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A B S T R A C T

In the dynamic landscape of saliency detection, convolutional neural networks have emerged
as catalysts for innovation, but remain largely tailored for RGB imagery, falling short in the
context of infrared images, particularly in memory-restricted environments. These existing
approaches tend to overlook the wealth of contour information vital for a nuanced analysis of
infrared images. Addressing this notable gap, we introduce the novel Two-branch Edge Guided
Lightweight Network (TBENet), designed explicitly for the robust analysis of infrared image
saliency detection. The main contributions of this paper are as follows. First, we formulate the
saliency detection task as two subtasks, contour enhancement and foreground segmentation.
Therefore, the TBENet is divided into two specialized branches: a contour prediction branch for
extracting target contour and a saliency map generation branch for separating the foreground
from the background. The first branch employs an encoder–decoder architecture to meticulously
delineate object contours, serving as a guiding blueprint for the second branch. This latter
segment adeptly integrates spatial and semantic data, creating a precise saliency map that
is refined further by an innovative edge-weighted contour loss function. Second, to enhance
feature integration capabilities, we propose depthwise multi-scale and multi-cue modules,
facilitating sophisticated feature aggregation. Third, a high-level linear bottleneck module is
devised to ensure the extraction of rich semantic information, and by replacing the standard
convolution with the depthwise convolution, it is beneficial to reduce model complexity.
Additional, we reduce the number of channels of the feature maps from each stage of the
decoder to further enhance the lightweight of the model. Last, we construct a novel infrared
ship dataset Small-IRShip to train and evaluate our proposed model. Experimental results on
the homemade dataset Small-IRShip and two publicly available datasets, namely RGB-T and
IRSTD-1k, demonstrate TBENet’s superior performance over state-of-the-art methods, affirming
its effectiveness in harnessing edge information and incorporating advanced feature integration
strategies.
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1. Introduction

Salient object detection (SOD) is a category-agnostic task that focuses on segmenting salient targets, regardless of their specific
ategory [1]. Consequently, SOD is extensively used to support various computer vision applications, including segmentation [2–
], classification [5–7], recognition [8–10], and tracking [11,12]. Most developed SOD models are trained on visible light images
ecause the RGB images can provide a visually appealing experience, allowing for easy identification of object categories through
lear color and appearance features [13]. However, they struggle in dark environments [14]. Recently, as hardware devices such as
hermal sensors continue to be upgraded, infrared (IR) imaging systems are becoming less expensive and the quality of the imaging is
ecoming better, which makes infrared saliency detection algorithms [15] attract more attention. In contrast to visible light images,
R images thrive in dark environments and excel at long-distance images [16,17]. Therefore, IR image saliency detection is better
uited for marine [18] and military applications [19], such as maritime search and rescue, ship detection, and related fields [20].

With the growing popularity of vision technology [21,22], numerous SOD algorithms have emerged [23,24]. These approaches
an be broadly categorized into traditional methods and deep learning (DL) based methods [25,26]. Traditional methods heavily rely
n prior knowledge for saliency analysis. For instance, Zhu et al. [27] utilize boundary connectivity as a robust background measure
o differentiate image patches. Liu et al. [28] introduce contrast priori and combines local, regional, and global features using a
onditional random field. Yang et al. [29] compute similarity between image elements and queries, ranking them with a graph-based
anifold. However, traditional SOD methods struggle with challenging environments and background clutter. Fortunately, DL-based
ethods address these limitations by leveraging deep nonlinear networks to extract features, resulting in improved accuracy. Hou

t al. [30] introduce short connections in a deeply supervised network for SOD. Zhang et al. [31] enable message passing between
ayers using a gated bi-directional module to fuse multi-scale feature maps. In our previous work [32], we propose DG-Light-
LDF, which incorporates a global information extraction module and a dilated linear bottleneck to reduce the number of model
arameters.

While DL-based saliency detection methods have made significant progress [33], there is still room for improvement [34].
irstly, many SOD methods employ complex modules with a large number of parameters, which is not suitable for infrared images.
ightweight modules, such as depthwise separable convolution [35], ghost features [36], and micro-factorized convolution [37],
ave shown promising results with limited computational power but are yet to be explored in SOD. Secondly, the utilization of
dge information in existing frameworks remains an area of interest. Several models [38–41] have incorporated edge information
o improve accuracy and guide saliency map production. However, these models treat each sample equally, which can make them
ragile [42]. In summary, further advancements in SOD can be achieved by exploring lightweight modules suitable for infrared
mages and by better leveraging edge information.

In this paper, we propose a two-branch edge guided lightweight saliency detection model specifically designed for infrared
mages. We aim to enhance the performance of saliency detection by improving the accuracy of edge detection and devise some
ightweight modules to reduce the complexity of the model. Due to the inconspicuous difference between the target and the
ackground in infrared scenes [43,44], which results in blurred edges, and the fact that most of the infrared cameras are mounted on
dge devices, which require high efficiency [45,46]. We proposed efficient network for generating saliency maps with accurate edges
an better address the saliency analysis of infrared images. To this end, our two-branch network contains a contour prediction branch
nd a saliency map generation branch. The former is responsible for extracting the contour information of the target. The latter
n charge of computing a uniform saliency map guided by the contour information. Unlike other edge-based SOD approaches that
mploy complex structures or specific edge loss functions [47], we propose an edge-weighted contour loss for supervising the training
f the saliency map generation branch. This loss assigns a higher weight to samples located in edge regions, enabling our network
o focus more on regional loss on edges during training. Additionally, we introduce a depthwise multi-scale integration module to
use features with different resolutions for restoring spatial information of targets and a multi-clue integration module to combine
ow-level, mid-level, and high-level features for thoroughly representing targets. Furthermore, in order to capture rich semantic
eatures while maintaining high efficiency, we construct a high-level linear bottleneck module that replaces standard convolution
ith depthwise convolution. And we reduce the channel numbers of the feature maps in the decoder to further decrease model

omplexity. Finally, to address the lack of publicly available infrared datasets, we construct a dataset called Small-IRShip, which
onsists of 1002 infrared ship images with corresponding edge labels and saliency labels. Two additional datasets, RGB-T [48] and
RSTD-1k [49], are selected to validate the generalization performance of the TBENet. Experimental results on these three datasets
emonstrate that the TBENet outperforms state-of-the-art methods. Our contributions are outlined as:

1. We propose a two-branch edge guided lightweight network (TBENet) for saliency detection in infrared images. It consists of a
contour prediction branch that captures edge information and a saliency map generation branch that produces clear saliency
maps. Additionally, we introduce a contour loss to the final loss function to enhance edge prediction accuracy.

2. Our TBENet incorporates two feature integration modules: a depthwise multi-scale integration module and a multi-clue
integration module, which enable the extraction of more refined features.

3. We design a lightweight high-level linear bottleneck module and reduce the number of channels of feature maps output by
each stage in the decoder to reduce the number of parameters without compromising detection accuracy.

4. To train our model and provide a benchmark for evaluation, we construct a novel dataset called Small-IRShip. Extensive
experiments are conducted on this dataset to assess the performance of our detector.

