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Abstract—The Routing Protocol for Low Power and Lossy 

Networks (RPL) plays a pivotal role in IoT communication, 

employing a rank-based topology to guide routing decisions. 

However, RPL is vulnerable to Decreased Rank Attacks, where 

malicious nodes illegitimately lower their ranks to manipulate 

routing paths. While exploring the applicability of machine 

learning (ML) techniques for attack detection holds promise, their 

effectiveness is often overlooked in the context of attacker position 

within the network. This study bridges this gap and delve into 

investigating the impact of attacker position on Decreased Rank 

attack detection using ML-based approaches. Our findings reveal 

that the success of attack detection is highly contingent on the 

attacker's proximity to the network root, highlighting the 

importance of considering network topology in attack mitigation 

strategies.  

Keywords— Internet of Things (IoT), IoT Security, RPL 

Standard, Decreased Rank Attack 

I. INTRODUCTION 

Recently the Low-power and Lossy Networks (LLNs), a 

collection of interconnected tiny sensor nodes, have been 

considered one of the key enabling blocks of the ever-growing 

Internet of Things (IoT) paradigm [1], [2]. The communication 

between LLNs devices is subject to restrictions on the 

performance as they utilize limited resources in relation to 

memory footprint, processing, and power [1]. To cater for such 

limited resources, the Internet Engineering Task Force (IETF) 

has specified the IPv6 Routing Protocol for LLNs (RPL) [3] as 

the routing standard for such networks. Indeed, and since it was 

a proposal, the RPL’s security aspects have been analyzed by 

several research efforts. It has been reported that the existence 

of multiple security attacks needs to be addressed to facilitate 

the adoption of the protocol in a wide range of applications 

[4][5][6][7]. RPL proposes optional cryptography modes to 

secure its communication aiming to provide communication 

integrity, confidentiality, and authenticity. However, the LLNs 

devices are not usually tamper-resistant so malicious actors can 

still easily get control of and extract security primitives to 

mount several types of attacks. In addition, implementing 

security modes of RPL can greatly degrade the network 

performance as many of these security primitives, such as 

digital signatures, are power-hungry and require an abundant of 

processing and storage resources that cannot be met by 

resource-constrained devices [6] [7]. While some of attacks 

against RPL are already well-studied in the literature as they are 

inherited from WSNs such as the blackhole attack which drops 

received packets, some others are unique to RPL and have not 

yet been well-studied [8][9]. The Decreased Rank Attack is one 

of these attacks unique to the RPL standard. The Rank is a 

property in RPL which relatively represents the path quality to 

the Destination-oriented Directed Acyclic Graphs (DODAGs) 

root and based on routing decisions are made. Each RPL's node 

calculates its own rank based on a specific objective function 

and the rank of its preferred next hop (parent) to the root which 

is then communicated to immediate neighbor to calculate in 

turn their ranks [10][11]. A node receiving multiple rank values 

from multiple neighbors should opt to select the neighbors with 

the lowest rank value as its preferred parent. Hence, the rank 

property can be exploited by a malicious actor, internal or 

external, to announce a fake lower value of the rank compared 

to other nodes in the network so misleading such nodes into 

selecting the attacker as their preferred parent towards the 

DODAG root. The Decreased Rank attack can be combined 

with other attacks to further damage the network including, for 

instance, selective forwarding or blackhole attacks which can 

now be made more effective as the attacker is locating itself in 

a more strategic position where it receives all traffic from 

neighboring nodes [12][13][14][15][16].      

Several research studies have been proposed to develop 
solutions for detecting or mitigating the attacks against RPL 
including the Decreased Rank Attack reporting some 
encouraging results [17][18][19][20]. However, these studies 
were carried out under restricted scenarios that do not account 
for the position of the attacker in the network which we 
considered in this study. Contrary to the previous literature, we 
found that the successful detection of the Decreased Rank attack 
greatly relies on the position of the attacking node. Hence, a ML-
based solution will be only effective under scenarios where the 
attacker is located more than two hops away from the root of the 
network, otherwise it fails. The rest of the paper is organized as 
follows. Section II briefly reviews the basic operations of RPL 
protocol and its security issues highlighting the decreased rank 
attack. An overview of related work around the attack is 
provided in Section III. The ML-based developed solution is 
presented in Section IV highlighting the obtained results. 
Finally, conclusion and future work are reported in Section V. 

