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ABSTRACT Unmanned aerial vehicles (UAVs) can be used as drones’ edge Intelligence to assist with data
collection, training models, and communication over wireless networks. UAV use for smart cities is rapidly
growing in various industries, including tracking and surveillance, military defense, managing healthcare
delivery, wireless communications, and more. In traditional machine learning techniques, an enormous
amount of sensor data from UAVs must be shared to central storage to perform model training, which poses
serious privacy risks and risks of misuse of information. The federated learning technique (FL), which can
be applied to UAVs, is a promising means of collaboratively training a global model while retaining local
access to sensitive raw data. Despite this, FL is a significant communication burden for battery-constrained
UAVs due to local model training and global synchronization frequency. In this article, we address the
major challenges associated with UAV-based FL for smart cities, including single-point failure, privacy
leakage, scalability, and global model verification. To tackle these challenges, we present a differentially
private federated learning framework based on Accumulative Reputation-based Selection (ARS) for the
edge-aided UAV network that utilizes blockchains to prevent single-point failures where we switched from
central control to decentralized control, Interplanetary File System (IPFS) for off-chain model storage and
their respective hash-keys on-chain to ensure model integrity. Due to IPFS, the size of the blockchain
will be reduced, and local differential privacy will be applied to prevent privacy leakages. In the proposed
framework, an aggregator will be selected based on its ARS score and model verification by the validators.
After most validators approve it, it will be available for use. Several parameters are taken into consideration
during evaluation, including accuracy, precision, recall, F1-score, and time consumption. It also evaluates the
number of edge computers vs test accuracy, the number of edge computers vs time consumption for global
model convergence, and the number of rounds vs test accuracy. This is done by considering two benchmark
datasets: MNIST and CIFAR-10. The results show that the proposed work preserves privacy while achieving
high accuracy. Moreover, it is scalable to accommodate many participants.

INDEX TERMS Blockchain, drones, edge computing, federated learning, unmanned aerial vehicles.
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I. INTRODUCTION
The Industrial Internet of Things (IIoT), which is drastically
changing a variety of industries such as transportation [1],
Machine Learning (ML) [2], and the medical sector [3], [4].
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Utilizing artificial intelligence (AI), IIoT technology analyses
the enormous amount of data generated by connected devices.
IIoT is the primary driving factor behind Industry 4.0.
However, as 5G/6G technologies develop, the Internet of
Drones (IoD) is gaining popularity in smart cities. Drones
also known as Unmanned Aerial Vehicles (UAVs) are
operated autonomously. The majority of their management
occurs remotely or with integrated autonomous instructions.
UAVs first appeared in the early 1920s and were first created
for military use [5].

UAVs are made up of three primary parts: channels
for communication, hardware, and software. The operat-
ing system, middleware, and firmware that control UAV
movement and enable dynamic decision modeling make
up the software component. The hardware includes sen-
sors, radar parts, light recognition and ranging (LiDAR)
systems, and flight controller units (FCUs). The interaction
between ground stations and UAVs, sometimes known as
UAV swarms, is made possible through communication
channels [6]. Unmanned air operations, unmanned ground
vehicles, unmanned underwater vehicles, unmanned surface
vehicles, and unmanned spacecraft are the five categories into
which UAVs are divided depending on their intended uses
[6]. The worldwide UAVmarket is anticipated to develop at a
16.4% compound annual growth rate (CAGR) to reach USD
58.4 billion by 2026, per aMarkets study [7]. This shows how
important and profitable UAVs are becoming.

Thanks to technological developments, UAVs are now
employed in various industries, such as healthcare, agricul-
ture, and the Internet of Things (IoT). More specifically,
by using thermal imaging technologies, zoom cameras,
and lighting capabilities, drones can quickly traverse vast
distances in search of stranded hikers and provide them
with guidance to return to safety. According to the Moun-
tain Rescue Association of North America, approximately
80% of its members utilize drones for search and rescue
operations [8], [9]. A company called Flyzipline, as well
as Amazon Prime Air, are using drones to deliver goods
in an instant [10], [11]. A new service for Uber customers
is planned to utilize UAVs to provide air taxis as part of
the Uber air taxi service. UAVs have been identified as the
next phase in personal travel [12]. As the second largest
construction company in the United States, Betel Corporation
has used drones to enhance the construction process within
the virtual project delivery approach [13]. Using UAVs has
decreased the need for personal involvement and boosted
logistical assistance in difficult environments. Artificial
Intelligence (AI)-enabled UAVs will increasingly be used in
various industries in the near future. These industries include
Agricultural Precision Using Imagery from UAVs, transport
planning, managing traffic, society governance, intelligent
healthcare, and other pertinent disciplines [14]. UAVs for
smart cities are rapidly growing in various industries,
including tracking and surveillance, crowd sensing, object
recognition, military defense, managing healthcare delivery,

and wireless communications. In particular, EasyJet, a British
multinational low-cost airline company, uses drones to
inspect its aircraft. They state that ‘‘Checks that normally
require more than a day could be performed in a couple of
hours with a higher level of accuracy’’ [15], [16]. United
Parcel Service (UPS), an American multinational shipping
Company operated the first-ever U.S. drone COVID-19
vaccine delivery service to remote areas [17]. It was the
British Broadcasting Corporation (BBC) that first used
drones to provide visual context for a news report about the
proposed high-speed rail network, ‘‘HS2’’ which would link
London with several major English cities [16].

In order to derive intelligent predictions and make intelli-
gent decisions for these industries, traditional AI algorithms
require the transfer of enormous amounts of sensing data
collected by UAVs to a central server for model training [18],
[19]. Using data to train ML models turns out to be a very
effective method of unlocking the potential of that data but
data obtained by UAVs, such as images and videos, often
contain confidential information. It is possible to experience
serious privacy breaches and data misuse concerns [20], [21],
[22], [23].

UAV industries must deal with two major issues: privacy
and security, which have recently grown to bemajor problems
[24]. Conventional machine learning models primarily take
into account centralized, data centers, however, data owners
don’t wish to share their exclusive information. To address
these issues, federated learning (FL), which is based on
the distributed training of ML models, can be adopted
[25]. As an approach to acquiring intelligence from such
sensory data, FL is a privacy-preserving approach, whereby
multiple UAVs can contribute to creating shared AI models
without revealing any private sensory information [26], [27].
Moreover, UAVs participating in FL processes will train
their local models using their sensory data, such as images
captured by drones. Afterward, UAVs send local model
weights to the server for aggregation at the global level.
Until the desired global model accuracy has been achieved,
this process is repeated [28]. As more participants join the
collaborative training process, the global model in FL also
becomes more successful. By including more domains in the
training process, the distributed training performance may be
considerably improved. This cooperation makes it possible
to create a dataset that is more comprehensive and varied,
which results in the discovery of a better model. During the
past few years, FL has had great success in a variety of
domains, including next-word recognition using the Google
keyboard [29], device failure detection using FL in industrial
applications [30], and immersion in virtual reality [31].
It is important to keep in mind that the centralized

aggregator may be open to possible assaults, which could
compromise the FL system’s security [32]. The second major
issue with the FL process is, model updates can disclose
details about a participant’s training data. According to the
study discussed in reference [33], making it is possible
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for attackers to possibly retrieve data from the weights
that were shared and it is called a privacy leakage issue.
As a consequence of this, both the academic and business
communities have expressed serious interest in and worry
about privacy protection [34]. In addition to single-point
failures, centralized control, and privacy leakages, there are
a number of other challenges associated with FL based on
UAVs, including model verification, scalability, reputation-
based mechanisms, and computational costs [6], [35].
As a solution to these challenges, we present a differen-

tially private federated learning framework for edge-aided
UAV networks based on accumulative reputation-based
selection (ARS) and blockchains to prevent single-point
failures in the transition from central to decentralized control.
The following are the main accomplishments of our work:

1) Reputation-based Decentralized Federated Machine
Learning for global model aggregation. It Ensures
trustable and reliable aggregator selection based on
their accumulative reputation score.

