. Several papers overlap without directly

comparing or discussing which features are included or excluded in each set.

4.3.4 Feature extraction and data cleaning

We selected five papers [1]–[5] from the literature because they provide a broad

spectrum of different behavioural traits. We remove clicks and interactions with

less than or equal to five points or if the trajectory length is shorter than three

pixels to focus on gestures. Besides filtering clicks, some features cause undefined

values, such as the E2E line slope for perfect horizontal gestures. Similarly, the inter-

gesture time is unavailable for each user’s first gesture. After removing gestures and

data cleaning, the data set consists of 78,423 gestures that qualify for all five feature

sets.

4.3.5 Selecting users of interest

Each model must have 80 observations to generate a stable behavioural model for the

target user [4]. Thus, valid users are chosen based on the requirement in Figure 4.3.

For each left, right, up, and down direction, 50 training and 30 testing gestures are

required. Thus, the training size is 100 for each of the two bi-directional models
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Table 4.2: Overlap of features between Frank et al. [1], Serwadda et al. [2], Syed
et al. [3], Yang et al. [4], and Cheng et al. [5]. Acceleration, ACC. Velocity, VEL,
End-to-End, E2E

F# Feature name [1
]

[2
]

[3
]

[4
]

[5
] F# Feature name [1
]

[2
]

[3
]

[4
]

[5
]

1 Inter-gesture time ✓ ✓ ✓ 39 Std. pressure ✓ ✓

2 Gesture duration ✓ ✓ ✓ ✓ 40 25% pressure ✓

3 Start X ✓ ✓ ✓ ✓ ✓ 41 50% pressure ✓

4 Start Y ✓ ✓ ✓ ✓ ✓ 42 75% pressure ✓

5 Stop X ✓ ✓ ✓ ✓ ✓ 43 Mean area ✓ ✓

6 Stop Y ✓ ✓ ✓ ✓ ✓ 44 Std. area ✓ ✓

7 Length E2E ✓ ✓ ✓ ✓ 45 25% area ✓

8 Mean Resultant Length ✓ ✓ 46 50% area ✓

9 Numeric direction ✓ 47 75% area ✓

10 Direction E2E ✓ ✓ ✓ ✓ 48 Start pressure ✓ ✓ ✓

11 20% VEL ✓ ✓ 49 Stop pressure ✓ ✓

12 50% VEL ✓ ✓ ✓ 50 Cat. direction ✓

13 80% VEL ✓ ✓ 51 X @ max velocity ✓

14 20% ACC ✓ 52 X @ min VEL ✓

15 50% ACC ✓ ✓ 53 Y @ max VEL ✓

16 80% ACC ✓ 54 Y @ min VEL ✓

17 Mid VEL last 3 pts ✓ ✓ 55 Max VEL ✓ ✓

18 Largest dev. E2E ✓ 56 Min VEL ✓

19 20% dev. E2E ✓ 57 E2E Slope ✓

20 50% dev. E2E ✓ 58 E2E Intercept ✓

21 80% dev. E2E ✓ 59 X @ LDP ✓

22 µ Direction 60 Y @ LDP ✓

23 Length of trajectory ✓ ✓ ✓ ✓ 61 LDP pressure ✓

24 Ratio F7:F23 ✓ ✓ 62 µX VEL pre. LDP ✓

25 µVEL ✓ ✓ ✓ ✓ 63 µY VEL pre. LDP ✓

26 Mid ACC last 5 pts ✓ 64 µX VEL post. LDP ✓

27 Mid pressure ✓ ✓ ✓ 65 µY VEL post. LDP ✓

28 Mid area ✓ ✓ 66 Start pressure ✓

29 Mid finger orientation ✓ 67 Time to max VEL ✓

30 Phone orientation ✓ 68 X disp. down-down ✓

31 Std. VEL ✓ ✓ 69 Y disp. down-down ✓

32 25% VEL ✓ 70 X disp. down-up ✓

33 75% VEL ✓ 71 Y disp. down-up ✓

34 Mean ACC ✓ 72 Mid VEL first 3 pts ✓

35 Std. ACC ✓ 73 Mid VEL ✓

36 25% ACC ✓ 74 Mid ACC first 3 pts ✓

37 75% ACC ✓ 75 Mid ACC last 3 pts ✓

38 Mean pressure ✓ ✓ 76 Mid ACC ✓
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become more complex as their parameters increase in value, such as the number of

trees in RF’s and the regularisation parameter of SVM-RBF- which may lead to

overfitting models. Thus, a consideration is made between balancing the best pa-

rameter and the model complexity. The parameters are optimised to maximise the

AUC score as a function of all thresholds [72]. We select the classifier’s parameter

by subtracting one standard deviation of the AUC score from the model’s best-

performing AUC score, trading minimal performance gains for reduced complexity.

Figure 4.5 visualises the parameter selection approach. The example starts with

the cross-validated output of three parameters tested for a given algorithm. Rank

1 provides the highest AUC score from the three test results. However, the stan-

dard deviation value is often high while providing minor performance over the other

results. Thus, we take the best AUC score and subtract the associated standard

deviation value to set a threshold of the test results, which defines a mask of accept-

able parameters. This example has two parameter pairs as the mask, in which the

lowest parameter is selected since it produces a less complex model while generally

preserving good performance. Consequently, we sacrifice minor performance while

lowering the deviation between users. Similarly, it reduces the model complexity,

translating to faster training. While classifiers may have additional parameters that

can affect performance, the scope of this chapter is to evaluate those tuned in the

related work for comparability. The details and mechanisms of each classifier are

well documented across the literature, but the following parameters are briefly cov-

ered. For SVM, the kernel used is a Radial Basis Function and the γ parameter

scales according to the number of features and their variance [74]. For GBC, the

sub-sample parameter is set to 0.95, which trains each base classifier on a fraction of

the available data. Sub-sampling is a stochastic behaviour and typically enhances

performance.
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Cross validated test results
AUC (±STD) Rank Param
0.80 (0.10) 1 [0.005, 1200]
0.79 (0.05) 2 [0.005, 100]
0.69 (0.05) 3 [0.010, 1200

Rank 1 performance
0.80 (0.10)

Param of interest
[0.005, 1200]
[0.005, 100]

Lowest param
[0.005, 100]

Set threshold

0.80 - 0.10 = 0.70
Threshold = 0.70

Masked using threshold
AUC (±STD) Rank Param
0.80 (0.10) 1 [0.005, 1200]
0.79 (0.05) 2 [0.005, 100]

Figure 4.5: Example of the parameter selection method when balancing performance
and complexity.

4.4 Results

We first present the classifiers and parameters selected using our approach and

with a comparison to the related work. Next, we compare bi- and omni-directional

models in the context of single-gesture authentication before considering the impact

of combining gestures. Lastly, we highlight the benefits of combining gestures in the

context of the five feature sets and classifiers.

