
Springer Nature 2021 LATEX template

Pruning Deep Neural Networks for Green Energy-Efficient
Models: A Survey

Jihene Tmamna1, Emna Ben Ayed1,2, Rahma Fourati1,3*, Mandar
Gogate4, Tughrul Arslan5, Amir Hussain4 and Mounir Ben Ayed1,6

1Research Groups in Intelligent Machines, National Engineering School of Sfax (ENIS),
University of Sfax, Sfax, BP 1173, 3038, Sfax, Tunisia.

2Industry 4.0 Research Lab, Polytech-Sfax (IPSAS), Avenue 5 August, Rue Said
Aboubaker, 3002, Sfax, Tunisia.

3 Faculty of Law, Economics and Management Sciences of Jendouba (FSJEGJ), Jendouba,
Tunisia.

4School of Computing, Merchiston Campus, Edinburgh Napier University, Edinburgh,
EH10 5DT, Scotland, UK.

5 School of Engineering, The University of Edinburgh, Edinburgh, EH9 3FF, UK.
6Computer Sciences and Communication Department, Faculty of Sciences of Sfax,

University of Sfax, Sfax, Tunisia.

*Corresponding author(s). E-mail(s): rahma.fourati@ieee.org;
Contributing authors: jihen.tmamna@enis.tn; emna.benayed.b@ieee.org;

m.gogate@napier.ac.uk; T.Arslan@ed.ac.uk; a.hussain@napier.ac.uk;
mounir.benayed@ieee.org;

Abstract
Background: Over the past few years, larger and deeper neural network models, in particular convo-
lutional neural networks have emerged and constantly pushed state-of-the-art performance in various
fields. However, the computations required by these models have increased at an exponential rate.
Massive computations not only have negative effects on research inclusiveness and deployment on lim-
ited resource devices but also a surprisingly large carbon footprint. Green deep learning is an emerging
research field that encourages researchers to focus on energy consumption and carbon emissions dur-
ing model training and inference. The aim is to achieve new results with light and energy-efficient
deep neural networks. Many techniques can be used to achieve this goal.
Methods: Relevant studies have found that deep models have redundant and useless parameters that
affect the final result of the model, thus providing theoretical support for the pruning of these models.
Therefore, the focus of this timely review paper is to first, systematically outline recent developments
in convolutional network pruning methods. In particular, we provide preliminary background knowl-
edge for researchers to help understand this interdisciplinary field.
Results: The challenges of available model pruning methods are also highlighted to provide a basis
for future research directions.
Conclusion: This survey underscores the pressing need for the development of innovative met-
rics to weigh diverse pruning objectives effectively. Furthermore, it identifies the exploration of
pruning techniques tailored to advanced deep learning models like CNN-LSTM and ConvLSTM
as a burgeoning area ripe for further investigation in the realm of green learning research.

Keywords: Deep convolutional neural networks, Green deep learning, Network compression, Network pruning1



Springer Nature 2021 LATEX template

2 Article Title

1 Introduction
After decades of development, deep convolutional
neural networks (CNNs) have achieved great suc-
cess in a variety of artificial intelligence applica-
tions, including image classification [37, 131, 174],
object detection [10, 33, 118], and natural lan-
guage processing (NLP) [25, 54]. Generally, this
great success usually comes at the cost of their
more complex structures with up to billions of
parameters, which are accompanied by high mem-
ory and computational requirements for both the
training and inference phases.

Several classification networks have been pro-
posed, such as AlexNet [63], VGG16 [131],
GoogLeNet [136], MobileNets, and the object
detection networks including YOLOv3-v4 [10, 33],
SSD [90], Faster-RCNN [121], and image segmen-
tation including U-Net. As noted by Allen et al.
[6], such models tend to be over-parameterized
and come with a substantial memory footprint.
For instance, the VGG16 has around 138 million
parameters and needs over 500 MB of storage
space in addition to 15.5G Multiply-ACcumulate
(MAC) to process a 224×224 pixels input image.
Similarly, the YOLOv4 network has 162 layers,
256 MB of memory, and 64 million parameters. It
needs 29 Giga FLOPs (Floating Point Operations
Per Second) when processing an image of size
416×416. The U-Net model comprises 31 million
parameters, requires 372.5 MB of storage space,
and incurs 54.65 billion FLOPs (Floating Point
Operations) when segmenting an image with a
resolution of 512x512.

Major challenges arise from the increasingly
large size of CNN models. One of the pri-
mary challenges arises from the substantial rise
in energy consumption, resulting in a negative
impact on the environment. Additionally, there
is a growing need for environmentally friendly
models that operate efficiently during both devel-
opment and deployment. Finally, the size of
CNN models can hinder on-device training and
inference on limited-resource devices, like edge
devices with limited battery life and compu-
tational resources [88]. As CNN applications
increasingly shift towards mobile and embedded
devices, the optimization of CNN architectures
has gained significant popularity. There has been a
notable focus on developing network architectures
that are more efficient and require less memory.

To mitigate this problem, one approach is
to compress deep neural networks. There has
been substantial research in network compres-
sion, to reduce the resource requirements of CNNs
and facilitate CNN deployment on resource-
constrained devices. Generally, the vast domain
of CNN compression methods can be roughly
arranged into four main categories as shown in
Fig. 1, namely low-rank approximation [7, 27, 57,
59, 68], knowledge distillation [3, 161–163, 173],
network pruning [18, 28, 50, 66, 81, 91, 92, 104,
129], and quantization [9, 14, 24, 69, 108]. First,
the low-rank approximation method focuses on
factorizing the weights matrix into low-rank ones.
Second, knowledge distillation uses a teacher-
student strategy to extract information from
trained deep networks and transfer it to smaller
networks with less storage and computing. The
third category is network pruning which aims to
eliminate irrelevant parameters to reduce model
resource requirements while overcoming the prob-
lem of overfitting. Finally, quantization reduces
the number of bits in each parameter by convert-
ing it from a 32-bit floating point to a lower bit
depth to reduce storage space.

Pruning stands out as one of the most popular
methods for compressing CNNs. Its prominence
in CNN research is evident from extensive exper-
imental validation, showcasing its effectiveness
in accelerating and compressing CNN architec-
tures. Consequently, the proliferation of related
works has made it challenging for newcomers to
navigate the diverse landscape of pruning method-
ologies and embark on research effectively. This
study endeavors to delineate prevailing trends
and furnish guidance to practitioners seeking the
most suitable network pruning approach. Neu-
ral network pruning holds pivotal significance in
deep learning research, facilitating the reduction
of model sizes and enhancing their efficacy for
real-world applications. This survey seeks to fur-
nish insights into various pruning methods and
their impact across different network architec-
tures. Through comprehensive analysis and trend
identification, this work aims to assist practi-
tioners in selecting the most appropriate pruning
method tailored to their networks, thereby foster-
ing improved outcomes.

To our knowledge, there are only a few sur-
vey studies on network pruning. After carefully
reviewing those surveys, we discovered that some



Springer Nature 2021 LATEX template

Article Title 3

Fig. 1 Taxonomy of compression techniques

of the previous pruning techniques were not dis-
cussed. An overview of neural network pruning
is provided by [87]who developed a comprehen-
sive model that included pruning methods and
evaluated the benefits and drawbacks of pruning
procedures by covering only 26 research articles.
The paper by Vadera and Ameen [143] gives an
overview only of the methods used to select the
irrelevant parameters. The surveys by [147, 151]
only cover methods that reduce the number of
weights in Deep Learning (DL) models during the
initialization phase. Cong and Zhou [26] reviewed
the typical CNNs models and network optimiza-
tion methods. Different from the previous surveys,
we integrated more pruning approaches into our
analysis, where we gathered and discussed over
100 publications.

To collect published articles, we defined the
period from 2015 to 2024 as the timeframe
and considered the following publishers: Elsevier,
Springer, IEEE, and ACM Digital Library. Addi-
tionally, we used Google Scholar and conference
proceedings to identify more papers, employing
search keywords such as ”neural network pruning”
and ”acceleration of deep neural networks.” We’ve
observed a significant increase in research inter-
est and demand for CNN pruning in recent years,
largely motivated by the computational challenges
associated with CNNs and their deployment on
edge devices.

This paper aims to offer a comprehensive
review of recent advances and literature in the
field of network pruning, covering a wide array of
pruning methods. We will conduct a performance
study and discuss the benefits and drawbacks of
various pruning factors and parameter selection
methods. Our contributions may be summarized
as follows:

1. The key factors presented in the field of
network pruning are highlighted. Then, they
are decomposed into three categories: pruning
time, rate, and level.

2. The different pruning methods used to select
the irrelevant parameters to identify their
advantages and drawbacks are reviewed and
classified.

3. All you need to evaluate a pruning method
is detailed including the different datasets,
models, and performance metrics.

4. The challenges and future research directions
are raised for successful network pruning.

This survey is recommended for researchers
interested in delving deeper into convolution-
based network pruning. It offers insights into the
history of this field, its current advancements, and
the outstanding problems it faces.

This research paper is structured into five
sections, as follows: Section 2 establishes the link
between green learning and neural architecture
search. Section 3 recalls the CNN architecture.
The pruning process is presented in Section 4.
Then, the key factors for designing a new prun-
ing method are explained in detail in Section 5.
Existing methods are presented according to three
categories in Section 6. All you need to evaluate a
pruning method is provided in Section 7. Section
8 explores future directions.

2 Genesis of DNN compression
Deep neural networks (DNNs) have recently suc-
ceeded in large-scale applications. This success has
usually been achieved by increasingly large archi-
tectures requiring massive computations. Accord-
ing to [126], this trend is called red AI, where DNN



Springer Nature 2021 LATEX template

4 Article Title

Fig. 2 DNN compression between GL and NAS

researchers focus on improving accuracy with-
out considering cost or efficiency. For example,
as reported in [126], the number of computa-
tions used to train DNNs models has increased
300,000x in 6 years. While improving model accu-
racy offers clear benefits, this trend not only leads
to high costs but also contributes to an exces-
sive carbon footprint. According to [134], training
GPT-3 emits almost 500M carbons, equivalent to
nearly five cars over their lifetime. To address
these issues, Green deep learning, or Green AI,
was first proposed by [126]. This trend aims to
encourage AI researchers to obtain comparable or
better results without increasing computational
cost rather, ideally using as few computations
as possible during model training and inference.
In addition, some edge devices, such as Inter-
net of Things devices and mobile devices with
very few computational resources, require Green
Deep Learning. Therefore, green DL is a necessary
direction for future research.

In recent years, Neural Architecture Search
(NAS), the field that automatically designs neural
network architectures, has gained attention. NAS
aims to achieve optimal performance with limited
computing resources in an automated way, reduc-
ing human intervention. However, conventional
NAS methods like reinforcement learning (RL)
[178, 179] or evolutionary algorithms [86, 116,
117], as the search progresses, face the dilemma
of demanding extensive computational resources.
This strategy still leads to massive computations
which not only have a surprisingly large carbon

footprint but also have negative effects on research
inclusiveness.

To achieve the goal of reducing energy usage
and carbon emission during model design, train-
ing, and inference, several methods can be used.
This paper focuses on presenting a systematic
review of neural network pruning as a Green deep
learning technology. Unlike previous conventional
NAS approaches, the concept behind network
pruning begins with an over-parameterized net-
work that encompasses all candidate operations.
The objective of neural network pruning is to
look for lightweight and efficient models with few
computational resources.

