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Figure 1: Ealain: camera simulation instance generator supporting two solution encodings and capable of generating instances
for multiple classes of optimisation problems.

ABSTRACT
Artificial benchmark datasets are common in both numerical and
discrete optimisation domains. Existing benchmarks cover a broad
range of classes of optimisation, but as a general rule have limited
value due to their poor resemblance to real-world problems, and
generally lack the ability to generate arbitrary numbers of instances.
In this paper, we introduce Ealain, an instance-generator that cre-
ates instances of optimisation problems which require placement
of a number of cameras in a domain — this has many real-world
analogies for example in environmental monitoring or providing
security in a building. The software provides two types of camera-
model and can be used to generate an infinite number of instances
of black-box, real-world-like optimisation problems which can be
single-objective, multi-objective, multi-fidelity, or constrained. The
software is also flexible in that it also permits a range of different
objective functions to be defined. Furthermore, generated instances
can be solved using either a numerical or discrete encoding of solu-
tions. The C++ library targets fast computation and can be easily
plugged into a solver of choice. We summarise the key features
of the Ealain software and provide some examples of the type of
instances that can be generated for different classes of optimisation
problems.
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1 INTRODUCTION AND MOTIVATION
A broad range of benchmark instances have been proposed for
different optimisation problems. They cover a large spectrum of
applications in combinatorial optimisation [3, 11] and in numerical
optimisation [6], as well as different categories of optimisation
problems such as numerical black-box optimisation [6], discrete
optimisation problems [13], etc. (see [2] for a complete list). While
platforms such as COCO [6] and Nevergrad [10] have had a positive
influence in the benchmarking field by gathering instances in one
place, in other domains, instances are found at many different
sources.

Despite the existence of many test suites and instance-generators,
generally, both are customised to a particular domain and/or class
of optimisation problem, resulting in a proliferation of different
test suites. In contrast, we propose a new instance-generator that
generates instances that accurately model characteristics of real-
world problems and can be used to generate instances for five
classes of optimisation problems: single-objective, multi-objective,
multi-fidelity, constrained, and for generating drift: data-drift in
optimisation streams where the drift at the instance level is corre-
lated with an evolution of an algorithm performance and dynamic
optimsation where the problem changes during the run of a solver.
Furthermore, all generated instances can be solved using both a
numerical or a discrete representation of solutions (Figure 1).
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The software is written in C++ and called Ealain1. The basic
premise is a model of camera software that detects objects. This
enables a ‘camera-placement’ optimisation problem where there
are one or more objectives. There are many real-world examples
or analogies of such problems: as a security system in a gallery;
environmental monitoring via optimising sensor placements [15]
or optimising radar placements [12].

Given the nature of the problem, Ealain generates real-world-
like problem instances. As the objective function(s) are computed
via simulation, it can be considered a black-box problem as it is
not possible to obtain a formula representing each instance. The
difficulty of instances can be controlled in multiple ways, for exam-
ple increasing the number or type of cameras, increasing the size
of the instance, or modifying the terrain covered by the instance,
e.g. adding walls or obstacles that the camera cannot see through.
All of these modifications affect the size of the search space, the
dimension of the problem, or add ruggedness to instances. In ad-
dition, constrained instances can be generated by fixing locations
at which a camera must or must not be present. Furthermore, the
ability to control the precision at which a camera detects an object
enables the problem to be solved as either a discrete or continuous
optimisation problem. Given the variety of parameters and camera
models, Ealain can thus generate a very large set of instances for a
chosen optimisation class.

In the next section, we define the problem. For simplicity, we
refer to the generic problem as the ‘Art Gallery Coverage Problem’
throughout the rest of the paper but it should be clear that this
generic formulation covers a large number of potential applications.