4.4.1 Modelling parameters

We searched through the parameters in Table 4.3 for the Horizontal (Hs), Vertical

(Vs), and Omni-directional models to better understand which parameters work for

most users. For KNN and SVM-RBF, the optimal parameter changes depending

on the applied feature set and directional modelling approach. For KNN, as seen

in Figure 4.6, most models found three neighbours a suitable parameter when using

the TA behaviour. In contrast, the other feature sets change between 1, 3, and 5

neighbours but rarely 7, regardless of direction. While a shared parameter cannon be

suggested based on this result, we see a similar difference in the optimal parameter

used across the literature, as seen in Table 4.1, where the optimal k is either 3,

7, 9, or 11, depending on the referenced work. For SVM-RBF and TA, as seen in

Figure 4.7, the Hs models favour C=0.1 while the Vs models vary between C=0.1
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Figure 4.8: Mean AUC scores when fitting tree-based models with greater parameter
complexity and coloured by the time to train models in seconds using the TA feature
set. Similar patterns were found in the other feature sets.

Table 4.4: The top five single-gesture performances ranked by highest mean AUC
score amongst Bi and Omni-directional classifiers and feature sets.

Classifier Feature set Approach AUC (±STD) EER (STD)

ET BS Bi .833 (±.103) .239 (±.098)
ET BS Omni .827 (±.098) .247 (±.094)
ET TA Omni .824 (±.096) .247 (±.087)
ET Cheng Bi .822 (±.106) .251 (±.104)
ET TA Bi .821 (±.103) .252 (±.096)

single gesture with each model. Unsurprisingly, the performance differs amongst the

feature sets. BehaveSense (BS) [4] generally ranks top, whilst Syed [3] and WVW [2]

often perform poorly. While the bi-directional approach has the highest mean AUC

and EER score, the difference from the omni-directional counterpart is negligible;

moreover, the standard deviation for omni-directional models is slightly lower for

both AUC and EER compared to bi-directional models. In [2], they achieved an

EER score of 13.8 and 17.2%, Hs and Vs, respectively, but required ten gestures.

Similarly, we also notice that some users are more challenging to model than others,

as indicated by the wide error bars in Figure 4.9. Regardless, the goal of this

work is not to exclude or identify problematic users but to compare the modelling

approach irrespective of these. Table 4.4 highlights the top five classifiers with the

highest mean AUC score. The results for each model are compared against the

top-performing model on the first line in Table 4.4 to further detail the answer to

research question one.
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pothesis, suggesting that the traditional Bi approach is not significantly better than

the proposed omni-directional approach. As such, we can answer the first research

question. In single-gesture authentication, there is an insignificant performance dif-

ference between the traditional and our proposed omni-directional methods. While

Figure 4.9 shows that the BS feature set consistently outperforms the others irre-

spective of the classifier and modelling approach, we note this may not carry over

when combining gestures, which the following section covers.

Table 4.5: Classifiers that are not significantly different from the single-gesture ET,
BS, Bi-directional AUC distribution.

Classifier Feature set Direction P-value

ET Cheng Bi .3257
ET BS Omni .3098
ET Cheng Omni .2013
ET TA Omni .1589
ET TA Bi .1014
RF Cheng Bi .0665
GB Cheng Bi .0574

4.4.4 Combining gestures

While the best single-gesture classifier was an ET classifier using the BS feature set,

we visualise the influence of combining gestures in Figure 4.10. What stands out

is the steady incline in the mean AUC score for the omni-directional ET classifier

using the TA features. Compared to [2], the proposed approach achieves equivalent

results using five gestures compared to ten in the related work. Table 4.6 details

the top five performing combinations across the bi and omni-directional methods

when combining five gestures. When combining gestures, the best classifier remains

an ET classifier, but the feature set changes to TA. Compared to single-gesture

authentication results in Table 4.4, we improved the mean AUC score from 0.833

to 0.890 (+5.7%) and reduced the EER score from 0.239 to 0.179 (-6%). More

importantly, the proposed omni-directional method outperforms the traditional bi-

directional approach.

In the context of single-gesture authentication, our approach compares to the
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Figure 4.10: Performance when combining gestures. The plot is limited to 1 to 10
gestures due to limited gains beyond ten and presents the different classifiers, Clf,
and the feature sets, Fset.

Table 4.6: Top five performances, combining five gestures, ranked by highest mean
AUC score amongst Bi and Omni-directional classifiers and feature sets.

Classifier Feature set Approach AUC ( ±STD) EER ( ±STD)

ET TA Omni .890 (±.099) .179 (±.112)
ET BS Bi .886 (±.106) .181 (±.112)
ET TA Bi .886 (±.109) .182 (±.117)
ET BS Omni .881 (±.096) .190 (±.104)
GB TA Bi .881 (±.093) .190 (±.103)

traditional one but requires just one model instead of two. Thus, modelling could be

faster and easier to manage, deploy, and interpret. At the same time, our approach is

superior when combining three gestures or more. We found limited improvements for

any methods when combining more than ten gestures. Hence, Figure 4.10 is limited

to combining ten gestures as the curve flattens without changing the rankings of
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classifiers. Compared to [2], we also combined ten gestures and achieved an average

of 0.905 AUC and 0.159 EER score, which is +0.004 EER; however, we have a single

model and a more stable standard deviation. We found minimal improvements

using more than ten gestures, as seen in Figure 4.11, which shows omni-directional

performance. The same is true for the bi-directional models combining more than

ten gestures. Thus, to answer research questions two and three, three to five gestures

are enough to provide satisfactory performance. Despite being the earliest feature

set, we suggest using the TouchAlytics set since the results show better performance

for the ET and amongst many of the classifiers used for bi and omni-directional

methods.
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Figure 4.11: Mean AUC scores when combining 10 to 20 gestures grouped by classi-
fiers, Clf, and the feature sets, Fset. The plot is exclusively for the omni-directional
approach. Similar trends appear for the bi-directional method but with slightly
lower scores

4.5 Limitations

4.5.1 Inconsistency of comparable metrics across the

literature

AUC is threshold independent and aims to produce models that find the best trade-

off between miss-classifying the genuine and non-genuine users. The EER is derived

from AUC based on selecting a threshold that separates the two classes while bal-

ancing miss- classification equally. However, EER is not the best metric to compare
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since it depends on the chosen thresholds, which vary between users. Similarly, false

acceptance and rejection rates suffer from the same issue. Accuracy is rarely seen in

the related work, perhaps since it generalises both true positives and negatives over

all data points; thus, a majority class with good performance may skew the results.

In our work, we decided to optimise for more significant AUC scores while also pro-

viding EER scores to compare with other papers. However, direct comparison with

related work is challenging since the metrics are derived using differences such as

gesture combining methods, data sub-setting, data cleaning, and user selection.