The remainder of this paper is organized as follows: Section 2 discusses related studies on salient object detection. Section 3
resents a detailed description of the overall structure of TBENet. Section 4 showcases quantitative and qualitative experimental
esults. Finally, Section 5 concludes the paper.
2
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2. Related work

The increasing popularity of convolutional neural networks (CNNs) [50,51] has led to the widespread adoption of fully
onvolutional neural networks (FCNs) [52,53] in SOD due to their ability to preserve spatial information. In FCN-based networks,
eatures at different levels play different roles due to their varying receptive fields [54]. However, effectively integrating these
eatures poses a challenge for SOD [55]. Many SOD methods employ multi-feature fusion techniques [56]. Ge et al. [57] use a group
emantic module to guide multi-layers feature fusion to learn the consistent and discriminative co-salient features. Ren et al. [58]
ntegrate multi-scale features of different modalities via a mask-guided feature aggregation module. Huang et al. [59] investigate the
ggregation and propagation of features across deep CNN layers. Luo et al. [60] use cascaded sub-modules to capture and integrate
ultiple resolution feature maps effectively. Liu et al. [61] explore the potential of pooling layers in a global feature guidance
odule and a feature fusion module to enrich saliency maps. Zhao et al. [62] separately handle semantic context, spatial details, and

oundary information in the decoder component and progressively merges these features using three specific integration modules.
ong et al. [63] use a transformer-based backbone and a convolution-based backbone to extract features, respectively. Then, a
ybrid attention mechanism is utilized to fuse the features from different backbones. Yan et al. [64] propose a four-branch feature
ntegration module to fuse feature maps at different scales. Each branch has a different receptive field. To address the dilution of
igh-level features, Chen et al. [65] incorporate attention mechanisms to enhance the top layer features and integrates features
uided by contextual information. Chen et al. [66] integrate semantic, spatial, and global context information using a similarity
usion module to enhance the complementary of maps. Li et al. [67] insert the attention mechanism into the convolutional layer
n order to extract useful global information. Sun et al. [68] devise a cross-modality feature dynamic fusion module that generates
ifferent weights for different modalities for complementarily conducting RGB-T features fusion. Huang et al. [69] propose a multi-
cale saliency detection model that takes images at three different scales and uses the saliency maps of neighboring scales to guide
he current features fusion.

Considering the benefits of incorporating edge information for accurate saliency maps [70], several studies [71] have focused on
mbedding boundary clues in SOD approaches [72]. Luo et al. [38] propose an effective network for saliency detection (NLDF) that
xtracts multi-scale features through a grid-shaped multi-resolution network, enhances feature contrast using a contrast module,
nd optimizes boundaries using a boundary loss function. Chen et al. [73] introduce an edge-aware refinement module in the
ecoder to segment objects with clear boundaries. Wu et al. [74] develop a cross refinement unit that exchanges messages between
aliency prediction and boundary detection tasks, enabling the simultaneous generation of precise saliency maps and edge maps.
n the primary network, Han et al. [75] obtain an edge map in the encoder and uses it to guide the initial saliency map in the
ecoder. The edge map is further incorporated into the sub-network to refine the initial saliency map. Zheng et al. [76] use two
ndependent decoders with shared encoder for generating smooth edges and accurate saliency maps by fusing three deep feature
aps, respectively. In SDFNet [77], the differences between the different channels in the RGB color space allow the network to

xtract the edge information of the target. And then, the edge information and the original image are fed into the Siamese network
or learning the complementary cross-modal information between them. Zhang et al. [78] utilize the extracted edge cues to compute
patial attention weights and apply them to the feature maps for spatial feature selection, facilitating the network to perceive edge
etails. Zeng et al. [79] propose a difference perception mechanism that extracts the edge details of the target by calculating the
ifference between the max pooling and the average pooling. Zhou et al. [80] apply the predicted edge maps to multiple saliency
rediction encoders, and manipulate the encoders to produce saliency maps with smooth edges by fusing the edge maps with
ulti-scale feature maps.

In recent years, lightweight modules [81] have garnered significant attention due to the complex structures and large parameter
umbers of previous models [82]. Zhang et al. [83] utilize channel cleaning and point-wise convolution to reduce computational
omplexity and improve results, addressing the lack of information exchange between different channels of group convolutions.
andola et al. [84] employ compression and expansion operations to construct lightweight modules and reduce model complexity.
ao et al. [85] introduce the concept of channel convolution, which sparsely connects input and output channels in a sliding window-

ike fashion to maintain information exchange between channels. Sandler et al. [86] introduce an inverse residual linear bottleneck
odule, which outperforms the depthwise separable convolution module by addressing computation-related issues. Zhang et al. [87]
ecompose ordinary convolutions into multiple group convolutions and employs a sorting module to enable information circulation
etween channels. Xie et al. [88] propose a cross-structured channel convolution to resolve the dense group convolution channel
roblem. While lightweight modules can significantly enhance computational efficiency and reduce the number of parameters,
hey have been rarely utilized in salient object detection. Leveraging the specific characteristics of infrared images, Liu et al. [89]
ropose a lightweight NLDF model by simplifying the feature extraction and fusion modules. Liu et al. [32] replace the original
onvolution module with a dilated linear bottleneck module and achieves outstanding performance under the guidance of a global
eature extraction module. However, the edge information is not considered. Therefore, we take edge information and lightweight
odule into consideration simultaneously to improve the performance of our detector.

. The proposed method

.1. Overview

In this section, we present the overall structure of our proposed two-branch edge guided lightweight network (TBENet), as shown
3

n Fig. 1. Our network includes an encoder, a decoder, a contour prediction branch, and a saliency map generation branch. The input
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Fig. 1. The entire structure of TBENet. Our model is composed of four parts: an encoder, a decoder, a contour prediction branch, and a saliency map generation
branch. The encoder–decoder network progressively produces fine-grained features. Given the refined features, the contour prediction branch delineates clear
target contour. Guided by the contour information, the saliency map generation branch aggregates multi-dimensional information to obtain high quality saliency
map.

of the TBENet is an infrared image and the output of the TBENet is an image pair consisting of a contour image and a saliency map.
The encoder first extracts multi-scale feature maps denoted by {𝐗𝑖}5𝑖=1 through five sub-modules denoted by {E𝑖}5𝑖=1. And then, the
decoder merges multi-scale feature maps via a series of sub-modules denoted by {D𝑖}5𝑖=1, generating multiple intermediate refined
features {𝐗𝑙 , {𝐔𝑖}5𝑖=2}. After that, the contour prediction branch captures the global information 𝐗𝑔 obtained by a module E𝑔 . The
𝐗𝑔 and the enhanced feature 𝐗𝑙 are integrated to establish the contour information of the targets. The saliency map generation
branch produces the final saliency map by fusing the contour information with the mid-level spatial features 𝐗𝑚 and the high-level
semantic features 𝐗ℎ using a multi-clue integration module. Under the guidance of the contour information, our model can obtain
more accurate saliency map with clear edges.

3.2. Encoder

These FCN-based methods [90] typically downsample the input image several times and restore the resolution of the image
with only one upsampling operations. This simple technique loses the spatial information of the image. Therefore, we adopt a more
advanced framework based on U-Net [91], preserving the spatial information of the image. It contains an encoder and a decoder. The
encoder acts as a feature extractor. The decoder plays the role of fusing multi-scale features. We select the VGG16 as the backbone of
the encoder. Shallow features contain structural information about the target. However, standard convolution involves more channel-
level operations that interfere with the extraction of structural features. Therefore, we replace the standard convolution with linear
bottleneck (LB) [92]. The LB contains depthwise convolution operations that reduce inter-channel interactions and improve the
extraction of structural features while reducing network complexity. The LB is introduced into the first two sub-modules, namely E1
and E2. The structure of the LB is shown in Fig. 2(a). Specifically, given an input 𝐗 ∈ R𝑊 ×𝐻×𝐶 , we use a pointwise convolution (PW)
to transform the features, obtaining 𝐗1 ∈ R𝑊 ×𝐻×𝐶 . For decreasing the number of parameters, a 3 × 3 depthwise convolution (DW)
is leveraged to replace the original convolution, generating 𝐗2 ∈ R𝑊 ×𝐻×𝐶 . The 𝐗3 ∈ R𝑊 ×𝐻×𝐶′ is the output by a PW. Deep features
contain semantic information. In order to obtain informative semantic features, we design a high-level linear bottleneck module
(HLLB) that employs various convolution kernels to expand the respective field and enhance the extraction of global semantic
information. The details of the HLLB is shown in Fig. 2(b). Concretely, the HLLB has three layers. The first layer is a PW with
input 𝐗, producing 𝐗𝑓 . Differing from the common LB, the second layer consists of three DWs with the kernel sizes of 3, 5, and 7,
respectively. The 𝐗𝑓 is fed into different DW separately to obtain three feature maps with various receptive fields, 𝐗𝑠3, 𝐗𝑠5, and 𝐗𝑠7.
Concatenation is then performed for merging the three feature maps. The third layer is still a PW that reduces channel dimensions
and integrates features. Finally, similar to residual neural network, a shortcut connection is applied between the input and output
to obtain the final feature map 𝐗𝑜. The above process is as follows:

𝐗𝑓 = 𝑃𝑊 (𝐗),
(1)
4

𝐗𝑜 = 𝑃𝑊 (𝐶𝑎𝑡(𝐷𝑊3(𝐗𝑓 ), 𝐷𝑊5(𝐗𝑓 ), 𝐷𝑊7(𝐗𝑓 ))) + 𝐗,
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Fig. 2. The structure of the different linear bottleneck modules. (a) means the common linear bottleneck module; (b) denotes the proposed high-level linear
bottleneck module (HLLB). The sub-modules marked in yellow and blue are the depthwise convolution and the standard convolution. ⨁ stands for an elementwise
addition layer.

Fig. 3. The details of the depthwise multi-scale integration module (DMIM). The sub-module marked in pink stands for a up-sampling layer.

where 𝐶𝑎𝑡 is the concatenate operation along channel. 𝐷𝑊3, 𝐷𝑊5, and 𝐷𝑊7 mean the 3 × 3, 5 × 5, and 7 × 7 depthwise
convolutions, respectively. LB enriches the structural information and HLLB boosts the semantic information, which jointly enhance
the representation of the feature extraction network and provide representative feature maps for the saliency detection task.

3.3. Decoder

In order to recover the spatial information of the target, we divide the decoder into four upsampling stages. In each stage, the
coarse semantic information from the high level is first upsampled to recover the resolution, and afterwards, it is integrated with
the feature maps containing detailed information from the low level to reduce the loss of spatial information caused by upsampling.
However, utilizing the original convolution to integrate the features results in a large number of parameters and unsatisfactory
performance. To remedy this problem, we propose a simple depthwise multi-scale integration module (DMIM), as shown in Fig. 3.
Our decoder consists of a convolution layer D5 and four consecutive DMIMs denote by {D𝑖}4𝑖=1. The experimental results given in
Section 4 demonstrate that the DMIM not only achieves ideal feature integration effects but also has a small number of parameters.

We first apply D5 with a kernel size of 3 × 3 to adjust the deep level features 𝐗5. Then, the adjusted features pass through four
DMIMs to obtain the advanced features. For convenience, the 𝑖th DMIM is used as an example to explain our method. Notably,
this DMIM has two inputs: low-level feature {𝐗𝑖}4𝑖=1 output by the corresponding layer from the encoder and high-level feature
𝐔𝑖+1 generated from the previous module. First, we use a PW to reduce the channel dimension of 𝐗𝑖, containing 𝐗′

𝑖 . Then 𝐔𝑖+1 is
processed by an up-sampling layer to resize it to the same size as 𝐗𝑖, which is followed by a PW to contain 𝐔′

𝑖+1. Subsequently, we
concatenate 𝐗′

𝑖 and 𝐔′
𝑖+1 along the channel dimension. The result is fed into a 3 × 3 DW for reducing the number of parameters,

which followed by a PW to produce the final output 𝐔𝑖. The process is summarized in Eq. (2).

𝐔𝑖 = 𝑃𝑊 (𝐷𝑊 (𝐶𝑎𝑡(𝑃𝑊 (𝑓𝑢(𝐔𝑖+1)), 𝑃𝑊 (𝐗𝑖)))), (2)

where 𝑓𝑢 stands for an up-sampling layer implemented by a bilinear interpolation operation. The feature map from the last layer of
the encoder is passed through multiple DMIMs and the spatial structure of the target is recovered, making it easier for the network
to discriminate the state (foreground or background) of each pixel location and facilitating the generation of a clear saliency map.

To further enhance the lightweight of our model, we reduce the number of channels of feature maps from each DMIM. In our
previous work [32], the number of channels of the output feature map for each upsampling step is equal to half of the sum of
the number of channels of the two input feature maps. Since infrared image features are relatively simple and too many channel
numbers tend to cause overfitting, we believe that the number of channels in the feature map should be reduced. Therefore, we
define the number of output channels as half the number of input channels. Details are shown in Table 1.
5
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Table 1
Details of each stage of the decoder. Original and Reduced denote the feature maps for the number of unreduced and reduced channels, respectively.
𝐷𝑖 Input1 Input2 Original Input1 Input2 Reduced

𝐷1 176 × 176 × 64 88 × 88 × 224 176 × 176 × 144 176 × 176 × 64 88 × 88 × 64 176 × 176 × 32
𝐷2 88 × 88 × 128 44 × 44 × 320 88 × 88 × 224 88 × 88 × 128 44 × 44 × 128 88 × 88 × 64
𝐷3 44 × 44 × 256 22 × 22 × 384 44 × 44 × 320 44 × 44 × 256 22 × 22 × 256 44 × 44 × 128
𝐷4 22 × 22 × 512 11 × 11 × 256 22 × 22 × 384 22 × 22 × 512 11 × 11 × 512 22 × 22 × 256
𝐷5 11 × 11 × 512 – 11 × 11 × 256 11 × 11 × 512 – 11 × 11 × 512

Fig. 4. The structure of the multi-cue integration module (MCIM). The input to the network consists of three parts, i.e., high-level semantic information 𝐗ℎ,
mid-level spatial information 𝐗𝑚, and low-level detail information 𝐗𝑙 . The MCIM first fuses mid-level features and high-level features, and the result is then
fused with low-level features. By integrating information from multiple dimensions of the target, MCIM is able to produce informative features that enhance the
detection performance of the model.

3.4. Contour prediction branch

Most of these developed detectors overlook the contour information of the target, resulting in blurred edges. Therefore, our
contour prediction branch (CPB) attempts to obtain contour information to improve the accuracy of saliency detection in edge
regions. As shown in Fig. 1, the CPB is composed of a module E𝑔 and a contour prediction head (CPH). Specifically, the deep
features from E5 is processed by a 3 × 3 convolution layer and reshaped by an up-sampling operation, obtaining the global clues
𝐗𝑔 . Then, 𝐗𝑙 from 𝐔1 and 𝐗𝑔 is concatenated along the channel dimension, which is followed by CPH to generate the contour
image. The CPH contains three convolution layers for reducing the number of channels to 1 and a sigmoid layer for computing the
probability distribution.

In addition, infrared images have blurred edges, which makes labeling more difficult. Consequently, we select a simple method
to generate the groundtruth of the contour images. First, a dilation and an erosion operations are applied to the saliency map.
Second, the two results are subtracted to produce the contour label, which is followed by a Gaussian filtering. The detailed process
is given by Eq. (3).

𝐸 = 𝑓𝑔(𝑓𝑑 (𝑆) − 𝑓𝑒(𝑆)) + 1, (3)

where 𝐸 is the obtained contour label and 𝑆 denotes the saliency map. 𝑓𝑔 , 𝑓𝑑 , and 𝑓𝑒 stand for the Gaussian function, the dilation
operation, and the erosion operation, respectively. All kernel sizes are 3 × 3.