2) Differentially private local model sharing. It aims to
ensure privacy leakage challenges in the traditional FL
approach.

3) Blockchain and IPFS implementation. Blockchain
tackles the challenges of single-point failure and
centralization, which are present in the traditional FL
approaches. It will also ensure model integrity and trust
among unknown participants.

4) Smart Contract-Based Model Verification and Secure
Storage. It ensures the consistent global model perfor-
mance and the reliability of the selected aggregator.

The proposed framework also promotes the integration
of multiple disciplines. It includes drones technology,
blockchain technology, urban area planning, and data science.
Collaboration between these disciplines is essential for the
successful implementation of the proposed approach. It also
highlights the new research gaps and the need for research
efforts [6], [36]. With the help of UAV experts, efficient
communication protocols can be developed, and they can
also in flight control systems for UAVs [35]. Blockchain
developers will ensure the decentralization of the system
and the integrity of models weights while sharing with
other participants [6]. They can also help in building secure
and decentralized storage systems such as IPFS. Urban
planners may assist regarding infrastructure, regulations,
and deployment approaches [35]. At the edge computers,
data scientists can perform computational tasks such as
local model training and global model aggregation [36].
Additionally, they can contribute to the verification of the
performance of the global model. Through the combination
of these diverse fields, this framework offers a comprehensive
solution for the development of secure, efficient, and scalable
smart city applications.

The remainder of this paper can be categorized as follows:
The second section of this paper discusses related research.
The problem statement is described in Section III of the

report. A detailed discussion of the proposed framework is
provided in Section IV. Section V presents a discussion of
the simulation and its results, and Section VI concludes the
paper.

II. RELATED WORK
In this section, several studies related to our research are
discussed.

A. FEDERATED LEARNING (FL)
Research on Federated Learning (FL) has recently attracted
the attention of researchers and is taking Machine Learning
(ML) Applications to an entirely new level in terms of data
sharing and computational capability [37], [38]. In addition
to preserving the privacy of users, the motivation for using
FL is to take advantage of the distributed and shared
nature of machine learning. Taking a look back over
the previous four years, the research study [38] provides
a systematic assessment of privacy and security issues
associated with blockchain-based FL methodologies in smart
environments [39].

B. PRIVACY-PRESERVED FEDERATED LEARNING (FL)
Amajor advantage of FL is the provision of privacy. However,
FL also poses the risk of privacy leakage, as the user’s actual
data might be derived from the model weights. Numerous
studies have been conducted recently to preserve privacy in
FL. Liu et al. [40] and Yin et al. [41] proposed FL frameworks
where training takes place locally on individual nodes,
with only model updates being transmitted for centralized
aggregation. Based on differential privacy (DP) techniques,
Wei et al. [42] and Zhao et al. [43] developed frameworks that
enhance data privacy. A DP will, however, cause training to
be slowed down and accuracy to be reduced [44]. A proxy
layer was added in the reference [45] and then DP was
implemented. Because of the DF, the proxy layer increased
overhead, and concluded that DP decreased the accuracy of
the model. In terms of computational cost, using DP is more
efficient than other methods, such as encryption, however,
there is a trade-off between accuracy and privacy.

C. DECENTRALIZED FL FOR UAVS
A wide variety of applications have been developed for
unmanned aerial vehicles (UAVs), also known as drones,
including military, construction, mapping of photographs and
videos, healthcare, parcel delivery, exploration of hidden
areas, search, and rescue, parcel delivery, monitoring of
oil rigs, power lines, precision farming, wireless commu-
nications, and aerial surveillance. According to the latest
research [46], autonomous UAV networks based on artificial
intelligence are thoroughly analyzed. A focus is placed
on drones’ significance, objectives, and functional issues.
This review analyzes UAVs, swarms, types, classification,
charging, and standardization. In light of recent research
and development, UAV applications, difficulties, and security
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concerns are explored. In a thorough analysis of more
than 100 UAV articles, the classification of autonomous
features, network resource planning and management, mul-
tiple access protocols, and power management and energy
efficiency were the main topics addressed. Based on the
literature review and analysis of UAV networking, it has been
discovered that AI-based UAVs are a technologically and
commercially viable paradigm for developing and deploying
such self-governing networks in the future.

Several recent surveys and review papers have discussed
the use ofUAVs to assist smart cities in providing services and
the opportunities and challenges associated with the use of
blockchain-enabled FL integration to assist smart cities. This
article [47] presents fundamental ideas, which also examine
blockchain-based FL’s potential in Mobile Edge Computing
(MEC) networks. Although blockchain is a promising
solution to tackle the single-point failure issue in FL, however
Blockchain-based FL poses several key design challenges,
including computation costs, resource distribution systems,
incentive systems, privacy concerns such as privacy leakage,
model verification, scalability, and consensus mechanism
such as reputation-based selection of aggregator. Following
that, the author [47] examines well-known mobile edge
computing (MEC) fields such as edge data sharing, edge
content caching, and edge crowd sensing using blockchain-
based FL. Several significant research challenges are also
highlighted in the report, as well as possible directions
for future research. Saraswat et al. [6] have conducted a
survey that fills in the gaps and offers a taxonomy of
solutions for BC-based FL in UAVs for B5G networks.
A comparison is made between the potential benefits of a
reference architecture and those of conventional BC-based
UAV networks. Open issues and challenges are discussed
along with potential future directions. It is evident from these
surveys that UAV-based FL is an active research area with lots
of potential for smart cities.

To implement an edge-aided UAV network,
Tursunboev et al. [58] developed a hierarchical FL algorithm,
referred to as the hierarchical FL algorithm. As an intermedi-
ary aggregator, this algorithm utilizes edge servers located in
base stations. As a means of improving learning performance
in wireless UAV networks under bandwidth constraint
conditions and dynamic channel conditions, Liu et al. [49]
proposed a novel distributed learning architecture known as
hybrid split and federated learning (HSFL). The algorithm
is based on the asynchronous model training process
of FL and split learning’s (SL) mechanism of splitting
models. Tursunboev et al. [58] developed the hierarchical
FL algorithm for edge-aided UAV networks with non-i.i.d
distributions of data. Rather than performing FL-related
computations on the UAVs themselves, the author used edge
servers near theUAVs to reduce the cost of UAV computation.
Sharma et al. [51] have constructed a Synchronous Federated
Learning system and compared it to Asynchronous Federated
Learning (AFL) to save FL processing time for the UAVs.