4.5.2 Feature super and subsets

While this chapter focuses on five feature sets from the literature, an evaluation of

feature importance can be made to define a superset which combines the best n-

performing features from each related work into a new feature set. Similarly, subsets

can be made to eliminate noisy or poorly performing features. However, we took

the first steps to compare the feature sets and leave these potential improvements

to future work. We highlight that it may be faster to evaluate feature importance

using our omni-directional approach since simpler models are faster to train and

more straightforward to interpret. For example, new features could be engineered,

such as splitting the gesture at the 20 percentile to better focus on the beginning of

touch interactions.

4.5.3 Coordinate specific features

Most feature sets used in touch-based biometrics incorporate at least the start and

stop (x, y) coordinate pairs as features. However, models relying on coordinate pairs

may have a contextual limitation since they can be affected by the screen content.

E.g., the placement of a button or other screen content that a user needs to click or

when users may avoid covering the screen with their finger while reading. Further-

more, the size of a device may further affect these features despite normalising the

coordinates according to the Dots Per Inch, as seen in [1]. This work shows that the

BS [4] feature set performed well on single-gesture authentication while suffering
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when combining gestures. Interestingly, the BS feature set also contains the most

coordinate-specific features. It may be better to engineer coordinate-independent

features or lean towards the TA [1] feature set.

4.5.4 Incompatibility between the gestures combining

method

It is challenging to compare results between the state-of-the-art, as the methods

to combine gestures differ, e.g., training a model by combining the feature vectors

before training [2] or averaging the predicted probabilities [78]. Thus, single-gesture

performance should be reported to allow comparisons based purely on model perfor-

mance, where, under perfect conditions, each gesture could be accurately predicted.

However, since models are trained to generalise, it is also essential to examine com-

bining gestures. This work averages the predicted probabilities of classifiers trained

on single gestures and a rolling window between 1 (no averaging) and 20 gestures.

Thus, the comparison of merging feature vectors before training is left for future

work.

4.5.5 Comparing Omni vs bi-directional paradox

While the omni-directional model outperforms the traditional method, a direct com-

parison may be unfair as the underlying data differs. Specifically, a horizontal model

is exposed to 100 gestures, while the omni-directional must learn the horizontal be-

haviour collectively from all 200 observations. Hence, our approach may have an

advantage in generalisation, which could cause a better performance when combin-

ing gestures.

4.6 Conclusion

While the bi-directional models based on an ET classifier work for single-gesture

authentication, our approach is comparable and superior when combining three ges-

tures. Interestingly, single-gesture authentication works better using the behaviour
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captured by the BS feature set, but the TA feature set improves performance when

combining gestures. Despite KNN and SVM-RBF being commonly used, they are

inferior to the tree-based classifiers. We conclude that the omni-directional approach

is preferable when using an ET classifier using the TA feature set and combining

at least three gestures. Further, we suggest our hyper-parameter tuning method,

providing a lower AUC standard deviation.
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Chapter 5

Touch Encodings

5.1 Introduction

From 2022 to 2027, identity theft and fraudulent banking transactions are projected

to increase, with costs to merchants exceeding $343 billion [128]. Widely popularised

approaches such as multi-factor authentication provide the opportunity to increase

the protection of user accounts but are often inconvenient [27], [28]. However, the

FIDO Alliance recently proposed a passwordless approach, where users can replace

passwords with an internal or external authenticator, such as mobile tokens [129].

Mobile tokens could be an Android smartphone with embedded biometric authen-

tication or other applications and lock screen protection.

This chapter proposes TouchEnc, a passive and CA mechanism on mobile tokens

that can extract personal gestures from finger movement recorded on touchscreens

beyond the point of entry. Thus, CA captures and verifies behavioural biometrics

and ensures user authenticity over time. This chapter presents a method to au-

thenticate users exclusively by behaviour extracted from on-screen gestures. State-

of-the-art performance is achieved by encoding touchscreen records from a public

dataset [2] into images and cropping the essential screen area for automatic feature

extraction. An example of a single signature and corresponding important screen

area can be seen in Figure 5.2. In the example, a user drew touch points dur-

ing downwards-moving navigation. Each touch point encodes behaviour using the
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Red, Green, and Blue colour channels, which enables powerful image classification

methods for further user authentication.

5.1.1 Motivation and Challenges

CA can alleviate user frustration when authenticating on mobile devices and has

seen increasing interest from the research community looking to harness information

from sensors and modalities such as accelerometers, gyroscopes, and location, among

others [10], [68]. However, we motivate this research by focusing exclusively on the

touchscreen behaviour, which depends on several factors and challenges, including (i)

adequately engineered features [10], [130], (ii) personally selected features [71], and

(iii) faster detection, e.g., not relying on multiple gestures [68], [106]. As concluded

in Section 4.1.2, the older feature set proposed by [1] in 2012 performed just as

well as four other feature sets proposed in the more recent and related work [130].

Thus, a better and perhaps more personal or automatic way to engineer features

is required [71] as discussed in Chapter 3. This observation is similar to the first

survey paper from 2016 [10], discussing the need for better features. While neural

networks have been studied, as shown in Section 2.4.10, the deeper architectures

and ability to automatically extract features remain unexplored [68]. Thus, this

chapter is motivated by exploring and illuminating how well NN, particularly DL,

can help classify users based on their touch inputs using deeper and more modern

architectures, such as computer vision used for facial recognition [112] amongst

others.

5.1.2 Research Questions and Contributions

Following the challenges outlined, this chapter seeks to contribute answers to the

following questions:

1. Rather than manually engineering a fixed feature set to describe behaviour,

how can modern computer vision and deep learning be used to extract personal

behaviour automatically?
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2. How does the proposed approach compare to other ML approaches regarding

EER and the number of gestures required to authenticate users on mobile

devices, and what are the limitations and opportunities of using this technique

on novel and unseen users?

To answer these questions, this chapter introduces and overcomes the previous chal-

lenges with static features by contributing the following novelties. (i) Minimal trans-

formation of raw touch data into image encodings, (ii) exploration of six plotting

variations for the pixel values, and (iii) measuring the ability of DL models to extract

behaviour and classify users based on the transformed encodings without relying on

grouping gestures.

The chapter is structured as follows. Section 5.2 presents the related work and

baseline research performances using the same dataset. Section 5.3 describes the

proposed approach to convert tabular signature data into images, and Section 5.4

demonstrates the implementation. Section 5.5 presents the results before discussing

the limitations and future work in Section 5.6 while concluding the work in 5.7

5.2 Related Work

In 2021, Frank et al. [1] demonstrated that touchscreen inputs could be used for CA.

