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Abstract
This paper proposes an attention-based convolutional neural network (ABCNN) for intru-
sion detection in the Internet of Things (IoT). The proposed ABCNN employs an attention 
mechanism that aids in the learning process for low-instance classes. On the other hand, 
the Convolutional Neural Network (CNN) employed in the ABCNN framework converges 
toward the most important parameters and effectively detects malicious activities. Further-
more, the mutual information technique is employed during the pre-processing stage to fil-
ter out the most significant features from the datasets, thereby improving the effectiveness 
of the ABCN model. To assess the effectiveness of the ABCNN approach, we utilized the 
Edge-IoTset, IoTID20, ToN_IoT, and CIC-IDS2017 datasets. The performance of the pro-
posed architecture was assessed using various evaluation metrics, such as precision, recall, 
F1-score, and accuracy. Additionally, the performance of the proposed model was com-
pared to multiple ML and DL methods to evaluate its effectiveness. The proposed model 
exhibited impressive performance on all the utilized datasets, achieving an average accu-
racy of 99.81%. Furthermore, it demonstrated excellent scores for other evaluation met-
rics, including 98.02% precision, 98.18% recall, and 98.08% F1-score, which outperformed 
other ML and DL models.

Keywords  Attention mechanism · Convolution neural network · Deep learning · Internet of 
things · Intrusion detection

1  Introduction

The Internet of Things (IoT) envisions a connected network of various intelligent objects 
in our surroundings, capable of gathering, processing, and transmitting information [1]. In 
recent years, the IoT had a significant impact on various industries, including agriculture, 
medicine, transportation, automobiles, and water monitoring [2–5]. This is the era where 
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all businesses rely on technology, everything is going digital, and as we see, the demand 
for IoT devices has increased significantly, escalating from 15.42 billion in 2015 to a stag-
gering 35.8 billion in 2021[6–8]. IoT devices often have limited computational power and 
memory, making it challenging to implement robust security measures [9, 10]. As busi-
nesses deploy more IoT devices, the risk of vulnerabilities being targeted and exploited 
increases [11]. As shown in Fig. 1, By the year 2025, it is projected that the IoT will reach 
a staggering number of 75.44 billion devices, resulting in an enormous data output of 79 
zettabytes [12]. The IoT has been recognized as a crucial factor in digitization for societal 
transformation [13, 14].

Many IoT devices gather, save, and handle sensitive data, while their diverse configura-
tion and openness make them an attractive target for attackers [15–17]. Ensuring confiden-
tiality is crucial for the successful implementation of IoT networks. To identify malicious 
activity, an intrusion detection system (IDS) is necessary to monitor IoT network opera-
tions [18–21]. IoT networks often involve a large number of heterogeneous devices, each 
with its own communication protocols and data formats [22, 23]. Traditional IDS solutions 
may struggle to handle the diversity and complexity of IoT network traffic, making it dif-
ficult to identify abnormal behavior specific to IoT devices [24, 25]. Numerous researchers 
have collaborated on IDS development, leveraging the power of ML and DL algorithms 
[26–28]. ML and DL methods find extensive applications in diverse domains including 
agriculture, medicine, and transportation [29–32]. DL, a subset of ML, is particularly use-
ful for addressing problems involving high-dimensional and intricate data. Moreover, DL 
enables systematic training of nonlinear models on big datasets.

An imbalanced and inadequate dataset may result in low performance on the current 
IDS. For instance, consider a security dataset that exhibits imbalanced data, where the dis-
parity between the high and low instances of classes is substantial. The intrusion detection 
model can be affected by this data imbalance, as it tends to primarily focus on the high-
instance classes while disregarding or gradually learning from the low-class instances. As 
a result, the IoT network utilizing this model may fail to detect attacks that were underrep-
resented in the training data. Furthermore, a significant challenge in IDS design is feature 
engineering to extract the most salient attributes. To enhance the effectiveness of existing 
systems, it is essential to extract the most significant features. To address these issues, this 
paper proposes an attention-based convolutional neural network (ABCNN) for intrusion 

Fig. 1   Projected growth of IoT devices from 2018 to 2025 [12]
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detection in IoT networks. The proposed ABCNN employs an attention mechanism that 
computes attention values for each input attribute. This mechanism aids in the learning 
process for low-instance classes. On the other hand, the Convolutional Neural Network 
(CNN) employed in the ABCNN framework converges toward the most important param-
eters and effectively detects malicious activities [33]. Furthermore, this study utilizes pre-
processing techniques such as feature filtering, normalization, and stratified splitting. The 
mutual information technique is applied during pre-processing to filter out the most sig-
nificant features from the dataset. The proposed architecture was evaluated using the Edge-
IIoTset, IoTID20, ToN_IoT, and CIC-IDS2017 datasets. The performance of the proposed 
methods was measured using several metrics, including precision, recall, F1-score, and 
accuracy. The main contributions of this article are:

–	 In this study, A novel deep learning technique attention-based convolutional neural net-
work (ABCNN) is proposed for intrusion detection in IoT networks. The attention layer 
computes the attention value for each input, and the CNN is utilized to predict the net-
work’s behavior on high-attention features.