Despite taking longer to execute thanAFL, there won’t be any
kind of packet or loss of data. The proposed solutions resulted
in improved global model iterations and greater performance
in comparison to AFL. Although most of these works involve
UAVs as active components of the network system in order
to carry out the tasks, they do not take into account the
scalability of the system and the privacy of the model weights
into account.

Zhao et al. [56] have recently proposed a blockchain-
based crowd-sourcing FL system as a means for better
understanding their customer base. The Industrial Inter-
net of Things (IIOT) can be secure through the use of
blockchain-based FL technology, which Aditya Pribadi and
colleagues have introduced in a framework that incorporates
FL technology within a trusted execution environment
(TEE). Their approach improved privacy and security in
federated learning by taking into account model accuracy
impact. Researchers conducted a range of experiments
using pre-trained Convolutional Neural Network (CNN)
models and benchmark datasets to validate their proposed
solution [48]. A blockchain-enabled horizontal FL for UAVs
connected through the 5G network has been proposed by
Feng et al. [52]. Instead of relying on a central server,
the author authenticated multiple cross-domain UAVs and
aggregated models using smart contracts. Abunadi et al. [54]
developed a novel technique for performing secure communi-
cation and image classification in UAV networks. It consists
of three phases, including clustering, secure communication
using blockchain technology, and FL image classification
using FL technology, as well as the validation of the
framework’s performance using pre-trained CNN models.
Almost all of the studies above suggested blockchain as a
solution to UAV-based FL, however, none of them consider
a reputation-based mechanism for monitoring the accuracy
and participation of the participants in the FL process for
aggregator selection to perform global model aggregation.

The edge server, which is positioned between the UAVs,
is essential for minimizing communication and computation
costs [19], [20], [21], [22], [23], [24], [25], [26], [27], [28],
[29], [30], [31], [32], [33], [34], [35], [36], [37], [38], [39],
[40], [41], [42], [43], [44], [45], [46], [47], [48], [49], [50],
[51], [52], [53], [54], [55], [56], [57], [58], [59]. Battery-
limited UAVs face heavy communication loads due to FL’s
frequent local training and global synchronization. In terms
of model aggregation and fair incentives, the quality of UAV
model updates can vary significantly. A Byzantine-robust
aggregation rule, a model profit allocation rule, as well
as reputation mechanisms, were developed by Wang et al.
[53] by analyzing historical learning records and examining
record freshness for weight assignment. This was to ensure
credible recruitment and to prevent free-riders of UAVs.
FL-aided crowd-sensing services were to be facilitated by
fair incentives and robust aggregation. In spite of this,
they did not tackle the single point of failure. A further
challenge to applying FL algorithms to UAVs is their energy
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TABLE 1. A qualitative comparison of our work with recent work in terms of its advantages.

consumption. Pham et al. [60] suggested an energy-efficient
FL model for UAVs. An FL framework with a Ground Fusion
Centre (GFC) acting as an integrator was investigated by
Zhang and Hanzo [57] aimed at lowering the complexity
of communication associated with UAV swarms in remote
settings. Alternatively, the researchers of [61] used UAVs
as a communicative bridge between users and edge nodes
in order to reduce network latency. While these works
consider communication costs and delays, they neglect
to consider the privacy of model weights when sharing
with others. As an incentive to encourage participants to
participate in the FL process, Zhang and his team [18]
proposed a reward system between UAVs and task publishers.
Researchers [62] developed a number of services for a mobile
edge computing network that utilized UAVs as dual-purpose
tools for communication and computation, which included
offloading computational tasks, distributing resources, and
optimizing UAV positioning. In a study published in [63],
Yang et al. use FL to conduct trafficmonitoring in urban areas
using a swarm of UAVs. Nearly all of these studies used FL as
a base model for UAV networks, but none of them considered
the single-point failure challenge of FL in their solutions.

D. OUR CONTRIBUTIONS
For UAVs to overcome the aforementioned challenges,
a better FL framework is still needed. As far as we are
aware, few recent studies address single-point failures and
few focus on privacy-preserving FL, but no framework for
UAVs that focuses on single-point failure, privacy leakage,
aggregator selection based on reputation, global model veri-

fication, and scalability all at the same time. Decentralized
edge-assisted FL frameworks are required for smart cities
to ensure the preservation of privacy while achieving high
accuracy. Table No. 1 presents a qualitative comparison
of our work with recent work in terms of its advantages.
As a blockchain-based federated learning framework, our
framework effectively addresses the discussed challenges
faced by federated learning (FL) for UAVs, namely single
point failure, privacy leakage issues during model sharing
in the federated learning process, off-chain model storage
to ensure the model integrity and to reduce the blockchain
size, evaluating the scalability of the participants in the FL
process, performance verification of the global model by the
validators, reputation mechanism for the participants.

III. PROBLEM STATEMENT
Unmanned aerial vehicles (UAVs), also known as drones,
have become a key enabler for a variety of applications
in the age of smart cities, from delivery and surveillance
to urban planning and disaster management. Despite their
potential, utilizing the massive amounts of visual data that
drone cameras collect effectively is a significant challenge.
Traditional data processing techniques frequently involve
sending this data to a centralized server, raising serious
privacy issues and communication overhead. These issues are
particularly pressing in the context of UAV-based FL due to
the sensitive nature of the data collected and the potential
for misuse if not properly secured. Our research aims to
propose a cutting-edge, privacy-preserving, reputation-based
FL framework that is powered by blockchain and IPFS
for the use of UAV swarms in smart cities. Based on the
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visual information captured by drone cameras, the framework
envisions the use of local model datasets. These datasets
are then sent to the edge computers participating in our FL
framework. Our study was guided by the following research
question:

RQ: How can UAV-based federated learning be optimized
for decentralized aggregation, off-chain storage, model
verifiability, privacy, and scalability in smart cities?

The scalability of the proposed framework is crucial given
the distributed nature of FL and the potential for large-scale
deployment of UAV swarms in smart cities. Addressing
scalability challenges is essential to ensure the framework’s
effectiveness and efficiency in real-world applications.This
study aims to contribute to the research on UAVs, FL,
blockchain, and smart cities, thus paving the way for
privacy-preserving machine learning in UAVs. The proposed
framework introduces unique innovations such as the use of
blockchain and IPFS, a reputation-based participant selection
mechanism, and a focus on scalability. These aspects set our
work apart from existing research and provide novel solutions
to the challenges currently faced in UAV-based FL.

IV. PROPOSED FRAMEWORK
Our proposed framework consists of four primary compo-
nents, namely, System Initiation and Registration, Differ-
entially private local model Computation, communication
model, and global model generation. The details of each
component are as follows:

A. SYSTEM MODEL
Three layers comprise our proposed framework: the UAV
layer, the Edge Cloud layer, and the Blockchain layer. The
UAV layer is responsible for data collection. It consists of
drones that fly over smart cities and take pictures relevant to
their particular tasks. The purpose of this layer is to collect
real-world data that will be used for the machine-learning
process. Using the high-resolution image/video capture
capability of onboard sensors and cameras, UAVs facilitate
data collection in various applications such as surveillance,
traffic monitoring, disaster management, and forest fire
detection, among others [64]. UAVs are an integral part of our
smart city framework in collecting localized data effectively,
while the Edge Cloud layer is responsible for ensuring the
performance of data processing on a real-time basis.