Soon after, Serwadda et al. [2] published one of the most popular datasets for touch-

based CA. Further, they investigated the best classifiers through a unique feature

set while differentiating between landscape and portrait modes and individually

modelling vertical and horizontal gestures for each screen orientation. In [4], the

authors defined a new signature direction as oblique, which occurs when a signature

curves during a horizontal or vertical gesture. They also apply different feature

sets to various directional models, including clicks, horizontal, vertical, and oblique

gestures. Like [1], [2], each model is trained according to the drawn direction,

and analysis shows that the best performance is derived from oblique gestures.

However, comparing these works remains challenging since they utilise different

data and feature sets, and the directional modelling approach varies. [130] studies
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these differences in directional modelling using the public dataset from [2] and five

feature sets from the literature [1]–[5]. They conclude that models can be trained as

one, independent of the signature direction. Further, the TouchAlytics [1] feature

set appears to outperform recent work despite age.

This chapter focuses on the data published by [2] and Table 5.1 present a com-

parison of papers using this data. The focus ensures fairer comparisons with our

work and avoids bias towards private data sets, which often perform better but are

challenging to verify [77]. Table 5.1 also showcase the differences in the number

of features used, the number of required gestures for accurate authentication, and

whether results rely on multiple models for good performance. It is also noted that

an increase in the number of users appears to cause a decline in performance, which

is consistent with the findings by Frank et al. [1], [69]. Despite focusing on related

work using the same data [2], it proves challenging to ascertain the number of users

in other studies and their inclusion or exclusion criteria.

Table 5.1: Comparison of related works based on data set availability or using
image features. In the ’Single Model (SM)’ column, a ✓indicates that the work
can be implemented with a single model, and numeric values represent the number
of models required for implementation. The ’Number of Features (NF)’ and the
’Gestures Required (GS)’ columns describe the number of features and gestures
necessary for the respective works to achieve performance.

Study Data Users NF SM GS EER%

[1] [1] 41 28 ✓ 1 13.00
[16] [16] 30 Image 4 6 4.31
[2] [2] 106 28 4 10 15.50
[17] [16] 78 Image 6 6 4.70
[115] [115] 25 Image 5 N/A ‡40.60
[95] [2] N/A 5 8 10 18.50
[96] [2] N/A 5+28 8 10 6.98
[99] [2] N/A 112 4 > 4 7.86
[4] [4] 45 4-16 1 9 ∗95.85
[103] [2] N/A 28 †✓ 1 22.50
[102] [2] N/A 33 4 10 24.16
[100] [2] N/A 33 4 33 15.04
[106] [1] N/A 125 N/A 1 21.00
[105] [2] N/A 28 2 10 16.48
[130] [2] 35 28 ✓ 5 17.90

† Only modelling horizontal gestures
‡ F1 score
∗ Accuracy score
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The work presented here employs a unique approach to automatically extracting

touch features using an image-based method. Despite not using the data provided by

Serwadda in 2013 [2], the only three other papers utilising images for touch-based

CA [106] are briefly summarised. First, [16] proposed a Graphic Touch Gesture

Feature (GTGF) to extract identity traits and classify users using a SVM. Later,

they extend and improve their work using a Statistical Feature Model [17]. More

recently, [115] proposed and applied a modified Edge Orientation Histogram (EOH)

to extract ten features. Their features are then used to classify users using an SVM.

To distinguish ourselves from these works, we employ three methods: (i) propose

three intuitive scalar values as colour encodings, (ii) reduce computational require-

ments by cropping and focusing on a limited section of the drawing canvas, and (iii)

effectively apply computer vision and DL for automatic feature extraction and clas-

sification. Thus, the computation required to compute n-features is replaced with

a maximum of three Red, Green, and Blue (RGB) values, based on the raw touch

data, together with data reduction from processing the entire screen to only the

area where the user touches the screen. Consequently, a matrix of pixel values that

highly optimised GPU hardware can effortlessly train on is produced. The matrix

of pixels can be stored to inspect and identify how the model works visually, such as

shown in Section 5.5.4. Thus, our approach’s simplicity and enhanced performance

could make it an attractive option for researchers looking to approach touch-based

CA from a DL perspective.

5.3 Proposed Approach

While most related work focuses on feature engineering and extraction, this chapter

takes a fundamentally different approach by encoding raw touch data into graphical

images. For each drawn gesture, a user generates several touchpoints. Traditionally,

these touchpoints are grouped per gesture and computed into numeric features rep-

resenting time, direction, speed, and force, amongst others, as seen in [1]–[4], [130].

However, a fixed feature set may not work for all users since behaviour is personal
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Figure 5.1 illustrates that the number of gestures per horizontal and vertical di-

rection varies among users. This may be due to personal preference or subconscious

behaviour. Some users navigate shorter and more frequently, while others move

quickly and may have longer pauses before drawing the next signature. Previous

studies have typically flattened and restricted the number of gestures taken into

account per user when training classifiers. [4], [71], [115]. We argue against this

and instead opt for a minimum number of samples per user to qualify and ensure

enough data is available to learn their gestures. Since related work finds 120 sam-

ples are required to perform well [4], we set a minimum threshold of 60 gestures in

each horizontal and vertical direction. The criteria are applied for both sessions to

allow data subsetting without affecting the minimum required number of gestures.

Consequently, 74 users qualify out of the 106 in the data set.

We subset the data into training, validation, and testing to ensure no leakage

between training and evaluation. The splits are grouped per user, session, and

direction to respect the underlying distribution described in Figure 5.1. For each

user, the last 20 gestures in each group are selected for testing, the previous 20 for

validation, and the remaining for training. Thus, the validation and testing sets

are balanced. Qualifying gestures must also have at least five touchpoints to be

considered valid; otherwise, it is discarded as a click action [1], [2], [71], [106].

5.3.2 Data Cleaning and Cropping the Signature Canvas

Directional variations happen when users draw gestures on their device screen, e.g.,

swerving when scrolling down rather than drawing a straight line. These small

directional changes expose the subconscious behaviour required to extract unique

gestures. However, if a user changes their mind halfway through a gesture, a signa-

ture may become invalid since it deviates significantly from the intended direction.

Thus, gestures where the moving average of the angle between five touchpoints’

differs more than 90 deg are removed. Following data cleaning, a blank canvas with

the maximum screen resolution is generated to accommodate drawing the signature.