Code availability: Code of the project is available at https://
github.com/qrenau/Ealain

2 ART GALLERY COVERAGE PROBLEM
2.1 Definition
The Art Gallery Coverage Problem (AGCP) is derived from the
Art Gallery Problem introduced in 1973 by Victor Klee [4] as a
geometry decision problem. Given a number of guards, the original
formulation aims at finding the optimal position of each guard such
that every point in the gallery can be seen by at least one guard
for a given layout. The Minimal AGP is a related optimisation
problem in which the task is to find the minimal set of guards
needed for complete coverage. Over the years, this problem has
been widely studied in computational geometry with recent work
on the complexity of the decision problem [1], given that most of
the optimisation problem variants are NP-hard [8].

Ealain permits the generation of both the original version of
the optimisation problem and a variant of the Minimal AGP which
aims at maximizing the coverage by a fixed number of cameras.
Rather than working with exact computational geometry tools,
we compute a fast approximation of the probability of detection
and the related coverage using a simulator which discretises the
problem on a regular grid of pixels to improve efficiency.

Instance Parameters. The simplest version of the art gallery that
can be generated with Ealain is an empty instance with no walls.
Nevertheless, this instance is defined by two parameters: (1) its size
1From Scottish Gaelic, meaning art.

𝑠 in meters; (2) its discretisation 𝐷 which determines the size in
pixels as 𝑠/𝐷 . Varying the instance size or the discretisation will
result in different instance complexity.

Solution Encoding. Two types of encoding are supported in
Ealain. Given that instances are discretised, discrete encodings
can be used by a solver, for instance using a bitstring (with length
equal to the number of pixels) to indicate camera locations or a
list of 𝑛 integers indicating the pixel location of each camera. A
numerical encoding of solutions is also supported. For example,
the real-valued coordinates (𝑥,𝑦) of each of 𝑛 cameras can be used.
At runtime, the real-valued coordinates are projected in the dis-
cretised space by Ealain in order to return a fitness value. Hence,
both discrete and numerical algorithms can be used to solve this
problem.

2.2 Instance Scenarios
The simplest scenario that can be generated in Ealain is an empty
instance. The complexity of this scenario can be changed by modi-
fying the size and the discretisation of the instance. For example,
a bigger instance size and discretisation will directly impact the
discrete encoding as the dimension of the problem increases.

The second scenario is the addition of walls. Walls can be added
by specifying their coordinates. They modify the instance in two
ways:

• By blocking the line of sight of cameras;
• By creating areas where cameras do not sense anything, i.e.,
cameras on the top of a wall do not sense anything.

The two last scenarios available are based on polygonal con-
straints. These constraints can be generated randomly or manually
for each instance. We labelled these constraints ‘Constraint Out’
and ‘Constraint In’. The ‘Constraint Out’ represents areas where
cameras cannot be placed if the solution is to be considered feasible,
whereas ‘Constraint In’ defines the opposite situation, i.e., areas
where at least one camera should be positioned for the solution to
be feasible. Each ‘Constraint Out’ or ‘Constraint In’ can be defined
either for all cameras or a subset of cameras, i.e., one constraint can
be generated for one particular camera but not for the others.

The method by which to penalise infeasible solutions is left to
the user.

3 EALAIN MODULES
3.1 Camera Models
The coverage of a pixel in Ealain is linked to a probability of de-
tection. A pixel is said to be covered if the probability of detection
of that pixel is above a predefined threshold. This threshold is a
parameter that can be changed and that will directly impact the
number of covered pixels.

In order to cover the space, Ealain provides two built-in two-
dimensional camera models. These models can already be used
to create a wide range of problem instances. Note that it is also
possible to easily extend Ealain to add custom two-dimensional
camera models or to create three-dimensional camera models.

Both camera models are defined by a range 𝑟 of visibility and this
range is applied at 360 degrees around the position of the camera,
i.e., the camera can sense everything 360 degrees for a distance 𝑟 .
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The probability of detection of omnibinary cameras 𝑝 of is simple:
𝑝 = 1 for every pixel within range and 0 otherwise. The probability
of detection of omnidir cameras differ as 𝑝 in this model decreases
linearly over the range.