All edge servers, aggregators, and the validators reside
in the edge cloud layer. UAV images are processed by the
edge servers to produce differentially private local models,
ensuring privacy in the learning process. Typically, a subset
of edge servers’ validators confirms the accuracy of the
global model. An aggregator chosen by the blockchain layer
based on reputation will aggregate differentially private local
models into a global model.

The blockchain layer ensures data integrity due to its
immutability advantage. Blockchain ensures data integrity by
providing an unchanging ledger to verify models and manage
reputation. Further, hash-based record storage ensures that

uploaded models cannot be tampered with and are stored
and accessed securely. Additionally, each participant is
authenticated using their cryptographic signature. According
to Saraswat et al. [6], blockchain’s tamper-resistant ledger is
crucial for smart city applications involving UAVs, ensuring
secure data sharing and analysis. It overcomes the challenges
associated with single-point failure and centralized control
experienced by FL-based solutions. It is also responsible for
participant registration, global model verification, reputation-
based aggregator selection, and storing models off-chain
and their respective hash keys on-chain. By storing models
off-chain, computational costs would be reduced since
storing models on-chain would increase the blockchain size,
resulting in high computational costs for miners and a
high transaction fee for participants. That is why we chose
IPFS as a decentralized storage solution to implement an
off-chain model of storage. Two components make up the
blockchain layer: the on-chain and the off-chain. On-chain
components of the system are managed by smart contracts,
which maintain participant registrations, addresses of active
participants, cumulative reputation scores for all participants,
hash keys for uploadedmodels, andmechanisms for selecting
an aggregator based on cumulative reputation scores.

The layers interact continuously through data collection,
processing, and model generation. All participants and
miners must be registered as the first step. In the UAV layer,
Images captured by the UAVs flying over the smart city will
be sent to the edge cloud layer as local datasets. As the next
step, edge servers retrieve the initial global model from IPFS.
Afterward, they train the local models on the dataset collected
from the UAV layer and upload differentially private local
models to the blockchain where IPFS is used for off-chain
model storage. In addition, model hash keys and local model
test accuracy are stored in the smart contract. As soon as
the blockchain layer transmits the aggregator’s address to
the Edge Cloud layer, the selected aggregator will be able
to perform global model aggregation based on the hash keys
stored on-chain and differentially private local models from
IPFS.

After validating the global model’s performance on their
validation dataset, the validators submit their votes to the
smart contract. A global model is accepted if two-thirds
of the votes are cast favorably. If a model is rejected, the
miner with the next highest reputation score is selected for
the global model aggregation. The proposed model can be
seen in Figure 1, which illustrates how it works. Federated
learning enables collaborative training while maintaining
privacy. A differential privacy concept is used in the proposed
framework. It will incorporate Gaussian random white noise
into the gradients of the local model before training. Unlike
traditional FL, it will address the privacy leakage issue [65].
As a result, UAVs contribute to training an accurate global
model while preserving the privacy of their raw data [66].
Additionally, our proposed Accumulative Reputation based
selection (ARS) mechanism ensures that only a trusted and
reliable aggregator is selected for global model aggregation.
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A global model is then returned to the UAV layer from
the edge cloud layer to guide the drones in their tasks.
By utilizing the global model, UAVs can provide services to
smart cities, ensuring that many smart city applications are
operated efficiently. A secure, privacy-persevered, scalable,
and reliable distributed learning system is created using
UAVs, edge computing, federated learning, blockchain, and
IPFS.

B. CHALLENGES AND CONSIDERATIONS
For the proposed system to be implemented successfully, it is
vital to discuss potential challenges and considerations. These
include regulatory compliance, technological compatibility,
scalability, and community acceptance.

1) REGULATORY COMPLIANCE:
It would be crucial to consider local, national, and inter-
national laws and regulations while performing UAV-based
tasks in smart cities. The use of UAVs may lead to the
generation of large quantities of data. Private information
may be contained in those data. Thus, privacy regulations
such as GDPR and CCPA [5] will significantly impact the
management and sharing of these data [67]. Furthermore,
blockchains provide a decentralized approach without the
control of a central authority. There may be changes in
country-specific regulations, which may raise questions
regarding blockchain transactions and smart contracts since
different countries have different laws and regulations [68].

2) TECHNOLOGICAL COMPATIBILITY:
To successfully integrate advanced technologies such as
UAVs, edge computing, federated learning, and blockchain,
domain experts will be required. Furthermore, the hardware,
software, and data they use are heterogeneous. As a result,
different protocols must be compatible between edge devices
and blockchain [69]. Among the challenges associated with
blockchain is interoperability. Another requirement is the
interoperability of different blockchain frameworks [70].

3) SCALABILITY:
The concept of scalability pertains to the ability to handle
the growing number of drones and edge computers while
maintaining the performance of the global model. Another
major concern is developing a scalable system for smart
cities [69]. As part of this work, we have tested its scalability
in terms of an increasing number of UAVs while maintaining
the outstanding performance of the global model. Other
scalability limitations should also be considered, such as non-
IID data, heterogeneous type of data, and high transaction
volumes [71].

4) COMMUNITY ACCEPTANCE:
There is also the issue of community acceptance, including
public perceptions of UAVs and privacy concerns. As a result,
trust is engendered through transparent data privacy policies,

ethical use guidelines, and community engagement [47].
In addition, public awareness of advanced technologies such
as blockchain and federated learning is required to gain
community acceptance.

C. SYSTEM INITIATION AND REGISTRATION
In this article,We consider a system S with a set of unmanned
aerial vehicles (UAVs) U = U1,U2, . . . ,Un and a set of edge
servers E = E1,E2, . . . ,Em. To participate in the federated
learning process, an edge server must call theR(·) andM(·)
methods of the smart contract SC. Registration is divided
into two types, participants and miners, in our proposed
framework.

1) Let P be the set of all participants, where the
participants are represented by Pi. A registration
function can be denoted by R(Pi), which registers
participant Pi with the smart contract SC. A participant
registration process can be formalized as follows:

∀Pi ∈ P, R(Pi)→ SC (1)

According to the equation above, for every participant
Pi in the set P , the registration functionR(Pi) applies,
creating a link between each participant and the smart
contract SC.

2) ParticipantPi can also be aminer. LetM(Pi) denote the
miner registration function, which registers participant
Pi as a miner with the smart contract SC. Formally, the
miner registration process can be defined as:

∀Pi ∈ P, M(Pi)→ SC (2)

In the same way, for every participant Pi in the set
P , the miner registration function M(Pi) applies,
registering each participant as a miner with the smart
contract SC.

In these equations, ∀ stands for ‘for all’, and→ corresponds
to the function mapping that links the miners and participants
to the smart contract SC. In our framework, any participant
can act as a miner through the process of miner registration.
Miners play a critical role in our system because they
aggregate local models into global models. We are using the
Accumulative Reputation Based Selection (ARS)mechanism
to select a miner, and the selected miner will be called an
aggregator. This mechanism ensures that the most accurate
and reliable participant is selected for aggregation.