Certain NN architectures can require significant memory when dealing with high-
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Figure 5.3: Scatter plot and distribution of the maximum touch displacement for
each gesture for the vertical gestures. Two lines signify the 90th percentile used to
guide minimum cropping lines. Horizontal gestures have a similar distribution but
are omitted for brevity.

users’ gestures swerve excessively. We perform outlier analysis on horizontal and

vertical gestures but exclude the horizontal figure for conciseness since the distri-

butions are similar. It’s important to mention that when working with horizontal

gestures, the y-crop becomes the x-crop since the orientation and longest axis are

swapped, and vice versa for the shorter axis. The outlier removal causes a minor

data loss, resulting in 5,535 out of 31,432 gestures being dropped for horizontal and

7,333 out of 42,473 for vertical. Since image classification often requires the same

image dimension, each horizontal signature is rotated 90 degrees counterclockwise to

align vertical and horizontal gestures. Consequently, each extracted signature will

produce the exact image resolution and orientation independent of the underlying

signature direction.
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5.3.3 Biometric Colour Encodings

As users interact with their device screens, the operating system records multi-

ple touchpoints for each gesture, creating a unique signature. An example of such

a signature is in Figure 5.2. The raw touch data, including the x and y coordi-

nates, associated “pressure”, “area covered”, and “timestamp”, are obtained from

[2]. While this information has traditionally been used to calculate ML features,

we suggest reducing the demand to compute 20-50 features manually and instead

encode the raw touch data into three colour encodings, producing a matrix of RGB

values with a fixed dimension. Thus, each touchpoint is represented by three values

in the RGB matrix, which can be processed by computer vision models and visu-

alised for human interpretation. However, the choice of what each value represents

can vary, and the following section further describes this aspect.

A square box is plotted on the canvas to represent each touchpoint using the

coordinates of the x and y. This box is then scaled according to the raw value

of the “area occluded by the finger” and coloured RGB in the range 0-1 or 0-255.

The red colour encoding represents “pressure”, where lower values correspond to

brighter red colours and higher values to harder pressure coloured full red. However,

to allow cropping of the images, we suggest encoding the original canvas location

by computing each touchpoint displacement using equation Equation (5.1) from

the screen origin (0,0) and using the values for the green colour. The continuous

“timestamp” value makes scaling and encoding within the colour range a challenging

task. For encoding the timestamp, we recommend utilising either Equation (5.2) or

Equation (5.3) to calculate the acceleration or velocity between touchpoints, which

indirectly captures the time domain.

displacement =
√

(x2 − x1)2 + (y2 − y1)2 (5.1)

acceleration = ∆velocity
∆time (5.2)
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ages using a shared cropping size yielded the best performance with the benefits of

a smaller image for the neural network to process, fewer empty pixels to consider,

and reduced file size.

When assigning colours to each touchpoint, we must consider the occluded area

of the screen caused by the finger. Our approach involves encoding RGB colours

in a square box proportionate to the area. However, the raw area data is reported

as a scalar value between 0 and 1. Thus, the area values must be scaled to whole

pixel values to be visually detectable. We scale the area by multiplying the values

by 5, 10, or 15. For example, if the phone reports an area of 0.2 scaled by 10, we

create a square with 2x2 pixels and colour it according to the RGB touch encod-

ings. Furthermore, this study also explored the impact of drawing connecting lines

between touchpoints to determine the potential of increasing the neural networks’

performance by extrapolating information between touchpoints. As such, we plot

a variation for each area scale with and without connecting lines and train several

image classifiers on the different plotting styles. Nonetheless, if the points are dense,

a more significant scaling factor could cause the boxes to overlap and potentially

lose some of the unique signature behaviour. Examples of this can be seen in Fig-

ure 5.5b, where dense touchpoints merge, and the lines connecting points become

occluded by the boxes. Paradoxically, a network may find detecting and bringing

attention to larger touchpoints easier, eliminating the benefits of the connecting

line.

5.4 Implementation

To examine the effectiveness of image classification methods in extracting suitable

features from TouchEnc encodings, we test the six proposed image variations illus-

trated in Figure 5.5. Our user classifiers are built using the PyTorch DL framework

[131], which offers a range of well-researched neural network architectures. Given the

focus on the encodings intended for mobile devices, we opted for image classifiers

specifically designed for lower computational resources, such as the MobileNetV3
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(a) No line connecting touchpoints

(b) With line connecting touchpoints

Figure 5.5: Example of the same gesture plotted using different variations of area
scaling and line styling

(MNV3) [132] with 1.5mill parameters and a larger EfficientNetB0 (ENB0) [133]

with 4.1mill parameters. We chose the smallest size for each architecture option in

this study to conserve training time. The loss function for all models uses cross-
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entropy and is optimised with AdamW [134].

To ensure effective training, a modern approach inspired by [113], [135], [136] is

adopted, which includes learning rate annealing after a short linear learning rate

warm-up. This concept initially helps speed up convergence and mitigates large

weight updates as the learning rate increases, while annealing combats issues where

the optimiser may get stuck at a certain learning rate. Additionally, to prevent

overfitting, Label Smoothing [137], Weight Decay [134], and Random Erasing [138]

techniques are applied. Since we are interested in classifying each user, we utilise

the Softmax activation function to produce multi-class probabilities that are suitable

for AUC scoring as described in Section 2.2.5. For computing class-specific AUC

scores, we employ the OvR [73] user classification method [73] and set a threshold

individually to optimise EER scores. During training, we keep track of the macro-

averaged AUC score for each epoch and store the model checkpoints for up to 50

improving epochs. However, training is stopped if the validation AUC score doesn’t

improve over ten epochs; at this point, the last model checkpoint is restored.

The last phase of the implementation involves conducting a hyperparameters

search to determine the optimal touch encoding and plotting styles. Additionally,

an exploration of whether using an ENB0 can improve performance on the selected

encoding will be explored. Table 5.2 outlines a shared parameter grid used in the

experiments to aid this process. While the static values in this parameter grid are

inspired by the [113], [134]–[137], the variations in Learning Rate (LR) and Batch

Table 5.2: Hyper parameter used in the grid search

Parameter Search space

Area Scale (AS) 5, 10, 15
Line Style (LS) with, without lines
Learning Rates 1e-2, 1e-3, 1e-4
Linear Warm-up 5 epochs
Cosine Annealing [136] Maximum Epochs
Weight Decay [134] 0.05
Label Smoothing [137] 0.1
Random Erase [138] 0.25
Pre-trained Weights [139] False
Batch Size 32, 64
Maximum Epochs 50

123



CHAPTER 5. TOUCH ENCODINGS

Sizes (BS) are tuned in common ranges that can affect model convergence. The

maximum BS allows any researcher with a GPU with 10 GB of memory to run

the experiments, enabling result verification without access to expensive hardware.

Detailed model performance can be inspected in [140]. The grid is initially imple-

mented with the MBV3 model, and based on the results, the best encoding will be

used with the ENB0 model to assess whether performance increases with a more

complex architecture. When evaluating the validation set during training, the best

parameters for any model are chosen based on the highest macro-averaged AUC

score. Optimising for better AUC scores is effective since it improves overall perfor-

mance independent of the classification decision threshold [72]. Consequently, we

compute 72 MNV3 and 36 ENB0 models due to the search space. The following

section presents the best five models for each grid search and extends the evaluation

by combining gestures for better comparison against Table 5.1.