3.5. Saliency map generation branch

The saliency map generation branch (SMGB) uses the contour information obtained in the CPB to compute the final saliency
map. The SMGB consists of a proposed multi-cue integration module (MCIM) and a sigmoid layer. Features at different levels have
different roles. Numerous studies have shown that high-level features contain semantic information, mid-level features contain
spatial information, and low-level features contain detailed features. Therefore, the MCIM is utilized to fuse low-level features
𝐗𝑙, mid-level features 𝐗𝑚, and high-level features 𝐗ℎ to produce an accurate saliency map. The sigmoid layer is responsible for
calculating the probability of each pixel point belonging to the foreground. The architecture of the MCIM is presented in Fig. 4.

Specifically, the designed MCIM has three inputs: 𝐗𝑙 ∈ R176×176×144, 𝐗𝑚 ∈ R44×44×320, and 𝐗ℎ ∈ R11×11×512. First of all, 𝐗ℎ
passes through a global average pooling layer and a PW to extract the global features, obtaining 𝐗′

ℎ. Second, to strengthen 𝐗𝑚, we
introduce a spatial attention mechanism module (SAMM). In SAMM, 𝐗𝑚 is processed by the average pooling (AP) and max pooling
(MP) separately to generate 𝐗 ∈ R44×44×1 and 𝐗 ∈ R44×44×1. A concatenate operation is applied on 𝐗 and 𝐗 , which is
6
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o
a

followed by a 3 × 3 convolution operator to obtain 𝐗𝑚𝑐 ∈ R44×44×1. The result and 𝐗𝑚 perform the element-wise product to produce
the enhanced 𝐗′

𝑚. The process is given by Eq. (4).

𝐗′
𝑚 = 𝐶𝑜𝑛𝑣(𝐶𝑎𝑡(𝐴𝑃 (𝐗𝑚),𝑀𝑃 (𝐗𝑚)))⊙ 𝐗𝑚, (4)

Third, 𝐗′
ℎ and 𝐗′

𝑚 are fused by the DMIM, which is followed by another DMIM to merge 𝐗𝑙, obtaining the final output Y. The above
process is formulated as follows.

𝐘 = 𝐶𝑜𝑛𝑣(𝐷𝑀𝐼𝑀(𝐗𝑙 , 𝐷𝑀𝐼𝑀(𝐗′
𝑚,𝐗

′
ℎ))). (5)

And then, the saliency map is predicted by applying a sigmoid layer on Y.

3.6. Loss function

The loss function of the proposed TBENet contains the contour prediction loss 𝐿𝑐 , the saliency prediction loss 𝐿𝑏 (contour loss),
and the structural similarity loss 𝐿𝑠. In saliency detection, the binary cross-entropy loss function 𝐿𝑏𝑐𝑒 is usually used to calculate
the difference between the groundtruth and predicted results, as given in Eq. (6).

𝐿𝑏𝑐𝑒 = −
∑

𝑥,𝑦

(

𝑌𝑥,𝑦 log(𝑃𝑥,𝑦) + (1 − 𝑌𝑥,𝑦) log(1 − 𝑃𝑥,𝑦)
)

, (6)

where 𝑌𝑥,𝑦 and 𝑃𝑥,𝑦 represent the values of the groundtruth and the predicted results at the coordinate position (𝑥, 𝑦), respectively.
In this paper, 𝐿𝑐 is implemented by 𝐿𝑏𝑐𝑒. The common cross-entropy loss assigns the same weight to each sample. However, those
samples located in edge regions are more difficult to distinguish compared to those in the interior. Therefore, we use a weighted
cross-entropy loss (contour loss) to assign greater weights to these indistinguishable samples.

𝐿𝑏 = −
∑

𝑥,𝑦
𝑊𝑥,𝑦

(

𝑌𝑥,𝑦 log(𝑆𝑥,𝑦) + (1 − 𝑌𝑥,𝑦) log(1 − 𝑆𝑥,𝑦)
)

, (7)

where 𝑊 denotes the weight matrix, which is equal to 𝐸, and 𝐸 is the contour image.
In addition, the relationship between pixels of an image is also an important factor, but the cross-entropy loss function ignores

this factor. Therefore, similar to other work [32], we introduce the image similarity evaluation function, namely structural similarity
image measurement (SSIM). The definition of SSIM is given in Eq. (8).

𝐿𝑠 = 𝑆𝑆𝐼𝑀(𝑌 , 𝑆) =
(2𝜇𝑦𝜇𝑠 + 𝐶1)(2𝜎𝑦𝑠 + 𝐶2)

(𝜇𝑦2 + 𝜇𝑠2 + 𝐶1)(𝜎𝑦2 + 𝜎𝑠2 + 𝐶2)
, (8)

where 𝜇𝑦 and 𝜎𝑦 are the mean and standard deviation of groundtruth 𝑌 , respectively; 𝜇𝑠 and 𝜎𝑠 are the mean and standard deviation
f the predicted saliency map 𝑆, respectively; and 𝜎𝑦𝑠 denotes the covariance of 𝑌 and 𝑆. Parameters 𝐶1 and 𝐶2 are introduced to
void a denominator of 0, and they are set to 𝐶1 = 0.0001, 𝐶2 = 0.0009. The final loss function is given in Eq. (9).

𝐿 = 𝐿𝑐 + (1 − 𝐿𝑠) + 𝐿𝑏 (9)

3.7. Algorithm process

The training algorithm for the processes described so far is shown in Algorithm 1.
Algorithm 1: Two-branch edge guided lightweight network for infrared image saliency detection

In this algorithm, we empirically set the stopping condition as epoch ≥ 100.
Input: Training set (𝑋, 𝑌 , 𝐸), 𝑥𝑘 ∈ 𝑋, 𝑦𝑘 ∈ 𝑌 , 𝑒𝑘 ∈ 𝐸, 𝑘 = 1, 2, ..., 𝑁 . 𝑥𝑘, 𝑦𝑘, and 𝑒𝑘 represent the image, label, and edge of

the 𝑘th sample, respectively, and 𝑁 is the total number of samples.
Output: The optimal weights 𝑊 and biases �̃�.

1 Use Xavier to initialize weights 𝑊 and biases 𝑏.
while condition not met do

2 As shown in Fig. 1, take X as input, execute the feature extractors E1-E5 in turn, and obtain the corresponding outputs
X1-X5;

3 Extract global feature X𝑔 through E𝑔 , let Xℎ=X5;
4 Implement the sub-module D5-D1 from the decoder, obtain the corresponding outputs U5-U2 and local feature X𝑙, let

X𝑚=U3;
5 Combine global features X𝑔 and local features X𝑙 to predict edge map 𝐸;
6 Integrate features X𝑙, X𝑚, and Xℎ through the multi-clue integration module to obtain the final saliency map 𝑌 ;
7 Compute the loss via Eq. (9), and update weights 𝑊 and biases 𝑏;
8 end
9 𝑊 = 𝑊 , �̃� = 𝑏.
7
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Table 2
The detailed description on the Small-IRShip dataset. Frames and Size denote the number of frames and their total size, respectively. Boxes indicates the number
of targets. Large, Medium, and Small denote the number of large, medium, and small targets, respectively.

Class hzy kst ldk mru nzd qtc rak rxd tmk tqs xys zxs

Frames 81 81 86 81 94 88 86 66 99 81 81 78
Boxes 82 123 102 88 96 101 100 73 102 87 170 108
Small 12 82 58 46 42 63 69 39 62 48 127 89
Medium 36 31 41 42 53 36 25 31 38 28 41 19
Large 34 10 3 0 1 2 6 3 2 11 2 0
Size (KB) 780 668 680 672 964 736 708 544 832 676 720 400

Fig. 5. The examples of the constructed Small-IRShip. Words in yellow indicate the corresponding category.