II. RPL CONCEPTS AND OPERATIONS 

RPL [3] is basically an IPv6 proactive distance-vector 

routing protocol designed by the IETF community specifically 



to fulfill the unique requirements of a wide range of low-power 

applications. It organizes its physical network into a form of 

DODAGs where each DODAG is rooted at a single destination, 

referred to as the LBR (LLNs Border Router) [3][5] as shown 

in Figure 1. The term “upward routes” is used to refer to routes 

that carry the traffic from normal nodes to the root (i.e., LBR) 

whereas routes that carry the traffic from the DODAG root to 

other nodes are called the downward routes [3]. The term 

Objective Function (OF) is used to describe the set of rules and 

policies that governs the process of route selection and 

optimization, in a way that meets the different requirements of 

various IoT applications [3]. In technical terms, the objective 

function is used for two primary goals: first, it specifies how 

one or more routing metrics, such as energy or latency, can be 

converted into a Rank, a value that reflects the node’s relative 

position in the network; second, it defines how the Rank should 

be used for selecting the next hop (preferred parent) to the 

DODAG root. Currently, two objective functions have been 

standardized for RPL namely, the Objective Function Zero 

(OF0) [10] and the Minimum Rank with Hysteresis Objective 

Function (MRHOF) [11]. The OF0 is designed to select the 

nearest next hop to the DODAG root with no attempt to perform 

any load balancing. The Rank of a node is calculated by adding 

a strictly positive scalar value (rank-increase) to the Rank of a 

selected preferred parent utilizing a specific routing metric such 

as hop count or the expected transmission cost (ETX). For the 

parent selection, a node running OF0 always considers the 

parent with the least possible rank as its preferred parent. OF0 

considers also selecting another parent as a backup in case the 

connectivity with its preferred parent is lost. Unlike OF0, the 

MRHOF is designed to prevent excessive churn (i.e., frequent 

parent change due to lower rank values) in the network 

topology and a node will not always replace change its current 

preferred parent to a parent with a lower rank value unless a 

significant change in the cost has been discovered (i.e., the 

Rank has changed by more than a pre-defined threshold called 

the Hysteresis value). 

 

Figure 1. A typical LLNs 

To facilitate the upward traffic pattern, a DODAG topology 

centered at the network root must be constructed. In such a 

topology, each non-root node willing to participate in upward 

communication must select one of its neighbors to act as that 

node default route (DODAG parent) towards the root [3]. The 

construction of the DODAG starts with the root multi-casting 

control messages called DODAG Information Objects (DIOs) 

to its RPLs neighbors. The DIOs carry the necessary routing 

information and configuration parameters required to build the 

DODAG including the rank property [3] [4]. An RPL node 

receiving a multicast DIO message will: (1) add the sender 

address to its candidate parent set; (2) calculate its distance 

(rank) with respect to the DODAG root based on the rank of 

that candidate parent, routing information advertised; (3) setup 

its default route (preferred parent); and (4) update the received 

DIO with its own rank and multicast it to other neighboring 

nodes, enabling them, in turn, to perform the previous 

operations [3][4]. 

 

Figure 2: DODAG topology. Arrows represent child-parent relationships, lines 
represent alternative connections, numbers inside circles represent the ranks 

values of nodes while other numbers refer to the quality of connections. 

A. The Decreased Rank Attack 

The RPL routing standard is vulnerable to a wide range of 

attacks, which can be roughly categorized into three classes 

[12] [13]. In the first class (resources), the attackers aim to 

deplete network constrained resources such as power, 

bandwidth, and memory. For instance, an attack targeting the 

energy resources can be particularly damaging as it can greatly 

shorten the network lifetime and indirectly damage the 

network's reliability. In the second class (topology), the 

attackers target the network topology usually by forcing the 

protocol to build sub-optimized topology or isolating some 

nodes from communicating with the rest of the network. In the 

third class (traffic), the attackers target the traffic of the network 

through traditional traffic analysis or eavesdropping attacks 

with the main aim to gather information that can help in 

launching the previous two classes.  

The Decreased Rank attack is one of the most serious attacks 

that could mounted against the RPL protocol within the IoT 

6LowPAN communication standard [8].  As mentioned earlier, 

the Rank property plays a crucial role in building and 

optimizing the routing paths in RPL's networks and under both 

standardised objectives functions (i.e., OF0, MRHOF), a node 

with a lower rank would always be preferred to take upon the 

next hop role towards the DODAG root. In addition to 

optimizing the network topology, the rank property plays a 

fundamental role in building a loop-free topology. 