5.5 Evaluation and Results

Section 5.3.3 describes the PDA and PDV encodings used to train MNV3 models.

Table 5.3 displays the top ten results, revealing that Acceleration outperforms Ve-

locity due to the latter’s bimodal nature. Therefore, PDA is selected as the superior

encoding method. Our TouchEnc technology has yielded significant improvements

in single-signature authentication, with a 23 per cent increase compared to the best

single-signature result of 13 per cent [1]. This improvement is measured over 74

users, which is 33 more users than evaluated in [1]. Table 5.3 also presents the

modelling time, which may be a crucial factor when deciding between the results in

the following section, where the ENB0 results are presented.

5.5.1 EfficientNet Improvements

While the MNV3 performs well, the optimal encodings may improve performance

in tandem with larger and more complex models such as EFB0. Table 5.4 presents

the top five results when training an EFB0 model with the TouchEnc PDA encod-
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ings. The results show that the best models converge at common parameters, such

as the Batch Size (BS) and Learning Rate (LR), with stable performance indepen-

dent of the plotting style. We highlight these results are based on verifying users

by analysing gestures individually. Hence, the results are conservative since most

related works offer their performance by aggregating gestures. While the perfor-

mance has increased from the MNV3, so has the time to model. This is a natural

trade-off between complexity and performance, which could be an interesting area

to further study. Regardless, the best ENB0 model increases the TouchEnc perfor-

mance further compared to Table 5.3 with a 43 per cent improvement over [1] when

authenticating individual gestures.

Each model is reported with the corresponding AUC score as part of the results.

The values are related to the ROC, which explains the model performance as a

function of different thresholds. Thus, Figure 5.6 visualise the ROC curve for the

best ENB0 model and compares the validation and testing results for the model.

A concern could emerge if the curves are significantly different with indications of

over or under-fitting. Judging by the plot, the EFB0 model generalises well to the

unseen testing data. However, the standard deviation suggests that certain users

are more easily classified than others. Additionally, users can prioritise reducing

false positives or negatives, but doing so may come at a cost in user experience,

Table 5.3: Top ten best performing MNV3 models when comparing Pressure, Dis-
placement, and Acceleration (PDA) versus Pressure, Displacement, and Velocity
(PDV) image-encodings. Line Style (LS), Area Scale (AS), Learning Rate (LR),
Batch Size (BS), and Time in Seconds.

Enc LS AS LR BS EER AUC Time

PDA ✓ 15 .001 32 .103 .953 5852
PDA ✗ 15 .001 64 .104 .953 2450
PDA ✗ 15 .001 32 .104 .953 4715
PDA ✓ 10 .001 32 .106 .952 4990
PDA ✓ 15 .001 64 .108 .949 2857
PDA ✓ 10 .001 64 .109 .946 4373
PDA ✓ 5 .001 32 .110 .949 5297
PDV ✗ 15 .001 32 .111 .948 5064
PDV ✓ 15 .001 32 .112 .947 4783
PDA ✗ 10 .001 32 .112 .948 4820
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Table 5.5: Performance when combining n Number of Gestures (NG) using a rolling
mean over the decision probabilities for testing data.

NG AUC EER ACC FAR FRR

1 .97 (.03) .08 (.05) .92 (.05) .08 (.05) .08 (.05)
2 .98 (.02) .06 (.04) .94 (.04) .05 (.04) .06 (.04)
5 .99 (.01) .04 (.03) .96 (.03) .03 (.03) .04 (.03)
9 .99 (.01) .03 (.03) .97 (.03) .02 (.03) .03 (.03)

10 .99 (.01) .03 (.03) .97 (.03) .02 (.03) .03 (.03)

related work. The results are shown in Table 5.5 where NS is the Number of

Gestures aggregated. In this work, we aggregate using moving average windows

over the predicted probabilities, similar to others [1], [71]. When NS = 1, no

gestures are aggregated, such as in Figure 5.6. Generally, a model with good single

signature performance is also expected to perform well when combining gestures,

and this behaviour is visually presented in Figure 5.7. The figure shows that our

best ENB0 model and our automatic feature extraction approach are superior to the

work of others. In the case of combining five gestures, we achieve 4% EER compared

to [99], which achieves 7.86% EER. That is a 65% improvement, with diminishing

improvements when aggregating more gestures. [130] found similar diminishing

returns but needed more gestures before the performance converged.

5.5.4 Explaining the TouchEnc Attention

Since the Efficient Net performs well and trains fast, we recommend and use the

ENB0 architecture to analyse and present Figure 5.8, which shows a GradCam [141]

analysis of the activation maps for three upwards-moving gestures drawn by the same

user, in sequence. As shown, the network has automatically extracted features

and given attention to the touchpoints along the trajectory. As with many deep

learning models, explaining why particular activations appear can be challenging.

For example, it is peculiar to see Figure 5.8a appear to have skewed attention

towards the right side of the first touchpoint. Still, a pattern can be observed

relating to the increased attention given to the middle of the signature and further

up compared to the lower part, where the finger would have started the upwards
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(a) Gesture 1 (b) Gesture 2 (c) Gesture 3

Figure 5.8: GradCam [141] visualisation of activation maps using the best perform-
ing Efficient Net for automatic feature extraction

move.

5.6 Limitations and Future Work

This work uses two architectures with different parameter sizes of 1.6 Mill, 4.1 Mill,

MNV3, and ENB0. While these architectures are commonly used, larger and more

complex architectures could yield better results. It would also be interesting to
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experiment further by designing custom architectures or applying other off-the-shelf

models, such as Swin Transformers [135] or ConvNeXt [113]. Thus, we recognise

that the performance measures are conservative while still providing evidence of the

feasibility of our method to encode gestures into images.

5.6.1 Deep Metric Learning

For this chapter, the feature outputs are optimised using Cross Entropy loss and

evaluated using Softmax to demonstrate that automatic feature extraction is possi-

ble using our image transformation technique. Consequently, the probabilities are

constrained for the learned users in our multi-class one-vs-rest scenario. However,

such an approach is unrealistic for deployment, where gestures are available only

for the valid owner of a device. Fortunately, deep metrics can also be mined from

these images. Our next area of study is demonstrating the effectiveness of deep

metric learning using our approach, which could enable one-class zero-shot learning

of novel users.

5.6.2 Optimal Encoding and Transformation

While our images encode the drawn gestures effectively, different raw data could be

encoded into the images to improve the feature extraction. In this work, we rule out

velocity and replace it with acceleration, but other raw data points may be better.