4. Experimental results and analysis

4.1. Dataset

Small-IRShip. Because there are few publicly available infrared image datasets, we construct an infrared ship dataset Small-IRShip
for saliency detection. The Small-IRShip has 1002 infrared ship target images with annotations, containing 12 categories, namely
hzy, kst, ldk, mru, nzd, qtc, rak, rxd, tmk, tqs, xys, zxs. Each image has a resolution of 256 × 256. Fig. 5 shows a few example
images and more detailed description is shown in Table 2. In Table 2, we divide them into three sizes by the area of the target.
Small are less than 32 × 32, medium are greater than 32 × 32 but less than 72 × 72, and large are greater than 72 × 72. The dataset
is first created by extracting 1 image from every 60 frames of infrared ship videos. We then perform data cleaning to remove similar
images. The images with missing targets are deleted as well. During the experiments, the Small-IRShip dataset is randomly divided
in proportions of 8 training, 1.5 testing, and 0.5 validation.

RGB-T. RGB-T [48] is constructed for semantic segment. It contains 1569 images which has four channels (RGB-Thermal). There
are eight classes in this dataset. In this paper, we first extract the last channel and ignore the other three channels. Then, we consider
the eight categories above as foreground and the remaining categories as background. Training set, testing set, and validation set
contain 777, 387, and 391 images, respectively. Those images without annotations are deleted.

IRSTD-1k. IRSTD-1k [49] includes 1001 infrared images. This dataset is applied in infrared small target detection. It contains
different kinds of small targets in various scenes. The size of each image in this dataset is 512 × 512. For training and testing our
model, IRSTD-1k is split into training set, validation set, and testing set in the ratio of 3:1:1.
8
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Table 3
Comparison of our method with other models on the Small-IRShip dataset in terms of MAE (smaller is better), maximum F-measure (larger is better), mean
F-measure (larger is better), Params (smaller is better), FLOPs (smaller is better), and FPS (faster is better). Ours* means the model with reduced channels. The
data marked in red means the best results.

Methods Year Params(M) FLOPs(G) FPS MAE max-𝐹𝛽 mean-𝐹𝛽

NLDF [38] 2017 24.4 57.69 15.95 0.0074 0.9272 0.8756
PoolNet [61] 2019 49.12 120.51 7.73 0.0065 0.9189 0.8861
BASNet [39] 2019 87.06 127.56 2.48 0.0051 0.9174 0.8963
EGNet [41] 2019 108.04 156.80 4.18 0.0093 0.8803 0.8178
ITSD [93] 2020 24.86 20.82 30.35 0.0062 0.9113 0.8857
GCPANet [65] 2020 67.06 34.79 7.09 0.0063 0.9220 0.8775
F3Net [94] 2020 25.54 8.72 40.91 0.0054 0.9146 0.8920
BPFINet [95] 2021 68.33 23.71 8.08 0.0461 0.9138 0.8355
DG-Light-NLDF [32] 2021 10.91 21.34 15.14 0.0064 0.9384 0.8725
TSERNet [75] 2022 189.64 265.92 2.04 0.0059 0.9003 0.8906
RCSBNet [96] 2022 27.25 227.12 2.19 0.0061 0.9072 0.8936
R2Net [97] 2022 18.31 37.55 2.25 0.0056 0.9195 0.9056
DSLRDNet [98] 2023 168.60 201.92 2.82 0.0106 0.8346 0.8080
A3Net [99] 2023 16.98 42.59 5.11 0.0051 0.9231 0.9009
Ours - 11.81 35.67 6.01 0.0040 0.9672 0.9112
Ours* - 8.20 18.81 12.72 0.0040 0.9695 0.9063

Fig. 6. Prediction results of various methods on the Small-IRShip dataset. (a) input image. (b) groundtruth. (c) NLDF. (d) PoolNet. (e) BASNet. (f) EGNet. (g)
ITSD. (h) GCPANet. (i) F3Net. (j) BPFINet. (k) TSERNet. (l) DG-Light-NLDF. (m) RCSBNet. (n) R2Net. (o) DSLRDNet. (p) A3Net. (q) Ours.

4.2. Evaluation criteria

We use five metrics to evaluate the performance of the model, including 𝐹𝛽 , mean absolute error (MAE), Params, FLOPs, and
frames per second (FPS). 𝐹𝛽 considers both precision 𝑃𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 and recall 𝑅𝑟𝑒𝑐𝑎𝑙𝑙, as given in Eq. (10).

𝐹𝛽 =
(1 + 𝛽2) × 𝑃𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑟𝑒𝑐𝑎𝑙𝑙

𝛽2 × 𝑃𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑟𝑒𝑐𝑎𝑙𝑙
, (10)

where 𝛽2 is set to 0.3. MAE calculates the mean absolute error between predicted result 𝑃 and groundtruth value 𝑌 as given in
Eq. (11).

MAE = 1
𝑊 ×𝐻

∑

𝑥,𝑦
∣ 𝑃 (𝑥, 𝑦) − 𝑌 (𝑥, 𝑦) ∣, (11)

where 𝑊 and 𝐻 denote the width and height of the image. Params means the number of parameters to be updated. FLOPs indicates
the number of floating-point operations required for the model to run once. FPS measures the speed of the model.

4.3. Implementation details

We train our network TBENet on a NVIDIA Tesla k40c GPU card using PyTorch 1.0.0 and Python 3.6. The Adam optimizer was
used with an initial learning rate 𝑙𝑟 = 1×10−4. The 𝑏𝑒𝑡𝑎𝑠, 𝑒𝑝𝑠, and 𝑤𝑒𝑖𝑔ℎ𝑡 𝑑𝑒𝑐𝑎𝑦 are set to (0.9, 0.999), 1×10−8, and 0, respectively.
The 𝑏𝑒𝑡𝑎𝑠 are two coefficients used for computing running averages of gradient and its square. The 𝑒𝑝𝑠 is added to the denominator
to improve numerical stability. The 𝑤𝑒𝑖𝑔ℎ𝑡 𝑑𝑒𝑐𝑎𝑦 denotes the extent of the 𝐿2 penalty. The overall network converges after 100
epochs with a batch size of 8. The size of input images is 352 × 352. All parameters are initialized using the 𝑋𝑎𝑣𝑖𝑒𝑟 algorithm.

4.4. Comparison results

To verify the effectiveness of the proposed method, we carry out extensive comparative experiments on the Small-IRShip
dataset with fourteen state-of-the-art saliency detection algorithms: NLDF [38], PoolNet [61], BASNet [39], EGNet [41], ITSD [93],
GCPANet [65], F3Net [94], BPFINet [95], DG-Light-NLDF [32], TSERNet [75], RCSBNet [96], R2Net [97], DSLRDNet [98], and
A3Net [99]. The hyperparameters of all methods are set to the default values in the authors’ source codes. All models are retrained
on the Small-IRShip dataset.
9
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Table 4
Comparative experiments on the hzy, kst, ldk, mru, nzd, and qtc. The MAE is selected as metrics.

