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Abstract—Network slicing is envisaged as the key to unlocking
revenue growth in 5G and beyond (B5G) networks. However, the
dynamic nature of network slicing and the growing sophistication
of DDoS attacks rises the menace of reshaping a stealthy DDoS
into an Economical Denial of Sustainability (EDoS) attack. EDoS
aims at incurring economic damages to service provider due to the
increased elastic use of resources. Motivated by the limitations of
existing defense solutions, we propose FortisEDoS, a novel frame-
work that aims at enabling elastic B5G services that are impervi-
ous to EDoS attacks. FortisEDoS integrates a new deep learning-
powered DDoS anomaly detection model, dubbed CG-GRU, that
capitalizes on the capabilities of emerging graph and recurrent
neural networks in capturing spatio-temporal correlations to accu-
rately discriminate malicious behavior. Furthermore, FortisEDoS
leverages transfer learning to effectively defeat EDoS attacks in
newly deployed slices by exploiting the knowledge learned in a pre-
viously deployed slice. The experimental results demonstrate the
superiority of CG-GRU in achieving higher detection performance
of more than 92% with lower computation complexity. They show
also that transfer learning can yield an attack detection sensitivity
of above 91%, while accelerating the training process by at least
61%. Further analysis shows that FortisEDoS exhibits intuitive ex-
plainability of its decisions, fostering trust in deep learning-assisted
systems.

Index Terms—AI explainability, anomaly detection, application-
layer DDoS, deep transfer learning, economical denial of
sustainability (EDoS), network slicing, 5G and beyond networks
(B5G).

I. INTRODUCTION

N ETWORK virtualization and softwarization are consid-
ered key technological enablers for empowering highly
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dynamic operation and management of 5G and beyond (B5G)
networks. Their joint use is vital for allowing next-generation
mobile networks support diversified and flexible deployment
scenarios, whereby multiple services/verticals can share the
same physical substrate [1]. The concept is commonly referred to
as network slicing, which enables multiple virtual networks (i.e.,
slices) to be created on top of a shared physical infrastructure.
Each slice is devised with customized network capabilities to
fulfill the performance needs of a specific service type, such
as Enhanced Mobile Broadband (eMBB), Ultra Reliable Low
Latency Communications (URLLC), Massive Internet of Things
(mIoT), Vehicle-to-Everything (V2X), and High-Performance
Machine-Type Communications (HMTC) [2].

A network slice instance comprises a set of network func-
tions which are chained and can span across multiple network
domains, including the radio access network (RAN), transport
network, core network (CN), and edge network. The evolu-
tion towards a cloud-native telco architecture is promoted by
standardization bodies as a crucial facilitator for supporting
network slicing, owing to its inherent advantages of network
scalability, elasticity, flexibility, and automation. 3GPP has
mandated cloud-native principles in the design of CN network
functions [2]. Open RAN (O-RAN) Alliance (https://www.o-
ran.org/) is building upon and expanding the 3GPP’s func-
tional split of the New Generation RAN (NR-RAN) to en-
able cloudification of RAN functions. Furthermore, initiatives
like SD-Fabric (https://opennetworking.org/sd-fabric/) and Ter-
aFlowSDN (https://tfs.etsi.org/) are paving the way for cloudi-
fied control plane functions in transport networks. By embrac-
ing cloud-native principles, network functions are designed as
loosely coupled micro-services and deployed as scalable work-
loads on cloud infrastructure.

A key life cycle management operation of network slices
is auto-scaling, which consists in dynamically expanding or
contracting the capacity of a network slice instance to adapt
resources to slice workload to meet the performance desire.
Network slicing allows for flexible and efficient utilization of
resources with greater cost reduction, thanks to the infrastructure
sharing, the dynamic resource provisioning and the auto-scaling
feature enabled by network function virtualization, software
defined networking and cloud computing [3]. Nevertheless,
the auto-scaling capability is a double-edged sword when a
(Distributed) Denial of Service – (D)DoS – attack is underway.
In fact, the auto-scaling capability can reshape an undetected
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(D)DoS attack into an Economical Denial of Sustainability
(EDoS) attack, which engenders economic damages to service
provider due to the increased elastic use of resources as well
as performance degradation as a result of shared resource star-
vation [4]. In network slicing, the undesirable economic and
performance impact of EDoS is a critical concern as it may
spread beyond the slice under attack, affecting the other slices
co-hosted on the same infrastructure [5]. Such adverse impacts
of EDoS attack are posing a serious threat to accelerate the
B5G-powered digital transformation of the industry verticals
such as media & entertainment [6], automotive [7], industry [8]
and energy [9], to name just a few. Thus, providing reliable
dynamic resource provisioning that is EDoS attack aware is
paramount to reap the benefits of network slicing in enabling
profitable beyond 5G services.

Achieving the aforementioned goal is challenging as the re-
cent years have seen a growing trend towards more sophisticated
and stealthier DDoS attacks that are targeting the application
layer rather than the network layer. According to Cloudflare’s
DDoS attack trends 2022 reports, the application-layer DDoS
attacks have massively spiked in the first quarter and their
amount has risen by 72% in the second quarter compared to the
same period last year. The reports reveal also that application-
layer DDoS attacks targeting HTTP protocol increased by 164%
compared to 2021. This trend is also reflected in NETSCOUT’s
latest DDoS Threat Intelligence Report released in early April
2023, revealing that HTTP(S) application-layer DDoS attacks
have spiked by 487% since 2019, with the most significant surge
in the second half of 2022. Such trend is owing to the ability of
application-layer DDoS attacks to imitate legitimate behavior
with low network bandwidth usage, which allows them to bypass
typical traffic-based intrusion detection systems [10]. Moreover,
NETSCOUT’s report highlights a significant increase of 79%
in DDoS attacks on the wireless telecommunications industry,
primarily propelled by the growing adoption of 5G wireless for
residential use. This trend is only going to escalate in the future as
5G penetrates globally. Therefore, without advanced protection
measures, the ever-evolving stealthiness of application-layer
DDoS attacks coupled with the cloud-native transformation of
B5G networks is a serious danger that will foster the prevalence
of EDoS attacks.

Although extensive work has been engaged and several solu-
tions have been proposed to counter DDoS attacks, addressing
the stealthy application-layer DDoS issue is far from being
completely resolved, and even less in 5G and beyond network
slicing environment. Existing solutions suffer from a number of
limitations, which impedes their efficiency and effectiveness.
The complete isolation among slices advocated by resource
isolation based approaches (e.g., [11], [12]) may lead to resource
usage inefficiency or may not be possible to realize due to
lack of strong hardware isolation in the emerging cloud-native
platforms [13]. The ability of application-layer DDoS attacks to
mimic legitimate traffic endows them with the capacity to elude
detection by network traffic analysis based solutions (e.g., [10],
[14], [15]). Leveraging resource scaling capability as a mitiga-
tion strategy by resource allocation-based methods (e.g., [16])
rises the issue of reshaping an undetected application-layer

DDoS attack into an EDoS attack [17]. The emerging anomaly
detection approaches (e.g., [18], [19], [20]) that exploit the
potential of Deep Learning (DL) to identify abnormal behavior
based on anomalies detected in resource usage and/or service
performance metrics are a promising direction to deal with EDoS
attack. However, existing anomaly detection approaches only
consider temporal dependencies between metrics and/or assume
that sufficient amount of historical data is available for training
the DL models to recognize normal behavior patterns.

Motivated by the above-discussed limitations of DL-based
anomaly detection approaches, the serious economic impacts of
EDoS attacks on cloud-native B5G networks, and the limited
research in addressing the EDoS issue in 5G network slicing en-
vironment, we propose in this paper a novel AI-powered frame-
work that aims to proactively mitigate EDoS attacks against
network slicing. The proposed framework, coined FortisEDoS,
enables elastic cloud-native network slices providing 5G ser-
vices on the edge while intelligently safeguarding from mali-
cious resource scaling requests caused by stealthy application-
layer DDoS attacks. It is worth noting that the creation and
deployment of network slices is beyond the scope of this work.
Additionally, and without loss of generality, we consider that
at least CN and service-level network functions of a network
slice are cloudified. FortisEDoS exploits both temporal and
spatial correlations among resource usage and service perfor-
mance metrics and adopt a dynamic thresholding strategy to
foster accurate discrimination of anomalous status of a slice’s
VNF under application-layer DDoS attack, allowing effective
deterring of malicious requests for scaling VNF’s resources.
FortisEDoS capitalizes on the promising capabilities of emerg-
ing DL techniques, particularly Convolutional Neural Networks
(CNN), Recurrent Neural Networks (RNN) and Graph Neural
Networks (GNN), in uncovering complex patterns to capture the
spatio-temporal dependencies. Furthermore, FortisEDoS lever-
ages the concept of transfer learning to facilitate the transfer of
knowledge regarding the normal VNF’s behavior acquired in a
previously deployed slice to a newly deployed slice, empowering
effective identification of anomalous VNF’s status caused by
application-layer DDoS attacks even when representative his-
torical data of normal behavior are scare. To the best of our
knowledge, this is the first contribution of deep transfer learning
in tackling EDoS attacks against network slicing.