Furthermore, the image dimensions are fixed, but different sizes could allow further

improvements. Perhaps a minimum x and y displacement are required. Lastly,

different channel depths could improve the gestures by going hyper-spectral, E.g.,

encoding accelerometer force into a fourth or fifth colour channel.

5.7 Conclusion

Mobile devices are often used in friendly and hostile environments in small bursts.

As such, most users rely on lock screen protection as a one-off point of entry check,

including biometric fingerprints or facial identification. However, this work demon-
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strates a new method to conveniently and passively authenticate users by how they

draw rather than what they draw over time using TouchEnc continuously. We have

improved the state-of-the-art performance by shifting from a traditional ML-based

approach and proposing converting touch gestures into images. We encode touch

pressure, displacement, and acceleration into RGB colour channels, enabling off-the-

shelf models such as Efficient Nets to extract behavioural features automatically. We

achieved 96.7% AUC when authenticating users based on a single signature, which

improves when aggregating gestures, with performance reaching 99% AUC. Lastly,

our approach opens the door to exploiting other benefits of computer vision, such

as deep metric and zero-shot learning.

131



Chapter 6

Conclusions and Future Work

This chapter draws together and presents an overview of the thesis contributions in

Section 6.1. The following sections define the outcomes of each research objective

based on Chapters 3 to 5, corresponding to the chapters describing each contribu-

tion. Finally, Section 6.2 discusses the future direction regarding each contribution

and any overlap between the papers.

6.1 Overview of Contributions

To gain deeper insights into touch-based CA, Chapter 2 presents an extensive re-

view of the related literature to establish the current state-of-the-art, uncover gaps,

and define relevant research opportunities. While the research field is broad, this

thesis maintains a narrow focus on exclusively modelling touch behaviour due to

the presence of touch sensors on any modern devices, eliminating the need for extra

hardware. With this focused approach, the literature review reveals three significant

gaps: (i) the majority of existing studies concentrate on modelling users focusing

on individuality rather than in a general sense; (ii) several directional models are

typically required to achieve reasonable performance, along with complex param-

eter tuning strategies; and (iii), despite the advancement and benefits of DL, the

majority of papers utilise traditional ML methods, often with limited and under-

performing NN architectures. Addressing these challenges, Chapters 3 and 5 make

significant contributions to the field, attempting to fill these research gaps and pave
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the way for new knowledge in touch-based CA.

6.1.1 Personalised Features

The first contribution in Chapter 3 begins by investigating the seminal work pub-

lished by Frank et al. [1], the data, and the features released with their TA article.

In the original and nearly all related work, authors typically model all users with

equal weight to the behavioural features. However, the concept of touch-based CA

is to model individuals according to patterns that can separate them from others.

Thus, using the most descriptive features for each individual user should be an es-

sential aspect of modelling unless all features are equally important. Consequently,

Chapter 3 measures the performance of modelling users individually while utilising

all behavioural features. Thereafter and more importantly, it explores the applica-

tion of several feature selection algorithms applied to each user and classifier. The

selection techniques include MI, SFS, SFFS, SBS, and SFBS.

While the MI selection technique is often used to evaluate features before mod-

elling and implemented holistically over an entire dataset, including all users; thus,

the methods do not assess the individual or the context of interaction among be-

havioural traits. For instance, an individual feature may become more descriptive in

the context of another feature - commonly referred to as feature interactions. To en-

sure a fair evaluation of the original work, the investigation is carried out on the TA

[1] public dataset with the original feature set. Results indicate that considering

and selecting features for individual users improve overall authentication perfor-

mance. Notably, the best selection technique was the SFS method, and Figure 6.1

visualises the selected features for each user using this approach combined with an

SVM-RBF classifier. Two observations can be made from Figure 6.1. Firstly, fea-

tures 27 and 28, “median pressure” and “median area covered by the finger,” are

often chosen for most users. Secondly, most users can be distinguished using only a

few features, whereas users 6 and 32 require nearly all features to achieve successful

authentication.
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6.1.2 Lesser Complex and Omni-Directional Modelling

Throughout the literature review, it has become apparent that researchers com-

monly employ various and different feature sets, often with small datasets contain-

ing few users, and which require multiple models to achieve reasonable performance.

However, despite the demand for better and more feature engineering, new and dis-

tinct feature sets require rigorous evaluation against existing work to establish gen-

uine progress. While some papers evaluate their approaches on multiple datasets,

it remains uncommon to apply different feature sets, and there is no established

default feature set for touch-based CA. In contrast to Chapter 3, this chapter is

evaluated on a richer dataset after being granted access to the WVW dataset col-

lected by Serwadda et al. [2]. This chapter’s initial focus is an extensive investigation

and comparison of five different feature sets within the context of the traditional

modelling approaches, classifiers, and the proposed omni-directional method. Re-

sults show that several attempts to improve feature sets have not succeeded, as the

best-performing feature set remains the earliest TA set released by Frank et al. [1].

Insights from the literature review indicate that tree-based classifiers demon-

strated favourable performance. Thus, RF, GBC, and ET are implemented alongside

KNN and SVM-RBF. Unsurprisingly, the three tree-based classifiers outperform the

older, more traditional classifiers but require longer training time. Since descriptive

Figure 6.1: Selected features using SFS and SVM-RBF. Coloured boxed means the
features are included.
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features should accurately describe patterns, this chapter focuses on new features’

ability to model users rather than relying on several direction-specific models. Thus,

the analysis uses the traditional modelling approach, where horizontal and vertical

gestures are grouped into different models and compared the performance to the

proposed single omni-directional modelling method. The findings reveal that the

performance of a single omni-directional model using a single gesture for authen-

tication is similar to modelling two direction-specific models. Moreover, the omni-

directional modelling approach outperforms the traditional bi-directional method

when authenticating using multiple gestures.

As part of the proposed omni-directional modelling approach, the parameters

are tuned in favour of lesser complex settings. The motivation is that tree-based

classifiers train faster with fewer trees and are less prone to overfitting. As seen in

Figure 6.2, the testing performance decays with the most complex parameters and

the training time increase from 0.5 to almost 2 seconds in the worst case. In con-

clusion, examining various feature sets, modelling approaches, and classifiers has

highlighted the opportunities for the omni-directional modelling approach to im-

prove the performance of touch-based CA systems. The study emphasises the need

for rigorous evaluation of newly engineered feature sets and the potential advan-

tages of the omni-directional modelling approach. Besides comparable performance

using the omni-directional model, examining and measuring the implementation of

newly engineered features would be more straightforward as they only need to be

evaluated using a single model, which is faster and more efficient to train.
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by the time to train models in seconds.
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6.1.3 Superior Performance using Touch-Encodings

Finally, Chapter 5 shifts direction from MLby proposing the ’TouchEnc’ method, a

novel approach designed to facilitate the transformation of raw touch data into im-

age encodings. This innovative technique leverages three colour channels, enabling

computer vision to learn and extract automatic and personalised features automat-

ically. Emphasis is placed on defining an efficient and optimal image dimension

conducive to fast training and applicability on mobile devices while ensuring user

authentication independent of user interactions. To achieve these objectives, an

experimental design is defined to optimise and investigate model training through

hyperparameter tuning, focusing on evaluating performance across various plotting

styles, including scaling the touch area and connecting touchpoints with visual lines.