 In the Decreased Rank attack, a malicious actor 

illegitimately manipulates the rank property and broadcasts to 

its neighboring nodes a DIO with a fake decreased rank value. 

This may trigger the targeted nodes to change their preferred 

parents and select the attacker as their next hop to the root. A 

successful attack may have a devastating impact on the network 

topology with major issues including: (i) non-optimized route 

formation, (ii) and routing loop creation. The immediate 

outcome of that is damaging the reliability of the network as 

traffic now is not forwarded through optimal routes so packet 

delivery ratio may be decreased, and latency is increased which 

is worsened by the likely formation of loops. In addition, the 

formation of loops would trigger RPL's repair mechanisms 

which requires the protocol to speed up control messages 

transmission (i.e., DIOs) in a useless attempt to fix the created 

loops. Indeed, this only has the effect of depleting network 

limited resources with more energy consumption and less 

bandwidth available for the data plane traffic exacerbating 

further the issue of decreased reliability and increased latency. 

 

Figure 3. An example of the decreased rank attack. The initial state (a) 

represents the case before the attack where the topology is constructed 

assuming OF0 with the hop-count metric while (b) represents the case 

after the red node launched the decreased rank attack 

III. RELATED WORK 

Several ML-based solutions have been proposed in the 
literature to detect the Decreased Rank attack. For instance, an 
ML-based anomaly-based rank attack detection solution is 
proposed in [15] utilizing Support Vector Machines (SVMs). 
The developed IDS is chosen to be deployed centrally on the 
border router as limited-resources normal nodes cannot tolerate 
the expensive operation of such a system. However, no details 
are provided on how the model is trained. In addition, the 
proposed system was not evaluated under different locations of 
the attacker node. 

A second ML-based rank attack detection method is 
developed in [17] utilizing Multi-Layer Perceptron (MLP) 
neural network. The operation of the proposed solution is 
divided into three stages. In the first stage, the rank attack is 
simulated using Cooja with the results saved in pcap file. The 
pcap file is then converted in the second stage to CSV file where 
the data is extracted, filtered, and converted to a readable data. 
The MLP algorithm is applied in the third stage to detect the 

attack. The proposed IDS was showing to be effective in 
detecting the attack, however, it was unclear which features are 
extracted and used for classification purposes in addition to the 
absence of any analysis pertaining to the attacker location.  
Another framework named SVELTE is proposed in [20] for 
detecting routing attacks of the RPL protocol under the 
6LowPAN standard. SVELTE employs a hybrid approach for 
intrusion detection where some modules are placed on the 
border router while some others are hosted on the constrained 
nodes of the RPL network. The framework was then evaluated 
by means of Contiki operating system and Cooja with a 
maximum number of nodes of 32. The proposed framework was 
shown to have a good capacity in detecting the respective attacks 
while not resulting in significant increase in the overhead in 
terms of energy consumption or memory footprint. One of the 
noticeable issues of SEVELTE is the unclarity regarding how to 
set the threshold value that governs the process of classifying 
nodes into malicious nodes. It also exhibits the same limitation 
of the previous two solutions pertaining to the location of the 
attacker.   

The authors in [21] claimed that the existing IDSs consume 
too much resources, thus, they developed a sink-based intrusion 
detection system to address the sinkhole attack in 6LoWPAN 
networks. The process starts by having each node 
communicating to the sink some information including its IP 
address, preferred parent IP address, and rank encrypted with a 
key. The sink then compares the node's current rank to its 
previous rank and any node with a difference greater than a 
specific threshold is considered as malicious. NS2 was used to 
evaluate the proposed and is claimed to show better detection 
capacity with less overhead. However, it is unclear why the 
messages were encrypted. In addition, the nodes are 
communicating a bunch of information to the sink raising the 
concern of significant overhead introduced especially if the 
network has a high churn (i.e., continues change of the preferred 
parent).   A hybrid anomaly-based and specification-based IDS 
was developed in [22] for detecting the selective forwarding and 
sinkhole attacks in 6LoWPAN networks. The proposed 
framework deploys specification-based agents in the router 
nodes to analyze the behavior of such nodes and send the results 
to the sink node. The received results at the sink node are then 
analyzed further using an anomaly-based agent based on the 
distributed MapReduce architecture to detect any malicious 
nodes. It was shown that the developed model achieved 
promising classification accuracy in comparison to other 
approaches in the litterateur. However, such a hybrid system 
may introduce a significant overhead to the resource constrained 
devices. Like other proposed detection approaches, this 
approach did not elaborate on how the detection accuracy might 
be affected under different locations of the attacker node. 