–	 In this study, we employed the mutual information method to select the most significant 
features. This method calculates the mutual information between each attribute and the 
target variable based on entropy.

–	 To demonstrate the effectiveness of the proposed approach in comparison to other sev-
eral ML and DL methods, a series of experiments were conducted. It is worth noting 
that all preprocessing steps used in the comparison of the proposed and other models 
were identical.

The rest of this article is organized as follows: Section 2 presents recent research on intru-
sion detection in IoT. Section  3 covers the mathematical modeling, overall architecture 
flow, and experimental methodology. In Section 4, a concise discussion of the experimen-
tal results obtained from the proposed model is provided. Finally, Section 5 presents a brief 
conclusion.

2 � Related Work

The proliferation of IoT technology has led to a significant increase in the connectivity of 
smart devices to the internet. However, this interconnectedness also opens up opportunities 
for attackers to exploit IoT networks and carry out malicious activities. In response to this 
pressing issue, numerous researchers have put forth various models aimed at identifying 
and mitigating such malicious activities in IoT networks.

Altunay et  al. [34] proposed a hybrid DL model that incorporates both CNN and long 
short-term memory (LSTM) for the detection of intrusions in IoT networks. They evaluated 
the model using the UNSW-NB15 and X-IIoTID datasets for both binary and multi-class clas-
sifications. The results section compares the effectiveness of the model with that of CNN and 
LSTM models and shows that the hybrid CNN and LSTM model outperforms the other mod-
els. Wu et al. [35] adopted the Geometric Graph Alignment (GGA) approach to effectively 
handle the variations in geometry between different domains, thus improving the transfer of 
intrusion knowledge. In this method, each intrusion domain was represented as a graph, with 
the vertices and edges corresponding to intrusion categories and their interrelationships. To 
assess the performance of the GGA approach, the authors employed five publicly available 
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datasets, including NSL-KDD, UNSW-NB15, CIC-IDS2017, UNSW-BoT-IoT, and UNSW-
TONIoT. Their proposed model achieved an accuracy of 71.72%, which outperformed other 
approaches in the comparative analysis of results.

Javadpour et al. [36] introduced a multi-agent-based model designed for the detection and 
prevention of cyberattacks in the Cloud Internet of Things (CIoT) environment. These agents 
utilize association rules to effectively identify intrusions. The performance of the multi-agent-
based model was assessed using the KDD Cup 99 and NSL-KDD datasets, achieving an accu-
racy of 71.12%. Thakkar et al. [37] presented a bagging method based on deep neural networks 
(DNN) to detect intrusions in IoT networks. Their primary emphasis was on addressing the 
challenge of unbalanced datasets. The evaluation of their proposed bagging model involved 
the use of NSL-KDD, UNSW-NB15, CIC-IDS2017, and BoT-IoT datasets. Their presented 
approach yielded an average accuracy of 98.22% across all the datasets. Alghanam et al. [38] 
introduced the pigeon-inspired optimization local search (LS-PIO) method for the purpose of 
detecting intrusions in IoT networks. Their proposed method was evaluated using four public 
datasets, namely BoT-IoT, UNSW-NB15, NLS-KDD, and KDDCUP-99. The LS-PIO method 
achieved an average accuracy of 96.58% across all the datasets used in the evaluation.

Saba et al. [39] implemented a CNN-based approach for anomaly-based intrusion detection 
in IoT networks. Their proposed method was trained and evaluated using two distinct datasets: 
the network intrusion detection (NID) dataset and the Botnet (BoT-IoT) dataset. The CNN 
model achieved an average accuracy of 96.18% on both datasets. Eme et al. [40] proposed a 
hybrid model called BGH that utilizes a combination of bi-LSTM and gated recurrent units 
(GRU) to effectively detect eight known IoT network attacks. The model was trained and eval-
uated using two widely recognized IoT network traffic datasets: CIC-IDS-2018 and BoT-IoT. 
Remarkably, the BGH technique achieved an impressive average accuracy of 99.38% on both 
datasets.

Sharma et al. [41] adopted a deep neural network (DNN) approach for detecting anomalies 
in IoT networks. They employed a feature filtering technique to extract the most important fea-
tures from the dataset. To evaluate the performance of their model, they utilized the UNSW-
NB15 dataset, achieving 84% accuracy for imbalanced data. However, by utilizing generative 
adversarial networks (GANs) to balance the data, the accuracy improved significantly to 99%. 