The key contributions of this paper can be summarized as
follows:
� We propose FortisEDoS, a novel framework that integrates

a deep transfer learning model to empower highly elastic
and resilient B5G services, deployed as slices, that can
deliver superior quality of experience (QoE) while being
impervious to EDoS attacks.

� We build a new DL-powered forecast-based DDoS
anomaly detection model, coined CG-GRU, that allows
to discriminate anomalous VNF’s status caused by an
application-layer DDoS attack in order to prevent its re-
shaping into EDoS attack. The model can effectively iden-
tify anomalous resource usage and performance metrics
of VNFs by measuring and comparing against a dynamic
threshold the error between the observed metric’s values
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and the predicted ones. CG-GRU combines the advantages
of different deep neural network algorithms to provide both
feature extraction and forecasting capabilities. Specifically,
CNN, Graph Attention (GAT) and Gated Recurrent Unit
(GRU) algorithms are used to extract relevant local fea-
tures, spatial correlations and time dependencies among
VNF’s metrics, respectively, and Multi-Layer Perceptron
(MLP) algorithm is utilized for enabling forecasting capa-
bility.

� We demonstrate how forecasting error heatmaps, created
using predictions generated by CG-GRU, can be used to
enable the explainability of decisions made by FortisEDoS
about the legitimacy or maliciousness of the observed
metrics of a slice’s VNF, allowing to foster trustworthiness
in its decisions.

� We introduce the transfer learning concept into CG-GRU
to quickly and effectively defeat EDoS attacks in newly
deployed slices. This is done by embedding the knowledge
about normal VNF’s behavior learned by a CG-GRU model
associated to a VNF from a previously deployed slice into
the model of the new slice’s VNF.

� We develop an experimental testbed based on the cloud-
native platform Kubernetes to evaluate the effectiveness of
FortisEDoS in preventing malicious resource scaling oper-
ations induced by application-layer DDoS attacks launched
against a virtualized Content Delivery Network (vCDN)
service. The experimental results demonstrate the superi-
ority of CG-GRU model in achieving high overall attack
detection performance with low computation/storage com-
plexity, compared to baseline methods. They show also the
attack detection effectiveness and the computational effi-
ciency of the transfer learning-powered CG-GRU model.

The remainder of the paper is organized as follows. Section II
discusses previous relevant works. Section III introduces the pro-
posed FortisEDoS framework, delineating its architecture and
the design of the deep transfer learning-based DDoS anomaly
detection model. Section IV describes the experimental setup,
detailing the implemented dataset generation and model’s hyper-
parameter tuning processes, and provides a comprehensive anal-
ysis of the performance results. Finally, Section V concludes the
paper and highlights future research directions.

For ease of reference, Table I summarizes the most important
abbreviations (upper part) and notations (lower part) used in this
paper.

II. RELATED WORK

Despite the research efforts devoted to deal with the DDoS
attacks in general and stealthy application-layer DDoS in partic-
ular [21], [22], [23], [24], very few contributions have focused
on tackling the issue in 5G network slicing environment. In what
follows, we review the main defense approaches proposed in the
literature to handle application-layer DDoS attacks, considering
either approaches that are specifically devised or that may apply
for 5G systems. Table II summarizes the investigated defense so-
lutions, highlighting the adopted methodology, ML techniques

TABLE I
MAIN NOMENCLATURE AND NOTATIONS USED IN THE PAPER

used, and key limitations that are either specific to each solution
or common to all solutions adhering to the same methodology.

A. Isolation Based Solutions

Kotulski et al. [11] explored the use of host resource isolation
and network communication isolation as measures to mitigate
DDoS attack in 5G network slicing. Similarly, the work in [12]
attempts to proactively mitigate DDoS attacks in 5G core net-
work slicing using inter- and intra-slice isolation. The work
demonstrates that complete isolation among slices achieved by
inter-slice isolation enables DDoS attack mitigation. However,
complete isolation may result in inefficient resource usage.
Furthermore, the recent trend to evolve VNFs into Cloud-native
Network Functions (CNFs), where the network functions are
running on containers, makes the complete isolation hard to
realize owing to the lack of strong hardware isolation.
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TABLE II
CLASSIFICATION AND GAP ANALYSIS OF EXISTING APPLICATION-LAYER DDOS AND EDOS MITIGATION TECHNIQUES

B. Network Traffic Analysis Based Solutions

Thantharate et al. [14] and Kuadey et al. [25] applied, respec-
tively, Convolutional Neural Network (CNN) and Long Short
Term Memory (LSTM) deep learning techniques to detect DDoS
attacks in 5G network slicing. Nevertheless, the two contri-
butions do not consider low-rate DDoS attacks, focusing only
on high-rate DDoS attacks. In [26], multiple machine learning
(ML) and deep learning (DL) techniques have been used to
detect low-rate DDoS attacks in SDN-based setting. The authors
observed the superiority of the DL model (i.e., Multi-Layer
Perceptron(MLP)) compared to the other ML techniques used
in the paper. In the same vein, the contributions in [10] and [15]
demonstrated, respectively, the potential of MLP and Generative
Adversarial Network (GAN) DL techniques in detecting both
high-rate and low-rate application-layer DDoS attacks based on
analysis of network traffic flows. However, identifying DDoS
attacks by only analyzing the characteristics collected from
network flows may not always be possible, particularly with
the emergence of stealthy application-layer DDoS attacks which

focus on depleting the server’s resources (e.g., CPU, memory,
I/O) while generating a traffic flow that imitates the legitimate
one.

C. Resource Allocation Based Solutions

Somani et al. [27] devised a DDoS mitigation approach that
ensures resource availability to mitigation service during the
attack by sacrificing victim service resources. This may result
in performance degradation, preventing legitimate users from
accessing the service. Li et al. [16] proposed a mitigation strategy
based on dynamic resource allocation to thwart low-rate DDoS
attacks in container-based cloud environment. The mitigation
strategy dynamically regulates the number of container instances
serving for different users and coordinates the resource allo-
cation between instances to maximize the quality of service.
However, the use of resource scaling approach to mitigate DDoS
attacks may result in resource starvation and/or undesirable
costs under DDoS attack. Indeed, the auto-scaling capability can
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reshape a DDoS attack into Economical Denial of Sustainabil-
ity (EDoS) attack, which incurs economic damages to service
provider due to the increased elastic use of resources as well
as performance degradation [4]. Furthermore, the interdepen-
dence between network slices due to virtual network functions
and infrastructure resources sharing rises the risk of indirect
EDoS [30]; that is, the direct DDoS exhausts the resources of one
slice, which may affect the resources shared with other slices,
impacting the performance and availability of provided services.

D. Resource Usage / Performance Analysis Based Solutions

The solutions in this category leverage new sources of in-
formation, namely resource usage and/or performance of ser-
vice under attack, to discriminate malicious behavior caused
by DDoS attacks at application layer to prevent its reshaping
into EDoS attacks. The authors in [28] introduced two variants
of EDoS attack dedicated to NFV-based Self-Organizing Net-
works (SON), namely: Workload-based EDoS (W-EDoS) and
Instantiation-based EDoS (I-EDoS). An entropy-based EDoS
detection approach is proposed where a set of indicators (e.g.,
resource usage, application response time, number of VNF
instances and their productivity) is used to distinguish between
malicious and legitimate behaviors. However, entropy-based de-
tection approaches are vulnerable to spoofing, where an attacker
can make the entropy fit the expected distribution during the
DDoS attack [31]. In [29], XGBoost classifier is used to detect
EDoS attack on a Kubernetes cluster. The XGBoost model is
trained on labeled data to perform a binary classification based
on the statistical information (e.g., mean, minimum, maximum)
computed on response time, CPU load, pod count and node count
metrics. Nevertheless, in real-world applications, labeled data
may be scarce or expensive, and a fully labeled data set on large
scale may not be feasible. Su et al. [32] devised OmniAnomaly,
an unsupervised anomaly detection approach that uses data’s
stochasticity and temporal dependence characteristics to learn
the patterns of normal behavior. The stochasticity and tempo-
ral dependence features are extracted from multivariate time
series using, respectively, variational autoencoder (VAE) and
gated recurrent unit (GRU) techniques. The anomaly detection
approach proposed in [32] has been leveraged by the work
in [18] to detect EDoS in an SDN-based cloud environment.
The detection approach allows to define a dynamic thresh-
old following the peaks over threshold (POT) approach [33]
to discriminate malicious traffic. It is worth noting that the
proposed solution has difficulties in detecting low-rate DDoS
attacks. Furthermore, POT method may not work when there
are many extreme values (or outliers) which do not satisfy the
generalized Patorley distribution (GPD) [34]. The authors in [19]
adopted MAD-GAN [35], a GAN-based multivariate time series
anomaly detection model, to identify EDoS attack in an SDN-
based cloud. The MAD-GAN model uses LSTM algorithm to
capture the temporal correlation of time series distributions.
The nonparametric dynamic thresholding technique [36] is used
to compute the anomaly threshold for discriminating EDoS
attack. Unlike [18], [19], which adopt a reconstruction-based
approach, the work in [20] follows a forecasting-based approach