Fig. 2 depicts the positioning of DNN com-
pression between Green Learning and NAS. The
objectives of GL are a priority nowadays, espe-
cially with the climate variation around the world.
While NAS methods aim to design an optimal
neural network architecture for a specific problem,
DNN compression leverages pre-trained models to
achieve lightweight architectures.

3 CNNs background
Before delving into network pruning methods,
let’s first examine the CNN architecture to pro-
vide context for the rest of the paper.

The architecture of DNNs, which emulate the
functioning of animal brains, relies on artificial
neurons as their primary computational units.
These neurons are organized into layers, with the



Springer Nature 2021 LATEX template

Article Title 5

Fig. 3 CNN architecture

DNN architecture comprising multiple such lay-
ers. A deep convolutional neural network (CNN),
a subtype of DNN, consists of three primary
types of layers: convolution, pooling, and fully
connected layers (as depicted in Fig.3). Convo-
lution and pooling layers are considered hidden
layers, while fully connected layers form the end
layers. Convolutional layers, situated at the core
of CNNs, consist of nodes known as filters, which
perform convolution operations on the input data.
Pooling layers process the feature maps generated
by convolutional layers to reduce their dimension-
ality.

The architecture of CNNs has evolved over
more than 30 years of research and development,
primarily driven by the design of advanced mod-
ules and extensive recognition capabilities. These
enhanced recognition capabilities contribute to
improved network efficiency in derivative applica-
tions like image and video recognition. Neverthe-
less, these architectures are growing in complex-
ity, demanding significant storage capacity and
computational power, which restricts their deploy-
ment on resource-constrained devices. Hence, the
need for compressing CNNs before deploying them
on such devices.

4 Network pruning definition
Network pruning, inspired by synaptic pruning
in the human brain, is one of the most com-
monly used compression methods. It was initially
proposed by Yann LeCun in 1990 [66] to reduce
computational and storage requirements, conse-
quently accelerating CNN execution.

The main objective of network pruning is to
eliminate parameters that are unnecessary for
model prediction or classification and have mini-
mal impact on its performance metrics. Given a
CNN model M, the pruning process can be as
follows: evaluating the importance of the param-
eters, selecting and removing the unimportant
ones, and then producing a small model M′.
Hence, the storage and computation require-
ments are reduced. Following pruning, the pruned
model’s feasibility is assessed using criteria such
as FLOPs reduction, accuracy impact, parameter
reduction, and carbon emission.

Fig. 4 Basic pruning process



Springer Nature 2021 LATEX template

6 Article Title

It is possible to derive a general process from
most pruning methods. It comprises of the follow-
ing steps as depicted in Fig. 4: Objectives defi-
nition, parameters selection, parameters pruning,
and result validation.

4.1 Objective definition
This step can be known as an indicator to specify
pruning factors. Therefore, some major questions
can be posed, which can be as follows:
• Q1: What type of element can be pruned from

the model?
• Q2: When can we prune the model?
• Q3: How can we find the irrelevant parameters?

In this paper, we will address these questions
(refer to section 5) and delve into the diverse
factors involved in pruning a set of parameters.

4.2 Parameter selection
This step aims to find and prune irrelevant param-
eters, which is the most critical step in the prun-
ing process due to the complex interconnections
among hidden parameters. In this context, numer-
ous methods of searching for irrelevant parameters
have been developed. Section 6 goes into greater
detail about the classification and descriptions of
these methods.

4.3 Stopping criteria
This step serves as an indicator to halt the pruning
process. Various stopping criteria are employed,
such as when the search is completed, the defined
pruning rate is reached, or resource budgets are
met.

4.4 Evaluation
The final step involves evaluating the results of
the pruning process. This evaluation typically
employs various models, datasets, and perfor-
mance metrics, such as accuracy. Further details
on pruning evaluation are provided in Section 7.

5 Key factors of network
pruning

This section presents various pruning factors,
including descriptions of commonly used ones cat-
egorized into three groups: pruning level, pruning
time, and pruning rate.

5.1 Pruning level
In this subsection, we will address the question:
which elements can we prune from the model?
Pruning may occur at any level of the model
architecture depending on the pruning objective,
which might be memory reduction, computational
reduction, or latency reduction. Fig. 5 illustrates
the different elements that can be pruned, includ-
ing weight, node, filter, and layer.

The pruning at the weight level (Fig. 5-(a)),
also known as the unstructured level, can obtain
a higher compression rate by removing individ-
ual connections that are less sensitive to network
performance. Many previous studies have pruned
the model at the weight level, such as [39, 40,
55, 66, 73]. Despite the memory cost reduction,
weight pruning cannot directly speed up inference.
On the one hand, the sparse model obtained is
inefficient for parallel computing and requires spe-
cialized hardware and software to leverage sparse
computation and achieve an efficient speed-up
during inference [39].

However, node, filter, and layer levels are
considered structured levels. They attempt to
prune the model in a group to save its struc-
ture. Node-level pruning, as shown in Fig. 5 (b),
primarily compresses the model by removing less
significant nodes in fully connected layers, which
have minimal impact on the model’s performance
(accuracy) [23, 107, 153].

At the filter level, as shown in Fig. 5-(c),
the process involves removing irrelevant filters,
along with their connections and associated fea-
ture maps, from the convolutional layers. It can
achieve a significant reduction in computational
costs [44, 46, 72, 164].

At the layer level, the entire layer can be
pruned to reduce the model’s depth, as demon-
strated in [31, 56, 148], achieving significant
latency reduction.

For even greater compression, pruning can
be performed at multiple levels. Chang et al



Springer Nature 2021 LATEX template

Article Title 7

Fig. 5 Network pruning level

[19], Yang et al [159] proposed combining weight
pruning and filter pruning techniques.

Table 1 displays the various pruning levels
along with their respective advantages and disad-
vantages.

5.2 Pruning time: when can be
applied?

Another critical factor in pruning is determining
when it is applied, which involves determining

the stage of model development at which pruning
occurs.

Pruning in CNN development occurs in three
stages: before training, during training, and after
training, as depicted in Fig. 6.

Table 2 summarizes the different pruning loca-
tions.

5.2.1 Pruning before training
As shown in Fig. 6, pruning can be carried out
during the model’s initialization phase before



Springer Nature 2021 LATEX template

8 Article Title

Table 1 Summary of the different pruning levels

Level Main characteristics Advantages Disadvantages
Weight level Prune the irrelevant weights

across layers
-High memory cost reduction
-Less sensitive to accuracy
degradation

-Unstructured sparse model
-Unable to directly speedup
the inference

Node level Prune the irrelevant nodes
from the fully connected layers

-High computational cost reduction
-Reserve the model structure

-Limited compression ratio
-Limited latency reduction

Filter level Prune the irrelevant filters
from the convolutional layers

-High computational cost reduction
-Reserve the model structure

-Limited compression ratio
-Limited latency reduction

Layer level Prune the irrelevant layers -Reserve the model structure
-Best result in latency reduction

-Limited compression ratio
-High accuracy degradation

training, a technique employed in studies such
as [41, 70, 71, 89, 105, 146]. After pruning,
the pruned network undergoes standard training.
Pruning before training is suitable for reducing
training time since it eliminates the need for the
entire training process by training only sparse
models, making it feasible with limited resources.

However, despite its benefits, pruning before
training has the following drawbacks:
• A specific initialization is necessary for success-

ful pruning and training.
• It cannot be used for layer-level pruning

because pruning the layer before training ren-
ders the model untrained.

5.2.2 Pruning during training
Fig. 6 illustrates the process of pruning during
training, which involves identifying and elimi-
nating irrelevant parameters by modifying the
training process, as demonstrated in studies like
[4, 44, 46, 102, 123, 166].

Pruning during training reduces the need for
extensive fine-tuning but can increase the training
cost due to modifications in the training process.
Additionally, there is an additional energy cost
associated with retraining the model when a pre-
trained one is already available.

5.2.3 Pruning after training
Conventional pruning algorithms, such as in [40,
72, 101, 135], occur after training. Fig. 6 depicts
the pipeline of pruning after training, which com-
monly has three main phases:
• Training: Begin by training a model until con-

vergence (pre-trained models are sometimes
available).

• Pruning: Identify and remove unnecessary
parameters.

• Fine-tuning (retraining): Retrain the pruned
model to regain the lost accuracy.

Pruning at this stage is appropriate when pre-
trained models are available, and there’s a need
to reduce their inference time. However, when
working with an untrained model, it’s necessary
to train it until convergence as a preprocessing
step, in addition to the subsequent retraining
phase. This process may result in high resource
requirements. Furthermore, while pruning after
training can improve inference efficiency, it does
not enhance training efficiency.

5.3 Pruning rate
Another critical factor in pruning is the pruning
rate, which denotes the percentage of parame-
ters to be removed from the model. The pruning
rate can be determined manually or automati-
cally. Table 3 summarizes the various pruning rate
strategies.

5.3.1 Handcrafted strategy
Several methods [13, 21, 44, 72, 80, 109, 128, 160]
adopt a predefined pruned architecture in which
humans indicate how many parameters should
be pruned in each layer or a threshold that is
used to determine which parameters to remove.
Thus, parameters and thresholds were referred to
as hyperparameters. Therefore, it requires human
expertise to design and decide suitable hyper-
parameters, which might be difficult and result in
sub-optimal pruning.



Springer Nature 2021 LATEX template

Article Title 9

Table 2 Summary of the different pruning time

When pruning? Main characteristics Advantages Disadvantages
After training Prune the model after

training
-Achieve the reduction of inference
time
- Best strategy when we have pre-
trained model

-Cannot reduce the cost of training
-Additional resource to fine-tune
the model

During training Prune the model during
training

- Achieve the reduction of inference
time
-Avoid the need of fine-tuning step

-Cannot reduce the cost of training
-Require retraining the model in
case we have a pre-trained model

Before training Prune the model before
training

-Achieve the reduction of training
and inference time

-Cannot be applied to layer level
pruning
-Require a specific initialization

Fig. 6 Pruning and training

5.3.2 Automatic pruning rate
To avoid human intervention, another type of
method adopts a fully automated structure in
which the pruning rate is automatically deter-
mined. For example, [12, 43, 45, 79] automatically
find the number of parameters that should be
pruned from the model. In the same case, Manessi
et al. [106] automatically determine the threshold.
Consequently, we do not require such input, thus
reducing the number of hyperparameters.

6 Pruning units selection
method

This section explores the selection methods uti-
lized in pruning research to identify irrelevant
parameters. As illustrated in Fig. 7, these meth-
ods are typically classified into three categories:

criteria-based methods (subsection 6.1), embed-
ded methods (subsection 6.2), and automatic
methods (subsection 6.3). Table 4 provides a con-
cise overview of these parameter selection meth-
ods.

6.1 Criteria-based method
The criteria-based method stands out as one
of the earliest and most commonly employed
techniques in pruning research. This approach
involves assessing the importance of parameters
using predefined criteria, ranking them based on
their scores, and subsequently removing those
with lower scores. One of its major advantages
is its typically lower computational complexity,
which makes it well-suited for addressing high-
dimensional network pruning challenges. The cri-
teria used for assessment can be categorized into



Springer Nature 2021 LATEX template

10 Article Title

Table 3 Summary of the different pruning rate strategies

Strategy Main characteristics Advantages Disadvantages
Predefined The pruning rate is

defined by expert
Requires little computation
consumption.