Methods hzy kst ldk mru nzd qtc

NLDF [38] 0.0139 0.0185 0.0028 0.0027 0.0065 0.0131
PoolNet [61] 0.0107 0.0165 0.0028 0.0026 0.0067 0.0127
BASNet [39] 0.0086 0.0165 0.0030 0.0020 0.0046 0.0039
EGNet [41] 0.0175 0.0236 0.0047 0.0049 0.0091 0.0080
ITSD [93] 0.0100 0.0177 0.0026 0.0022 0.0064 0.0097
GCPANet [65] 0.0116 0.0173 0.0031 0.0030 0.0074 0.0080
F3Net [94] 0.0097 0.0187 0.0022 0.0022 0.0058 0.0069
BPFINet [95] 0.0469 0.0597 0.0393 0.0387 0.0458 0.0466
DG-Light-NLDF [32] 0.0110 0.0180 0.0031 0.0030 0.0050 0.0062
TSERNet [75] 0.0086 0.0208 0.0021 0.0017 0.0074 0.0046
RCSBNet [96] 0.0098 0.0214 0.0021 0.0019 0.0044 0.0075
R2Net [97] 0.0096 0.0163 0.0021 0.0021 0.0045 0.0088
DSLRDNet [98] 0.0173 0.0405 0.0034 0.0026 0.0098 0.0058
A3Net [99] 0.0093 0.0161 0.0019 0.0019 0.0059 0.0077
Ours 0.0088 0.0061 0.0027 0.0028 0.0035 0.0037

Table 5
Comparative experiments on the rak, rxd, tmk, tqs, xys, and zxs. The MAE is selected as metrics.

Methods rak rxd tmk tqs xys zxs

NLDF [38] 0.0056 0.0029 0.0026 0.0054 0.0103 0.0020
PoolNet [61] 0.0045 0.0028 0.0027 0.0047 0.0077 0.0025
BASNet [39] 0.0037 0.0022 0.0021 0.0040 0.0083 0.0031
EGNet [41] 0.0076 0.0044 0.0041 0.0070 0.0145 0.0058
ITSD [93] 0.0052 0.0025 0.0024 0.0046 0.0082 0.0026
GCPANet [65] 0.0041 0.0031 0.0031 0.0050 0.0074 0.0021
F3Net [94] 0.0033 0.0024 0.0023 0.0044 0.0061 0.0015
BPFINet [95] 0.0477 0.0449 0.0489 0.0511 0.0396 0.0534
DG-Light-NLDF [32] 0.0058 0.0031 0.0028 0.0052 0.0108 0.0021
TSERNet [75] 0.0051 0.0023 0.0022 0.0040 0.0101 0.0038
RCSBNet [96] 0.0063 0.0023 0.0018 0.0051 0.0092 0.0026
R2Net [97] 0.0038 0.0023 0.0022 0.0042 0.0082 0.0022
DSLRDNet [98] 0.0090 0.0031 0.0034 0.0088 0.0204 0.0078
A3Net [99] 0.0032 0.0023 0.0021 0.0039 0.0057 0.0015
Ours 0.0025 0.0028 0.0027 0.0037 0.0045 0.0018

As shown in Table 3, our approach outperforms all previous detectors with MAE score of 0.0040, max-𝐹𝛽 score of 0.9672,
and mean-𝐹𝛽 score of 0.9112. Notably, compared with the second place BASNet and A3Net, the TBENet achieves about 21.6%
improvements in terms of MAE. Furthermore, the proposed model obtains the best max-𝐹𝛽 , which are 3.1% and 4.3% higher than
DG-Light-NLDF and NLDF, respectively. Again, compared with R2Net and A3Net, 0.6% and 1.1% increases are obtained with regards
to mean-𝐹𝛽 . For visual comparison, we also provide some visual results, as shown in Fig. 6. From the first row, it is noted that when
dealing with large targets, the TBENet is able to generate uniform saliency maps and obtain accurate edge with more details. From
the second row, there are two targets in this image. NLDF cannot obtain a consistent saliency map. Some models pay more attention
to the larger target so that the smaller ones are ignored. In the remaining methods, there are false detections. However, the TBENet
can consider the two targets at the same time and generate clearer edges than DG-Light-NLDF. From the third row, it is obvious
that many detectors cannot generate a complete saliency map when the ship is obscured. But the TBENet is able to detect the ship
accurately.

In order to provide more detailed comparisons, we conduct category-based analysis experiments. From the Tables 4 and 5, we
conclude that the TBENet achieves the best MAE scores on the six classes. To the specific, our algorithm obtains the MAE of 0.0061,
0.0035, 0.0037, 0.0025, 0.0037, and 0.0045 on the kst, nzd, qtc, rak, tqs, and xys, which are 62.1%, 20.5%, 5.1%, 21.9%, 5.1%,
and 21.1% higher than the second best score respectively. Furthermore, our method also achieves comparable performance on the
other classes. In conclusion, the TBENet has the ability to handle most scenarios.

To fully evaluate the performance of our algorithm, we conduct the complexity comparison experiment. The Params, FLOPs,
and FPS are selected as metrics. From the third and fifth columns in Table 3, the Params of TBENet is 11.81M, which is the second
lowest value and is slightly higher than the DG-Light-NLDF. The lightweight of the model is enhanced when we reduce the number
of channels, obtaining the smallest Params as well as the second smallest FLOPs. In conclusion, the TBENet achieves a balance
between accuracy and efficiency.

4.5. Ablation experiments

4.5.1. Influence of different components on model performance
To validate the contribution of each component of our model to the TBENet, we perform detailed ablation experiments. In this

section, we verify the effectiveness of the SAMM, the HLLB module, the MCIM, the DMIM, the average pooling layer, and the
10
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Table 6
Ablation study on the Small-IRShip dataset.

Methods MAE max-𝐹𝛽 mean-𝐹𝛽

w/o SAMM 0.0042 0.9644 0.8898
w/o HLLB 0.0053 0.9551 0.8849
w/o MCIM 0.0051 0.9580 0.8606
w/o DMIM 0.0056 0.9597 0.8464
w/o AvgPool 0.0041 0.9645 0.9018
w/o Edge 0.0054 0.9542 0.8791
TBENet 0.0040 0.9672 0.9112

Fig. 7. Qualitative results comparison of ablation study. (a) input image. (b) groundtruth. (c) w/o AvgPool. (d) w/o Edge. (e) w/o DMIM. (f) w/o HLLB. (g)
w/o MCIM. (h) w/o SAMM. (i) TBENet.

two-branch structure. Table 6 gives the results of the ablation experiments. In Table 6, w/o SAMM denotes that the spatial attention
module is replaced by a convolution layer. w/o HLLB indicates that we use standard convolution rather than the high-level linear
bottleneck module. w/o MCIM denotes that three feature maps containing different clues are integrated via linear interpolation and
concatenation instead of using MCIM. w/o DMIM means that the same operation as the w/o MCIM is used. w/o Edge indicates
that the two-branch structure is absent and the saliency map is predicted directly. w/o AvgPool means that the average pooling is
replaced by the max pooling.

Specifically, from the first row, the performance is decreased in terms of three metrics when the SAMM is not used, representing
that the SAMM can enhance the mid-level feature maps. From the second row, the MAE degrades by 32.5%, the max-𝐹𝛽 decreases by
1.3%, and the mean-𝐹𝛽 declines by 2.9%, which demonstrates that the HLLB can effectively improve the performance of the model
by providing a larger receptive field. From the third row, the MAE is reduced by 27.5%, the max-𝐹𝛽 is decreased by 1.0%, and the
mean-𝐹𝛽 is decreased by 5.6%. It can be seen that the MCIM can effectively leverage the various clues with high efficiency. From
the fourth row, by imposing the depthwise multi-scale integration module on the TBENet, the MAE, the max-𝐹𝛽 , and the mean-𝐹𝛽
are improved. In particular, the MAE, the max-𝐹 , and the mean-𝐹 have a 40.0%, 0.8%, and 7.1% improvement, respectively. It
11
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Table 7
Influence of HLLB with different kernel sizes on model performance.

Methods Params(M) FLOPs(G) FPS MAE max-𝐹𝛽 mean-𝐹𝛽

w/o HLLB 19.74 46.69 5.20 0.0053 0.9551 0.8849
HLLB-1,1-3,3-5,5 11.64 35.31 6.10 0.0043 0.9650 0.9094
HLLB-5,5-7,7-9,9 12.08 36.21 5.81 0.0041 0.9663 0.8942
HLLB-3,3-5,5-7,7 11.81 35.67 6.01 0.0040 0.9672 0.9112

Table 8
Experimental results obtained by models with different loss functions.