Table 1   Literature overview

Author Year Approach Dataset Average accuracy
(in %)

Altunay et al. [34] 2023 CNN+LSTM UNSW-NB15, X-IIoTID 96.35
Wu et al. [35] 2023 GGA​ NSL-KDD, UNSW-NB15, CIC-IDS2017,

UNSW-BOTIOT, UNSW-TONIOT
71.72

Javadpour et al. 
[36]

2023 Multi-Agent KDD Cup 99, NSL-KDD 71.12

Thakkar et al. [37] 2023 DNN based bag-
ging

NSL-KDD, UNSW-NB15,
CIC-IDS2017, BOTIOT

98.22

Alghanam et al. 
[38]

2023 LS-PIO BoT-IoT, UNSW-NB15, NLS-KDD, KDD 
Cup 99

96.58

Saba et al. [39] 2022 CNN NID, BoT-IoT 96.18
Eme et al. [40] 2022 BGH CIC-IDS-2018, BoT-IoT 99.38
Sharma et al. [41] 2023 DNN UNSW-NB15 99
El-Ghamry et al. 

[42]
2023 CNN NSL-KDD 99
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El-Ghamry et al. [42] proposed a CNN-based intrusion detection system specifically designed 
for agriculture IoT networks. They preprocessed the data, selected relevant features, and trans-
formed it into colored images. The authors employed CNN to analyze the images and identify 
malicious activities within the networks. To evaluate the effectiveness of their system, they 
used the NSL-KDD dataset, achieving 99% accuracy in their model’s outcomes.

A short overview of the literature is presented in Table  1. After reviewing the relevant 
studies, it becomes clear that numerous studies have focused mainly on a select few classes 
because of the highly imbalanced datasets. As a result, when dealing with a greater number of 
attack classes, these systems often encounter difficulties in achieving precise detection. In con-
trast, this paper presents a novel method known as ABCNN, which improves the effectiveness 
of current models for both smaller and larger sets of attack classes.

3 � The Proposed Attention‑Based CNN

This study proposes an attention-based convolutional neural network (ABCNN) model for 
detecting malicious attacks. The model consists of an attention layer and convolutional 
neural network (CNN) layers (Fig. 2). The attention layer calculates the attention value of 
each input attribute/element, while the CNN layers focus on the importance of each attrib-
ute and predict the behavior of the network. The basic architecture of a CNN for intrusion 
detection usually comprises one or more convolutional layers, pooling layers, and fully 
connected layers [43, 44]. For the proposed model, we utilized one convolutional layer, one 
max-pooling layer, and three fully connected layers. This decision is based on the results 
illustrated in Tables 4, 5, 6, and 7. It can be clearly seen from the results in these tables that 
the model based on selected set of configurations performs the best among all other con-
figurations when applied to all the different datasets (Fig. 2).

The proposed model uses the attention layer to calculate a set of attention weights that indi-
cate the importance of each key element for the current query. This is achieved by computing 
a similarity score between the query and each key element and then applying a softmax func-
tion to obtain a set of normalized attention weights. Once the attention weights have been cal-
culated, they are used to weight the values and summed up to obtain the output of the attention 
layer. The attention weights aij for each query i and key j in the sets of queries Q, keys K, and 
values V are calculated using Eq. (1).

Here, Qi represents the i-th query, Kj represents the j-th key, dk represents the dimensional-
ity of the key vectors, and softmax refers to the softmax function used for computing the 
attention weights. Next, the attention weights are used to weight the corresponding values, 
and the resulting weighted values are summed up to obtain the output (X) of the attention 
layer. This process is described mathematically by Eq. (2).

Here, Xi represents the i-th output (X), Vj represents the j-th value, and the sum is taken 
over all keys j. The input to the CNN layer is obtained as the output of the previous layer. 
Eqs. (3) and (4) provide a demonstration of the 1D convolutional layer.

(1)aij = softmax

�

QiK
T
j

√

dk

�

(2)Xi =
∑

j

aijVj
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Where xu represents the input in 1D convolutional layer, and the output of the previous 
layer neurons are denoted by su . The kernel from i to u is represented by wiu , and the bias 
value of the neuron in the convolutional layer is denoted by bu . The ReLU activation func-
tion is used in convolutional layers which is represented by f () , and its mathematical 
form is presented in Eq.  (5). The output of the 1D convolutional layer is denoted by yu , 
which becomes the input to the max pooling layer, as indicated in Eq.  (6). During pool-
ing, the maximum values from the output of the convolutional layer within the region ℜ 

(3)xu = bu +

N
∑

i=1
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are selected, and the result is denoted by su . Once the max-pooling layer is applied, the 
flatten method is utilized to convert the output shape of the final pooling layer into a one-
dimensional array, which is subsequently fed as input to the fully connected layers. In the 
fully connected layers, the ReLU activation function is employed. Finally, the last fully 
connected layer utilizes the softmax function, as demonstrated in Eq. (7), to produce the 
final result. The hyperparameters used in the proposed approach are listed in Table 2.

4 � Performance Evaluation

This section provides details of the preliminary measures required to implement the 
approach, such as data cleaning, feature filtering, and normalization. Furthermore, it pre-
sents the test results of the proposed ABCNN architecture for identifying malicious attacks 
in IoT networks. Various experiments were conducted on the proposed model to identify 
the optimal configuration. These experiments were conducted with varying model lay-
ers, batch sizes, and optimization functions. For the purposes of this specific experiment, 
a sparse categorical cross-entropy loss function was utilized for loss calculation, and the 
model was trained over six epochs. To evaluate the effectiveness of the proposed model, a 
five-fold cross-validation method was employed.