to counteract EDoS risk in an SDN-based cloud environment.
Specifically, the forecasting-based anomaly detection approach
proposed in [36] is leveraged, which uses LSTM and non-
parametric dynamic thresholding to identify anomalies. This
approach detects anomalies by measuring the error between
the observed metrics’ values and the predicted ones. However,
the anomaly detection models in [18], [19], [20] only consider
temporal dependencies while not explicitly addressing spatial
correlations among features. In fact, the resource usage and
performance metrics are very likely to impact each other; for
example, the increase in the CPU load will certainly affect the
service’s response time. This makes the spatial dependency a
valuable information that needs to be captured to improve the
detection performance. Different from these works, the model
we are proposing in this paper exploits both temporal and
spatial dependencies within the multivariate time series. We
leverage the potential of Graph Neural Networks (GNNs) to
model the spatial correlations. Furthermore, rather than using
a reconstruction-based approach as in [18], [19] and similar
to [20], we adopt a forecasting-based approach. Following this
approach, it is possible to build a multi-purpose model that can
serve not only for anomaly detection task but also for proactive
and dynamic resource allocation tasks, which will inevitably
reduce the cost of training and running different models. Finally,
the above mentioned solutions assume that sufficient amount of
historical data is available for training the deep learning models
to recognize normal behavior patterns, which may not be the case
for a newly deployed network slice. To address this challenge,
we exploit transfer learning paradigm to leverage the knowledge
gained by a model at a network slice with enough data to improve
the learning in the new slice.

III. FORTISEDOS ELASTIC MOBILE VCDN FRAMEWORK

A. Framework Overview

In the following, we present FortisEDoS, a novel framework
that aims to enable elastic 5G network slicing while intelligently
safeguarding from malicious resource scaling requests caused
by stealthy application DDoS attacks. As illustrated in Fig. 1,
we consider a virtualized Content Delivery Network (vCDN)
provided as a service over a MEC-enabled 5G network to deliver
video content. It is worth mentioning that our solution is generic
and not tied to this specific use case. The solely motivation
behind considering the vCDN use case is the foreseen growth in
mobile video traffic, which is currently estimated to account for
69% of all mobile data traffic and forecast to increase to 79% in
2027, according to the recent Ericsson Mobility Report [37].

The vCDN service provider, which could be a mobile net-
work operator (MNO) or a third party, takes advantages of
network slicing and Multi-access Edge Computing (MEC)
paradigms to offer vCDN services tailored to specific Service
Level Agreements (SLAs) with the vCDN customers (i.e., con-
tent providers). A vCDN service is dynamically deployed on-
demand as a slice into the MNO’s network and could typically be
distributed over multiple cloud domains. Each slice is composed
of a set of basic VNFs (e.g., streamers, caches, transcoders)
chained together to provide a vCDN service instance. The
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Fig. 1. Overall architecture of FortisEDoS elastic 5G vCDN framework.

vCDN slices can share 5G core network (CN) functions (e.g.,
Access and Mobility Management Function (AMF) and (Session
Management Function (SMF)) or have their dedicated 5G CN
functions that can be deployed in the central cloud (e.g., User
Plane Function (UPF)) or moved downward to the edge (e.g.,
Intermediate UPF (I-UPF)) for the sake of performance. Note
that I-UPF and UPF are in charge of steering the user plane traffic
towards the targeted CDN service and towards the data network,
respectively. It is worth mentioning that the provision of vCDN
slices at the edge contribute to CDN’s high performance, high
throughput, and low latency [38]. The VNFs of a vCDN slice
can be deployed over several edge compute nodes and the VNFs
of different vCDN slices can be co-located on the same edge
compute node. We assume a logical isolation level [39] between
vCDN slices instantiated on the edge infrastructure, where the
vCDN functions are dedicated to each vCDN slice, but the virtual
resources are shared.

During the operation of a vCDN slice, the user’s requests for
media content are served by the edge cache instance deployed
in his/her proximity if the content is available there, otherwise,
the content is retrieved from the origin server via the back-haul
network. A vCDN slice can be target of stealthy DDoS attacks
that can reshape into EDoS attacks due to the auto-scaling capa-
bility. The attacker model considered in this study is elaborated
in Section III-B.

The FortisEDoS framework includes a vCDN Management
Layer that encompasses a set of modules providing required
functional capabilities to empower highly elastic and resilient
vCDN services that can deliver superior Quality of Experience
(QoE) while being impervious to EDoS attacks. The vCDN
Management Layer is capable of proactively mitigating EDoS
attacks by adopting a DL-powered forecasting-based approach
for detecting malicious scaling requests caused by application-
layer DDoS attacks. The forecasting problem formulation and
the methodology followed to achieve this goal are detailed

in Section III-C. In particular, the vCDN management layer
consists of the following core components:
� Monitoring System is constantly tracking relevant mon-

itoring information that can provide the actual state of
vCDN services. Data related to resource usage (e.g., CPU,
memory, disk and network usage) and performance (e.g.,
response time) metrics of the different vCDN slice’s VNFs
and their hosting edge nodes are collected as time series via
the deployed monitoring agents. The collected monitoring
data are used to drive the resource scaling and anomaly
detection decisions made by the auto-scaling module and
DDoS Mitigator, respectively.

� Auto-scaling Module dynamically expands or contracts the
capacity of a vCDN slice instance to adapt resources to
slice workload in order to satisfy the committed SLA. The
scaling decision occurs at VNF level based on VNF perfor-
mance, resource usage metrics provided by the Monitoring
System and the associated auto-scaling policies. It is worth
noting that a VNF can either be scaled horizontally by
increasing (scale out) or decreasing (scale in) the number
of VNF instances or vertically by increasing (scale up) or
decreasing (scale down) the resources (e.g., memory, CPU,
storage, network) used by a VNF instance.

� Admission Controller is responsible for intercepting the
scaling-up/out requests triggered by the Auto-scaling Mod-
ule in order to delegate the scaling decision to the DDoS
Mitigator for validation.

� DDoS Mitigator leverages the potential of DL to auto-
matically detect whether the scaling request is due to
legitimate load or rather malicious workload caused by
application-layer DDoS attacks. It incorporates a DL-based
anomaly detection model, coined CG-GRU, which can
effectively identify anomalous resource usage and per-
formance metrics of VNFs and their hosting nodes us-
ing a data-driven forecasting-based approach. In fact, the
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anomalies are detected when the predicted metrics’ values
deviate considerably from the observed ones. If an anomaly
is detected, the scaling operation is tagged as malicious and
will be refused by the Admission Controller. Details on the
proposed CG-GRU model and the selection of the anomaly
threshold will be provided in the subsequent Section III-E
and III-F.

� Data Pre-Processor is responsible for preparing the raw
time series data into appropriate format to fit for CG-GRU
model during training and inference phases. This includes
data cleansing, normalization, and segmentation opera-
tions, as detailed in Section III-D. Note that the data used
for training the model includes only time series of normal
behavior.

� Model Trainer is in charge of building the CG-GRU model
to integrate in the DDoS Mitigator. This involves tuning the
model’s hyper-parameters, training the model on a training
dataset, and assessing its performances on unseen data. We
elaborate further on the strategies adopted for fine-tuning
the model’s hyper-parameters in Section IV-C. In addition
to supporting training from scratch, a key feature of the
Model Trainer is its ability to train the CG-GRU model
using transfer learning. This feature is particularly crucial
when there is a scarcity of representative historical data
for normal behavior, as is often the case for newly de-
ployed slices. We elaborate further on the proposed transfer
learning-based CG-GRU model in Section III-G.