D. DIFFERENTIALLY PRIVATE LOCAL MODEL
COMPUTATION
By incorporating noise into the computation of local model
updates at each edge server, we ensure differential privacy in
federated learning. In Algorithm 1, we describe this process
as Differentially Private Local Training.

Assume a dataset Di = x(i), y(i)
n
i=1 consisting of n

samples. Here, each x(i) represents an image captured by the
drone’s camera, and y(i) denotes the corresponding label. The
global model, represented by θ , aims to minimize the loss
function L.
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Algorithm 1 Differentially Private Local Model Computa-
tion
Require: Set of edge servers E = {E1,E2, . . . ,Em},

initial global model θg, set of local datasets D =

{D1,D2, . . . ,Dm}, loss function L(·), noise multiplier σ

Ensure: Set of privacy-preserving local model updates 2̃ =

{θ̃1, θ̃2, . . . , θ̃m}

1: procedure LocalModelTraining(E, θg,D,L, σ )
2: θg← loadGlobalModelFromIPFS()
3: for i = 1tom do
4: θi← θg
5: 1θi← trainModel(Di,L, θi)
6: θ̃i← 1θi + ηi
7: ˜acci← testModel(θ̃i,Di,test)
8: hashKeyi← f (storeOnIPFS(θ̃i))
9: f (storeOnContract( ˜acci, hashKeyi))

10: end for
11: return 2̃

12: end procedure

Each edge server Ei (i ∈ 1, 2, . . . ,N ) holds a local dataset
Di and calculates a local model update 1θi to minimize the
loss on its local dataset:

1θi = argmin
θ

1
ni

ni∑
j=1

L(x(j)i , y(j)i ; θ), (3)

where ni represents the number of samples at edge server Ei
and (x(j)i , y(j)i ) is the jth sample at edge server Ei.
Following the fetch of the global model from the Interplan-

etary File System (IPFS) via the hash key supplied by SC,
each edge server Ei starts training on its local dataset Di =
d1, d2, . . . , dni . The local model update 1θi is computed as:

1θi = argmin
θ

1
ni

ni∑
j=1

L(x(j)i , y(j)i ; θ), (4)

where (x(j)i , y(j)i ) is the jth sample in Di, L(·) represents the
loss function, and ni is the total number of samples in Di.
To ensure differential privacy, Gaussian noise is added to 1θi
which is a common approach in differential privacy, resulting
in an updated local model with privacy preservation θ̃i:
The Gaussian noise is a type of white noise often added

to data or computations to disguise original values and
maintain privacy [72]. We added Gaussian random noise to
a convolutional neural network (CNN) local model during
the optimization phase. To implement this, we utilized
the TensorFlow-Privacy library’s DPKerasSGDOptimizer.
Gaussian noise is incorporated into the gradients before the
local model parameters are updated. The noise multiplier
parameter determines how much noise to add. A noise
multiplier parameter has a range of values beginning at zero
and does not have a strict upper limit. In practice, it is usually
chosen to be a relatively small value since a larger value
would increase in noise, and an increase in noise will decrease

model accuracy.

θ̃i = 1θi + ηi. (5)

we are using the test accuracy acci to calculate the
Accumulative Reputation Score (ARS) for every edge server,
so it is essential to save test accuracy acci on the contract SC.
after it, the noisy local model θ̃i will be stored on IPFS and
its hash key hashKeyi on the contract SC.
This approach protects the computation of local model

updates at each edge server by the principle of differential
privacy.

E. COMMUNICATION MODEL
Decentralized ledgers such as the blockchain ensure data
integrity and privacy. It will store the smart contract SC
that will perform the following operations in our proposed
framework:

1) Registrations of participants and miners
2) List of all the active participants
3) Keeps track of current aggregator
4) Accumulative Reputation scores (ARS) of all the

participants.
5) Validators save their votes in favor or against the

aggregated global model to the smart contract, and the
smart contract will make the selection of the miner
who has the highest reputation score for global model
aggregation

6) IPFS hash keys H of local and global models. Only
hash keys H will be saved on the smart contract to
ensure model integrity, as changing even one value in
the model will also change its hash key.

For our local and global models, we use Interplanetary
File System (IPFS) as off-chain storage, which will reduce
the blockchain size and transaction gas fees, and only hash
keys H will be saved on the smart contract to ensure model
integrity. A model can be saved on IPFS, and a hash key can
be obtained as follows:

Mi
IPFS(Mi)
−−−−−→ hi

F. GLOBAL MODEL AGGREGATION AND VERIFICATION
Global models are created by aggregating the differentially
private local models. The Global Model Aggregation and
Verification Algorithm, as presented in Algorithm 3, accom-
plishes this.

For each participant Pi, let us denote the test accuracy as
acc(Pi) and the functionR(·) denotes the reputation score for
each participant Pi. Let’s also denote the functionA(·) as the
aggregate function used by the miner with the best reputation.
It takes local model weights as input and combines them
into a global model. In our proposed framework, local model
weights are combined using FL averaging strategy to produce
a global model. Based on this strategy, an average of local
model updates from each participant in the federated learning
process is calculated. As a result, a global model update
is calculated. Algorithm No 3 describes the FL averaging
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FIGURE 1. The proposed framework.

strategy steps involved in combining local model weights into
a global model.

1) Reputation Score Calculation: For each participant
Pi in the set of participants P , the reputation score
R(Pi) is calculated based on the harmonic mean of
the test accuracy acc(Pi) and the contribution count
of the participant. Contribution counts indicate the
number of times that a participant has participated in
federated learning. Using the harmonicmean, accuracy,

and contribution count are given equal importance,
which ensures consistency of participation and high
accuracy are recognized. In formal terms, reputation
score calculation is as follows:

max
Pi∈P

R(Pi)

=
2× (acc(Pi)× contribution(Pi))

acc(Pi)+ contribution(Pi)
(6)
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FIGURE 2. Sequence diagram of the proposed framework.

Algorithm 2 Global Model Aggregation
Require: Ethereum address of the miner with highest

reputation score mmax, set of locally trained models 2 =

θ1, θ2, . . . , θm
Ensure: Updated global model θ ′g
1: procedure GlobalModelUpdate(mmax, 2)
2: for i = 1tom do
3: hashKeyi← f (getHashFromContract(mmax))
4: θi← f (loadModelFromIPFS(hashKeyi))
5: end for
6: θ ′g← aggregateModels(2)
7: hashKeyg← f (storeOnIPFS(θ ′g))
8: f (storeOnContract(hashKeyg))
9: f (triggerValidation())

10: return θ ′g
11: end procedure

Using this equation, reputation scores are calculated for
each of the participants Pi of the set of participants
P . An individual’s reputation score is the harmonic

mean of their test accuracy /text[acc](Pi) along with
their contribution count. Anyminer who has the highest
Accumulative Reputation Score (ARS) will be selected
as an aggregator.