IV. ML-BASED DETECTION OF THE DECREASED RANK 

ATTACK 

Several publicly available datasets that can be used for 
intrusion detection are exist, however, these are not specifically 
created for IoT 6LoWPAN networks and they only include 
traces of general attacks. There are also some recent datasets 
devoted for routing attacks in 6LoWPAN networks including 
the Decreased Rank attack, however, these are not publicly 
available such as the IRAD dataset [23]. In addition, such private 



datasets do not include the specific scenarios that we aim to 
investigate in this study.   Hence, we opted to create a new 
dataset devoted for the Decreased Rank Attack. The 
distinguishing aspect of this new dataset is that we have varied 
the location of the attacker as we theorize that the location of the 
attacker with respect to the DODAG root would have a profound 
effect on the efficiency of the ML-based solution. 

A. Raw Data Generation  

To generate the dataset, we used Contiki operating system 

and Cooja emulator following the methodology in [23]. Contiki 

is a lightweight and open-source operating system designed 

specifically for low-power resource-constrained IoT networks 

[17]. It features a highly optimized networking stack including 

several IoT standards such as CoAP, UDP, 6LoWPAN and 

IPv6 on the top of implementing the RPL standard fundamental 

mechanisms.  

To emulate the exact binary code that runs on real sensor 

devices, Cooja [18], a cross-level simulator for Contiki, was 

used to carry out the simulation experiments. Cooja 

incorporates an internal hardware emulator called MSPsim 

[19], which is used in our simulations to impose hardware 

constraints of the Tmote Sky platform, an MSP430-based board 

with an ultra-low power IEEE 802.15.4 compliant CC2420 

radio chip. We used the Unit Disk Graph Radio Medium 

(UDGM) radio protocol, the CSMA/CA protocol at the MAC 

layer and the ContikiMAC as a radio duty cycling (RDC) 

protocol. The ContikiRPL library was altered to implement the 

Decreased Rank attack.  We aim to investigate the feasibility of 

ML-based solutions in detecting the Decreased Rank Attack 

under various locations of the attacker node. Thus, we 

simulated three different scenarios for the attacker in relation to 

the DODOAG root as follows: 

• Level 1: we placed the attacker in the range of the DODAG 

root (one hop away from the root). 

• Level 2: we placed the attacker two hops away from the 

DODAG root, so it is in the range of at least one immediate 

neighbor of the root, but not in the range of the root. 

• Level 3: we placed the attacker three hops away from the 

DODAG root, so it is neither in the range of the root nor in 

the range of one of its immediate neighbours. 

Contiki OS and Cooja simulator are used to emulate an IoT 
network and collect the results of both abnormal and benign 
traffic for the three scenarios (i.e., Level1, Level 2 and Level 3). 
Cooja has 6LoWPAN packet analyzer within the radio messages 
plugin that gathers raw data pertaining to the traffic exchanged 
in the network. The raw data includes the sequence number, the 
time, the source and destination addresses (reduced to node IDs), 
the packet length, the packet type (i.e., DIO, DAO, DIS, ACK, 
UDP) and the protocol type (i.e., IPv6, ICMPv6, RPL, 
IEEE802.15.4).  Table 1 shows a sample of the raw data 
obtained by the Cooja 6LoWPAN packet analyzer. In addition, 
Cooja allows transforming the raw data into a format suitable 
for pre-processing and classification directly from the plugin 
which is used to transform the raw data into a text format. 