Loss MAE max-𝐹𝛽 mean-𝐹𝛽

𝐿𝑏 + 𝐿𝑐 0.0063 0.9273 0.8302
𝐿∗

𝑏 + 𝐿𝑐 + 𝐿𝑠 0.0050 0.9583 0.9033
𝐿𝑏 + 𝐿𝑐 + 𝐿𝑠 0.0040 0.9672 0.9112

Table 9
Experimental results predicted by models trained with datasets divided by different ratios.

Ratios MAE max-𝐹𝛽 mean-𝐹𝛽

6:2:2 0.0041 0.9630 0.9080
7:2:1 0.0042 0.9738 0.9109
8:1.5:0.5 (Ours) 0.0040 0.9672 0.9112

can be seen that the DMIM has the ability to better integrate features at different scales. Furthermore, the max pooling layer is often
used to reduce the resolution in VGG16. However, there may be information loss. Therefore, we select the average pooling in this
paper. From the fifth row, average pooling has little impact on performance. Furthermore, when the contour prediction branch is
overlooked, the performance of the model shows different degrees of degradation. It is noted that guided by the edge information,
the TBENet is able to generate accurate saliency maps. In conclusion, the quantitative results obtained from the ablation experiments
demonstrate that each component is indispensable.

For visual representation, some visualization results are shown in Fig. 7. Fig. 7 shows the detection results of different methods
hen facing the small target (first and second rows), medium target (third and fourth rows), large target (fifth and sixth rows),
nd multi-target (seventh and eighth rows) situations. Specifically, the rods w/o AvgPool detection are much thinner than the
roundtruth. The w/o Edge detects the edges of defects. Blurred detail information is detected by the w/o DMIM. Incomplete detail
nformation appears in detection results of the w/o HLLB. However, the TBENet achieves more accurate detection results.

.5.2. Influence of HLLB with different kernel sizes on model performance
Influence of HLLB with different kernel sizes on predicted results will be exhibited in this section. Table 7 reveals experimental

esults. HLLB-𝑘1, 𝑘1-𝑘2, 𝑘2-𝑘3, 𝑘3 means that the size of the convolution kernels chosen for the three deepwise convolutions are 𝑘1,
𝑘2, and 𝑘3 respectively. First, compared with the method using standard convolution (first row), these models using HLLB achieve
improvements in all three evaluation metrics. Second, when the kernel size is 3, 5, and 7, the Params, the FLOPs, and the FPS of
the model are slightly lower than the optimal values, however, the model obtains the best results with a MAE of 0.0040, a max-𝐹𝛽
of 0.9672, and a mean-𝐹𝛽 of 0.9112. It shows that the HLLB improves model performance while reducing model complexity.

4.5.3. Influence of different loss functions on model performance
The effectiveness of the loss function used in this paper will be verified in this section. As shown in Table 8, 𝐿𝑏, 𝐿𝑐 , and 𝐿𝑠 denote

the saliency prediction loss, the contour prediction loss, and the SSIM loss, respectively (see Section 3.6). 𝐿∗
𝑏 means the saliency

prediction loss without edge weighting. It is noted that when 𝐿𝑠 is not used, the MAE, the max-𝐹𝛽 , and the mean-𝐹𝛽 degrade by
57.5%, 4.1%, and 8.9%, respectively. Furthermore, compared with the model without considering edge weights, our algorithm
obtains 20%, 0.9%, and 0.9% increases in terms of MAE, max-𝐹𝛽 , and mean-𝐹𝛽 . In conclusion, both 𝐿𝑏 and 𝐿𝑠 boost the model’s
erformance to varying degrees.

.5.4. Influence of the proportion of training, validation and testing sets on model performance
In this section, in order to choose the best way to divide the dataset, we choose three different ratios to divide the dataset. From

he Table 9, as the percentage of the training set gradually increases, the model tends to achieve superior performance, which is
onsistent with general knowledge. When the Small-IRShip dataset is split into training set, validation set, and testing set in the
atio of 0.8:0.15:0.05, our model achieves the best MAE and mean-𝐹𝛽 , confirming the justification of such ratios.

.5.5. Influence of different pooling techniques in SAMM on model performance
In SAMM, max pooling highlights the target features, and average pooling captures the detailed information of the local area
12

nd facilitates the calculation of the dependency between pixels. In this section, we verify their effect by using max pooling and
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Table 10
Experimental results predicted by models with different SAMMs.

Methods MAE max-𝐹𝛽 mean-𝐹𝛽

SAMM_mean 0.0041 0.9656 0.8974
SAMM_max 0.0041 0.9657 0.9067
Ours 0.0040 0.9672 0.9112

Fig. 8. Visual results comparison of different SAMMs.

Table 11
Experimental results predicted by models with different fusion strategies.

Methods MAE max-𝐹𝛽 mean-𝐹𝛽

MCIM_hlm 0.0043 0.9651 0.8931
MCIM_lmh 0.0041 0.9656 0.8969
Ours 0.0040 0.9672 0.9112

average pooling, respectively. As shown in Table 10, suboptimal results are obtained for the model by using only max pooling or
average pooling. And only when both of the pooling are used, the model obtains optimal results. From Fig. 8, it is noticed that max
pooling can generates distinct contour features and mean pooling is able to maintain clear detail information. However, our model
contains the two pooling techniques so that accurate saliency map is obtained.

4.5.6. Influence of different fusion strategies on model performance
In MCIM, we first fuse the high-level features with the mid-level features and the obtained result is then fused with the low-level

features. In order to verify the impact of different fusion strategies on the model performance, we chose three fusion methods.
As shown is Table 11, MCIM_hlm denotes that the high-level features is first fused with the low-level features and the resulting
is then fused with the mid-level features. MCIM_lmh denotes that the low-level features is first fused with the mid-level features
and the resulting is then fused with the high-level features. From Table 11 and Fig. 9, we can conclude that our proposed fusion
method achieves optimal performance. The underlying reason is that both MCIM_hlm and MCIM_lmh require high-level features to
be upsampled to the same size as the low-level feature maps, and this large transformation leads to loss of spatial information and
produces inaccurate saliency maps.

4.6. Generalizability analysis

To validate the generalization ability of the model, we carry out comparison and ablation experiments on the public benchmark
RGB-T [48] and IRSTD-1k [49]. In this section, all models are trained from scratch.

RGB-T. From Table 12, the TBENet achieves the best max-𝐹𝛽 and mean-𝐹𝛽 , the third MAE. Typically, the proposed model obtains
an MAE score of 0.0321, which is lower than GCPANet and F3Net. However, our method achieves the best max-𝐹𝛽 , which is
2.0%, 2.5%, and 2.6% higher than BPFINet, F3Net, and GCPANet, respectively. Furthermore, our approach also obtains leading
performance in terms of mean-𝐹𝛽 . When the number of channels of feature maps are decreased, mean-𝐹𝛽 and max-𝐹𝛽 degrade
slightly, but the MAE increases by 0.3%. In Fig. 10, we offer qualitative comparisons. As we can see from the first row, some
detectors fail to generate accurate saliency maps, including NLDF, PoolNet, EGNet, and DG-Light-NLDF and other methods detect
a different object, such as F3Net, BPFINet, and TSERNet. As a comparison, the TBENet overlooks these non-targets and obtains
an accurate saliency map. From the second row, when there are multiple targets with different categories, PoolNet and EGNet
13
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Fig. 9. Visual results comparison of different fusion strategies.