B. Attacker Model

In the context of this study, we assume that the attacker
has control over a subset of user equipments (UEs) that can
legitimately use a 5G vCDN service (e.g., live network streaming
service) delivered via HTTP-based technologies. The attacker
aims at exhausting the vCDN slice’s resources (e.g., CPU,
memory, disk I/O, network I/O) to prevent legitimate users
from accessing the vCDN service or at the very least increase
the service response time, leading to SLA violation. To this
end, we assume that the attacker has the capability to carry
out application-layer DDoS attacks against the vCDN’s VNFs
exposed to end user for content delivery, such as the video
streamer VNF. Particularly, the attacker is able to launch both
high-rate and low-rate HTTP-based DDoS attacks. In high-rate
mode, the attacker mimics a flash-crowd event by flooding the
exposed service with a large number of legitimately formed
HTTP requests in a very short period of time. In the low-rate
mode, however, the attacker sets up multiple HTTP connections
with the exposed service by sending partial HTTP requests at a
very slow rate, which results in exhausting the connection queue
space.

We further assume that the attacker possesses the ability to
generate stealthier patterns of the application-layer DDoS traffic
that can fly under the radar of protection mechanisms that detect
DDoS attacks based solely on characteristics collected from
network flows [10]. Thus, the malicious traffic will reach the
exposed VNF and leads to request for provisioning additional
resources through auto-scaling capability, which can result in

undesirable costs and/or resource starvation, impacting not only
the vCDN slice under attack, but also the other slices co-hosted
on the same computing infrastructure. By exploiting the auto-
scaling capability, the attacker can reshape the application-layer
DDoS attack into an EDoS attack to incur economic damages
to vCDN service provider due to the increased elastic use of
resources as well as performance degradation due to shared
resource starvation.

C. Problem Formulation and Methodology

We consider a set of n slices S = {S1, S2, . . . , Sn}. Each
slice Si is composed of a set of m VNFs Vi = {f i

1, f
i
2, . . . , f

i
m}.

As depicted in Fig. 1, the VNFs of a slice can be deployed
through several nodes and the VNFs of different slices can be
co-hosted on the same node.

Each VNF f i
j ∈ Vi is characterized by a set of features

x ∈ Rd representing the resource usage (e.g., CPU utilization,
memory utilization, system load) and performance (e.g., re-
sponse time) metrics of the VNF. d refers to the dimension of
the features set (number of features) for the VNFs.

The VNF’s metrics recorded at regular intervals over a pe-
riod of time can be formulated as a multivariate time series
X = {x(1),x(2), . . . ,x(T )} ∈ RT×d, where T and d are the
length of the time series and the number of metrics, respectively.
Each step x(t) ∈ Rd in the time series is a d-dimensional vector
{x(t)

1 , x
(t)
2 , . . . , x

(t)
d } representing the metrics data observed on

VNF at time t.
We aim to detect the application-layer DDoS attack by identi-

fying anomalies in the resource usage and performance metrics
of VNFs and their hosting nodes using a forecasting-based
approach, where an anomalous VNF’s status is detected when
the expected metrics values deviate greatly from the measured
ones. As each metric may not only depend on its own historical
values, but also on other metrics’ past, we adopt a multivariate
time series forecasting approach in order to improve the metrics
forecasts, and consequently the anomaly detection accuracy.
Given the observed metrics values of previous w time steps
x(t−w+1), . . . ,x(t), the multivariate time series forecasting task
aims to learn a model F : Rw×d �→ Rh×d for predicting the
future metrics values for the next h time steps, denoted by
x̂(t+1), . . . , x̂(t+h). It can be formally written as

[x̂(t+h), . . . , x̂(t+1)] = F (x(t), . . . ,x(t−w+1)) (1)

Note that the forecasting model is trained to successfully
predict future metrics values from normal values by minimizing
the prediction error. Hence, during the inference, the prediction
error is expected to rise in the presence of abnormal metrics
values due to DDoS attack. Relying on this hypothesis, we
use the prediction error to measure the anomaly score, which
represents the deviation of true metrics values from the predicted
ones. The derived anomaly score is compared against a detection
threshold to determine whether the VNF status at a given time
step is anomalous or not; if the anomaly score is above the
detection threshold, the VNF status is flagged as anomalous.

In the following, we provide details on how the forecast-
ing model is built and how the anomaly scores and detection



BENZAÏD et al.: FORTISEDOS: A DEEP TRANSFER LEARNING-EMPOWERED ECONOMICAL DENIAL 2825

Fig. 2. Overall architecture of training CG-GRU model and selecting the dynamic anomaly threshold.

threshold are calculated. For the reader’s convenience, we have
summarized the key notations used in this paper in the lower
part of Table I.

D. Data Preprocessing

The data pre-processing module aims at preparing the raw
time series data into the appropriate format to fit for the fore-
casting model during training and inference phases. Note that the
train dataset includes only time series data of normal behavior.

First, the raw time series data are cleaned by imputing miss-
ing/infinity values. In this study, we leverage the Last Observa-
tion Carried Forward (LOCF) method to impute the time series
missing values with their corresponding last observed value. The
rationale behind using LOCF method is its simplicity and the fact
that very few missing data were found in our dataset. However,
more advanced imputation methods can be adopted, such as
those relying on Generative Adversarial Networks (GANs) [40],
to deal with high missing-rate situation.

The raw time series data are then normalized using the Min-
Max scaling technique, which scales the values in each time
series to be in the range [0, 1]. The data normalization helps
in alleviating the impact of different scaling among collected
metrics, which improves the model stability and speed up the
training process. The normalized value x̄

(t)
i of a metric x

(t)
i

observed at time step t is calculated as follows:

x̄
(t)
i =

x
(t)
i −min(Xtrain)

max(Xtrain)−min(Xtrain)
(2)

min(Xtrain) and max(Xtrain) are, respectively, the minimum
value and the maximum value of the training set.

Finally, the raw time series data are segmented into a series
of sub-sequences by applying a sliding window technique. As
shown in Fig. 2, the training dataset is constructed as a supervised
dataset, where the inputs are the observed metrics values of
previous w time steps and the outputs are the future values
to forecast for the next h (= 1 in Fig. 2) time steps. Given
a look-back sliding window of size w and step length τ , the
number of sub-sequences in the training dataset can be calculated
as:

|Dtrain| = |Xtrain| − (w + h)

τ
+ 1 (3)

E. Forecasting Model Architecture

Fig. 2 illustrates the overall architecture of the proposed
CG-GRU forecasting model. It is an hybrid model that combines
the advantages of different deep neural network algorithms,
specifically CNN, GNN, RNN and MLP, to provide both feature
extraction and forecasting capabilities. Indeed, deep learning
techniques have proved their capability in unveiling hidden
patterns from a large-amount of time-varying multi-dimensional
data and achieving accurate decisions [41].

The feature extraction stage consists in capturing both tem-
poral and spatial dependencies within the multivariate time
series. Leveraging the high ability of CNN in extracting high-
level representations from data, the local useful features are
extracted from the pre-processed multivariate time series using
a one-dimensional Convolutional (Conv1D) layer. The resulting
features are then fed into a Graph Attention (GAT) layer to de-
rive the spatial inter-dependencies between the VNF’s metrics.
Thanks to the attention mechanism of GAT, different weights
(i.e., attention coefficients) are assigned to each pair of features,
allowing to measure the degree of influence of VNF’s metrics
on each other. The features extracted by the GAT layer are
processed by multiple GRU layers to characterize the temporal
dynamics of the VNF’s metrics. The use of GRU is motivated
by their demonstrated effectiveness and efficiency in modeling
long-term temporal sequences owing to their ability to remember
relevant past observations while inducing reduced computation
costs and complexity.

The forecasting stage takes the spatio-temporal representa-
tions learned by the feature extraction block as inputs for predict-
ing the future VNF’s metrics values. It relies on a fully-connected
network comprising multiple fully-connected layers.

1) Conv1D Layer: A Conv1D layer is employed for the
purpose of automatically extracting relevant local features of
the raw VNF’s metrics data within a sliding window. The local
features are obtained by first convolving the input data with
a learned convolution kernel and then applying a non-linear
activation function. The process of the Conv1D layer can be
formalized as:

hk = f

(
d∑

i=1

Wik ∗ xi + bk

)
(4)
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where f(.) is the non-linear activation function, xi is the time
series of the i-th VNF’s metric, and Wik is the k-th convolution
kernel corresponding to the i-th time series. bk and hk denote,
respectively, the bias and the learned feature map of the k-th
convolution kernel.