Table 1. A sample of the raw data extracted by Cooja analyzer 

No. Time From To Length Data 

330  00:02.1  9 - 64 IPv6:RPL:DIS 

331  00:02.3 7 3 64 IPv6:RPL:DIS 
332 00:02.5 11 - 76 IPv6:RPL:DIO 

334 00:02.8 3 - 76 IPv6:RPL:DIO 

335 00:02.9 8 9 76 IPv6:RPL:DIO 
336 00:03.1 5 6 97 IPv6:RPL:DAO 

337 00:03.2 3 7 5 IPv6:RPL:Ack 

338 00:03.4 7 3 61 IPv6:RPL:UDP 
339 00:03.5 2 12 70 IPv6:RPL:UDP 

B. Data Preprocessing and Feature Generation. 

It is important to pre-process the dataset and extract the 
features and then  transform it into a format that is understood 
by the underlying learning model.  For instance, raw data in the 
form of text may contain errors and inconsistencies, and is often 
incomplete, making it hard for the model to extract 
representative information and capture the dependencies among 
dataset features. In addition, the pre-processing of raw dataset 
reduces its complexity and allows for more efficient learning. 
For these reasons, data pre-processing stage was carried out 
through several steps. For example, the nonnumeric data was 
converted to numerical data for optimal performance. The time 
was converted from the analyzer format into seconds.  

In the Decreased Rank attack, a malicious node can 

announce a lower rank in a DIO message forcing other 

neighboring nodes to choose the attacker as their next hop to 

the DODAG root. In theory, it is expected that the attack will 

affect the network through creating loops, thus triggering RPL 

repair mechanisms to resolve such loops which is achieved 

through more frequent transmission of control messages. 

Hence, it is projected that the number of control messages 

would increase significantly under the attack.  Accordingly, we 

aim to use the counts of control messages per time unit as a 

feature. Additionally, it is obvious that if the attack is 

successful, the nodes will forward their data-plane traffic via 

the attacker leading to an increase in the number of data packets 

of the malicious node. Thus, we use the count of data-plane 

traffic per time unit as a metric. We aim to use this anomaly as 

a feature. Finally, we ended up with a total of 7 features 

collected over a time frame of 10 seconds including time, 

dioCount, daoCount, disCount, ackCount and udpCount in 

addition to the class label (Note we also done experiments on 

1-second window as in [23], however, the results were less 

accurate).  We followed the same methodology [23] for the 

labelling process so the traffic which includes the malicious 

activity is labelled as 1 and benign traffic is labelled as 0. A 

sample of the dataset created is shown in Table 2. Then three 

separate datasets were created as follows.  

• Dataset 1: This combines the benign traffic and malicious 

traffic of level 1 and level 2 attacks. 

• Dataset 2: This combines benign traffic and malicious 

traffic of all levels. 

• Dataset 3: This combines the benign traffic and malicious 

traffic of level 3. 

 



Table 2. A sample of the generated dataset  

Time DIOs DAOs DISs UDPs ACKs Class 

100  78 0  0 62 5 1 

110  36  39  0 150 1 1 

120  118  144  0 262 25 1 

200 21 0 0 66 77 0 

210 23 0 0 69 13 0 

 

C. ML Models Training 

Several ML-based classification models are used for 

intrusion detection including Decision tree (DT), Random 

forests (RF), K-Nearest Neighbours (KNN), Naïve Bayes (NB) 

and Logistic Regression (LR) utilising the following 

performance metrics: 

• Accuracy: refers to the percentage of correctly predicted 

instances, True Positive (TP) and True Negative (TN), 

made by the classification model out of all the predictions 

made, True Positive (TP), False Positive (FP), False 

Negative (FN) and True Negative (TN). It is calculated as 

in Eq. 1. 

 Accuracy = (TP + TN) / (TP+FP+ TN + FN)  () 

• Precision: refers to the ratio between the True Positive and 

all the positive instances. In our model, it refers to the 

number of true instances classified as abnormal out of all 

abnormal instances as given in Eq. 2. 

 Precision = TP / (TP+FP)  () 

• Recall: refers to the ratio between the True Positive and all 

the instances classified as positive. In our model, it refers 

to the number of true instances classified as abnormal out 

of all instances classified abnormal by the model as given 

in Eq. 3. 

 Recall = TP / (TP+FN)  () 

D. Results and Discussion 

As mentioned above, five ML models have been trained on 

the created datasets.  The performance metrics of Dataset 1, 

Dataset 2 and Dataset 3 are given in Table 3, Table 4 and Table 

5 respectively. While all models seem to show promising 

detection results for Dataset 3 (Table 3) when the attacker is 

located more than two hops away from the DODAG root, 

reaching a classification accuracy rate of around 98%, that 

efficiency in detecting the attack did not hold up for Dataset 1 

and Dataset 2. The accuracy of ML models for Dataset 1 and 

Dataset 2 dropped to around 78% and 67% respectively 

showing limited effectiveness in this context. In general, the 

effectiveness of ML models in detecting the attack under 

Dataset 3 can be attributed to the fact the attack, where the 

attacker is located in the third level, has affected the 

performance metrics used for training the models. However, the 

attack, where the attacker is located in the first or the second 

levels, has not shown any noticeable impact on the performance 

metrics.   