4.1 � Datasets

In this study, we utilized Edge-IIoTset, IoTID20, ToN_IoT, and CIC-IDS2017 datasets 
which are well-established datasets that are frequently used in the area of ML-based IDSs 
by researchers. The Edge-IIoTset dataset includes IoT and IIoT network communication 
instances obtained from a real-world testbed implementation of seven interconnected lay-
ers, including cloud computing, network functions virtualization, blockchain network, 
fog computing, software-defined networking, and edge computing, as well as IoT and 
IIoT perception layers [45]. The data was generated by more than ten different types of 
devices, such as water and soil measuring, temperature, humidity, and other IoT devices. 
Edge-IIoTset contains fourteen attacks related to IoT and IIoT communication protocols, 
which are divided into five categories: DoS/DDoS, Information gathering, Man in the mid-
dle, Injection, and Malware attacks. Data was collected from network packets using pcap 

(5)f
(

xu
)

= max(0, xu)

(6)su =
max
i∈ℜ

yu

(7)softmax(x)i =
exi

∑u

j=1
exj

Table 2   The Utilized hyperparameters

Optimizer Learning rate Loss function Batch size Filters Kernal size Pooling size

Adam 0.001 Sparse categorical crosentropy 32 64 3 2



1988	 A. Momand et al.

1 3

files, which were then converted to CSV using the Zeek and TShark tools. The dataset 
contains 2219201 samples to evaluate the DL methods. The IoTID20 dataset was created 
specifically for detecting cyberattacks in IoT networks. It was generated by utilizing home-
connected smart devices, such as SKT NGU and EZVIZ Wi-Fi cameras [46]. The signifi-
cant benefit of this dataset lies in its incorporation of contemporary communication data 
and fresh insights into network interference detection. In total, the dataset encompasses 
83 distinct features related to IoT networks [47]. The ToN_IoT dataset was derived from 
a real-time IoT network at UNSW Canberra in Australia. This compilation encompasses 
seven distinct categories of cyberattacks targeting IoT networks, each documented within 
its respective file [48]. The CIC-IDS2017 dataset was generated using real-time network 
data, spread across eight distinct files. These files encompass a five-day period, capturing 
both regular and attack-related traffic data [49]. This dataset was created by the Canadian 
Institute of Cybersecurity [50]. Table 3 provides summaries of the utilized datasets.

4.2 � Data Cleaning

This is the very first process in the preprocessing phase, and it addresses the issue of null 
values and converting categorical attributes to numeric attributes. The Edge-IIoTset dataset 
contains no missing value. The used dataset has categorical data which include a variety 
of data categories. To transform categorical data into numeric, first, we considered using a 
one-hot encoder; however, this technique requires a huge memory and exposes significant 
latency [51]. As a necessary consequence, for the transformation task, we instead used the 
label encoder mechanism. The label encoder strategy assigns a unique numeric value to 
each label based on alphabetical order and does not require any additional memory.

4.3 � Features Filtering

Each dataset includes a set of attributes. If a dataset contains insignificant attributes that 
do not influence the output, it is advisable to remove them from the dataset. These features 
can lead to overfitting and underfitting problem, affecting the computation time and the 
effectiveness of the framework. The selection of features is a method for eliminating insig-
nificant attributes from a dataset and retaining only essential attributes. The primary goal 
of feature filtering is to avoid overfitting and underfitting, enhance efficiency, and decrease 
the model’s training and response times.

In this experiment, we employed the mutual information method to select the most sig-
nificant features for training the models. Mutual information is a fundamental concept in 
information theory that quantifies the shared information between two random variables. 
It measures the extent to which knowing the value of one variable reduces the uncertainty 
about the other variable. Mutual information is employed to identify relevant features that 
contribute to the detection of malicious activities. This method calculates the mutual infor-
mation between each attribute and the target variable based on entropy. Mathematically, 
the mutual information is expressed in Eq.  (8), where I(X; Y) denotes the mutual infor-
mation between X and Y, p(x, y) represents the joint probability mass function of X and 
Y, and p(x) and p(y) correspond to the marginal probability mass functions of X and Y, 
respectively. Only the features with a threshold value greater than 0.1 were selected. The 
datasets used in this experiment, namely Edge-IIoT set and IoTID20, contain a total of 61 
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and 83 features, respectively. Out of these, 29 features were selected from the Edge-IIoT 
set, while 55 features were chosen from the IoTID20 dataset.