2) Graph Attention Layer: The values of the VNF’s metrics
are very likely to influence each other; for instance, the increase
in the number of service requests will certainly increases the
VNF’s CPU usage to handle the received requests. Hence,
capturing the spatial dependency among the VNF’s metrics will
help in achieving more accurate forecasts. To this end, we lever-
age the effectiveness of graphs to model relationships between
entities and the potential of emerging Graph Attention Networks
(GATs) [42] to learn complex relationships in graph-structured
data while assigning varying levels of importance to each re-
lationship through attention mechanism. Compared to previous
graph-based methods, and thanks to the attention mechanism,
GATs have the advantage of capturing the importance levels,
being storage and computationally efficient, not requiring prior
knowledge of the global graph structure, allowing inputs of
variable sizes, and providing the interpretability of the model.
It is worth noting that interpretability is a key property to fos-
ter trustworthy ML-based systems by ensuring accountability,
reliability and transparency [43].

We incorporate a graph attention layer to model and capture
the causal relationships between the VNF’s metrics using a graph
structure where nodes represent the different VNF’s metrics and
an edge between two nodes denotes the relationship between the
corresponding VNF’s metrics. The i-th node is characterized by
a feature vector vi containing the values of the corresponding
VNF’s metric across all w time steps. The relationship between
nodes is weighted according to learned attention coefficients,
which measure the degree of influence of VNF’s metrics on each
other through attention mechanism. The output produced by the
graph attention layer for each node is calculated as follows:

hi = σ

⎛
⎝ d∑

j=1

αijvj

⎞
⎠ (5)

αij = softmax(oij) =
exp(oij)∑d
k=1 exp(oik)

(6)

oij = LeakyReLU(A�.(vi||vj)) (7)

where hi is the output of node vi with the same dimension,
αij is the normalized attention coefficient between nodes vi and
vj , and A ∈ R2w is a column vector of learnable parameters.
σ and LeakyReLU represent non-linear activation functions.
The symbols .� and || denote the vector transpose and the
concatenation operator, respectively.

3) GRU & Dense Layers: The forecasting model is based
on a multi-layer stacked GRU architecture, which consists of
multiple GRU layers followed by multiple dense (i.e., fully
connected) layers with non-linear activation functions. It is
worth mentioning that the stacked nature of the GRU and dense
layers coupled with the non-linear activation functions facil-
itate capturing complex spatio-temporal relationships existing

among the VNF’s resource usage and performance metrics,
which positively influence the prediction accuracy. Moreover,
the use of GRU not only prevents the exploding and vanishing
gradient problems of RNNs, but also reduces the complexity of
the recurrent unit structure while achieving comparable perfor-
mance [44].

Each GRU layer contains several hidden units, each of which
consists of two gates, called reset gate (rt) and update gate (zt),
to update the hidden state. The reset gate forgets irrelevant past
information, while the update gate aims at retaining relevant
information from the previous time step. Formally, the reset and
update gates for time step t are computed by:

zt = σ(Lzxt + Uzst−1 + bz) (8)

rt = σ(Lrxt + Urst−1 + br) (9)

where σ(.) denotes the sigmoid activation function, which re-
stricts the value of all element in reset gate and update gate
between 0 and 1 to capture short and long-term temporal de-
pendencies, respectively. Lz and Lr are the weight matrices
connecting the current time step input xt to the update gate and
reset gate, respectively. Meanwhile, Uz and Ur represent the
weight matrices connecting the previous hidden state st−1 to
the update gate and reset gate, respectively. bz and br are the
bias vectors.

The hidden state st of a GRU unit can be computed based on
the previous hidden state st−1 and the candidate hidden state s̃t
as

s̃t = tanh(Lsxt + Us(rt � st−1)) (10)

st = (1− zt)st−1 + zts̃t (11)

where � denotes the element-wise multiplication. Ls and Us

are the weight matrices related to the current time step input xt

the previous hidden state st−1, respectively. bs is the bias vector.
Note that L∗, U∗ and b∗ are the learnable parameters.

F. Forecast-Based DDoS Anomaly Detection

To set an appropriate threshold for detecting anomalous VNF
scaling requests due to application-layer DDoS attacks, we adopt
a dynamic thresholding methodology [34]. This method allows
to calculate an anomaly detection threshold that is automatically
adjusted according to the past smoothed forecasting errors. It is
worth noting that the key advantage of the dynamic thresholding
method is its reliance on a non-parametric probability distribu-
tion estimation approach, which avoids the limitations of tradi-
tional Gaussian assumptions on the past smoothed forecasting
error distribution.

The forecasting error of the i-th VNF’s metric at time step t,
e
(t)
i , is calculated by

e
(t)
i = |x(t+1)

i − x̂
(t+1)
i | (12)

where x
(t+1)
i and x̂

(t+1)
i are, respectively, the actual value and

forecast value of the i-th VNF’s metric at time step t.
Utilizing the metric-specific forecasting errors, the global

forecasting error of the VNF at time step t, e(t), is
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computed as

e(t) =
1

d

d∑
i=1

e
(t)
i (13)

The dynamic threshold is derived using the smoothed global
forecasting errors at time step t, ξs = [e

(t−w)
s , . . . , e

(t−1)
s , e

(t)
s ],

where w is the historical observing length. The exponentially
weighted moving average (EWMA) algorithm [45] is applied
to smooth the global forecasting errors, allowing to reduce the
false positives. The threshold ε is selected from the set:

ε = μ(ξs) + β ∗ δ(ξs) (14)

such that

ε = argmax(ε) =
Δμ (ξs) /μ (ξs) + Δδ (ξs) /δ (ξs)

|ξa|+ |Eseq|2
(15)

where

Δμ (ξs) = μ (ξs)− μ ({es ∈ ξs | es < ε})
Δδ (ξs) = δ (ξs)− δ ({es ∈ ξs | es < ε})

ξa = {es ∈ ξs | es > ε}
Eseq = continuous sequences of ξa ∈ ξa

Note that Δμ(ξs) and Δδ(ξs) refer to the decrease in the mean
and the standard deviation of the global forecasting errors,
respectively. ξa represents all the global forecasting errors that
are above the dynamic threshold. β in Eq. (14) is selected from
an ordered set B of positive values representing the standard
deviations above μ(ξs). The process of training CG-GRU model
and selecting the dynamic anomaly threshold ε is summarized
in Algorithm 1.

The values of the VNF’s metrics at a time step t are flagged
as anomalous if the corresponding smoothed global forecasting
error e(t)s exceeds the calculated threshold. Algorithm 2 summa-
rizes the anomaly detection process using CG-GRU model.

G. Transfer Learning Empowered DDoS Anomaly Detection

The VNFs of a newly deployed vCDN slice will possibly
lack representative training data that capture all variations of
their normal behavior, resulting in cold-start problem [46] which
may lead to performance degradation of DDoS anomaly detec-
tion. Moreover, waiting until getting sufficient data to train the
forecasting-based model from scratch for effective representa-
tion of normal VNF’s behavior is time and resource consuming.
Considering the envisioned massive number of slices that could
be deployed, it is paramount to reduce the (re)training time and
cost to enable timely detection of attacks and ensure service
profitability.

To address the aforementioned issues, we leverage the po-
tential of transfer learning to exploit the knowledge gained by
a model in previously deployed slice (referred to as source do-
main) for improving and accelerating the learning of a model in a
newly instantiated slice (denoted as target domain). More specif-
ically, we consider transferring knowledge regarding feature

Algorithm 1: CG-GRU Training and Anomaly Threshold
Selection.

Input:
Xtrain: The train multivariate time series
d: The number of metrics
w: The size of the look-back sliding window
h: The length of the forecast horizon
CGGRU(): The forecasting model architecture
valsplit: The ratio of training dataset used for
validation

Output:
Mt: The trained model; ε: The anomaly threshold
� Data pre-processing phase

1: Dtrain ← SlidingWindow(Normalize(Xtrain), w, h)
� Model training phase

2:Mt ← Train(CGGRU(),Dtrain, valsplit) �
Threshold selection phase

3: Y ← [ ]
4: for x, y in Dtrain do � x ∈ Rw×d and y ∈ Rh×d

5: ŷ ←Mt(x) � ŷ is the forecast values of the actual
values y

6: Y.append(ŷ)
7: end for
8: T ← |Dtrain| � Calculate forecast errors per metric

using (12)
9: {{e(t)i }i=d

i=1}t=T
t=1 ← Pred_Err(Y, Ŷ ) � Calculate the

global forecast error using (13)
10: {e(t)}Tt=1 ← Global_Err({{e(t)i }i=d

i=1}t=T
t=1 ) � Select

threshold using Eq. (14) & (15)
11: ε← Find_Epsilon(ewma({e(t)}Tt=1))
12: ReturnMt, ε