Requires human experts to define the
pruning rate
May produce the sub-optimal pruning

Automatic The pruning rate is
automatically defined

Avoid the sub-optimal solution
and the human intervention

Requires more time and computation
consuming

Table 4 Summary of the different pruning units selection methods

Method Main characteristics Advantages Limits
Criteria-based
method

Select the irrelevant
parameters using a
predefined criteria

-Simple method
-Low complexity

Require manual efforts for designing
appropriate criteria
-Fall into sub-optimal solution

Embedded
method

Embed the parameter
selection into the
model loss function

-Simultaneously perform
parameters selection and
model training

-Computationally cost to convergence

Automatic
method

Select the irrelevant
parameters using
learning algorithms

-Optimal result
-Save human effort

-High computational requirements

two main groups: data-independent criteria and
data-dependent criteria.

6.1.1 Data-independent based criteria
This type is related to the weight of the param-
eters to measure their importance. There are
three categories of data-independent criteria:
magnitude-based criteria, correlation-based crite-
ria, and sensitivity-based criteria.
• Magnitude-based criteria are selection cri-

teria based on the magnitude of the parameter
weight. Therefore, a parameter with a small
weight value is considered unimportant than a
parameter with a high weight value. Various
criteria have been proposed based on the mag-
nitude of the weights. For example, Han et al.
[40] used the absolute value as a criterion for
weight pruning and pruned the lowest value. On
the other hand, Li et al. (2017) [72] used the
L1 norm, and He et al. [44] used the L2 norm
as criteria for filter pruning, and they pruned
the filters with the lowest norm value. How-
ever, these criteria have some limitations. They
treat the parameters independently, ignoring
the possibility of redundancy between high-
magnitude parameters. Therefore, they cannot
reduce model redundancy.

• Correlation-based criteria measure the
importance of parameters based on their corre-
lation. Parameters containing redundant infor-
mation are removed from the model. Some
of the commonly used correlation criteria pre-
sented in the literature are Geometric median
[46]), Cosine distances [8], the distance between
filters [169], and Pearson correlation coefficient
[132].

• Sensitivity-based criteria determine the
importance of each parameter by measuring
its impact on the final precision. Therefore,
the parameters with less impact are removed
[22, 155].

6.1.2 Data-dependent based criteria
This type of criteria considers the information in
the activation map generated by the parameters
to measure their importance.
• Class label-independent criteria calculate

the importance of the parameters directly from
their activation maps without considering the
class labels. Hu et al. 2016 [49] calculated the
average percentage of zero (APoZ) in each acti-
vation map and pruned the filters having more
zeros in their activation map. Luo and Wu [99]
pruned the filters based on the entropy of the
activation map. Liu et al. [85] calculated the
mean gradient of the feature map of each chan-
nel to identify the less meaningful one then



Springer Nature 2021 LATEX template

Article Title 11

Fig. 7 Taxonomy of Pruning units selection methods

the corresponding channel will be removed. On
the other hand, Lin et al. [78] removed filters
based on the rank of their activation map. Li et
al. [74] used the mean standard deviation and
cosine similarity to prune similar feature maps
and their corresponding filters. Wang et al. [149]
introduce a new theory, Quantified Similarity
of Feature Maps (QSFM), to identify redun-
dant information in three-dimensional tensors.
[158] pruned the irrelevant filters based on fea-
ture channel similarity. In [75], the importance
of filters is assessed by measuring the similar-
ity between feature maps using the Hamming
distance.

• Class label-dependent criteria In their work
[125], Sarvani et al. determined the impor-
tance of filters by utilizing mutual information
between the activation map and the class labels
as the criterion.

6.1.3 Discussion
Despite its simplicity and low time complexity, the
criteria-based method exhibits poor stability. It
often requires human expertise to design criteria
that are effective across all networks, leading to
suboptimal solutions that limit acceleration and
compression ratios. Moreover, studies based on
this method often apply a single criterion to dif-
ferent layers with varied functions and parameter
distributions, neglecting the potential benefits of
other criteria, which can impact the results. To

address this challenge, He et al. [47] introduced
Learning Filter Pruning Criteria (LFPC), which
dynamically selects suitable pruning criteria for
different functional layers, thereby accounting for
their distinctions. Similarly, Pattanayak et al.
[112] proposed a novel pruning technique named
CURATING, which identifies and retains filters
characterized by low redundancy, high saliency,
and the generation of high activations. Table 5
provides a high-level summary of criteria-based
methods.

6.2 Embedded method (sparsity
learning)

The embedded method incorporates the search for
irrelevant parameters into the training process,
aiming to conduct parameter selection and neural
network training simultaneously. This approach
involves augmenting the loss function with a
penalty term to promote model sparsity without
directly assessing parameter importance. Typi-
cally, the modified loss function takes the form:

loss = l(f(x, W ), y) + g(mi) (1)

Where l(.) is the original loss function of the model
such as mean-squared error for regression or cross-
entropy loss for classification, g(.) is the penalty
function on mi that can be the model weights or
scaling factors. W denotes the trainable weights,
and (x,y) is the used training set.



Springer Nature 2021 LATEX template

12 Article Title

Table 5 Summary of criteria-based methods

Year Reference Level Criteria When? Pruning rate
2015 Han et al [40] Weight Weight magnitude After training Predefined
2016 Hu et al [49] Neuron APoZ After training Predefined
2017 Luo and Wu [99] Filter Entropy After training Predefined
2017 Li et al [72] Filter L1 norm After training Predefined
2019 He et al [46] Filter Geometric median During training Predefined
2019 He et al [44] Filter L2 norm During training Predefined
2019 Ayinde et al [8] Filter Cosine similarity After training Predefined
2019 Liu and Wu [85] Channel Mean gradient After training Predefined
2020 Singh et al [132] Filter Pearson Correlation coefficient After training Automatic
2020 Chen et al [22] Channel Sensitivity After training Automatic
2020 Lin et al [78] Filter Rank feature map After training Predefined
2020 Li et al [74] Filter MSD + MCS After training Predefined
2021 Wang et al [149] Filter QSFM After training Predefined
2022 Sarvani et al [125] Filter Mutual information After training Predefined
2023 Li et al [75] Filter Hamming’s distance After training Predefined
2023 Zhang et al [168] Filter Discrete cosine transform After training Predefined
2023 Ghimire et al. [35] Filter Lp norm & Euclidean distance After training Automatic
2023 Liu et al [93] Filter 2D entropy+Feature similarity After Training Predefined
2024 Dong et al [29] Channel Jensen-Shannon divergence After training Predefined
2024 Yang et al [157] Filter SFI criterion During training Predefined

The following is an introduction to penalty
strategies.

6.2.1 Parameter penalty strategy
The penalty function is directly applied to the
model’s parameters to push the irrelevant ones
to zero or near zero during training. After train-
ing, the parameters with zero or near-zero values
are pruned. Various penalty functions are applied
to parameters such as the L1 norm with the
capped L1 norm [64], modified L1/2 penalty [16],
group L1/2 regularization [5], group lasso regu-
larization [150], incorporated L2,1 and L2,0 [82],
transformed L1 regularization [103].

6.2.2 Scaling-factor penalty strategy
This strategy focuses on applying the penalty
functions to the scaling factors, where each one
is associated with a specific structure. These fac-
tors may be the factors of the batch-normalization
layer [95, 170], or extra ones [53, 83, 115, 152, 156,
167]. This strategy consists of two steps: 1) dur-
ing training, forcing the factors to be zero; and 2)
after training, pruning the parameters related to
zero or small factors.

6.2.3 Discussion
The embedded method, despite its simultaneous
parameter selection and neural network training,
has several drawbacks stemming from alterations
to the training process, particularly the modifi-
cation of the loss function. This method often
relies on manually crafted rules and domain exper-
tise, rendering it suboptimal and time-consuming.
Moreover, the process of alternating between
updating the model’s weights and scaling fac-
tors, along with computing additional regulariza-
tion gradients, can significantly increase compu-
tational demands and prolong convergence times,
particularly when applied to deep CNN models on
large datasets. Additionally, since regularization
may not precisely drive values to zero using gra-
dient descent, this method often requires further
refinement through human expertise and hyper-
parameter analysis. For instance, some authors
established a predefined threshold and subse-
quently pruned parameters when their values
[5, 16] or associated factors [95] were below this
threshold. On the other hand, Lin et al [83] and
Huang and Wang [53] used FISTA and accelerated
Proximal Gradient, respectively, as specialized
optimizers to update the scaling factors and give
them a binary value. The parameters with zero
scaling factor will be pruned. Table 6 provides a
high-level summary of embedded methods.



Springer Nature 2021 LATEX template

Article Title 13

Table 6 Summary of embedded methods

Year Reference Level Penalty imposed
on

Regularization Optimizer

2016 Wen et al [150] Filter Model weights Group lasso SGD
2017 Liu et al [95] Channel Scalar factor of BN L1 regularization SGD
2018 Chang and Sha [16] weight Model weights Modified L1/2 SGD
2018 Huang and Wang [53] Filter Extra scaling factor L1 regularization APG
2019 Alemu et al [5] Node Model weights Group L1/2 SGD
2019 Lin et al [82] Filter Model weights L2,1 and L2,0 AULM
2019 Ma et al [103] Weight Model weights Transformed L1 SGD
2019 Lin et al [83] Filter Extra scaling factor L1 regularization GAL
2019 Yang et al [156] Filter Extra scaling factor L1 regularization SGD
2019 Xiao et al [152] Weight Extra scaling factor L1regularization SGD
2020 Ramakrishnan et al [115] Filter Extra scaling factor L1 regularization SGD
2022 Tang et al [139] Weight Extra scaling factor L2 regularization SGD
2023 Zhang and Freris [170] Filter Scalar factor of BN L1-regularized Proximal gradient
2024 Zhang et al [167] multi-level Extra scaling factor L1 regularization SGD

6.3 Automatic based methods
Automatic-based methods utilize learning algo-
rithms to identify irrelevant parameters. These
methods are more efficient than criteria-based and
embedded as they employ fully automated prun-
ing techniques, which can enhance pruning quality
by generating optimal parameter selections and
reducing human effort.

These methods leverage various learning algo-
rithms to achieve their objectives. A summary of
automatic-based methods for parameter selection,
derived from the reviewed articles, is presented in
Table 7.

6.3.1 Machine-learning algorithms
• Reinforcement learning Huang et al [52]

proposed a method based on reinforcement
learning (RL) to evaluate the importance of
the parameters. They train pruning agents to
search and prune unnecessary channels layer by
layer from the pretrained model, followed by
fine-tuning.

• Deep neural networks Li et al. [76] used
the DNN model to search for irrelevant filters.
Specifically, the DNN extracts the features from
the filters. Then, they employed the k-means
algorithm to cluster features into groups and
mapped the clustering results to the filters to
determine their similarity. Finally, they retain
the closest filter to the centroid in each cluster
and prune the others. On the other hand, Verma
et al. [144] proposed a multitask network to give
weight to each feature map and try to assign

zero value to this weight. Then, the feature
map and corresponding filter are pruned if their
corresponding weight value is zero. However,
the proposed DNN-based approaches usually
require a long time for training and learning to
find the irrelevant parameters.

• Layered approaches is a parameter selection
method based on an efficient independent prun-
ing layer to find less salient filters during fine-
tuning [20, 58, 100, 140]. This layer takes the
activation responses of the convolutional layer
as input and generates a binary code. After
training, the filters with the corresponding ‘0’
code are removed.