3.2 Camera Groups
In Ealain, when more than one camera are simulated, they have to
be aggregated into groups. Groups define the way the probability of
detection of a pixel by each camera is aggregated which is important
when the same pixel is sensed by more than one camera. Examples
of implemented groups are the following:

Additive: probability of detection of each pixel by each camera
is summed;

Min: if two or more cameras detect the same pixel, the min-
imum probability of the group of cameras detecting it is
assigned;

AtLeastOne: probability of having a least one detection across
the group assuming independence of the camera detections.

It is possible to easily create new custom camera groups that are
not already available within Ealain.

3.3 Cost Computation
Once all cameras are created and gathered within groups, the cost
computation module computes the value of the configuration in
the layout of the instance at hand. Ealain comes with a built-in cost
computation which is the coverage. Given a threshold 𝜏 , the cost
computation will output the number of pixels having a probability
of detection greater or equal to 𝜏 . The coverage metric can be used
to design objective functions to optimise. The design of an objective
function is left to the user but an example is: given a fixed number
of cameras, find the locations that maximise the number of pixels
covered. As for camera models and camera groups, other ways to
compute the cost on a given instance can be added.

3.4 Constraints
Implemented constraints in Ealain are polygon-based. It is possi-
ble to define one or multiple polygons in the instance and check
whether a particular camera is located within a polygon. By default,
the computation returns a Boolean and the distance to the border of
the polygon. The processing of this information and the constraint
handling method is left to the user. As other modules in Ealain, it
can be easily extended to integrate other types of constraints.

4 GENERATION OF CLASSES OF
OPTIMISATION PROBLEMS

In this section, we present the five classes of optimisation problems
that can be generated using Ealain. For each class, an example code
is provided that permits to create an instance and evaluate solutions
on that instance. Each code can be launched using the same format
that can be divided into three parts:

$ ./ example_code instance_description solution

(1) ./example_code is related to the problem class, i.e., one of the
five described below.

(2) instance_description refers to parameters used to create in-
stances, i.e., its size, the number of cameras, and the number
of constraints (if available).

(3) solution refers to camera locations in the art gallery to be
evaluated.

The specific launching command for each code can be found in the
documentation and in the code file.

4.1 Encoding Solutions
For all the classes of optimisation problems described below, Ealain
offers the possibility to encode solutions in two different ways, i.e.,
it will accept solutions encoded in a numerical or discrete form. For
example, a solution in an instance of size 𝑠 = 3 with two cameras
with no constraints can be of the form:

• [𝑥0, 𝑦0, 𝑥1, 𝑦1] in an numerical encoding.
• [0, 0, 1, 0, 0, 0, 0, 1, 0] in a discrete encoding where 1 represent
the location of a camera.

• [1, 2] as alternative discrete encoding where each digit in
the list represents the discrete identifier of a pixel where a
camera should be placed.

This permits the use of different classes of solvers.

4.2 Single-Objective Optimisation
Single-objective optimisation instances are the simplest class of
instances that can be generated with Ealain. The simplest instances
only need to generate a defined number of cameras (that can be
from different types) and a cost computation that will output the
fitness of a given configuration.

4.3 Multi-Objective Optimisation
Since Ealain can generate cameras with different ranges and dif-
ferent detection profiles, one possibility can be to add a cost to
these cameras. Thus, an example multi-objective optimisation prob-
lem can be defined as minimising the cost of the cameras while
maximising the coverage of the art gallery. Other formulations are
clearly possible, for example, adding an objective that minimises
unsatisfied constraints.

4.4 Constrained Optimisation
Constrained optimisation can be merged with other type of optimi-
sation problems. For example, we can add constraints to a single-
objective optimisation problem. As mentioned above (Section 2.2),
constraints may be of two types: forbidden areas (no cameras should
be positioned there) or mandatory areas (a camera should be posi-
tioned there). To enforce the constraints, the constraint handling
technique is left to the user.