Algorithm 2: CG-GRU Based Anomaly Detection.
Input:
Dtest: The test dataset
d: The number of metrics
Mt: The trained CG-GRU model
ε: Anomaly threshold

Output:
Anom: Anomaly decisions on test dataset

1: for x, y in Dtest do
2: ŷ ←Mt(x)
3: {ei(t)}i=d

i=1 ← Pred_Err(y, ŷ)

4: e(t) ← Global_Err({e(t)i }i=d
i=1)

5: e
(t)
s ← ewma(e(t))� Calculate the smoothed global

forecasting error using EWMA algorithm
6: if e(t)s ≥ ε then
7: Anom[t]← 1
8: else
9: Anom[t]← 0

10: end if
11: end for
12: Return Anom
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Fig. 3. Illustration of the transfer learning process. The knowledge on nor-
mal behavior representation obtained from model trained in source domain is
transferred to the new model in the target domain.

representations, characterizing a normal behavior, learned by the
pre-trained model of the source domain to the new model of the
target domain. In fact, deep neural networks are characterized by
their ability to learn general features (i.e., domain-independent)
on the first layers and specific features (i.e., domain-dependent)
on the layers closer to the output [47], allowing transferability
of general features across domains. Inspired by that, we perform
the transfer learning by initializing the feature extraction layers
of the new CG-GRU model with the weights inherited from
the pre-trained CG-GRU model. The fully-connected layers are
replaced with new ones that are fine-tuned (i.e., trained) on the
target data to make the model customized for the associated
VNF. It is worth noting that the weights of the feature extraction
layers are frozen during the fine-tuning phase to preserve the
transferred knowledge. An illustration of the proposed transfer
learning process is given in Fig. 3.

The capability of transferring previous knowledge and fine-
tuning only fully-connected layers results in fast training and
improved detection performances of the new CG-GRU model.

IV. PERFORMANCE EVALUATION

A. Experimental Setup

To evaluate the performance of FortisEDoS, we built a testbed
based on Kubernetes (K8s)1 environment. As illustrated in
Fig. 4, the testbed is composed of two OpenStack cloud plat-
forms interconnected via a secure communication channel. Four
VMs have been deployed on the first OpenStack cloud to setup
a K8s cluster with one master node and three worker nodes.
The K8s is used to deploy the vCDN slices, where each slice

1https://kubernetes.io

consists of two CNFs, namely a video streamer and a cache,
chained together to provide an HTTP-based on-demand video
streaming service. The two CNFs are deployed as K8s services
running a NGINX web server on a pod, and are spread over
two worker nodes. The video streamer service is exposed to the
end user for content delivery, while the cache service is only
reachable from within the cluster. Each vCDN slice instance
has its own namespace to guarantee isolation of API resources
between slices.

A fifth VM, deployed on the second OpenStack cloud, is used
for running the Monitoring System and DDoS Mitigator; they are
instantiated within containers. The VM also serves as a platform
for training and testing the CG-GRU model incorporated in the
DDoS Mitigator. In this vein, different open-source tools have
been deployed on the VM to create the training and testing
pipeline, including Pytorch and Python.

The Monitoring System includes a “Metrics Collector” which
uses Prometheus API to extract the raw resource usage and
performance metrics from the vCDN slices’ CNFs and their
hosting worker nodes. To this end, Prometheus relies on dif-
ferent monitoring probes, including NGINX-to-Prometheus log
file exporter,2 cadvisor3 and node-exporter.4 The Monitoring
System offers the capabilities to generate on-demand dataset for
training and testing the CG-GRU model or continuously scrape
the metrics values to be consumed by the trained CG-GRU model
integrated in DDoS Mitigator for real-time forecasting-based
anomaly detection.

The Auto-scaling module is implemented using the K8s
built-in Horizontal Pod Autoscaling (HPA) functionality which
we extended with the event-driven scale feature provided by
the open-source KEDA5 tool. We defined different horizontal
scaling policies that can trigger a scaling operation to increase
the number of pod instances to handle the load on a CNF based on
observed per-pod metrics (e.g., CPU, RAM) or external metrics
obtained from Prometheus (e.g., number of HTTP requests or
response time).

B. Dataset Generation

Due to the lack of real data, we used our testbed to generate
realistic datasets to train and test the proposed anomaly detection
approach. In fact, we were unable to find public datasets with
relevant features and labeled EDoS/DDoS threats to use as
ground truth for assessing the solution performances. Existing
public datasets are either limited to network traffic character-
istics (e.g., CIC-IDS2017 and CSE-CIC-IDS2018 datasets)6 or
lack both application-level and (virtual) machine-level features
(e.g., SMD,7 which only includes machine-level metrics).

To generate the dataset, we have developed a normal load
generator that models the arrival times of video streaming re-
quests initiated by legitimate users according to Poisson process

2https://github.com/martin-helmich/prometheus-nginxlog-exporter
3https://github.com/google/cadvisor
4https://github.com/prometheus/node_exporter
5https://keda.sh
6https://www.unb.ca/cic/datasets/index.html
7https://github.com/NetManAIOps/OmniAnomaly

https://kubernetes.io
https://github.com/martin-helmich/prometheus-nginxlog-exporter
https://github.com/google/cadvisor
https://github.com/prometheus/node_exporter
https://keda.sh
https://www.unb.ca/cic/datasets/index.html
https://github.com/NetManAIOps/OmniAnomaly
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Fig. 4. Experimental testbed for evaluating FortisEDoS Framework.

with fixed hourly rate. Recall that the Poisson process is based
on the assumption that the times between successive requests
are exponentially distributed and independent [48]. Thus, the
inter-arrival times are generated using the inverse Cumulative
Distribution Function (CDF) of the Poisson distribution as given
by Eq. (16):

CDF−1 = −1

λ
∗ ln(1− u) (16)

where λ denotes the expected average number of requests gener-
ated per hour andu is a random number sampled between 0 and 1
by a uniform distribution. To characterize the change of request
arrival rates over the time that real-life VoD systems exhibit [49],
we generated different request patterns by varying λ in various
time intervals. Specifically, the value of λ is randomly drawn
from the set {90, 120, 130, 140}.

The normal load generator includes a python script that con-
trols the Selenium WebDriver8 [50] for automating the loading
and playback of the requested videos in a web browser (e.g.,
Firefox browser). To mimic a realistic behavior, the generator
has also the capability to approximate the “impatient user”
behavior where users abandon the video streaming sessions
before their end [51]. This has been implemented by randomly
varying the duration of the video streaming sessions.

To generate malicious load, we implemented the attack agents
using Slowloris9 tool for low-rate DDoS attacks and Hulk10 tool
for high-rate DDoS attacks. The DDoS attacks are carried out
against the exposed video streamer service.

The raw resource usage and performance metrics data have
been recorded from two vCDN slices by the Monitoring System
over a period of 5 days. A time series for each resource usage

8https://www.selenium.dev
9https://github.com/gkbrk/slowloris
10https://github.com/grafov/hulk

and performance metric was recorded using a data sampling
period of 300s. The training data were collected during the first
4 days of attack-free activity. The 5th day served to create the
testing dataset which includes data for normal activity as well
as anomalous activity caused by application-layer DDoS attacks
executed on different periods of the day. Specifically, three Hulk
attacks with different intensities and one Slowloris attack were
launched. A training dataset and a testing dataset, containing
the raw multivariate time series data, are generated for each
vCDN slice’s CNF with a total of 5401 and 2701 samples,
respectively. During training, 20% of samples in the training
dataset are held out for validation. To promote reproducibility
and support independent investigations beyond this study, we
have made the generated dataset publicly accessible.11

C. Model Training

It is well known that the architecture of a deep neural network
plays a crucial role in improving its performance [43]. Hence, we
formulate the problem of finding the optimal model architecture
as a search problem (See Eq. (17)) that seeks to maximize the
model’s performance by minimizing its loss function on the
validation dataset.

argminA = L(A,Dtrain,Dval)

s.t. A ∈ A (17)

whereA represents the search space of the possible architectures
(i.e., combination of hyper-parameters), and L(.) measures the
forecast loss error of the architecture A on the validation dataset
Dval after being trained on the training dataset Dtrain.