The drawback of these proposed methods is to
search the weak parameters layer by layer and are
based on the learned weights to judge their impor-
tance. On the other hand, Lui et al. [96] show
that the learned weights are unimportant in the
pruning process and conjecture that the essence
of parameter pruning is searching for good opti-
mal substructure rather than iteratively searching
salient parameters.

6.3.2 Evolutionary algorithms
Recently, Evolutionary algorithms (EA) have
been adopted to perform network pruning, to
automatically search for the optimal pruned net-
work.
• Evolution strategy (ES): Fernandes Jr and

Yen [34] used the evolution strategy for pruning



Springer Nature 2021 LATEX template

14 Article Title

Table 7 Summary of automatic methods

Year Reference Level Search method
2018 Huang et al [52] Channel Reinforcement learning
2019 Li et al [76] Filter Deep learning
2019 Zhou et al [176] Filter Multiobjective evolutionary algorithm
2019 Zhou et al [175] Filter Multiobjective evolutionary algorithm
2019 Kim et al [58] Channel Trainable pruning layer
2019 Chen et al [20] Channel Saliency-and-Pruning Module
2019 Liu et al [97] Filter Evolution strategy algorithm
2020 Zhang et al [172] Filter and layer Evolutionary algorithm
2020 Verma et al [144] Filter Multitask DNN
2020 Luo and Wu [100] Filter Trainable pruning layer
2021 Tian et al [140] Filter Collaborative layers
2021 Fernandes Jr and Yen [34] Filter Multiobjective Evolutionary algorithm
2021 Zhang et al [171] Filter Multiobjective evolutionary algorithm
2021 Tmamna et al [141] Layer Improved PSO
2021 Zhou et al [177] Layer Multiobjective evolutionary algorithm
2022 Chang et al [17] Filter Clustering and PSO
2022 Skandha et al [133] Filter Genetic Algorithm (GA)
2022 Shang et al [127] Filter Cooperative CoEvolution algorithm (CCE)
2023 Liu et al [94] Filter Social Group Optimization (SGO) algorithm
2023 Agarwal et al [2] Filter Particle Swarm Optimization (PSO) algorithm
2023 Poyatos et al [113] Neuron Genetic Algorithm
2024 Xu et al [154] Filter Artificial bee colony algorithm
2024 Liang et al [77] Channel Artificial bee colony algorithm

to search for the optimal filter set. ES algo-
rithm initializes a population of individuals as
an identical copy of the original CNN model
being pruned. Then, each individual is mutated
to generate a pruned version of the original
model.

• Genetic algorithm (GA): is adopted as an
optimizer to solve a single objective [97, 172].
Furthermore, some work [171, 175, 176] treats
network pruning as a multi-objective optimiza-
tion problem and uses EA to find an optimal
pruned network that strikes a good balance
between network size and performance. In [133],
the authors successfully compressed CNN mod-
els using a genetic algorithm for the classifica-
tion of lung diseases. Their findings showed that
on the LIDC-IDRI lung dataset, the proposed
CNN model could be reduced in size by 90.3%
while maintaining its performance.

• Cooperative CoEvolution algorithm:
Shang et al [127] adopted the Cooperative
CoEvolution algorithm (CCE) for filter Prun-
ing. First, the network is split into multiple
groups, then a separate EA is adopted for each
group.

• Particle swarm algorithm (PSO): is also
used to search for the optimal pruned. For
instance, Agarwal et al. [2] used a con-
ventional PSO to develop a pruned version
of VGG16-based Fully Convolution Network
(FCN). Tmamna et al [141] proposed an
improved PSO to perform layer pruning. Chang
et al [17] further proposed channel pruning
based on clustering and PSO (ACP). Here, clus-
tering via the similarity of the feature maps is
adopted to perform preliminary pruning on the
network. Then conventional PSO is adopted to
find the optimal pruned network. The proposed
method achieved a reduction of 73.44% FLOPs
with a 0.15% accuracy drop for VGG16.

• Social Group Optimization (SGO): In [94],
Liu et al. used the Social Group Optimiza-
tion (SGO) algorithm to search for the opti-
mal pruned structure. They introduced the
k-means++ method to hierarchically cluster fil-
ters with similar features in each convolutional
layer, forming an initial compact compression
structure. Subsequently, they used the SGO
algorithm to search and optimize the compres-
sion process of the post-clustered structure,



Springer Nature 2021 LATEX template

Article Title 15

ultimately identifying the optimal compressed
structure.

• Artificial bee colony (ABC) algorithm:
Liang et al [77] applied the ABC algorithm to
optimize CNN models by selectively removing
channels thereby enhancing the speed of human
activity inference on mobile devices. Xu et al
[154] introduced Filter Pruning via Adaptive
Automatic Structure Search (FP-AASS), con-
sidering filter pruning as an optimization task.
FP-AASS utilizes the ABC algorithm to auto-
matically search for the optimal pruned network
meeting parameters and FLOPs constraints.

6.3.3 Discussion
Even though AutoML methods perform well with
parameter selection, they have several drawbacks
that do not work well with large deep models.
Therefore, it is very computationally expensive to
search for irrelevant parameters, which imposes
additional computational overhead on top of the
computational complexity of the training. For
example, Huang et al [52] not only requires a
training model but also trains RL agents, which
is very costly.

Overall, CNN pruning methods are com-
monly categorized into three groups: criteria-
based methods, embedded methods, and auto-
matic methods based on the approach used
to detect irrelevant parameters. This taxon-
omy remains applicable and adaptable to other
DNN architectures like transformers. For instance,
Tmamna et al [142] presented an automatic
method using BPSO to identify irrelevant units
in vision transformer (ViT). Furthermore, Yu and
Xiang [165] introduced an embedded method for
removing irrelevant units. Their method utilizes
an explainability-aware mask to assess each unit’s
contribution to predicting each class, which is
fully differentiable and learned with a class-wise
regularizer.

7 Pruning evaluation
To evaluate the performance of any proposed
pruning method, the presence of standard
datasets and models is essential. These stan-
dards facilitate the comparison of the performance
between the original model and the pruned one.
Performance evaluation can be carried out in

many ways, depending on the datasets and the
model used. The results of this validation can
determine the efficacy of the pruning methods.
The dataset, the models, and the performance
measures referred to in the literature are described
below.

7.1 Datasets
We report the most common datasets used for
evaluation in the literature.
• CIFAR dataset consists of 32×32 RGB

images, where the images are devised as 50 K
for training and 10K for testing [62]. It includes
two categories, which are CIFAR10 describing
10 classes of objects, and CIFAR100 describing
100 classes of objects.

• ImageNet dataset is a large-scale image
classification dataset [124] containing 224×224
RGB images. It comprises 1.2 million images for
training and 50,000 for testing, covering 1,000
object classes.

• Tiny ImageNet is a subset of ImageNet, com-
prises 100,000 training images and 10,000 test
images, representing 200 classes and downsized
to 64×64 colored images [65].

• MNIST is a large database of handwritten dig-
its, which consists of 60,000 28x28 grayscale
images of the 10 classes, along with 10,000 test
images [67].

• CUB-200 dataset contains 11788 images of
200 classes which are divided into 5994 images
for training and 5794 for test [145].

• Indoor-67 dataset contains 6700 images of 67
classes split 5360 training and 1340 test images
[114].

• SVHN dataset, called Street View
House Number (SVHN) dataset, has
over 60,0000 32×32 colored digit images
(73257/26032/531131 images for train-
ing/testing/additional) of 10 classes
[110].

• Microsoft COCO is a vast object detection
dataset. It comprises 80 categories. The training
and validation sets for the yearly competition
encompass 120,000 images, while the test set
consists of over 40,000 images [84].

The CIFAR and ImageNet datasets are the
most popular among these datasets because there



Springer Nature 2021 LATEX template

16 Article Title

are numerous pre-trained models available for
these two datasets.

7.2 Models
This section introduces the common models used
by the existing works to evaluate their methods.
Parameters and pruning levels of different models
are summarized in Table 8.
• LeNet was developed in the year 1998 by Yann

LeCun et al. [67]. The basic LeNet 5 architec-
ture consists of two convolutional layers, two
sub-sampling layers, two fully connected lay-
ers, and an output layer with the Gaussian
connection.

• AlexNet was developed by Alex Krizhevesky
and others in 2012 [63]. The architecture of
AlexNet comprises eight layers, including five
convolutional layers, two fully connected layers,
and a softmax layer at the end.

• VGGNet was developed by Karen Simonyan
and stood for Visual Geometry Group [131].
This model has three variants, namely VGG11,
VGG16, and VGG19 which differ only in the
total number of layers in the network.

• GoogLeNet was developed by Christian
Szegedy of Google in the year 2014 with the
intent to reduce the computational complexity
compared to the traditional model [136]. The
architecture is 22 layers deep, based on the
Inception architecture.

• ResNet, called Residual Neural Network, was
introduced by Kaiming He et al. [42] in 2015
to design ultra-deep networks that mitigate the
vanishing gradient problem. The architecture
of ResNet consists of several residual blocks.
Several variants of ResNet such as ResNet-18,
ResNet-20, ResNet-32, ResNet-44, ResNet-50,
ResNet-56, ResNet-110, and ResNet-152, have
been proposed, differing in the number of layers
which can exceed 100 or even 1000 layers.

• DenseNet is a CNN architecture with dense
connections proposed by [51]. DenseNet com-
prises fundamental modules known as Dense
Blocks, where each Dense Block takes the
feature maps from previous Dense Blocks
as input. A feedforward connection is main-
tained between each layer of DenseNet, thereby
strengthening the effect of deep convolution
across layers. Several variants of DenseNet are

proposed such as DenseNet-40, and DenseNet-
121.

• MobileNet is a lightweight network developed
by Howard et al. [48] for use in mobile and
embedded vision applications. The architecture
of MobileNet is built on depthwise separa-
ble convolutions, and only the first layer is
a full convolutional layer. Several variants of
MobileNet are proposed such as MobileNet-V1,
MobileNet-V2, and MobileNet-V3.

• EfficientNet, introduced by Tan and Le
[137], presents a CNN architecture and scal-
ing method. It uniformly scales all dimensions
of depth, width, and resolution using a com-
pound coefficient. Its architecture integrates
Mobile Inverted Bottleneck (MBConv) layers,
combining depth-wise separable convolutions
with inverted residual blocks. Furthermore, it
leverages the Squeeze-and-Excitation (SE) opti-
mization to improve its performance.

• YOLO, called You Only Look Once, was intro-
duced by Redmon et al [119] to object detection.
Several variants of YOLO have been proposed
such as YOLOv4, YOLOv5s, and YOLOv7.

• Unet is a CNN architecture used for seman-
tic segmentation. It was intorduced by Ron-
neberger et al [122].

It should be noted that the most frequently
used models in the literature are VGGNet and
ResNet. However, there is a lack of pruning results
on DenseNet, MobileNet, and GoogleNet.

7.3 Performance measures
The metrics used to evaluate the pruned models
are as follows.
• Accuracy refers to how well a model performs

on a given task. It is typically calculated as a
measure of how well a model correctly identi-
fies both positive and negative instances. It is
calculated as follows:

accuracy = TP + TF

N
(2)

where TP is the number of true positives, TN
is the number of true negatives, and N is the
total number of instances.