Indeed, in RPL’s networks, an extension header option 

“RPL Option” is used to indicate the direction of the packet 

using a flag named the Down 'O' flag. Hence, a packet sent by 

a child node to its parent should not set the Down flag indicating 

that the packet is heading upward and vice versa. DODAG 

inconsistency is detected when a RPL node receives a packet 

with the Down ’O’ bit set from a node with a higher rank (child 

node) and vice-versa. This case is controlled by another flag 

named the Rank-Error ’R’ bit. When an inconsistency is 

detected by a node, two scenarios are possible: i) if the Rank-

Error flag is not set, the forwarder node sets that flag and the 

packet is forwarded or, ii) if the ’R’ bit is already set, the node 

discards the packet and the timer is reset and, control messages 

are sent more frequently.  

Evidently, when the attacker is located three hops away 

from the DODAG root, the Decreased Rank attack will create 

loops as a result of the attacker’s parents selecting the attacker 

as their parent. Clearly, this would trigger the scenario 

described in the previous paragraph “DODAG Inconsistency” 

which is resolved in RPL by more frequent transmission of 

control messages, a phenomenon that is picked up by the 

learning models. When the attacker is in the immediate range 

of the DODAG root (Level 1), there is no chance that loops will 

be formed and the case of DODAG Inconsistency would not 

occur as the only possible parent for the attacker is the DODAG 

root itself. Hence, the attack will go silent without disrupting 

the network and hence no metrics could be affected that could 

be fed into the learning model.  

The case is slightly different when the attacker is located 

two hops away from the DODAG root (Level 2). Under this 

scenario, the attacker should announce a rank that is not less 

than that of the DODAG root to mount a successful attack, 

otherwise its announcement will be rejected. Therefore, the 

chance of forming loops is small or unexpected as the attacker 

potential parent should be from nodes in level 1 (nodes in the 

rang of the DODAG root). Evidently, such a potential parent 

would not change its own parent to the attacker node (no switch 

between parents of similar ranks). Like Level 1 attack, Level 2 

will go silent without disrupting the network through creating 

loops and so no noticeable effect on the network that could be 

fed into the learning algorithm. This indicates that the location 

of the attacker should be considered carefully when designing 

introduction detection systems for the Decreased rank attack.  
Table 3. Dataset 1 Performance of ML models (representing the 

attack at level 1) 

Classification 

algorithm 
Accuracy Precision Recall 

DT  0.583  0.584  0.583 

RF  0.616  0.617  0.617 

KNN 0.519  0.519  0.519 

NB 0.55 0.578  0.556 

LR 0.673  0.674 0.674 



 
Table 4.  Dataset 2 Performance of ML models (representing the 

attack at all levels) 

Classification 

algorithm 
Accuracy Precision Recall 

DT  0.741  0.733  0.742 

RF  0.737  0.737  0.737 

KNN 0.683  0.685  0.683 

NB 0.672 0.80  0.67 

LR 0.779  0.778 0.78 

 
Table 5. Dataset 3 Performance of ML models (representing the 

attack at level 3) 

Classification 

algorithm 
Accuracy Precision Recall 

DT  0.976  0.977  0.967 

RF  0.976  0.976  0.976 

KNN 0.975  0.975  0.975 

NB 0.98 0.981  0.981 

LR 0.979  0.979 0.979 

V. CONCLUSION 

In this study, we investigate the capacity of ML-based 
techniques in detecting the Decreased Rank Attack in IoT 
networks. This study reveals an interesting fact pertaining to the 
attack and how effective ML-based are in detecting such an 
attack. While ML-based solutions can effectively detect the 
attack under some scenarios, the study shows that such solutions 
will fail when the attacker is wisely positioned by placing it at 
most two hops away from the DODAG root. To the best of our 
knowledge, this has not been reported by any other study in the 
literature indicating the need for more proactive solutions that 
aim at preventing the occurrence of the attack rather than 
detecting it. 
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