The problem formulated in Eq. (17) is solved by tuning the
model’s hyper-parameters leveraging the grid search [52] and
ASHA [53] strategies. The ASHA strategy enables to integrate

11https://zenodo.org/record/8111592

https://www.selenium.dev
https://github.com/gkbrk/slowloris
https://github.com/grafov/hulk
https://zenodo.org/record/8111592
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TABLE III
SEARCH SPACE FOR HYPER-PARAMETERS TUNING AND THE BEST MODEL

CONFIGURATION

early stopping into the hyper-parameter optimization process,
which allows to accelerate the process by terminating bad
performing trials early. The search space for finding the best
hyper-parameters for the forecast model includes the learning
rate of the optimizer, the dropout rate, the number of GRU and
fully-connected hidden layers, the number of neurons per layer,
the kernel size for CNN layer, the historical window size w,
and the batch size. Table III defines the search space used to
determine the optimal architecture of the proposed CG-GRU
model. Each possible architecture is trained at most 100 epochs
using Rectified Linear Unit (ReLU) as the activation function,
Adam as the optimizer and Mean Squared Error (MSE) as loss
function. The CG-GRU model with the smallest forecast error
on the validation set is used to forecast the VNF’s resource
usage and performance metrics. The best performing model
achieved a forecasting loss of 0.0361 (3.61%) on the validation
set. The hyper-parameters setting of the best model is reported
in Table III.

D. Performance Metrics

To assess the effectiveness of FortisEDoS in detecting and
preventing fraudulent resource scaling requests caused by
application-layer DDoS attacks, we measure the performances
of CG-GRU model in terms of forecasting accuracy and attack
detection. The forecasting accuracy is evaluated over the training
dataset using the Root Mean Square Error (RMSE) and Mean
Absolute Error (MAE), which can be calculated by:

RMSE =

√√√√ 1

N

N∑
i=1

(x(t+1) − x̂(t+1))2 (18)

MAE =
1

N

N∑
i=1

|x(t+1) − x̂(t+1)| (19)

where x̂(t+1) and x(t+1) denote the predicted values of the
CNF’s metrics at time step t and the corresponding ground truth,
respectively. N is the number of samples in the dataset. Note
that the lower the RMSE and MAE, the higher the forecasting
accuracy is achieved.

The attack detection performances are assessed over the
testing dataset using the common metrics, namely: Precision,
Recall (aka sensitivity) and F1-score (denoted as F1). The F1
metric is used to characterize the balance between the precision
rate and the recall rate. Note that an effective model is the one
providing the highest precision, recall and F1 values. The metrics
are measured using the formulas in Eq. (20).⎧⎪⎪⎨

⎪⎪⎩
Precision = TP

TP+FP ,

Recall = TP
TP+FN ,

F1 = 2× Recall×Precision
Recall+Precision

(20)

where TP (True Positive) represents the number of anomalies
that are correctly detected, FN (False Negative) denotes the
number of anomalies that are falsely detected as normal samples,
FP (Flase Positive) is the number of the normal samples that are
wrongly flagged as anomalous ones, and TN (True Negative)
refers to the number of the normal samples that are correctly
detected.

Besides its effectiveness, we evaluate the efficiency of For-
tisEDoS in terms of average training time, average inference
time and size of CG-GRU model.

To validate the effectiveness and efficiency of FortisEDoS, we
compare CG-GRU with the state-of-the-art LSTM-based mul-
tivariate time series anomaly detection model proposed in [36]
and other baseline models derived from CG-GRU and model
in [36] using ablation and transplantation of 1D Convolutional
layer and/or GAT layers, respectively. Recall that the model
in [36] has been used in [20] for mitigating EDoS attack in a
SDN-based cloud environment.

The experiments are carried out on the fifth VM with 16-cores
Intel’s Skylake 2.4GHz CPU and 64GB RAM. To avoid bias
from randomness, we report the results of the best-performing
model over ten runs.

E. Performance Results

1) Forecasting Accuracy: In this section, we present the eval-
uation results on the forecasting accuracy of the proposed CG-
GRU model. Fig. 5 reports the forecast values of some metrics
of the vCDN’s video streamer and their corresponding ground
truth values in the validation dataset for a forecasting horizon of 5
minutes. We omitted the remaining metrics as they are exhibiting
the same results. As can been seen from Fig. 5, CG-GRU is
able to effectively predict the actual values of a normal CNF’s
status with high accuracy. The model recorded a low prediction
RMSE of 0.039 and MAE of 0.1189 with a standard deviation
of 0.005 on the validation dataset. The high forecasting quality
delivered by CG-GRU model could be attributed to its capacity
in capturing both time dependencies and spatial correlations
among CNF’s metrics. Similar observations hold true in Fig. 6
for the testing dataset, where we can see that the video streamer’s
metrics are accurately predicted in absence of attacks. However,
the deviation between the forecast values and the real values
are highly pronounced during the application-layer DDoS attack
periods, represented by the highlighted red regions in Fig. 6. The
results uphold the hypothesis that the prediction error is likely
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Fig. 5. Forecasting on validation data of video streamer CNF of vCDN slice 1.

Fig. 6. Forecasting on testing data of the video streamer CNF of vCDN slice 1.
The three first highlighted red regions correspond to Hulk attacks, while the last
region represents the Slowloris attack.

to increase significantly in the presence of abnormal metrics
values, making it a strong indicator of an ongoing DDoS attack.
Given the high forecasting accuracy of CNF’s metrics during
normal behavior and the notable increase in prediction error
when the CNF is under attack, it can be concluded that CG-GRU
model will be capable of effectively detecting application-layer
DDoS attacks while reducing the number of false positives, as
demonstrated in what follows.

2) Attack Detection Performances: We compare CG-GRU
with the LSTM-based multivariate time series anomaly detec-
tion model proposed in [36]. Moreover, we conduct a layer
ablation study to assess the impact of the features extracted

Fig. 7. Attack detection performances.

by Conv1D, GAT and GRU layers on the DDoS attack detec-
tion performance. To this end, we compare CG-GRU with the
following variants: (i) G-GRU, where we remove the Conv1D
layer; hence, the inputs to the model are the original data rather
than the convolved data; and (ii) GRU, where we remove both
1D convolutional layer and GAT, and only use the temporal
information extracted by GRU layers. Similar to G-GRU, GRU
model operates on the original data rather than the convolved
one. We also transplant the Conv1D layer and/or GAT layers to
LSTM model proposed in [36] to evaluate to which extent they
can affect the model’s performances.

The performances of the different models are evaluated over
the testing dataset using Precision, Recall and F1 metrics.

The results depicted in Fig. 7 demonstrate the superiority of
CG-GRU model in achieving the highest performance scores
compared to all other models. In fact, CG-GRU model exhibits
a high sensitivity in identifying anomalous CNF’s status while
yielding an acceptable Precision of 86.43% and a reasonable F1
score of 92.37%. It is worth mentioning that in our case a high
Recall is preferred over a high Precision, as the unsuccessful
detection of anomalous CNF’s status may lead to economical
losses due to accepting resource scaling operations caused by
DDoS attacks. Compared with the LSTM-based model pro-
posed in [36], we observe that CG-GRU improves the Precision,
Recall and F1 scores by at least 3.96%, 1.56% and 2.98%,
respectively. This improvement is attributed to the quality of
the spatio-temporal features learned by the feature extraction
block, which allows better estimation of the anomaly threshold
for discriminating anomalous CNF’s status. This statement is
corroborated by the results of the ablation study, which not
only demonstrate the importance of capturing both spatial and
temporal dependencies within the multivariate time series, but
also reveal that the local features extracted by Conv1D layer are
beneficial to boost further the model performances. Indeed, one-
dimensional convolution operation helps to reshape the original
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Fig. 8. Computation and storage costs of the models.

input data into a more relevant representation format that is
robust to possible noise in the data. The results reported in Fig. 7
show that adding Conv1D layer and GAT layers allows CG-GRU
model to outperforms the baseline GRU model, increasing the
Precision, Recall and F1 scores by at least 2.89%, 1.64% and
2.22%, respectively.

3) Model Computation & Storage Costs: In this section,
we explore the computation and storage overhead induced by
CG-GRU model and its counterparts. To this end, we measure
the average training time, the average inference speed, and
the model size. Fig. 8 reports the comparative results. We can
observe that GRU-based models are faster to train and make
inference, and require much less storage space than LSTM-
based models. This can be attributed to the fewer number of
parameters and gates used by GRU cells as compared to LSTM
cells to achieve the same task. The results in Fig. 8 show that
CG-GRU model brings up to 12.42%, 23.73% and 21.54%
reduction in training time, inference time and model size, respec-
tively, compared to the best-performing LSTM-based model
(i.e., CG-LSTM).

We can also notice that the higher attack detection perfor-
mances exhibited by CG-GRU model come at the expense of
increased computation and storage complexity compared to the
other GRU-based variants, owing to the added 1D Convolutional
layer and the GAT layers used for extracting local features
and spatial inter-dependencies. Nevertheless, the additional cost
remains within an acceptable range of no higher than 10%,
12.25% and 8.24% in terms of training time, inference time,
and model size, respectively.