2) Global model: The participant Pj with the highest
reputation scoreR(Pj) aggregates the models globally.
The global model G is calculated as:

G = A ({Mi|Pi ∈ P})

whereMi is the local model from participant Pi.
3) Model verification: Verifying global model perfor-

mance requires a 2/3 majority after model aggregation.
A formal definition of the model verification problem
is as follows:

V (G) =
1
|P|

∑
Pi∈P

Vi(G) ≥
2
3

where Vi(G) is a binary variable indicating whether
participant Pi verifies the global model or not (1 for
verification, 0 otherwise), and |P| is the total number
of participants.
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Algorithm 3 Federated Averaging Strategy for Global Model
Aggregation
Require: Set of local model updates 12 =

1θ1, 1θ2, . . . ,1θm, set of participants P =

P1,P2, . . . ,Pm
Ensure: Updated global model θ ′g
1: procedure GlobalModelUpdate(12,P)
2: Initialize global model θg
3: for each iteration do
4: for i = 1tom do
5: Receive local model update 1θi from partic-

ipant Pi
6: end for
7: Calculate average of local model updates θ ′g =

1
m

∑m
i=1 1θi

8: Send updated global model θ ′g to each participant
Pi

9: end for
10: return θ ′g
11: end procedure

Global model verification is an integral part of our
framework to ensure consistent model performance. It is
performed by the validators following the global model
aggregation step by the aggregator. Except for the aggregator,
all active miners are validators that verify the performance of
the global model on the validation dataset. Afterward, they
can vote for or against the smart contract. The model will be
accepted if 2/3 of the votes are in favor of it. Upon rejection,
the next miner with the highest ARS will be selected as an
aggregator. The aggregator calculates the new global model,
which will be revalidated by the validators. This process
continues until a global model is accepted. Using a two-thirds
majority rule, the smart contract handles model acceptance,
rejection, and selection of the next miner. The 2/3 majority
rule ensures the accuracy and reliability of the global model.

In Figure 2, we present a diagram that shows the sequence
of events that will take place in our framework. As a
result of this framework, the challenges stated above have
been fully addressed. Combining local model generation,
a robust communication model and global model aggregation
can allow us to achieve federated learning while ensuring
differential privacy.

V. EXPERIMENTS
A. HARDWARE AND SOFTWARE CONFIGURATION
The Hardware we used to conduct experiments is a computer
having an 11th generation intel(R) core(TM) i9 3.50GHz
CPU and 64GB RAM. The 64-bit operator system installed
on it was Windows 11. All the experiments were performed
on Anaconda Jupyter Notebook with Python 3.12 as the
development environment. We simulated edge computers
and the federated learning process using the Flower Frame-
work [73]. We used TensorFlow by Google for the local

models and TensorFlow Privacy byGoogle for the differential
privacy integration. Solidity programming language was used
to develop the smart contract while Ganache Tool was used
to build a local Ethereum blockchain.

B. LOCAL MODELS
The experiments were conducted using two different local
models for different datasets. In Model No. 1, there are
five convolutional layers, three max-pooling layers, three
batch normalization layers, and two fully connected layers
for classification. A detailed description of the architecture
of local model number 1 can be found in figure 3.

FIGURE 3. Local Model No 1.

The first layer consists of 64 convolutional filters of three-
by-three sizes, while the second layer is also a convolutional
layer of the same size. A third layer is a 2D max pooling
layer of two by two to reduce the less important features
and improve the focus of computation on the most important
features. In the fourth layer, a batch normalization layer is
applied to normalize the output of the layer within a batch of
data, in order to improve the stability and speed of training.
Five and six layers are composed of convolution layers with
128 filters of 3 by 3. In the seventh layer, a 2D max pooling
layer of size 2 by 2 is applied. As the eighth layer, there
is a batch normalization layer that is used to normalize the
output within a batch. The ninth layer is a convolution layer
consisting of 256 filters of 3 by 3 dimensions. Layers ten
and eleven are devoted to 2D max-pooling of 2 by 2 and
batch normalization. In the last two layers, there are two
fully connected layers, measuring 1 by 512 and 1 by 10,
respectively. A Relu activation function was used in the
hidden layers and a softmax functionwas used in the last layer
of classification.

In the second model, we used a ResNet-50 pre-trained
model that is trained on ImageNet data to extract features.
ImageNet is a large dataset containing millions of labeled
images spanning thousands of categories [80]. The architec-
ture of local model No 1 is presented in figure 4. As part
of this second model, ResNet-50 is used as an extractor of
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FIGURE 4. Local Model No 2.

features and combined with 4 layers of classification. Each of
the four layers of classification consists of a global average
pooling 2D layer, a densely connected layer of size 1 by 1024,
1 by 512, and 1 by 10 respectively. For the hidden layers,
Relu activation was used, and for the classification layer,
the softmax function was used. The reason behind adding a
global model average pooling layer is to reduce overfitting
by reducing the number of parameters and focusing on the
important features. In this case, we prefer the global average
pooling 2D over the max-pooling 2D layer. This is because
we wish to retain the spatial information, which can be
achieved by calculating the average of each feature map and
preserving the spatial structure, and it is also often used in the
classification layers.

C. A CASE STUDY: FEDERATED LEARNING FOR FOREST
FIRE DETECTION IN A SMART CITY USING UAVS AND
EDGE COMPUTING
1) SCENARIO CONTEXT
In today’s smart city environment, disaster management is
of utmost importance. This case study aims to examine
the practical utility of the proposed UAV-based federated
learning framework in a smart city scenario, focusing on
disaster management related to forest fire detection. The
setup involves UAVs equipped with high-resolution cameras
flying over smart cities and capturing images of forested
areas. Edge computers receive these images as private
datasets that participate in the FL process. Convolutional
neural networks (CNNs) are trained on these private datasets
by edge computers.

2) SIMULATION AND DATASET
This case study utilizes the FLAME dataset [74] available on
IEEEDataPort. There are 47,992 RGB images in the Flame
dataset that were captured by drone cameras in Northern
Arizona. Images were captured using different drones and
cameras. The dataset consists of two classes: Fire andNo Fire,
and each image size is downscaled to (254,254,3), then the
pixel value is normalized between 0 and 1 to improve model

training efficiency. The sample images from the FLame
dataset are presented in figure 5.

FIGURE 5. FLAME dataset sample images.

In this simulation process, we divided this dataset into
75% for the edge computers and 25% to test and evaluate
the global model’s performance. As their local dataset, 75%
of the samples from the flame dataset were equally divided
among the number of edge computers. Additionally, each
edge computer took 10% validation samples from its local
datasets to monitor the performance of its local model. This
10% validation was also used to monitor and save their
local model accuracy to smart contracts for the reputation
mechanism discussed in the proposed framework section.
We simulated 10 edge computers and used Model No.
1 presented in Figure No 3 as the local model but with minor
changes. To prevent overfitting, we added a 0.2 dropout layer
after each batch normalization layer. A Rectified Linear Unit
(ReLU) is used in the hidden layers and a sigmoid is used
in the output layer to normalize the output to a fire or no
fire probability. The local model is trained by the optimizer
with 0.001 as the learning rate. Binary cross-entropy is used
as a loss function to measure classification performance.
Moreover, each local model is trained with 32 batch sizes and
20 epochs.