• Parameters number used to evaluate the
model’s resource requirements. The number of
parameters directly contributes to the size of



Springer Nature 2021 LATEX template

Article Title 17

Table 8 Summary of the different models

Architecture Model Parameters (M) Level pruning

Basic network architecture

LeNet 0.43 Weight/Filter/Neuron
AlexNet 61.00 Weight/Filter
VGG-16 138,35 Weight/Filter/Neuron/Layer
VGG-19 143,66 Weight/Filter/Neuron/Layer

Residual connection architecture

ResNet-18 11.69 Weight/Filter
ResNet-34 21.90 Weight/Filter
ResNet-56 0.85 Weight/Filter/Block
ResNet-110 1.73 Weight/filter/Block
ResNet 152 60.19 Weight/Filter/Block

Dense connection architecture DenseNet-40 1.04 Weight/Filter
DenseNet-121 8.06 Weight/Filter

Depthwise separable convolution
MobileNet-V1 4.20 Weight/Filter
MobileNet-V2 3.40 Weight/Filter
MobileNet-V3 5.40 Weight/Filter

Inception architecture GoogleNet 6.15 Weight/Filter/Branch

EfficientNet architecture EfficientNet-B0 5.3M Weight/Filter
EfficientNet-B1 7.8M Weight/Filter

YOLO architecture
YOLOv4 63M Weight/Filter
YOLOv5s 7.07M Weight/Filter
YOLOv7 37.2M Weight/Filter

UNet architecture UNet 32M Weight/Filter

the model. It represents the learnable weights
and biases that the model uses to make predic-
tions based on the input data.

• Floating point operations (FLOPs) are a
metric used to quantify the arithmetic oper-
ation (additions, subtractions, multiplications,
and divisions) within a model, providing a mea-
sure of its computational complexity. They are
calculated as follows:

FLOPs = 2HW (Cin ∗ k2 + 1)Cout (3)

where Cin and Cout are the numbers of input
channels and output channels, K is the kernel
width and W, H are the width and height of the
output feature map.

• Latency refers to the time it takes for a model
to process an input and generate a prediction
when deployed on specific hardware.

• Carbon emission evaluates the amount of
carbon dioxide (CO2) emitted during model
inference. This metric is used to evaluate the
environmental impact of models.

• Energy consumption assesses the total
amount of energy used during inference, mea-
sured in kilowatt-hours (kWh).

For a thorough performance evaluation of
pruned models, it’s crucial to delve into additional
techniques, including uncertainty quantification,
sensitivity analysis, and adversarial attacks
• Uncertainty quantification is a crucial pro-

cess for assessing reliability and confidence in
model predictions. Techniques can be catego-
rized into aleatoric and epistemic uncertain-
ties, with epistemic uncertainty arising from
inherent ambiguity in model parameters and
aleatoric uncertainty exploring data variability.
Monte Carlo dropout can be used for parameter
perturbation evaluation.

• Sensitivity analysis evaluates the impact of
input perturbations on a model’s output, pro-
viding insights into the model’s robustness and
stability. To evaluate the model’s sensitivity to
variations in input data, the Variable Perturba-
tion Method (VPM) can be used.

• Adversarial Attacks involve introducing
visually imperceptible perturbations to clean
images to compromise a model’s predictive
capability. These attacks may access the
model’s parameters and architecture design,
termed white-box attacks, or solely target the



Springer Nature 2021 LATEX template

18 Article Title

model output, known as black-box attacks. Fast
gradient sign method (FGSM) and Projected
gradient descent (PGD) can be used as attack
methods.

8 Future Directions
While neural network pruning has received con-
siderable attention in recent years, it still faces
certain limitations. In concluding our paper, we
highlight open issues that remain underexplored
in the literature and offer promising directions for
future research.

8.1 Latency reduction
Many pruning methods have primarily concen-
trated on reducing model width by eliminating
numerous weights and filters, with metrics like
FLOPs and parameters used to gauge perfor-
mance. However, these methods are constrained
by model depth and often yield limited latency
reduction. This is because latency depends not
only on the number of filters per layer but also
on the specific deployment device, as noted in
[32, 138]. Hence, the primary challenge in the
pruning process remains the discovery of pruned
models that strike a delicate balance between
system performance and the variable resource con-
straints of specific devices. As a result, more
study is required to create techniques that effec-
tively prune the model while taking into account
the significance of parameters and the underlying
hardware architecture.

8.2 Comparison
A critical observation from our survey is the lack
of comprehensive method comparison among vari-
ous pruning techniques. This absence complicates
the process of selecting the most suitable pruning
method for specific applications. Furthermore, the
absence of standardized benchmarks and metrics
poses challenges in comparing pruning methods
and assessing the progress made in this field over
the years.

For instance, while some studies evaluate their
methods solely on architectures like VGG16 or
AlexNet, these benchmarks may not be univer-
sally applicable to other architectures such as
ResNet or MobileNet. Consequently, it becomes

challenging to gauge the relative effectiveness of
pruning methods across different CNN architec-
tures. To address this issue and facilitate fair and
direct comparisons between pruning methods, it
is imperative to establish a commonly accepted
baseline that incorporates modern architectures
such as MobileNet. This standardization would
provide a more comprehensive and unbiased eval-
uation framework for assessing the performance of
pruning techniques.

8.3 Synergistic combination of
pruning Methods

Since each pruning strategy and method has its
weaknesses and strengths, an interesting and rel-
atively unexplored question revolves around how
these methods can be synergistically combined to
harness their strengths and mitigate their weak-
nesses. Therefore, Haider and Taj [38] combined
width pruning with depth pruning to achieve
more compression in terms of latency and mem-
ory. Additionally, Louati et al [98] introduced
an approach that combines filter and channel
pruning methods based on Evolutionary Algo-
rithms (EA). This method involves eliminating
filters and channels to decrease the number of
parameters and computational complexity of the
model. Similarly, Zhang et al [167] introduced the
Multi-Granularity Pruning Framework to achieve
various levels of pruning granularity, including
weight pruning, channel pruning, and filter prun-
ing. On the other hand, Chang [15] combined the
criteria-based method and the automatic method
to reduce the high computational requirements of
the automatic method and the high hyperparam-
eter fine-tuning of the criteria-based method.

We believe there is fertile ground for research
investigating such combinations.

8.4 Specific Network Pruning
Besides the prevailing image classification CNNs,
pruning is beneficial for other computer vision
tasks including object detection, image segmen-
tation, and natural language processing (NLP).
Besides, there are some emerging directions to
prune specific networks such as:
• Artificial general intelligence (AGI): foundation

models such as GPT-3 [11] and generalist agents
like the generalist agent Gato [120] are possible



Springer Nature 2021 LATEX template

Article Title 19

approaches to AGI. These massive models can
benefit from pruning research to attain greater
efficiency.

• Generative adversarial networks (GAN) [130]:
consist of both a generative network and a
discriminative network, and these architectures
often require significant FLOPs and storage.

• Vision transformers [30]: which achieved bet-
ter performance in computer vision challenges.
Thus, it is meaningful to adopt pruning meth-
ods to compress these new architectures.

There is a need for optimizing tradeoffs
between performance measures when pruning
deep neural networks and comparing the effec-
tiveness of pruning methods using tradeoffs. It
is worth raising the lack of pruning methods for
some models such as LSTMs, and hybrid CNN-
LSTM architectures. The proposed model in [36]
is an example of a hybrid architecture that uses
both CNNs and LSTMs for audiovisual speech
enhancement for which pruning methods need to
be developed. Another model was proposed in
Passos et al [111] on energy-efficient graph neu-
ral network approaches for which new pruning
methods also need to be developed to reduce
their latency in addition to their existing low
energy efficiency consumption benefits. This is
required for practical utilization of such deep neu-
ral network models in future, latency and energy-
constrained multimodal hearing assistive tech-
nologies [1]. In the same direction, ConvLSTM
models were proposed to handle spatio-temporel
information in different applications such as EEG-
based emotion recognition [60] and EEG-based
epilepsy prediction [61]. While it is very efficient in
terms of performance, it contains a very high num-
ber of parameters as well as an important value of
FLOPs. Thus, it is necessary to prune ConvLSTM
models.

9 Conclusion
With the increasing size of CNNs and a grow-
ing interest in deploying DL models on edge/IoT
devices, there is a pressing need for best prac-
tices and techniques to enable the development
of efficient and compact models. Pruning emerges
as a highly effective approach for accelerating
computations and reducing energy consumption
on small devices. The essence of model pruning

lies in creating a compact model from an exist-
ing, over-parameterized, and larger model. This
paper explores various strategies and methods for
pruning neural networks. We classified the cri-
teria into data dependent and data independent
and the pruning level into an unstructured level
and structured level. We also covered the differ-
ent factors that can influence the performance
and efficiency of the pruning approach. Finally,
the surveyed selection method includes a hand-
crafted criteria-based method that selects the
irrelevant parameters based on predefined criteria,
an embedded method that embeds a penalty term
into the loss function to decide on the importance
of the parameter, and an automatic method based
on machine learning and evolutionary algorithms
to search the unimportant parameters.

we outline several open challenges that persist,
encompassing not only the pursuit of improved
performance but also considerations related to
latency, hardware dependencies, benchmarking
methodologies, the synergistic combination of
pruning methods, and reduced training times. Our
survey is tentative to contribute to the continued
development by giving an outline of the cur-
rent state of research and highlighting significant
open challenges. An emphasis on the importance
of green deep learning is made to further recall
the negative effects of using large models on our
environment and our globe.

Authors’ Contribution
Jihene Tmamna: Conceptualization, Methodol-
ogy, Software, Writing - original draft.
Emna Ben Ayed: Conceptualization, Methodol-
ogy, Software, Writing - original draft.
Rahma Fourati: Conceptualization, Methodol-
ogy, Software, Writing - original draft.
Mandar Gogate: Investigation, Writing - review
& editing.
Tughrul Arslan: Investigation, Writing - review
& editing.
Amir Hussain: Conceptualization, Investiga-
tion, Project administration.
Mounir Ben Ayed: Conceptualization, Investi-
gation, Project administration.



Springer Nature 2021 LATEX template

20 Article Title

Funding
The research leading to these results has received
funding from the Ministry of Higher Education
and Scientific Research of Tunisia under grant
agreement number LR11ES48.
Professor Hussain acknowledges the support of the
UK Engineering and Physical Sciences Research
Council (EPSRC) (Grants No. EP/M026981/1,
EP/T021063/1, EP/T024917/1)

Data Availability
The datasets described in this survey are publicly
accessible.

Conflict of Interest
The authors declare that they have no conflict of
interest.

Compliance with Ethical
Standards
Ethical approval: This article does not contain
any studies with human participants or animals
performed by any of the authors.
Informed Consent: Not applicable.