Hence, considering both attack detection performances and
computation/storage cost, CG-GRU model provides the best
performance-cost balance. This makes CG-GRU model an ad-
equate solution to achieve accurate and real-time detection of
fraudulent resource scaling requests associated to DDoS attacks
in a cost-effective way, which translate to better economic sus-
tainability and higher profitability.

4) Attack Interpretability & Root Cause: The ability to ex-
plain the decision made by a AI-powered system is instrumental
for domain experts to interpret its output and understand the
cause-and-effect relationship between the input data and the

Fig. 9. Heat map visualization of forecasting errors per CNF’s metric for
interpretability.

generated output, allowing to foster trustworthiness in its de-
cisions [43]. In this vein, we use the forecasting error heatmap
to elucidate the judgment made by the DDoS Mitigator module
about the legitimacy or maliciousness of the observed resource
usage and performance metrics of a vCDN’s CNF. Using the
predictions generated by CG-GRU model and the corresponding
actual values of the CNF’s metrics, we create a heatmap of
the forecasting error per metric (see Eq. 12) and the global
forecasting error (see Eq. 13) over the time.

Fig. 9 depicts the forecasting error heatmap of slice 1’s video
streamer for each time step of the testing dataset, with the x-axis
representing the time steps and the y-axis indicating the CNF’s
metrics. The bottom row in the heat map corresponds to the
global forecasting error on the multivariate time series. The
forecasting error intensity is color-encoded, with zero error as
dark blue and becoming dark red as it gets larger. As shown
in Fig. 9, the visualization of the forecasting error heatmap
provides tangible and intuitive explanations, enabling the do-
main experts to ascertain the DDoS Mitigator’s decision and to
quickly identify the attack patterns and the CNF’s metrics that
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Fig. 10. Visual signature of Hulk and Slowloris attacks using the forecast
errors heat map.

have most contributed to the global forecasting error. We can
observe that the largest forecasting errors are recorded during
the attacks’ periods, with clear segregation between Hulk and
Slowloris patterns. The attack patterns in the heatmap can serve
as a visual signature of the attack, allowing to determine the
CNF’s metrics that are impacted by the attack. Those metrics
are considered the most important for recognizing the attack. As
visualized in Fig. 10, we found that the top three CNF’s metrics
contributing to the global forecasting error when a Hulk attack
is underway are (1) HTTP request rate, (2) average number
of open sockets, and (3) average CPU usage at the user level,
while the top three CNF’s metrics impacted by Slowloris attack
are (1) average number of open sockets, (2) average number
of bytes sent by the CNF, and (3) number of packets received
by the CNF. The obtained results are in compliance with the
nature of Hulk and Slowloris attacks. In fact, Hulk is a high-rate
application-layer DDoS attack that generates a high volume of
unique and obfuscated HTTP GET requests, hence the high
HTTP request rate, number of open sockets and CPU utilization
to process those requests. Meanwhile, Slowloris is a low-rate
application-layer DDoS attack that aims to make the service
inaccessible by holding multiple connections open a long time,
which explains the high effect on the number of open sockets.

The difference between Hulk and Slowloris behaviors is fur-
ther corroborated by the global forecasting error experienced
during the attack period. As shown in Figs. 9 and 10, the global
forecasting error is more pronounced during Hulk attack. In our
experiments, an average global forecasting error of 18.95 and
1.06 is caused by Hulk and Slowloris attack, respectively. It
is worth mentioning that despite the stealthiness of Slowloris
attack, our solution was able to recognize it.

5) Effectiveness of Transfer Learning: To test the effective-
ness of applying transfer learning in terms of both attack detec-
tion performances and training time, we transfer the CG-GRU
model trained on data collected from the video streamer CNF
of vCDN slice 1 to a newly deployed video streamer CNF
of vCDN slice 2. For brevity, let vStreamer1 and vStreamer2
denote the video streamer CNF of vCDN slice 1 and vCDN slice
2, respectively. Unlike vStreamer1, only few interactions have
been performed between the simulated legitimate users (through

Fig. 11. Performances and training time of CG-GRU model with and without
transfer learning.

our normal load generator) and vStreamer2 and with access to
the same video file. Hence, the training dataset collected from
vStreamer2 is not representative of a normal behavior.

To build the CG-GRU model for vStreamer2 using transfer
learning, denoted as TL-CG-GRU, we freeze the weights in
1D Convolutional, GAT and GRU layers and only fine-tune
the fully-connected layers on vStreamer2’s training dataset. For
comparison, we train another CG-GRU model for vStreamer2
from scratch using its training dataset (hereafter denoted as CG-
GRU-vS2). Furthermore, the performances of TL-CG-GRU are
compared against those of using directly the vStreamer1’s model
without fine-tuning (hereafter referred to as CG-GRU-vS1). This
allows to assess the importance of model adaptation to data in
the target domain (vStreamer2’s training data in our case).

Fig. 11 reports the attack detection performance indicators
(i.e., F1, Precision and Recall) over Streamer2’s testing dataset
as well as the training time required to build the model. The
results demonstrate the superiority of the transferred model
TL-CG-GRU in boosting the detection performance while con-
siderably reducing the training overhead.

We observe that while both CG-GRU-vS1 and CG-GRU-vS2
can identify anomalous vStreamer2’s status with an acceptable
sensitivity of above 91%, they generate a large number of false
alarms. This low precision is expected as CG-GRU-vS1 has not
seen the training data of vStreamer2 and due to the fact that
CG-GRU-vS2 has been trained from scratch with vStreamer2’s
data which lack representativity of a video streamer CNF’s nor-
mal behavior. By embedding the prior knowledge (features) on
normal behavior learned from vStreamer1’s model and updating
the weights of the forecasting layers to adapt to the specific
vStreamer2’s data, TL-CG-GRU has considerably lowered the
number of false positives, achieving a gain of 32.79% and
25.51% in precision compared to CG-GRU-vS1 and CG-GRU-
vS1, respectively. This yields a significantly increased overall
attack detection performance greater than 83%, resulting in up
to 24.12% and 17% improvement compared to CG-GRU-vS1
and CG-GRU-vS2, respectively. The obtained results support
our idea that the spatio-temporal features derived by the fea-
ture extraction layers are more generic and therefore can be
transferred among CNFs of different slices, while the weights
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of the forecasting layers are more specific to the source CNF’s
behavior, and have to be retrained after transfer to adapt to the
target CNF’s behavior.

In addition to its effectiveness in discriminating anomalous
CNF’s status caused by application-layer DDoS attacks, TL-CG-
GRU substantially speeds up the training process, decreasing the
time required to train the CG-GRU-vS2 model from scratch by
at least 61%. The computational efficiency of TL-CG-GRU is
attributed to reuse of knowledge regarding feature representa-
tions, which allows to reduce the number of model’s parameters
(weights of forecasting layers in our case) to update during the
fine-tuning phase.

V. CONCLUSION

In this paper, we proposed FortisEDoS, a novel framework
for enabling highly elastic B5G services while being immune
to EDoS attacks. FortisEDoS achieves its goal by (i) integrating
CG-GRU, a new DL-powered DDoS anomaly detection model
which exploits the forecasting errors between the observed
VNF’s metrics and the predicted ones to determine malicious
VNF scaling requests due to stealthy application-layer DDoS
attacks; and (ii) adopting the concept of transfer learning to yield
effective detection of EDoS attack in newly deployed slices. The
experimental results demonstrated the superior performance of
the proposed solution in accurately detecting EDoS attack and
confirmed the benefit of transfer learning in boosting both attack
detection effectiveness and training speed when representative
historical data of normal behavior are scare. The explainability of
decisions made about the legitimacy or maliciousness of a VNF’s
status using forecasting errors heatmaps is another key capability
provided by FortisEDoS to foster trust in its decisions. Moreover,
adopting a forecasting-based anomaly detection approach makes
CG-GRU a multi-purpose model that can serve not only for
application-layer DDoS anomaly detection task but also for
proactive and dynamic resource allocation tasks, allowing to
reduce the cost of training and running several models serving
different tasks.

Given the potential occurrence of false alarms, preventing
a scaling up operation when the VNF’s status is flagged as
anomalous may result in a reverse effect, yielding negative im-
pact on service level performances. To deal with this challenge,
we intend to extend the capabilities of FortisEDoS to provide
a mitigation strategy that intelligently decide when and how
much of resources to be provisioned so that the required SLA is
guaranteed while minimizing the EDoS attack damage. Another
avenue of research is to devise an advanced mechanism for
selecting the appropriate VNFs/slices for knowledge transfer.
Furthermore, combining transfer learning with federated learn-
ing to empower privacy-preserving EDoS mitigation is another
interesting research direction.
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