Fig. 10. Visual results of various methods on the RGB-T dataset. (a) input image. (b) groundtruth. (c) NLDF. (d) PoolNet. (e) BASNet. (f) EGNet. (g) ITSD. (h)
GCPANet. (i) F3Net. (j) BPFINet. (k) TSERNet. (l) DG-Light-NLDF. (m) RCSBNet. (n) R2Net. (o) DSLRDNet. (p) A3Net. (q) Ours.

cannot extract the car from the background because of the insignificant differences between the foreground and background. DG-
Light-NLDF fails to capture the car accurately. Some non-targeted areas are detected by the NLDF, BASNet, BPFINet, and other
methods. However, the TBENet captures both car and humans while not being affected by interfering objects. From the third row,
when multiple targets of the same category emerge, NLDF and DG-Light-NLDF cannot generate uniform saliency maps while other
detectors focus on erroneous targets. However, the TBENet detects all targets and produces a near-accurate saliency map. In brief,
our technique achieves competitive performance on the RGB-T dataset.

IRSTD-1k. The IRSTD-1k dataset is chosen to validate the effectiveness of our model against small targets. As we can see from
Table 12, the TBENet achieves the best MAE, the second max-𝐹𝛽 , and the fourth mean-𝐹𝛽 . In more detail, our model is tied for the first
place with other state-of-the-art algorithms with an MAE score of 0.0002. And the max-𝐹𝛽 of our method is 0.7688, which is lower
than the PoolNet and is about 4.7% higher than the EGNet. In addition, our approach obtains a mean-𝐹𝛽 of 0.6318, outperforming
most algorithms. When we reduce the number of channels of the feature maps output by each stage in the decoder, the model
efficiency improves substantially, although the model’s performance decreases slightly. Furthermore, we also present some specific
examples in Fig. 11. The results from the first and second rows indicate that the missed detection occurs in the prediction of BASNet
and TSERNet. The unclear edges are generated by EGNet, ITSD, and GCPANet. However, our technique is able to detect all targets
with clear edges. And then, we can infer according to the third and fourth rows that BASNet and ITSD are affected by distractors.
Most algorithms detect the target whose shape is inconsistent with the groundtruth. In contrast, our model generates accurate
contours. From the fifth and sixth rows, most methods fail to capture the target and the DG-Light-NLDF detects blurred edges. But
the TBENet is able to compute probability distribution accurately.

In order to highlight the contribution of each component to the model, we perform ablation experiments on the RGB-T and
IRSTD-1k. As shown in Table 13, when the model lacks any one of the components, its performance produces a varying degree
of degradation. Notably, the MAE, max-𝐹𝛽 , and mean-𝐹𝛽 decrease by 26.2%, 7.7%, and 10.9% on the RGB-T, respectively, when
the contour predication branch is ignored. The w/o DMIM achieves the MAE of 0.0405, the max-𝐹𝛽 of 0.6968, and the mean-𝐹𝛽 of
0.6525 on the RGB-T, which are lower than the TBENet. Therefore, the DMIM and the contour predication branch are beneficial
for refining feature maps and generating accurate contour. What is more, the average pooling is critical to our model when the
IRSTD-1k is selected. Specifically, max-𝐹𝛽 , and mean-𝐹𝛽 decline by 32.1% and 30.7%. The potential reason is that small targets are
filtered out by max pooling. In conclusion, the effectiveness of each component is validated on different datasets.

5. Conclusion

In this paper, we propose a novel pipeline for saliency detection in infrared images, named TBENet. We employ a two-branch
structure consisting of a contour prediction branch and a saliency map generation branch. The contour prediction branch is inserted
14
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Table 12
Comparison of our method with other methods on the RGB-T and IRSTD-1k datasets. The data marked in red, green, and blue
means the first, second, and third best results, respectively.
Methods RGB-T IRSTD-1k

MAE max-𝐹𝛽 mean-𝐹𝛽 MAE max-𝐹𝛽 mean-𝐹𝛽

NLDF [38] 0.0458 0.7249 0.6361 0.0002 0.6303 0.5326
PoolNet [61] 0.0406 0.6954 0.6620 0.0002 0.7871 0.7104
BASNet [39] 0.0338 0.7261 0.7030 0.0002 0.6801 0.6138
EGNet [41] 0.0517 0.6545 0.5983 0.0002 0.7343 0.6249
ITSD [93] 0.0351 0.7343 0.6880 0.0002 0.6620 0.6030
GCPANet [65] 0.0298 0.7616 0.7214 0.0002 0.6675 0.5463
F3Net [94] 0.0283 0.7624 0.7268 0.0002 0.7070 0.6447
BPFINet [95] 0.0427 0.7657 0.7269 0.1780 0.6994 0.4178
DG-Light-NLDF [32] 0.0551 0.6375 0.5939 0.0002 0.6825 0.5827
TSERNet [75] 0.0420 0.6812 0.6679 0.0002 0.7127 0.6464
RCSBNet [96] 0.0359 0.7189 0.6940 0.0002 0.6362 0.6269
R2Net [97] 0.0361 0.7380 0.6820 0.0002 0.7113 0.6298
DSLRDNet [98] 0.0606 0.4799 0.4446 0.0002 0.6519 0.6012
A3Net [99] 0.0331 0.7353 0.7011 0.0002 0.6897 0.6268
Ours 0.0321 0.7811 0.7310 0.0002 0.7688 0.6318
Ours* 0.0320 0.7637 0.7205 0.0002 0.7593 0.6317

Table 13
Ablation experiments on the RGB-T and IRSTD-1k datasets.

Methods RGB-T IRSTD-1k

MAE max-𝐹𝛽 mean-𝐹𝛽 MAE max-𝐹𝛽 mean-𝐹𝛽

w/o SAMM 0.0330 0.7472 0.7128 0.0002 0.7604 0.6246
w/o HLLB 0.0401 0.7221 0.6629 0.0002 0.6329 0.5139
w/o MCIM 0.0403 0.7070 0.6390 0.0003 0.6121 0.4865
w/o DMIM 0.0405 0.6968 0.6525 0.0002 0.6897 0.5564
w/o AvgPool 0.0335 0.7545 0.7097 0.0002 0.5218 0.4380
w/o edge 0.0405 0.7207 0.6514 0.0002 0.7430 0.6066
Ours 0.0321 0.7811 0.7310 0.0002 0.7688 0.6318

Fig. 11. Qualitative results of various methods on the IRSTD-1k dataset. (a) input image. (b) groundtruth. (c) NLDF. (d) PoolNet. (e) BASNet. (f) EGNet. (g)
ITSD. (h) GCPANet. (i) F3Net. (j) BPFINet. (k) TSERNet. (l) DG-Light-NLDF. (m) RCSBNet. (n) R2Net. (o) DSLRDNet. (p) A3Net. (q) Ours. The targets are denoted
by a green bounding box in the first, third, and fifth rows. And the second, fourth, and sixth rows present the magnified objects.

on top of the U-shape structure to extract the contour information of the target. Guided by the obtained contour information, the
saliency map generation branch can generate unified saliency map by using an edge-weighted loss to supervise the entire training
process. Moreover, we introduce a depthwise multi-scale integration module for fusing deep and shallow features and a multi-clue
integration module for aggregating features from high, middle, and low levels. Furthermore, we effectively reduce the number of
parameters by incorporating a lightweight high-level linear bottleneck module and reducing the number of channels of the feature
maps from each stage of the decoder. Comparison results with ten state-of-the-art models demonstrate that our proposed method
achieves leading accuracy with high efficiency. Since our model requires manual annotation of the edges of an image, it takes a lot
of time. Therefore, in future research, we will try to design an edge-aware attention that allows the network to adaptively focus on
the edges of objects without extra supervision.
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