References
[1] Adeel A, Adetomi A, Ahmed K, et al (2023)

Unlocking the potential of two-point cells
for energy-efficient and resilient training of
deep nets. IEEE Transactions on Emerg-
ing Topics in Computational Intelligence
7(3):818–828

[2] Agarwal M, Gupta SK, Biswas K (2023)
Development of a compressed fcn architec-
ture for semantic segmentation using parti-
cle swarm optimization. Neural Computing
and Applications pp 1–14

[3] Ahn S, Hu SX, Damianou A, et al
(2019) Variational information distillation
for knowledge transfer. In: Proceedings of
the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp 9163–
9171

[4] Aketi SA, Roy S, Raghunathan A, et al
(2020) Gradual channel pruning while train-
ing using feature relevance scores for con-
volutional neural networks. IEEE Access
8:171,924–171,932

[5] Alemu HZ, Zhao J, Li F, et al (2019) Group
l {1/2} regularization for pruning hidden
layer nodes of feedforward neural networks.
IEEE Access 7:9540–9557

[6] Allen-Zhu Z, Li Y, Liang Y (2019) Learn-
ing and generalization in overparameterized
neural networks, going beyond two layers.
Advances in neural information processing
systems 32

[7] Astrid M, Lee SI (2018) Deep com-
pression of convolutional neural networks
with low-rank approximation. ETRI journal
40(4):421–434

[8] Ayinde BO, Inanc T, Zurada JM (2019)
Redundant feature pruning for accelerated
inference in deep neural networks. Neural
Networks 118:148–158

[9] Banner R, Hubara I, Hoffer E, et al (2018)
Scalable methods for 8-bit training of neural
networks. Advances in neural information
processing systems 31

[10] Bochkovskiy A, Wang CY, Liao HYM
(2020) Yolov4: Optimal speed and accu-
racy of object detection. arXiv preprint
arXiv:200410934

[11] Brown T, Mann B, Ryder N, et al (2020)
Language models are few-shot learners.
Advances in neural information processing
systems 33:1877–1901

[12] Cai H, Lin J, Lin Y, et al (2019) Automl for
architecting efficient and specialized neural
networks. IEEE Micro 40(1):75–82

[13] Cai L, An Z, Yang C, et al (2021)
Softer pruning, incremental regularization.
In: 2020 25th International Conference on
Pattern Recognition (ICPR), IEEE, pp 224–
230



Springer Nature 2021 LATEX template

Article Title 21

[14] Cai Y, Yao Z, Dong Z, et al (2020) Zeroq:
A novel zero shot quantization framework.
In: Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern
Recognition, pp 13,169–13,178

[15] Chang J (2020) Coarse and fine-grained
automatic cropping deep convolu-
tional neural network. arXiv preprint
arXiv:201006379

[16] Chang J, Sha J (2018) Prune deep neural
networks with the modified l {1/2} penalty.
IEEE Access 7:2273–2280

[17] Chang J, Lu Y, Xue P, et al (2022) Auto-
matic channel pruning via clustering and
swarm intelligence optimization for cnn.
Applied Intelligence pp 1–21

[18] Chang J, Lu Y, Xue P, et al (2023) Iter-
ative clustering pruning for convolutional
neural networks. Knowledge-Based Systems
265:110,386

[19] Chang X, Pan H, Lin W, et al (2021) A
mixed-pruning based framework for embed-
ded convolutional neural network acceler-
ation. IEEE Transactions on Circuits and
Systems I: Regular Papers 68(4):1706–1715

[20] Chen J, Zhu Z, Li C, et al (2019) Self-
adaptive network pruning. In: Neural Infor-
mation Processing: 26th International Con-
ference, ICONIP 2019, Sydney, NSW, Aus-
tralia, December 12–15, 2019, Proceedings,
Part I 26, Springer, pp 175–186

[21] Chen Y, Wen X, Zhang Y, et al (2021)
Ccprune: Collaborative channel pruning for
learning compact convolutional networks.
Neurocomputing 451:35–45

[22] Chen Z, Xu TB, Du C, et al (2020) Dynam-
ical channel pruning by conditional accu-
racy change for deep neural networks. IEEE
transactions on neural networks and learn-
ing systems 32(2):799–813

[23] Cheng Y, Yu FX, Feris RS, et al (2015)
An exploration of parameter redundancy in
deep networks with circulant projections.

In: Proceedings of the IEEE international
conference on computer vision, pp 2857–
2865

[24] Chmiel B, Ben-Uri L, Shkolnik M, et al
(2020) Neural gradients are near-lognormal:
improved quantized and sparse training.
arXiv preprint arXiv:200608173

[25] Collobert R, Weston J, Bottou L, et al
(2011) Natural language processing
(almost) from scratch. Journal of machine
learning research 12(ARTICLE):2493–2537

[26] Cong S, Zhou Y (2023) A review of con-
volutional neural network architectures and
their optimizations. Artificial Intelligence
Review 56(3):1905–1969

[27] Denton EL, Zaremba W, Bruna J, et al
(2014) Exploiting linear structure within
convolutional networks for efficient evalua-
tion. Advances in neural information pro-
cessing systems 27

[28] Dong X, Yang Y (2019) Network prun-
ing via transformable architecture search.
Advances in Neural Information Processing
Systems 32

[29] Dong Z, Duan Y, Zhou Y, et al (2024)
Weight-adaptive channel pruning for cnns
based on closeness-centrality modeling.
Applied Intelligence 54(1):201–215

[30] Dosovitskiy A, Beyer L, Kolesnikov A, et al
(2020) An image is worth 16x16 words:
Transformers for image recognition at scale.
arXiv preprint arXiv:201011929

[31] Elkerdawy S, Elhoushi M, Singh A,
et al (2020) One-shot layer-wise accuracy
approximation for layer pruning. In: 2020
IEEE International Conference on Image
Processing (ICIP), IEEE, pp 2940–2944

[32] Elkerdawy S, Elhoushi M, Singh A, et al
(2020) To filter prune, or to layer prune,
that is the question. In: Proceedings of the
Asian Conference on Computer Vision



Springer Nature 2021 LATEX template

22 Article Title

[33] Farhadi A, Redmon J (2018) Yolov3: An
incremental improvement. In: Computer
vision and pattern recognition, Springer
Berlin/Heidelberg, Germany, pp 1–6

[34] Fernandes Jr FE, Yen GG (2021) Pruning
deep convolutional neural networks archi-
tectures with evolution strategy. Informa-
tion Sciences 552:29–47

[35] Ghimire D, Kim SH (2023) Magnitude and
similarity based variable rate filter prun-
ing for efficient convolution neural networks.
Applied Sciences 13(1):316

[36] Gogate M, Dashtipour K, Adeel A, et al
(2020) Cochleanet: A robust language-
independent audio-visual model for real-
time speech enhancement. Information
Fusion 63:273–285

[37] Hafiz A, Bhat R, Hassaballah M (2023)
Image classification using convolutional
neural network tree ensembles. Multimedia
Tools and Applications 82(5):6867–6884

[38] Haider MU, Taj M (2021) Comprehensive
online network pruning via learnable scaling
factors. In: 2021 IEEE International Confer-
ence on Image Processing (ICIP), IEEE, pp
3557–3561

[39] Han S, Mao H, Dally WJ (2015) Deep
compression: Compressing deep neural net-
works with pruning, trained quantiza-
tion and huffman coding. arXiv preprint
arXiv:151000149

[40] Han S, Pool J, Tran J, et al (2015) Learning
both weights and connections for efficient
neural network. Advances in neural informa-
tion processing systems 28

[41] Hayou S, Ton JF, Doucet A, et al
(2020) Pruning untrained neural networks:
Principles and analysis. arXiv preprint
arXiv:200208797

[42] He K, Zhang X, Ren S, et al (2016) Deep
residual learning for image recognition. In:
Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pp

770–778

[43] He Y, Han S (2018) Adc: Automated
deep compression and acceleration with
reinforcement learning. arXiv preprint
arXiv:180203494 2

[44] He Y, Kang G, Dong X, et al (2018) Soft
filter pruning for accelerating deep con-
volutional neural networks. arXiv preprint
arXiv:180806866

[45] He Y, Lin J, Liu Z, et al (2018) Amc:
Automl for model compression and acceler-
ation on mobile devices. In: Proceedings of
the European conference on computer vision
(ECCV), pp 784–800

[46] He Y, Liu P, Wang Z, et al (2019) Filter
pruning via geometric median for deep con-
volutional neural networks acceleration. In:
Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition,
pp 4340–4349

[47] He Y, Ding Y, Liu P, et al (2020) Learning
filter pruning criteria for deep convolutional
neural networks acceleration. In: Proceed-
ings of the IEEE/CVF conference on com-
puter vision and pattern recognition, pp
2009–2018

[48] Howard AG, Zhu M, Chen B, et al (2017)
Mobilenets: Efficient convolutional neural
networks for mobile vision applications.
arXiv preprint arXiv:170404861

[49] Hu H, Peng R, Tai YW, et al (2016) Net-
work trimming: A data-driven neuron prun-
ing approach towards efficient deep architec-
tures. arXiv preprint arXiv:160703250

[50] Hu W, Che Z, Liu N, et al (2023) Channel
pruning via class-aware trace ratio opti-
mization. IEEE Transactions on Neural
Networks and Learning Systems

[51] Huang G, Liu Z, Van Der Maaten L, et al
(2017) Densely connected convolutional net-
works. In: Proceedings of the IEEE con-
ference on computer vision and pattern
recognition, pp 4700–4708



Springer Nature 2021 LATEX template

Article Title 23

[52] Huang Q, Zhou K, You S, et al (2018)
Learning to prune filters in convolutional
neural networks. In: 2018 IEEE Winter Con-
ference on Applications of Computer Vision
(WACV), IEEE, pp 709–718

[53] Huang Z, Wang N (2018) Data-driven
sparse structure selection for deep neural
networks. In: Proceedings of the European
conference on computer vision (ECCV), pp
304–320

[54] Jiao X, Yin Y, Shang L, et al (2019)
Tinybert: Distilling bert for natural lan-
guage understanding. arXiv preprint
arXiv:190910351

[55] Jin S, Di S, Liang X, et al (2019) Deepsz:
A novel framework to compress deep neural
networks by using error-bounded lossy com-
pression. In: Proceedings of the 28th inter-
national symposium on high-performance
parallel and distributed computing, pp 159–
170

[56] Jordao A, Lie M, Schwartz WR (2020) Dis-
criminative layer pruning for convolutional
neural networks. IEEE Journal of Selected
Topics in Signal Processing 14(4):828–837

[57] Kholiavchenko M (2018) Iterative low-rank
approximation for cnn compression. arXiv
preprint arXiv:180308995

[58] Kim J, Park C, Jung H, et al (2019)
Differentiable pruning method for neural
networks. CoRR

[59] Kim YD, Park E, Yoo S, et al (2015) Com-
pression of deep convolutional neural net-
works for fast and low power mobile appli-
cations. arXiv preprint arXiv:151106530

[60] Kouka N, Fourati R, Fdhila R, et al (2023)
Eeg channel selection-based binary particle
swarm optimization with recurrent convolu-
tional autoencoder for emotion recognition.
Biomedical Signal Processing and Control
84:104,783

[61] Kouka N, Fourati R, Baghdadi A, et al
(2024) A mutual information-based many-
objective optimization method for eeg chan-
nel selection in the epileptic seizure predic-
tion task. Cognitive Computation pp 1–19

[62] Krizhevsky A, Hinton G, et al (2009) Learn-
ing multiple layers of features from tiny
images. ” ”

[63] Krizhevsky A, Sutskever I, Hinton GE
(2012) Imagenet classification with deep
convolutional neural networks. In: Interna-
tional Conference on Neural Information
Processing Systems, pp 1106–1114

[64] Kumar A, Shaikh AM, Li Y, et al (2021)
Pruning filters with l1-norm and capped
l1-norm for cnn compression. Applied Intel-
ligence 51:1152–1160

[65] Le Y, Yang X (2015) Tiny imagenet visual
recognition challenge. CS 231N 7(7):3

[66] LeCun Y, Denker J, Solla S (1990) Optimal
brain damage. Advances in neural informa-
tion processing systems 2