4.4 � Normalization

In this experiment, the selected datasets have different features which have different range 
values, for example, some features have very large range values, and some attributes have 
very small range values. To begin addressing this issue, we used the min-max normaliza-
tion methods to normalize all attributes between 0 and 1 by using Eq. (9). Where x is the 
original value to be normalized, xmin and xmax are the minimum and maximum values of 
the feature, respectively, and xnorm is the normalized value of x. After normalization, split 
data into 80% train and 20% test sets by using stratified split. A distribution of 80% train-
ing and 20% testing split was used to facilitate 5-fold cross-validation. This distribution 
ensures that each fold of the cross-validation process encompasses 20% for testing and 80% 
for training, effectively covering the entire dataset for robust performance validation. The 
stratified method split data equally for each class in the train and test sets.

(8)I(X;Y) =
∑∑

p(x, y) log

[

p(x, y)

p(x) ⋅ p(y)

]

(9)xnorm =
x − xmin

xmax − xmin

Table 3   The utilized datasets detail presentation for each class

Edge-IIoTset IoTID20 ToN_IoT CIC-IDS2017

Classes Instances Classes Instances Classes Instances Classes Instance

Fingerprinting 1001 Mirai 415309 Backdoor 35000 DoS 252672
MITM 1214
Ransomware 10925 Injection 35000 PortScan 158930
XSS 15915 Scan 75265
Port_Scanning 22564 Password 35000 DDoS 128027
Backdoor 24862
Uploading 37634 DoS 59391 DDoS 25000 Patator 13835
DDoS_HTTP 49911
DDoS_TCP 50062 Ransomware 16030 Web Attack 2180
Vulnerability_Scan-

ner
50110 MITM 

ARP 
Spoof-
ing

35377

Password 50153 XSS 6116 Bot 1966
SQL_injection 51203
DDoS_ICMP 116436 Scanning 3973
DDoS_UDP 121568
Normal 1615643 Normal 40073 Normal 245000 Benign 529918
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4.5 � Experimental Setup

To conduct the experiment on the proposed model, Python 3.11 was utilized since it is 
widely used among scientists for experimentation. The Keras package from the Tensor-
Flow library was employed, as it is a convenient deep-learning framework. For the code 
implementation, Jupyter Notebook was utilized, as it provides results after each code cell is 
executed. The experiment was conducted on a Windows 10 operating system, utilizing an 
i5-8th generation laptop with 24 GB RAM and a 1.8 GHz processor. The dataset employed 
in the experiment was significant, necessitating the use of high RAM.

4.6 � Evaluation Measure

In this study, we utilize multiple metrics to evaluate the effectiveness of our proposed clas-
sification approach. These metrics include accuracy (ACC), macro precision (MP), marco 
recall (MR), and F1-score which are based on true positives (TP), true negatives (TN), 
false positives (FP), and false negatives (FN). Precision is a technique for evaluation of 
the model that shows how much correct data are given in total returned data. Precision 
will find from the testing results of the model which returns a confusion matrix. Precision 
is calculated from TP and FP values. This experiment uses the MP which is calculated by 
using Eq. (10).

where k is the number of classes, �i represents the true positives for class i, and �i repre-
sents the false positives for class i. Recall is a technique for evaluation of the model that 
shows how much correct data are returned from a total collection of data. Recall will find 
from the testing results of the model which return a confusion matrix. The recall is calcu-
lated from TP and FN values. This experiment uses the MR which is calculated by using 
Eq. (11).

where �i represents the false negatives for class i. The F1-score is a technique for evalu-
ation of the model that combines both techniques precision and recall and gives a single 
value. The F1-score is calculated using Eq. (12).

Accuracy is a metric used to evaluate the performance of a model in accurately detecting 
attacks. Eq. (13) is employed to calculate accuracy, where �i represents the true negatives 
for class i.

(10)MP =
1

k

k
∑

i=1

�i

�i + �i

(11)MR =
1

k

k
∑

i=1

�i

�i + �i

(12)F1-score =
2 ×MP ×MR

MP +MR

(13)Accuracy =

∑k

i=1
�i

∑k

i=1
(�i + �i + �i + �i)
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4.7 � Proposed ABCNN Layers Comparison

The experiments were carried out with varying numbers of convolutional one-dimen-
sion (Conv1D) and dense layers, and the results were compared to find the optimal 
layers. In this experiment, the Adam optimization function with batch size of 32 was 
employed. Figs. 3, 4, 5, and 6 depicts the training and validation performance, respec-
tively, providing an assessment of the model’s performance in terms of overfitting and 
underfitting. These figures demonstrate that the model is capable of generalizing well 
to unseen data and does not exhibit any signs of overfitting. The performance evalu-
ation was then recorded in Tables  4, 5, 6, and 7 on all the utilized datasets, which 
presents the accuracy and other performance metrics for different layers. The results 
indicate that the best performance was achieved using one Conv1D and three fully 
connected layers in the proposed ABCNN approach. This means that this particular 
configuration of layers provides optimum performance for the task at hand. Further-
more, it is stated that all the evaluation metrics were optimal for these layers. This 
suggests that this configuration consistently performed better than any other number of 
layers tested, indicating that it is a robust and reliable choice for this task.