Generating constraints in a problem instance is very similar
to generating that same instance without constraints. The only
addition in the C++ code is the location of extreme points forming
the edges of the polygon representing a constraint.

4.5 Multi-Fidelity
Every instance is generated specifying its discretisation, i.e., defin-
ing the number of pixels that will compose the instance. The impact
of the number of pixels is two-fold: a larger number of pixels will
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increase the computation time of the function but will also improve
the precision of the estimation of the coverage. Hence, the same
instance can be evaluated twice with different level of precision of
the computation and different computation times.

4.6 Drift
Ealain can be used to generate a stream of instances that exhibit
data-drift or have a dynamically changing fitness landscape (i.e.
dynamic optimisation [9]).

Data-drift description: In many practical applications of optimi-
sation, instances arrive in a continual stream. Algorithm selector
models trained on historical data might fail to generalise over new
data distributions: this is formally described as data-drift, defined
as a change in the input data distribution of a stream of instances.
As the direction of future data-drift is unknown and it is unre-
alistic to train general models in instances that cover the entire
instance-space, it is therefore important to detect drift and react
appropriately. This is a well-studied topic in machine-learning (ML)
(see comprehensive surveys such as [5]) but has received little atten-
tion in optimisation. As a result, unlike in ML, there are no datasets
to evaluate drift-detection in optimisation domains. An important
characteristic of a dataset in this case is that there is a correlation
between drift in the data distribution describing instances and the
performance of a solver (or algorithm-selector). Although instances
from existing optimisation benchmarks such as BBOB can be sorted
in terms of performance to simulate performance drift, there is no
guarantee this is a result of data drift.

Ealain can be used to generate controlled data-drift and therefore
new benchmarks for evaluating MLmethods for detecting it. This is
achieved by adding ‘Constraint In’ locations to the definition of an
instance. As the number of constraints increases, the performance
of numerical solvers decreases relatively to the optimal solution.

Hence Ealain can be used to design new data-drift test suites
for optimisation. Unlike existing benchmarks where the purpose
is to benchmark against performance metrics, the goal here is to
benchmark ML method for detecting and reacting to drift.

Dynamic Optimisation description: The term dynamic optimi-
sation refers to an optimisation scenario in which there are time-
varying changes in objective functions, constraints, and/or envi-
ronmental parameters [9]. Unlike the data-drift scenario described
above in which drift occurs between instances in a stream, in dy-
namic optimisation the drift occurs while an instance is being solved.

Although there are existing benchmark suites in this field [14],
Ealain can be used tomimic dynamic optimisation in a semi-realistic
setting, where for example the number of constraints increases
during a run, thereby changing the fitness landscape. As the change
in the number of constraints can be easily controlled, the extent of
the change in the fitness landscape can also be controlled.

5 CONCLUSION
We describe a new toolbox Ealain that is capable of generating an
arbitrary numbers of instances of a real-world inspired problem.
It supports discrete and continuous encoding of a solution and
provides a black-box interface to a function that returns a fitness
value for a solution (a coverage metric denoting how many pixels

are covered for the environment defined by the instance and a
given camera placement). The software supports the generation of
instances for multiple types of black-box problems which can be
configured to be single-objective, multi-objective, multi-fidelity, or
constrained and also permits a range of different objective functions
to be defined as extensions to the code.

The goal was to provide a generator and fitness evaluator that
supports the generation of datasets with specific characteristics
of interest to a user. For example, instances can be generated to
benchmark solvers — as it supports both discrete and continuous
encodings, this enables a diverse range of solvers to be evaluated.
It also supports the generation of streams of instances that can be
used to define new datasets that fill gaps in current benchmarking
data, for example, to define datasets which exhibit data-drift across
a stream. This opens up new lines of research in optimisation that
are currently neglected in contrast to the machine-learning field [7].
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