[67] LeCun Y, Bottou L, Bengio Y, et al (1998)
Gradient-based learning applied to docu-
ment recognition. Proceedings of the IEEE
86(11):2278–2324

[68] Lee D, Kwon SJ, Kim B, et al (2019) Learn-
ing low-rank approximation for cnns. arXiv
preprint arXiv:190510145

[69] Lee J, Yu M, Kwon Y, et al (2022) Quan-
tune: Post-training quantization of convolu-
tional neural networks using extreme gra-
dient boosting for fast deployment. Future
Generation Computer Systems 132:124–135

[70] Lee N, Ajanthan T, Torr PH (2018)
Snip: Single-shot network pruning based
on connection sensitivity. arXiv preprint
arXiv:181002340

[71] Lee N, Ajanthan T, Gould S, et al (2019)
A signal propagation perspective for prun-
ing neural networks at initialization. arXiv
preprint arXiv:190606307



Springer Nature 2021 LATEX template

24 Article Title

[72] Li H, Kadav A, Durdanovic I, et al (2016)
Pruning filters for efficient convnets. arXiv
preprint arXiv:160808710

[73] Li H, Liu N, Ma X, et al (2019) Admm-based
weight pruning for real-time deep learning
acceleration on mobile devices. In: Proceed-
ings of the 2019 on Great Lakes Symposium
on VLSI, pp 501–506

[74] Li H, Ma C, Xu W, et al (2020) Fea-
ture statistics guided efficient filter pruning.
arXiv preprint arXiv:200512193

[75] Li J, Shao H, Zhai S, et al (2023) A graphical
approach for filter pruning by exploring the
similarity relation between feature maps.
Pattern Recognition Letters 166:69–75

[76] Li L, Zhu J, Sun MT (2019) Deep learn-
ing based method for pruning deep neural
networks. In: 2019 IEEE International Con-
ference on Multimedia & Expo Workshops
(ICMEW), IEEE, pp 312–317

[77] Liang J, Zhang L, Bu C, et al (2024)
An automatic network structure search via
channel pruning for accelerating human
activity inference on mobile devices. Expert
Systems with Applications 238:122,180

[78] Lin M, Ji R, Wang Y, et al (2020) Hrank:
Filter pruning using high-rank feature map.
In: Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recog-
nition, pp 1529–1538

[79] Lin M, Ji R, Zhang Y, et al (2020) Chan-
nel pruning via automatic structure search.
arXiv preprint arXiv:200108565

[80] Lin M, Cao L, Li S, et al (2021) Filter
sketch for network pruning. IEEE Trans-
actions on Neural Networks and Learning
Systems 33(12):7091–7100

[81] Lin M, Cao L, Zhang Y, et al (2022) Prun-
ing networks with cross-layer ranking & k-
reciprocal nearest filters. IEEE Transactions
on Neural Networks and Learning Systems

[82] Lin S, Ji R, Li Y, et al (2019) Toward com-
pact convnets via structure-sparsity reg-
ularized filter pruning. IEEE transactions
on neural networks and learning systems
31(2):574–588

[83] Lin S, Ji R, Yan C, et al (2019) Towards
optimal structured cnn pruning via gener-
ative adversarial learning. In: Proceedings
of the IEEE/CVF conference on computer
vision and pattern recognition, pp 2790–
2799

[84] Lin TY, Maire M, Belongie S, et al (2014)
Microsoft coco: Common objects in con-
text. In: Computer Vision–ECCV 2014:
13th European Conference, Zurich, Switzer-
land, September 6-12, 2014, Proceedings,
Part V 13, Springer, pp 740–755

[85] Liu C, Wu H (2019) Channel pruning based
on mean gradient for accelerating convo-
lutional neural networks. Signal Processing
156:84–91

[86] Liu H, Simonyan K, Vinyals O, et al
(2017) Hierarchical representations for effi-
cient architecture search. arXiv preprint
arXiv:171100436

[87] Liu J, Tripathi S, Kurup U, et al (2020)
Pruning algorithms to accelerate convolu-
tional neural networks for edge applications:
A survey. arXiv preprint arXiv:200504275

[88] Liu S, Lin Y, Zhou Z, et al (2018) On-
demand deep model compression for mobile
devices: A usage-driven model selection
framework. In: Proceedings of the 16th
Annual International Conference on Mobile
Systems, Applications, and Services, pp
389–400

[89] Liu T, Zenke F (2020) Finding trainable
sparse networks through neural tangent
transfer. In: International Conference on
Machine Learning, PMLR, pp 6336–6347

[90] Liu W, Anguelov D, Erhan D, et al (2016)
Ssd: Single shot multibox detector. In: Com-
puter Vision–ECCV 2016: 14th European
Conference, Amsterdam, The Netherlands,



Springer Nature 2021 LATEX template

Article Title 25

October 11–14, 2016, Proceedings, Part I 14,
Springer, pp 21–37

[91] Liu X, Wu L, Dai C, et al (2021) Com-
pressing cnns using multilevel filter pruning
for the edge nodes of multimedia internet
of things. IEEE Internet of Things Journal
8(14):11,041–11,051

[92] Liu Y, Guo Y, Guo J, et al (2021) Condi-
tional automated channel pruning for deep
neural networks. IEEE Signal Processing
Letters 28:1275–1279

[93] Liu Y, Fan K, Wu D, et al (2023) Fil-
ter pruning by quantifying feature similarity
and entropy of feature maps. Neurocomput-
ing p 126297

[94] Liu Y, Wu D, Zhou W, et al (2023) Eacp:
An effective automatic channel pruning for
neural networks. Neurocomputing

[95] Liu Z, Li J, Shen Z, et al (2017) Learn-
ing efficient convolutional networks through
network slimming. In: Proceedings of the
IEEE international conference on computer
vision, pp 2736–2744

[96] Liu Z, Sun M, Zhou T, et al (2018) Rethink-
ing the value of network pruning. arXiv
preprint arXiv:181005270

[97] Liu Z, Mu H, Zhang X, et al (2019)
Metapruning: Meta learning for automatic
neural network channel pruning. In: Pro-
ceedings of the IEEE/CVF international
conference on computer vision, pp 3296–
3305

[98] Louati H, Louati A, Bechikh S, et al (2024)
Joint filter and channel pruning of convo-
lutional neural networks as a bi-level opti-
mization problem. Memetic Computing pp
1–20

[99] Luo JH, Wu J (2017) An entropy-based
pruning method for cnn compression. arXiv
preprint arXiv:170605791

[100] Luo JH, Wu J (2020) Autopruner: An
end-to-end trainable filter pruning method

for efficient deep model inference. Pattern
Recognition 107:107,461

[101] Luo JH, Wu J, Lin W (2017) Thinet: A
filter level pruning method for deep neural
network compression. In: Proceedings of the
IEEE international conference on computer
vision, pp 5058–5066

[102] Lym S, Choukse E, Zangeneh S, et al (2019)
Prunetrain: fast neural network training by
dynamic sparse model reconfiguration. In:
Proceedings of the International Conference
for High Performance Computing, Network-
ing, Storage and Analysis, pp 1–13

[103] Ma R, Miao J, Niu L, et al (2019) Trans-
formed l1 regularization for learning sparse
deep neural networks. Neural Networks
119:286–298

[104] Ma X, Li G, Liu L, et al (2022) Accelerat-
ing deep neural network filter pruning with
mask-aware convolutional computations on
modern cpus. Neurocomputing 505:375–387

[105] Malach E, Yehudai G, Shalev-Schwartz S,
et al (2020) Proving the lottery ticket
hypothesis: Pruning is all you need. In:
International Conference on Machine Learn-
ing, PMLR, pp 6682–6691

[106] Manessi F, Rozza A, Bianco S, et al (2018)
Automated pruning for deep neural network
compression. In: 2018 24th International
conference on pattern recognition (ICPR),
IEEE, pp 657–664

[107] Mantena G, Sim KC (2016) Entropy-based
pruning of hidden units to reduce dnn
parameters. In: 2016 IEEE Spoken Lan-
guage Technology Workshop (SLT), IEEE,
pp 672–679

[108] Micikevicius P, Narang S, Alben J, et al
(2017) Mixed precision training. arXiv
preprint arXiv:171003740

[109] Mitsuno K, Kurita T (2021) Filter prun-
ing using hierarchical group sparse reg-
ularization for deep convolutional neural



Springer Nature 2021 LATEX template

26 Article Title

networks. In: 2020 25th international confer-
ence on pattern recognition (ICPR), IEEE,
pp 1089–1095

[110] Netzer Y, Wang T, Coates A, et al (2011)
Reading digits in natural images with unsu-
pervised feature learning. ” ”

[111] Passos LA, Papa JP, Del Ser J, et al (2023)
Multimodal audio-visual information fusion
using canonical-correlated graph neural net-
work for energy-efficient speech enhance-
ment. Information Fusion 90:1–11

[112] Pattanayak S, Nag S, Mittal S (2021) Curat-
ing: A multi-objective based pruning tech-
nique for cnns. Journal of Systems Architec-
ture 116:102,031

[113] Poyatos J, Molina D, Martinez AD, et al
(2023) Evoprunedeeptl: An evolutionary
pruning model for transfer learning based
deep neural networks. Neural Networks
158:59–82

[114] Quattoni A, Torralba A (2009) Recogniz-
ing indoor scenes. In: 2009 IEEE conference
on computer vision and pattern recognition,
IEEE, pp 413–420

[115] Ramakrishnan RK, Sari E, Nia VP (2020)
Differentiable mask for pruning convolu-
tional and recurrent networks. In: 2020 17th
Conference on Computer and Robot Vision
(CRV), IEEE, pp 222–229

[116] Real E, Moore S, Selle A, et al (2017) Large-
scale evolution of image classifiers. In: Inter-
national Conference on Machine Learning,
PMLR, pp 2902–2911

[117] Real E, Aggarwal A, Huang Y, et al (2019)
Regularized evolution for image classifier
architecture search. In: Proceedings of the
aaai conference on artificial intelligence, pp
4780–4789

[118] Redmon J, Farhadi A (2017) Yolo9000: bet-
ter, faster, stronger. In: Proceedings of the
IEEE conference on computer vision and
pattern recognition, pp 7263–7271

[119] Redmon J, Divvala S, Girshick R, et al
(2016) You only look once: Unified, real-
time object detection. In: Proceedings of the
IEEE conference on computer vision and
pattern recognition, pp 779–788

[120] Reed S, Zolna K, Parisotto E, et al
(2022) A generalist agent. arXiv preprint
arXiv:220506175

[121] Ren S, He K, Girshick R, et al (2015) Faster
r-cnn: Towards real-time object detection
with region proposal networks. Advances in
neural information processing systems 28

[122] Ronneberger O, Fischer P, Brox T (2015) U-
net: Convolutional networks for biomedical
image segmentation. In: Medical image com-
puting and computer-assisted intervention–
MICCAI 2015: 18th international confer-
ence, Munich, Germany, October 5-9, 2015,
proceedings, part III 18, Springer, pp 234–
241

[123] Roy S, Panda P, Srinivasan G, et al (2020)
Pruning filters while training for efficiently
optimizing deep learning networks. In: 2020
International Joint Conference on Neural
Networks (IJCNN), IEEE, pp 1–7

[124] Russakovsky O, Deng J, Su H, et al (2015)
Imagenet large scale visual recognition chal-
lenge. International journal of computer
vision 115:211–252