4.8 � Proposed ABCNN Results on Different Optimization Functions

A series of experiments were conducted to evaluate various optimization functions and 
determine the most optimal one for the proposed model. The experiments were conducted 
using the optimized layer configuration of the proposed model, as explained previously, 
with a batch size of 32. The training accuracy and loss of the proposed model on different 
optimizers are compared in Figs. 7,  8,  9 and  10. The results of the experiments, compar-
ing the performance of the ABCNN model using different optimization functions, are sum-
marized in Tables 8, 9, 10 and 11 on all the utilized datasets. The findings reveal that the 
ABCNN model achieved superior performance when the Adam optimization function was 
employed for both datasets, outperforming the other functions.

4.9 � Proposed ABCNN Results on Different Batch Sizes

As previously mentioned, various experiments were conducted to determine the optimal 
batch size for the proposed model. For this specific experiment, the proposed model’s opti-
mal layer configuration was utilized with the Adam optimization function. The results for 
the proposed ABCNN model using different batch sizes are presented in Tables 12, 13, 14 
and 15 on all the utilized datasets. The findings indicate that the ABCNN model performed 
better with the batch size 32 function than others for both datasets.

4.10 � Performance Comparison with Other ML and DL Methods

The proposed ABCNN model was evaluated to determine its effectiveness in comparison 
with other ML and DL approaches, such as CNN, LSTM, GRU, Naive Bayes (NB), and 
Support Vector Machines (SVM). All models were evaluated under the same experimental 
conditions, including the preprocessing steps and the dataset split into 80% training and 
20% testing sets. Tables 16, 17, 18, and 19 provide a detailed analysis of the performance 
evaluation of the proposed ABCNN model in network behavior classification on all the 



1992	 A. Momand et al.

1 3

utilized datasets. The results show that the proposed ABCNN model outperformed all 
other ML and DL approaches, including CNN, LSTM, GRU, NB, and SVM. Therefore, 
the proposed ABCNN model can be considered an effective approach for achieving high 
performance in the given task.

It can be seen in Table  16 that the M-Precision of CNN approach is better than 
the proposed approach. Similarly, the Table  19 shows that the M-Precision of GRU 
approach is better than the proposed approach. These high precision and low recall of 
CNN and GRU suggest that when these models predict a positive class, they are very 

Fig. 3   Training and validation performance of the proposed ABCNN model on Edge-IIoTset dataset

Fig. 4   Training and validation performance of the proposed ABCNN model on IoTID20 dataset

Fig. 5   Training and validation performance of the proposed ABCNN model on ToN_IoT dataset
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likely correct (high precision), but they miss a significant number of positive cases (low 
recall). This could be because CNN and GRU are too conservative in their predictions, 
possibly due to being too sensitive to certain features that do not generalize well. While 

Fig. 6   Training and validation performance of the proposed ABCNN model on CIC-ID2017 dataset

Table 4   Layers performance 
comparison of proposed ABCNN 
on Edge-IIoTset dataset

Conv1D Dense Accuracy M-Precision M-Recall F1-Score

1 1 0.9992 0.996 0.9846 0.9897
1 2 0.9993 0.9938 0.9882 0.9909
1 3 0.9994 0.9921 0.9953 0.9936
2 1 0.9993 0.9918 0.9945 0.9928
2 2 0.9993 0.9904 0.9832 0.9865
2 3 0.9993 0.9857 0.9946 0.9897
3 1 0.9993 0.9842 0.9915 0.9877
3 2 0.9984 0.9881 0.9277 0.9438
3 3 0.9986 0.9888 0.978 0.9824
4 1 0.9992 0.9918 0.9796 0.9849
4 2 0.9982 0.991 0.9384 0.9495
4 3 0.9981 0.9797 0.9415 0.9474

Table 5   Layers performance 
comparison of proposed ABCNN 
on IoTID20 dataset

Conv1D Dense Accuracy M-Precision M-Recall F1-Score

1 1 0.9973 0.9973 0.9964 0.9968
1 2 0.9967 0.996 0.9949 0.9954
1 3 0.9981 0.9973 0.9964 0.9969
2 1 0.9973 0.9971 0.9965 0.9968
2 2 0.9964 0.9962 0.9937 0.9949
2 3 0.9958 0.9933 0.9961 0.9936
3 1 0.9969 0.9962 0.9957 0.9959
3 2 0.996 0.9951 0.9939 0.9945
3 3 0.9959 0.9948 0.9931 0.9939
4 1 0.9964 0.9966 0.9938 0.9942
4 2 0.9956 0.9953 0.9917 0.9935
4 3 0.9944 0.9947 0.9883 0.9915
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low precision and high recall of the proposed ABCNN indicate that the model identifies 
most of the positive cases (high recall) but also makes a lot of false positive errors (low 
precision). This might happen if the model is generalized and captures many features as 
indicators of the positive class.