The performance is measured and reported for single and multi-gesture authentica-

tion scenarios.

The chapter commences with an in-depth analysis of the related work, wherein

attempts to implement shallow NNs with manually engineered features yield sub-

optimal outcomes. In light of this observation, the proposal to encode behaviour

into images arises, capitalising on the innate feature extraction capabilities of CNN

and Deeper architectures. The subsequent stages entail defining a canvas size based

on smartphone screen dimensions, cropping touch gestures from the images to re-

duce the image size effectively, and establishing the input layer size of the initial

convolutional layer. Notably, the transformation process incorporates three colour

channels, red, green, and blue, to encode touch behaviour. The varying colour in-

tensities reflect distinct levels of touch activity and are transformed into intensity

values ranging from 0 to 255. Additionally, the investigation explores potential

encodings, such as pressure, displacement, acceleration, and velocity, to ascertain

their efficacy in enhancing feature representation. To assess the impact of different

plotting styles on model performance, empirical evaluation entails the examination

of (i) scaling touchpoints to represent the finger’s area coverage accurately and (ii)

drawing lines that connect touchpoints. Moreover, MobileNet and EfficientNet are

adopted as off-the-shelf computer vision models for automatic feature extraction in

136



CHAPTER 6. CONCLUSIONS AND FUTURE WORK

their most compact variants.

From the experiment, several findings support the adoption of TouchEnc and

further research using the encodings for automatic feature extraction. Notably,

reducing image canvas dimensions from the entire device screen size to more man-

ageable dimensions causes only 10 per cent of gestures to be dropped. Since the

approach still outperforms the related work, this underscores the efficiency of the

proposed method in preserving essential behaviour while concurrently reducing can-

vas size. Furthermore, the investigation reveals that scaling of touchpoints tends to

diminish the significance of connecting lines between touchpoints, thereby presenting

a noteworthy trade-off between scaling and preserving spatial relationships between

touchpoints. Comparative analysis of the employed computer vision models demon-

strates that while MobileNet exhibits quicker training, EfficientNet ultimately excels

in accuracy and performance.

The models’ credibility and informed decision-making process are corroborated

through the insightful GradCam analysis, providing concrete evidence of the NN’s

focus on gestures rather than random guesses. Additionally, the combination of

pressure, displacement, and acceleration as encodings prove superior, outperforming

pressure, displacement, and velocity in enhancing the model’s efficacy. Remarkably,

the application of ’TouchEnc’ for single gesture authentication yields an impressive

EER of 8.4%, which compares favourably to related works that typically combine

ten gestures, resulting in an EER of 3.1% using TouchEnc. Such compelling re-

sults highlight the superiority of TouchEnc in gesture-based authentication when

contrasted with existing methods EERs ranging from 15.5% to 24.16% using ten

gestures. The substantiated effectiveness and potential applications of TouchEnc

underscore its invaluable contribution to enhancing touchscreen-based interactions

and authentication mechanisms.
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6.2 Limitations and Future work

While Chapters 3 to 5 each contributes to the knowledge and advancement of touch-

based CA, they also carry limitations to help scope the work as part of their singular

contributions. This section describes the major limitation of each work, while the

last subsection presents a suggestion for a potential future research direction based

on this thesis’s findings.

6.2.1 Personalised Feature Sets

Access to the WVW [2] dataset was unavailable at the time of conducting the first

experiment, causing the evaluation to be limited to a pilot study of few qualifying

users from the TA [1] dataset. As such, the limitation of the first contribution relates

to the number of available users and the potential for more significant insights when

analysing more users. In a recent study, Georgiev et al. [106] also used the TA

dataset. Similar to this contribution, they also model a subset of users. Specifically,

they use 15 of 41 users. Moreover, they highlight the same challenge in their own

dataset. Despite collecting data from 470 users, only 64 qualified, and the remaining

406 supplied insufficient data. As such, it is common to subset and define a protocol

of minimum data to qualify for modelling.

6.2.2 Feature Engineering and Super Setting

Since features are personal, it may be appealing to start engineering new features.

But, a more practical choice would be to first investigate the current feature sets

with an aim to simplify modelling, such as with the proposed omni-directional ap-

proach. However, applying the personalised feature selection from Chapter 3 would

be interesting to further understand whether improvements can be made using the

single model and individually selecting features per user. Also, considering the in-

crease in total features across the five sets, combining the best features from each

could also work as a super-set, similar to the suggestion by Georgiev et al. [106].

However, this contribution is limited to justifying the omni-directional modelling
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approach, which can be further used to test new features quickly due to faster and

cheaper modelling costs. Unfortunately, manually engineering features is impracti-

cal at scale; thus, the last contribution attempts to mitigate this limitation rather

than continue feature engineering, selection, and analysis.

6.2.3 Image Encodings

By transforming the raw touchscreen input into images, the ability of computer vi-

sion and deep learning enables automatic feature extraction. However, the raw data

still needs to be transformed and projected into images that are quick to process on

low-end hardware such as smartphones. As part of this first step towards generating

touch encodings, the choice of pressure, displacement, and acceleration is suggested

as three colour channels. However, further information, such as accelerometer mo-

tion, can be encoded into high spectral images with more than three colour channels.

Unfortunately, no datasets are available to conduct such experiments.

6.2.4 Future Direction using Embeddings

Because authentication should be designed to function with an unknown number of

users, exploring the avenue of one-class classification using traditional ML techniques

and manual features could be intriguing. However, developing new features that

cater to an unknown number of users, each with unpredictable or different behaviour,

may not be advisable. Instead, the Touch Encodings introduced in Chapter 5 offer a

more practical approach, as they can be leveraged to extract embeddings for distance

comparison.

As such, a promising research direction would involve the utilisation of Touch

Encodings and few-shot learning techniques to extract embeddings. For instance, in

[112], a 128-bit embedding is derived from facial images, and an overarching model

is trained using a triplet loss and various mining strategies [142], [143]. During

authentication, a comparison of distances between the known owner and new inputs

can be established using a threshold similar to probabilities. In other words, the

closer the distance, the higher the likelihood that the user is the same.
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In addition to the triplet loss, other loss functions like the Circle loss [144] or

Proxy-based losses [145], [146] could also be intriguing alternatives. Regardless of

the chosen loss function, the Touch Encodings would serve as the input for extracting

deeper metrics to authenticate users.
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