[125] Sarvani C, Ghorai M, Dubey SR, et al
(2022) Hrel: Filter pruning based on high
relevance between activation maps and class
labels. Neural Networks 147:186–197

[126] Schwartz R, Dodge J, Smith NA, et al
(2020) Green ai. Communications of the
ACM 63(12):54–63

[127] Shang H, Wu JL, Hong W, et al (2022) Neu-
ral network pruning by cooperative coevo-
lution. arXiv preprint arXiv:220405639

[128] Shao M, Dai J, Wang R, et al (2022) Cshe:
network pruning by using cluster similarity
and matrix eigenvalues. International Jour-
nal of Machine Learning and Cybernetics pp



Springer Nature 2021 LATEX template

Article Title 27

1–12

[129] Shi C, Hao Y, Li G, et al (2023) Vngep:
Filter pruning based on von neumann graph
entropy. Neurocomputing

[130] Shu H, Wang Y, Jia X, et al (2019)
Co-evolutionary compression for unpaired
image translation. In: Proceedings of the
IEEE/CVF International Conference on
Computer Vision, pp 3235–3244

[131] Simonyan K, Zisserman A (2015) Very deep
convolutional networks for large-scale image
recognition. ICLR, pp 1-14

[132] Singh P, Verma VK, Rai P, et al (2020)
Leveraging filter correlations for deep
model compression. In: Proceedings of the
IEEE/CVF Winter Conference on applica-
tions of computer vision, pp 835–844

[133] Skandha SS, Agarwal M, Utkarsh K, et al
(2022) A novel genetic algorithm-based
approach for compression and acceleration
of deep learning convolution neural net-
work: an application in computer tomogra-
phy lung cancer data. Neural Computing
and Applications 34(23):20,915–20,937

[134] Strubell E, Ganesh A, McCallum A
(2019) Energy and policy considerations
for deep learning in nlp. arXiv preprint
arXiv:190602243

[135] Sun X, Ren X, Ma S, et al (2017) meprop:
Sparsified back propagation for accelerated
deep learning with reduced overfitting. In:
International Conference on Machine Learn-
ing, PMLR, pp 3299–3308

[136] Szegedy C, Liu W, Jia Y, et al (2015) Going
deeper with convolutions. In: Proceedings of
the IEEE conference on computer vision and
pattern recognition, pp 1–9

[137] Tan M, Le Q (2019) Efficientnet: Rethink-
ing model scaling for convolutional neural
networks. In: International conference on
machine learning, PMLR, pp 6105–6114

[138] Tan M, Chen B, Pang R, et al (2019)
Mnasnet: Platform-aware neural architec-
ture search for mobile. In: Proceedings of
the IEEE/CVF conference on computer
vision and pattern recognition, pp 2820–
2828

[139] Tang Z, Luo L, Xie B, et al (2022) Auto-
matic sparse connectivity learning for neu-
ral networks. IEEE Transactions on Neural
Networks and Learning Systems

[140] Tian G, Chen J, Zeng X, et al (2021)
Pruning by training: a novel deep neural
network compression framework for image
processing. IEEE Signal Processing Letters
28:344–348

[141] Tmamna J, Ayed EB, Ayed MB (2021)
Neural network pruning based on improved
constrained particle swarm optimization. In:
Neural Information Processing: 28th Inter-
national Conference, ICONIP 2021, Sanur,
Bali, Indonesia, December 8–12, 2021, Pro-
ceedings, Part VI 28, Springer, pp 315–322

[142] Tmamna J, Ayed EB, Fourati R, et al (2023)
An automatic vision transformer pruning
method based on binary particle swarm
optimization. In: 2023 IEEE Symposium on
Computers and Communications (ISCC),
IEEE, pp 727–732

[143] Vadera S, Ameen S (2022) Methods for
pruning deep neural networks. IEEE Access
10:63,280–63,300

[144] Verma VK, Singh P, Namboodri V,
et al (2020) A” network pruning net-
work”approach to deep model compression.
In: Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer
Vision, pp 3009–3018

[145] Wah C, Branson S, Welinder P, et al (2011)
The caltech-ucsd birds-200-2011 dataset. ” ”

[146] Wang C, Zhang G, Grosse R (2020) Pick-
ing winning tickets before training by
preserving gradient flow. arXiv preprint
arXiv:200207376



Springer Nature 2021 LATEX template

28 Article Title

[147] Wang H, Qin C, Bai Y, et al (2022) Recent
advances on neural network pruning at ini-
tialization. In: Proceedings of the Interna-
tional Joint Conference on Artificial Intelli-
gence, IJCAI, Vienna, Austria, pp 23–29

[148] Wang W, Zhao S, Chen M, et al (2019) Dbp:
Discrimination based block-level pruning
for deep model acceleration. arXiv preprint
arXiv:191210178

[149] Wang Z, Liu X, Huang L, et al (2021)
Model pruning based on quantified sim-
ilarity of feature maps. arXiv preprint
arXiv:210506052

[150] Wen W, Wu C, Wang Y, et al (2016)
Learning structured sparsity in deep neural
networks. Advances in neural information
processing systems 29

[151] Wimmer P, Mehnert J, Condurache AP
(2023) Dimensionality reduced training by
pruning and freezing parts of a deep neu-
ral network: a survey. Artificial Intelligence
Review pp 1–39

[152] Xiao X, Wang Z, Rajasekaran S (2019)
Autoprune: Automatic network pruning by
regularizing auxiliary parameters. Advances
in neural information processing systems 32

[153] Xie X, Zhang H, Wang J, et al (2019) Learn-
ing optimized structure of neural networks
by hidden node pruning with l {1} regular-
ization. IEEE Transactions on cybernetics
50(3):1333–1346

[154] Xu X, Chen J, Li Z, et al (2024) Towards
efficient filter pruning via adaptive auto-
matic structure search. Engineering Appli-
cations of Artificial Intelligence 133:108,398

[155] Yang C, Liu H (2022) Channel pruning
based on convolutional neural network sen-
sitivity. Neurocomputing 507:97–106

[156] Yang C, Yang Z, Khattak AM, et al (2019)
Structured pruning of convolutional neural
networks via l1 regularization. IEEE Access
7:106,385–106,394

[157] Yang L, Gu S, Shen C, et al (2024) Soft
independence guided filter pruning. Pattern
Recognition p 110488

[158] Yang W, Xiao Y (2022) Structured prun-
ing via feature channels similarity and
mutual learning for convolutional neural
network compression. Applied Intelligence
52(12):14,560–14,570

[159] Yang W, Jin L, Wang S, et al (2019)
Thinning of convolutional neural network
with mixed pruning. IET Image Processing
13(5):779–784

[160] Yeom SK, Seegerer P, Lapuschkin S, et al
(2021) Pruning by explaining: A novel cri-
terion for deep neural network pruning.
Pattern Recognition 115:107,899

[161] Yim J, Joo D, Bae J, et al (2017) A gift from
knowledge distillation: Fast optimization,
network minimization and transfer learning.
In: Proceedings of the IEEE conference on
computer vision and pattern recognition, pp
4133–4141

[162] Yim J, Joo D, Bae J, et al (2017) A gift from
knowledge distillation: Fast optimization,
network minimization and transfer learning.
In: Proceedings of the IEEE conference on
computer vision and pattern recognition, pp
4133–4141

[163] Yin H, Molchanov P, Alvarez JM, et al
(2020) Dreaming to distill: Data-free knowl-
edge transfer via deepinversion. In: Pro-
ceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition,
pp 8715–8724

[164] You Z, Yan K, Ye J, et al (2019) Gate
decorator: Global filter pruning method for
accelerating deep convolutional neural net-
works. Advances in neural information pro-
cessing systems 32

[165] Yu L, Xiang W (2023) X-pruner: explain-
able pruning for vision transformers. In:
Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recogni-
tion, pp 24,355–24,363



Springer Nature 2021 LATEX template

Article Title 29

[166] Yue L, Weibin Z, Lin S (2019) Really should
we pruning after model be totally trained?
pruning based on a small amount of train-
ing. arXiv preprint arXiv:190108455

[167] Zhang P, Tian C, Zhao L, et al (2024)
A multi-granularity cnn pruning framework
via deformable soft mask with joint training.
Neurocomputing 572:127,189

[168] Zhang S, Gao M, Ni Q, et al (2023) Fil-
ter pruning with uniqueness mechanism in
the frequency domain for efficient neural
networks. Neurocomputing 530:116–124

[169] Zhang W, Wang Z (2022) Fpfs: Filter-level
pruning via distance weight measuring filter
similarity. Neurocomputing 512:40–51

[170] Zhang Y, Freris NM (2023) Adaptive fil-
ter pruning via sensitivity feedback. IEEE
Transactions on Neural Networks and
Learning Systems

[171] Zhang Y, Zhen Y, He Z, et al (2021)
Improvement of efficiency in evolution-
ary pruning. In: 2021 International Joint
Conference on Neural Networks (IJCNN),
IEEE, pp 1–8

[172] Zhang Z, Li Z, Lin L, et al (2020) Metaselec-
tion: metaheuristic sub-structure selection
for neural network pruning using evolution-
ary algorithm. In: ECAI 2020. IOS Press, p
2808–2815

[173] Zhao H, Sun X, Dong J, et al (2020) High-
light every step: Knowledge distillation via
collaborative teaching. IEEE Transactions
on Cybernetics 52(4):2070–2081

[174] Zhou Q, Huang Z, Ding M, et al (2023) Med-
ical image classification using light-weight
cnn with spiking cortical model based atten-
tion module. IEEE Journal of Biomedical
and Health Informatics 27(4):1991–2002

[175] Zhou Y, Yen GG, Yi Z (2019) Evolution-
ary compression of deep neural networks
for biomedical image segmentation. IEEE
transactions on neural networks and learn-
ing systems 31(8):2916–2929

[176] Zhou Y, Yen GG, Yi Z (2019) A knee-
guided evolutionary algorithm for compress-
ing deep neural networks. IEEE transac-
tions on cybernetics 51(3):1626–1638

[177] Zhou Y, Yen GG, Yi Z (2021) Evolutionary
shallowing deep neural networks at block
levels. IEEE Transactions on Neural Net-
works and Learning Systems 33(9):4635–
4647

[178] Zoph B, Le QV (2016) Neural architecture
search with reinforcement learning. arXiv
preprint arXiv:161101578

[179] Zoph B, Vasudevan V, Shlens J, et al (2018)
Learning transferable architectures for scal-
able image recognition. In: Proceedings of
the IEEE conference on computer vision and
pattern recognition, pp 8697–8710


	Introduction
	Genesis of DNN compression
	CNNs background
	Network pruning definition
	Objective definition
	Parameter selection
	Stopping criteria
	Evaluation

	Key factors of network pruning
	Pruning level
	Pruning time: when can be applied?
	Pruning before training
	Pruning during training
	Pruning after training

	Pruning rate
	Handcrafted strategy
	Automatic pruning rate


	Pruning units selection method
	Criteria-based method
	Data-independent based criteria
	Data-dependent based criteria
	Discussion

	Embedded method (sparsity learning)
	Parameter penalty strategy
	Scaling-factor penalty strategy
	Discussion

	Automatic based methods
	Machine-learning algorithms
	Evolutionary algorithms
	Discussion


	Pruning evaluation
	Datasets
	Models
	Performance measures

	Future Directions
	Latency reduction
	Comparison
	Synergistic combination of pruning Methods
	Specific Network Pruning

	Conclusion