Table 6   Layers performance 
comparison of proposed ABCNN 
on ToN_IoT dataset

Conv1D Dense Accuracy M-Precision M-Recall F1-Score

1 1 0.9999 0.9995 0.9996 0.9995
1 2 0.9999 0.9997 0.9996 0.9996
1 3 0.9999 0.9999 0.9998 0.9998
2 1 0.9995 0.9992 0.9985 0.9988
2 2 0.9991 0.9989 0.9986 0.9987
2 3 0.9999 0.9998 0.9997 0.9997
3 1 0.9999 0.9998 0.9997 0.9997
3 2 0.9999 0.9998 0.9997 0.9997
3 3 0.9998 0.9996 0.9984 0.9989
4 1 0.9982 0.9975 0.9974 0.9975
4 2 0.9998 0.9997 0.9995 0.9996
4 3 0.9996 0.9994 0.9993 0.9994

Table 7   Layers performance 
comparison of proposed ABCNN 
on CIC-ID2017dataset

Conv1D Dense Accuracy M-Precision M-Recall F1-Score

1 1 0.9937 0.9536 0.9258 0.9354
1 2 0.9942 0.9918 0.8034 0.8265
1 3 0.9952 0.9318 0.9359 0.9329
2 1 0.9942 0.9914 0.8112 0.8426
2 2 0.9938 0.9231 0.9261 0.9117
2 3 0.9944 0.9314 0.9331 0.9231
3 1 0.9927 0.8684 0.9438 0.8985
3 2 0.9944 0.9766 0.8236 0.8569
3 3 0.9931 0.9822 0.8077 0.8256
4 1 0.9934 0.8881 0.9341 0.9043
4 2 0.9915 0.839 0.7974 0.8108
4 3 0.9901 0.9014 0.9209 0.8937

Table 8   Performance comparison 
of proposed ABCNN on different 
optimizers on Edge-IIoTset 
dataset

Optimizer Accuracy M-Precision M-Recall F1-Score

Nadam [52] 0.9991 0.9845 0.9941 0.9886
Adamax [52] 0.9989 0.9951 0.9838 0.9891
SGD [52] 0.9974 0.9721 0.9131 0.9226
RMSprop [52] 0.9922 0.8972 0.8693 0.8776
Adadelta [53] 0.9208 0.3914 0.4605 0.4176
Adagrad [54] 0.9711 0.6635 0.6827 0.6712
Adam [55] 0.9994 0.9921 0.9953 0.9936
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Table 9   Performance comparison 
of proposed ABCNN on different 
optimizers on Edge-IoTID20 
dataset

Optimizer Accuracy M-Precision M-Recall F1-Score

Nadam [52] 0.9968 0.9961 0.9951 0.9956
Adamax [52] 0.9964 0.9963 0.9936 0.997
SGD [52] 0.9931 0.9897 0.9881 0.9889
RMSprop [52] 0.9957 0.9951 0.9932 0.9941
Adadelta [53] 0.7543 0.4379 0.4229 0.4202
Adagrad [54] 0.8341 0.8099 0.6836 0.6836
Adam [55] 0.9981 0.9973 0.9964 0.9969

Table 10   Performance 
comparison of proposed ABCNN 
on different optimizers on ToN_
IoT dataset

Optimizer Accuracy M-Precision M-Recall F1-Score

Nadam [52] 0.9999 0.9997 0.9998 0.9998
Adamax[52] 0.9999 0.9999 0.9997 0.9998
SGD [52] 0.9974 0.9863 0.9906 0.9884
RMSprop [52] 0.9997 0.9995 0.9983 0.9989
Adadelta [53] 0.7634 0.7622 0.251 0.3776
Adagrad [54] 0.9234 0.6549 0.6763 0.6598
Adam [55] 0.9999 0.9999 0.9998 0.9998

Table 11   Performance 
comparison of proposed ABCNN 
on different optimizers on CIC-
IDS2017 dataset

Optimizer Accuracy M-Precision M-Recall F1-Score

Nadam [52] 0.9951 0.9311 0.9335 0.9321
Adamax [52] 0.9932 0.9257 0.9205 0.9105
SGD [52] 0.9400 0.6697 0.6069 0.6246
RMSprop [52] 0.989 0.9228 0.9089 0.9034
Adadelta [53] 0.8014 0.4376 0.4434 0.4326
Adagrad [54] 0.8956 0.5076 0.5155 0.5099
Adam [55] 0.9952 0.9318 0.9359 0.9329

Fig. 7   Training performance of ABCNN on different optimizers using Edge-IIoTset dataset
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5 � Conclusion

In this study, we have proposed an attention-based convolutional neural network (ABCNN) 
for intrusion detection in IoT networks. Moreover, we have utilized the mutual informa-
tion technique during the pre-processing stage to filter out the most relevant features from 
the dataset. To evaluate the effectiveness of our proposed ABCNN approach, we have 
employed the Edge-IoTset, IoTID20, ToN_IoT, and CIC-IDS2017 datasets. The perfor-
mance of our approach has been compared with other Intrusion Detection Systems (IDS) 
based on both ML and DL techniques. The results clearly demonstrate that our proposed 