A trained local model is stored in IPFS by each edge
computer and its hash keys are stored in the smart con-
tract. The Accumulative Reputation-based Selection (ARS)
mechanism is a key innovation in this framework. The ARS
system is governed by a smart contract enabled by blockchain
technology and allows the selection of a suitable edge
computer as an aggregator based on its historical performance
and reliability. Through this reputation-basedmechanism, the
risk of selecting an inefficient or compromised aggregator
is significantly reduced, thereby improving the overall
security and performance of the system. Once the global
model has been aggregated by the selected aggregator and
validated by the validators, it can either be used for the
next round, or deployed to 5G-enabled UAVs for forest
fire detection. When a UAV detects a fire, it immediately
alerts the edge computer, which promptly notifies the local
authorities.
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3) RESULTS AND METRICS
After 5 FL rounds, the global model’s accuracy stands at a
staggering 98.98%, with a loss of just 0.24. Precision and
recall stand at 98.91% and 99.48%, respectively, leading to
an F1 Score of 99.19%. The confusion matrix of the global
model is presented in Figure 6 where 0 reflects no fire and
1 reflects fire prediction. The high recall rate ensures almost
all fire instances are correctly identified, making the system
exceedingly reliable. The high F1 score of 99.19% indicates a
balanced system capable of identifying and precisely locating
potential fire outbreaks. It is evident from these results that
the proposed work is effective.

FIGURE 6. Global model Confusion Matrix on FLAME dataset.

D. EVALUATION OF THE PROPOSED APPROACH
1) PUBLIC DATASETS
We evaluated and tested our proposed strategy using the
Mnist [75] and CIFAR-10 [76] datasets. The Mnist dataset
is a well-known dataset that is used in machine learning
and computer vision tasks. ‘‘Mnist’’ refers to the Mod-
ification National Institute of Standards and Technology
dataset. It contains images of handwritten digits from 0 to
9 along with their respective labels. The images are all
grayscale and measure 28 pixels by 28 pixels. In order
to evaluate and test ML algorithms, specifically image
classification algorithms, theMnist dataset ismost commonly
used.

As another popular dataset for machine learning and
computer vision applications, the CIFAR-10 is also a popular
choice. This is an acronym for ‘‘Canadian Institute for
Advanced Research’’. As part of the CIFAR-10 dataset,
there are 60,000 RGB images that are 32 by 32 in
size, presenting ten different classes of classification. The
classes represent different categories such as cats, birds,
cars, etc.

Additionally, the CIFAR-10 dataset is widely used as
a benchmark for evaluating machine learning models,
particularly deep neural networks. It has a greater diversity of
classes thanMnist, making it amore complex and challenging
dataset.

2) METRICS WITH GLOBAL ROUNDS
We conducted the first experiment to evaluate the suggested
strategy’s performance in terms of accuracy, loss precision,
recall, and f1-score. We used local model No 1 and trained it
on the MNIST dataset.

FIGURE 7. Metrics with Global Rounds.

Throughout all our experiments, we assumed that the
dataset had been collected by UAVs and was prepared for
local model training at edge computers. In the simulation,
we use 10 edge computers, 20 local epochs, and 10 global
rounds. MNIST data samples were evenly divided into a
number of participants, and each edge computer built its
local model by considering Model No 4 as the local model.
Adam was used as an optimizer for each local model, and
the categorical cross-entropy loss function was used as a
loss function for each local model. The sample images were
normalized by dividing them by 255 during the training
process for each local model. Moreover, as a pre-processing
step, we applied a hot encoding scheme to the labels of the
images due to the use of categorical cross-entropy as the
loss function. The results of this experiment are presented
in figure 7 as accuracy, precision, recall, and f1-score of the
global model, and its loss with respect to global rounds is
illustrated in figure 8 on testing images of MNIST dataset.
It illustrates the test loss of the global model in terms of the
number of global rounds. On theMNIST test dataset, figure 8
indicates that the proposed framework consistently decreases
the loss of global models as the number of global training
rounds increases. Considering these results, it is evident that
the proposed ARS approach is effective.

It is estimated that global model accuracy, precision,
recall, and f1-score were 24.12 percent, 81.12%, 23.11%, and
20.37% respectively, after the first round. After the second
round, the global model accuracy, precision, recall, and f1-
score were 90%+. In less than five rounds, we were able to
achieve 99.53% accuracy, 99.54% precision, 99.52% recall,
and 99.53% f1-score in all considered metrics of the global
model. In the first round, the global model had a test loss of
2.98 and it decreased to 0.03 in less than five rounds and it
ended up with a minimum loss of 0.02.
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FIGURE 8. Test Loss vs Global Rounds.

3) METRICS VS NUMBER OF EDGE COMPUTERS
This section aims to examine the scalability of the proposed
work and its impact on the evaluation metrics. We conducted
ten experiments to test the scalability of the global model
convergence process by taking into account different numbers
of edge computers. To conduct these experiments, Model
No 3 and the MNIST dataset were used. A total of 10 rounds
and 20 local epochs are carried out in each experiment.
In each experiment, samples from the MNIST dataset were
equally divided between participants.

FIGURE 9. Loss vs Number of Edge Computers.

The pre-processing steps of normalization and one hot
encoding scheme are similar to those used in the previous
experiment. Edge computers trained local models with
20 epochs, 128 batch sizes, Adam as an optimizer, and
categorical cross-entropy as a loss function. The loss of
the global model on MNIST testing images is illustrated
in figure 9. All ten experiments were conducted using
10 edge computers in the first experiment, 20 in the
second experiment, 30 in the third experiment, and 100 in
the tenth experiment. Apart from changing the number
of edge computers from 10 to 100, the configuration of
these experiments remained the same. We were able to
achieve 99% accuracy, precision, recall, and f1-score of

the global model in all these experiments on the testing
dataset, and 0.02 to 0.05 loss of global model testing in
all these experiments. Our proposed strategy is effective in
scalability with constant accuracy, precision, recall, and f1
score. As a result of the experiments, when the number
of edge computers was increased, it took more rounds to
achieve the same accuracy that was achieved with fewer
rounds with fewer edge computers. Because of this, the
number of rounds was increased from 10 to 15 for 90 and
100 edge computers, respectively. In 12 rounds, it gives 99%+
accuracy, precision, recall, and f1-score for 90 and 100-edge
computers. We obtained the same results with fewer than
5 rounds for fewer edge computers. This is because if we
increase the number of edge computers, we will have fewer
dataset samples for each one, resulting in poor local model
training.

According to our findings, our proposed strategy is scal-
able and capable of accommodating many edge computers
while maintaining good accuracy. Furthermore, we conclude
that the number of roundsmust be increased if we increase the
number of edge computers without increasing the number of
samples in the local dataset.

4) ACCURACY VS NUMBER OF GLOBAL ROUNDS
This experiment is designed to determine the effect of a
number of rounds on test accuracy. This experiment uses
model No 3 as the local model and MNIST as the local
dataset. This experiment includes 50 global rounds, 10 edge
computers, and 20 local epochs. Furthermore, each local
model training was performed with 128 batch sizes, Adam as
an optimizer, and categorical cross entropy as a loss function.
The pre-processing steps are the same as those we employed
in our previous experiments.

FIGURE 10. Accuracy Vs Number of Global Rounds.