Fig. 8   Training performance of ABCNN on different optimizers using IoTID20 dataset

Fig. 9   Training performance of ABCNN on different optimizers using ToN_IoT dataset

Fig. 10   Training performance of ABCNN on different optimizers using CIC-IDS2017 dataset
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approach achieves an impressive average accuracy of 99.81% on all the datasets. Addi-
tionally, other metrics such as precision, recall, and F1-score reach 98.02%, 98.18%, 
and 98.08% respectively, surpassing the performance of other models and highlight-
ing the superior performance of the proposed model. The proposed model has success-
fully enhanced the performance of existing systems. There are several classes of attacks 
available in various IDS datasets. They need to be combined into a single dataset, and the 
proposed model should be trained by adjusting the hyperparameters. This is because the 
proposed model has the capability to learn a wider range of attack classes, eliminating the 
need for multiple models for detecting different cyber attacks. Similar to the limitations 
of other ML and 1D-DL models, it also requires a feature extraction method to eliminate 
negative impactful features. Additionally, as the number of layers increases, so does the 
detection time.

Table 12   Performance of 
proposed ABCNN on different 
batch sizes using Edge-IIoTset 
dataset

Batch Size Accuracy M-Precision M-Recall F1-Score

32 0.9994 0.9921 0.9953 0.9936
64 0.9992 0.9944 0.9891 0.9915
128 0.9993 0.9929 0.9929 0.9929
256 0.9993 0.9945 0.9886 0.9913

Table 13   Performance of 
proposed ABCNN on different 
batch sizes using IoTID20 
datasets

Batch Size Accuracy M-Precision M-Recall F1-Score

32 0.9981 0.9973 0.9964 0.9969
64 0.997 0.9958 0.996 0.9959
128 0.9968 0.995 0.9953 0.9931
256 0.9968 0.9966 0.995 0.9958

Table 14   Performance of 
proposed ABCNN on different 
batch sizes using ToN_IoT 
datasets

Batch Size Accuracy M-Precision M-Recall F1-Score

32 0.9999 0.9999 0.9998 0.9998
64 0.9999 0.9998 0.9995 0.9997
128 0.9999 0.9998 0.9997 0.9997
256 0.9998 0.9998 0.9997 0.9998

Table 15   Performance of 
proposed ABCNN on different 
batch sizes using CIC-IDS2017 
datasets

Batch Size Accuracy M-Precision M-Recall F1-Score

32 0.9952 0.9318 0.9359 0.9329
64 0.9938 0.9295 0.9358 0.9216
128 0.9941 0.9295 0.9321 0.9282
256 0.9951 0.9307 0.9301 0.9304
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Table 16   Performance comparison with several ML and DL approaches on Edge-IIoTset dataset

Approach Accuracy M-Precision M-Recall F1-Score Testing Time
(in sec)

LSTM [56] 0.9986 0.9912 0.9672 0.9778 114
CNN [42] 0.9992 0.9935 0.9838 0.9882 20
GRU [57] 0.9991 0.9874 0.9863 0.9865 86
AEC [58] 0.9891 0.9714 0.9735 0.9723 15
LR [45, 47] 0.9933 0.9439 0.8731 0.8829 0.35
NB [47] 0.9961 0.9598 0.9322 0.9402 0.57
SVM [45, 47] 0.9952 0.9827 0.9855 0.9841 150.3
ABCNN 0.9994 0.9921 0.9953 0.9936 27

Table 17   Performance comparison with several ML and DL approaches on IoTID20 dataset

Approach Accuracy M-Precision M-Recall F1-Score Testing Time
(in sec)

LSTM [56] 0.9911 0.9897 0.9891 0.9893 48
CNN [42] 0.9942 0.9931 0.9938 0.9934 8
GRU [57] 0.9918 0.9884 0.9885 0.9884 38
AEC [58] 0.9971 0.9958 0.9834 0.9881 4
LR [45, 47] 0.8652 0.8107 0.7651 0.7665 0.2
NB [47] 0.7384 0.7735 0.8192 0.7387 0.3
SVM [45, 47] 0.8189 0.8388 0.8189 0.8211 79
ABCNN 0.9981 0.9973 0.9964 0.9969 11

Table 18   Performance comparison with several ML and DL approaches on ToN_IoT dataset

Approach Accuracy M-Precision M-Recall F1-Score Testing Time
(in sec)

LSTM [56] 0.9995 0.9991 0.9989 0.999 12
CNN [42] 0.9996 0.9996 0.9997 0.9996 2
GRU [57] 0.9991 0.9987 0.9985 0.9986 15
AEC [58] 0.9993 0.9991 0.9995 0.9992 2
LR [45, 47] 0.9943 0.9871 0.9879 0.9875 0.9
NB [47] 0.9952 0.9891 0.9899 0.9896 0.89
SVM [45, 47] 0.9995 0.9992 0.9977 0.9984 15
ABCNN 0.9999 0.9999 0.9998 0.9998 3
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