The results of this experiment are demonstrated in 10
and in 11 of the global model on the MNIST test dataset.
In the first round, the accuracy and loss were 29.26% and
2.18 respectively. after the 5th round, the test accuracy and
loss of the global model were 99.33% and 0.02 respectively.
Even though the number of rounds was increased, accuracy
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FIGURE 11. Loss vs Number of Global Rounds.

and loss did not improve much, but, at the 45th round,
we obtained the maximum accuracy of 99.56%. The further
increase in the number of rounds increases the loss, which
increases from 0.02 to 0.05. As a result, we conclude that the
number of rounds should be fine-tuned to achieve minimal
loss for the convergence of the global model.

5) DIFFERENTIALLY PRIVATE LOCAL MODEL SHARING
As a way to tackle privacy leakage while sharing local model
weights by integrating Differential Privacy into local model
training. this experiment uses 30 rounds, 20 edge computers,
and 50 local epochs. Differentially Private Stochastic gradient
descent (DPSGD) was used as an optimizer for the local
model. The other parameters of the local model have a batch
size of 250, a categorical cross-entropy as a loss function, and
a learning rate of 0.25. Similarly to the previous experiments,
this dataset was pre-processed.

Our noise integration was based on Gaussian noise.
It is a form of white noise frequently introduced to
data or computations to mask original values and ensure
privacy preservation [72]. In our approach, we introduced
Gaussian random noise to a local model of a convolutional
neural network (CNN) during the optimization phase. This
was achieved using the DPKerasSGDOptimizer from the
TensorFlow-Privacy library.

The integration of Gaussian noise occurs in the gradients
before updating the local model parameters. The extent of
noise to be added is determined by the noise multiplier
parameter. This parameter is bounded by a lower zero limit
and lacks a strict upper boundary. In practice, it is often
set to a relatively small value to prevent excessive noise,
as greater noise would lead to reduced model accuracy. It is
a trade-off between privacy and accuracy. How much noise
should be added depends on the accuracy threshold limit
and the problem or situation’s requirements. The amount of
noise to be added is defined by the parameter named noise
multiplier. We used a 0.3 value as a noise multiplier and
achieved 98.0%+ accuracy, precision, recall, and f1-score,
which is still better than the results of the related work

presented in the table No 2. We examine less than 2% drop in
global model accuracy after integrating Differential Privacy,
but this is not a significant loss in the context of achieving
privacy and masking the impact of individual records on the
overall results.

6) ANALYSIS OF TIME CONSUMPTION
This section aims to analyze the time consumption associated
with the proposed strategy. It is also essential to consider
the impact of increasing the number of edge computers and
global rounds on time consumption. In these experiments,
edge computers were increased from 10 to 100, and global
rounds were increased from 1 to 10. Time module in Python
is used to monitor the computation time. To train the local
model, we considered Model No. 1 presented in figure 3
and used MNIST as the local dataset. As in the previous
experiments, the same pre-processing steps are followed,
and the MNIST dataset is divided equally among all edge
computers. This experiment’s results are shown in figure 12.

FIGURE 12. Time Consumption and Number of Edge Computers.

The training time of the local model was not included in
the analysis, and only the proposed strategy was considered.
The reason for not including the local model training time is
that our proposed work does not rely on any specific local
model, and the local model training time is not constant and
depends on the size of the local dataset and the architecture
of the local model. The time required for 10-edge computers
was 38.89 seconds, 59.38 seconds for 20-edge computers,
and 225.81 seconds for 100-edge computers. Taking this
analysis into account, we found that increasing the number
of global rounds did not affect the time taken by the proposed
strategy, but increasing the number of edge computers
linearly increased the time as shown in figure 12.

7) COMPARATIVE ANALYSIS
This section aims to analyze the proposed work in light of
state-of-the-art research. We performed two experiments on
two different datasets by using two different local models.

We consider the local model 3 and the MNIST dataset
in the first experiment. This experiment follows the same
pre-processing steps as the previous one. Simulated edge
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TABLE 2. Comparative Analysis on MNIST dataset.

TABLE 3. Comparative Analysis on CIFAR-10 dataset.

computers were given equal shares of the training samples
of the MNIST dataset. During this experiment, 10 rounds
were conducted, 20 local epochs were created, and 20 edge
computers were simulated. The local model 3 was trained
with 128 batch size, Adam optimizer, and categorical
cross-entropy as loss function.

This experiment’s results and comparison to recent work
are presented in table 2 regarding global model accuracy,
precision, recall, f1-score, and loss for the test images of
MNIST. We achieved better results than the recent work,
which focused only on accuracy and did not consider other
important evaluation metrics. As a result of this experiment,

the highest accuracy, precision, recall, and f1-score were
99.53%, 99.54%, 99.52%, and 99.53% respectively, and
achieved the lowest global model loss with the value of 0.02.
The Confusion Matrix of the global model on MNIST test
samples is presented in figure 13.

As part of the second experiment, the local model 4 and
the dataset for CIFAR-10 were considered. The simulation
consisted of three rounds, five local epochs, and ten edge
computers. The CIFAR-10 training samples were evenly
divided and given to the edge computers for local model
training. For the training of the local model, 64 batch
sizes were used, an SGD optimizer was applied, and the

154050 VOLUME 12, 2024



S. M. A. Abbas et al.: UAVs and Blockchain Synergy: Enabling Secure Reputation-Based Federated Learning

FIGURE 13. Confusion Matrix of the global model on MNIST Dataset.

FIGURE 14. Confusion Matrix of the global model on CIFAR-10 Dataset.

loss was computed using sparse categorical cross-entropy.
Comparisons between the study results and those of recent
related work are presented in table 3. We achieved more than
90 percent accuracy, precision, recall, and F1-score in just
two global rounds, with a global model loss of less than
0.28. After the third global round, the accuracy, precision,
recall, and f1-score were 92.74%, 92.76%, 92.74%, and
92.71% respectively, and obtained a 0.24 loss. The confusion
matrix of these results is illustrated in figure 14. The
results are clearly superior to those of recent state-of-the-art
studies.

VI. CONCLUSION
This framework stands out because of its unique integra-
tion of differential privacy, the InterPlanetary File System
(IPFS), and Solidity smart contract, all orchestrated by an
Accumulative Reputation Score (ARS). Several challenges
encountered in UAV-based FL for smart cities are addressed
by the proposed framework, including single-point failure,
privacy leakage, scalability, and global model verification.

By utilizing differential privacy, participants’ local data is
protected, while the decentralized nature of the framework
minimizes the risk of single-point failure.

The proposed framework was carefully assessed, and we
achieved better results than the existing work. The highest
accuracy, precision, recall, f1-score, and loss achieved by
the proposed framework were 99.53%, 99.54%, 99.52%,
99.53%, and 0.02 on the MNIST dataset, and 92.74%,
92.75%, 92.74%, 92.71%, and 0.24 on CIFAR-10 dataset
respectively. The results showed that by exploiting the
distributed nature of federated learning and the effectiveness
of IPFS for off-chain model storage, the proposed strategy
outperforms compared to the existing work.

In the future, we intend to propose a secure authentication
mechanism to enhance security, a participant selection
mechanism to Improve fairness and incentivize participation,
a model compression mechanism to Reduce communication
overhead, and a fair incentive mechanism to Encourage
participation and improve global model performance for the
framework are under consideration.
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