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Abstract—A theoretical grounding is presented for justifying
how frequency domain methods may be applied in the deter-
mination of constrained extracted-energy maximising controls in
wave-energy conversion applications subject to nonlinear models.
A computational method is subsequently outlined. The theory
applies to forced Lur’e systems, an important class of nonlinear
control systems, including nonlinear models of simple heaving
point-absorber wave-energy converters, and which facilitates a
well-defined and tractable frequency response for such systems.

Index Terms—Frequency domain, Nonlinear control, Wave-
energy conversion

I. INTRODUCTION

The present paper continues the line of enquiry of designing
extracted-energy maximizing controls for wave-energy con-
verters (WECs), focussing on the well-studied case of point
absorbers (PAs) moving in the heave direction only. These
devices are viewed as amenable to control [1], and appear
frequently as a test bed for potential control strategies. The
motivation for research into wave-energy conversion is the
timely, societal requirement to decarbonise global electrical
energy generation to reduce emissions and tackle the climate
crisis. Increased renewable energy conversion is recognised as
one key mechanism to achieve this aim [2, p. 40]. There is
broad consensus from researchers that the potential for wave
energy globally is vast, and is as yet mostly untapped. How-
ever, despite now considerable research over the past decades,
“wave energy has not yet reached commercial viability” [3,
Abstract] and “In comparison to other sources of renewable
energy, wave energy is still too expensive.” [4, Section 4].

There are numerous WEC technologies, with the paper [5]
reporting nearly 150 WECs in development in 2013, and
reviews of the field include [3], [4], [6], [7]. Moreover, the
reviews [8], [1] and [9] focus on oscillating water columns,
point absorbers, and power take-off systems, respectively. The
control of WECs has generated much interest, with numerous
papers and reviews including [3], [10]–[12].
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Here we report results from the recent work [13] which,
briefly, provide a rigorous theoretical underpinning of “fre-
quency domain” methods for forced Lur’e (also Lurie or
Lurye) systems; an important and ubiquitous class of nonlinear
control systems comprising the feedback connection of a linear
control system and a nonlinear output term. Lur’e systems
are well-studied objects from both state-space [14] and input-
output [15] perspectives. The approach of [13] is to establish
so-called incremental input-to-state stability properties, as
in [16] and related to contraction-type concepts [17], which are
then known to give rise to desirable state- and output-response
to (almost) periodic forcing terms, which we describe.

The relevance and novelty presently is that nonlinear models
for heaving PA WECs may be expressed as forced Lur’e sys-
tems, as we demonstrate, with forcing terms which are likely
to be almost periodic corresponding to the wave excitation
force [18]. The results from [13] are applied to the design
of extracted-energy maximising controls for such devices, at
least under some assumptions which we describe, and may
be designed to (approximately) accommodate various state
and input constraints associated with safe operation of WECs.
The ability to move beyond linear systems and treat nonlinear
models for WECs is important for the development of the
field, as argued and evidenced in [19]. The present method
seeks to provide a rigorous underpinning for frequency domain
methods in nonlinear control, beyond that of the harmonic
balance method [20], and is also motivated by the prevalence
of frequency-domain methods in wave-energy control; see, the
comments in [21], for instance.

The present conference paper is organised as follows. The
archetypal wave-energy converter is recalled in Section II. The
main theoretical results are reported in Sections III and IV.
The consequences of these results for the analysis and design
of optimal controls is discussed in Section V. There is some
overlap between the ideas in this section, and those of [22]
and [23]. Summarising comments appear in Section VI.



A. Notation

Mathematical notation is standard, and kept to a minimum.
We mention only a few items. The symbols R and R+ denote
the real and nonnegative real numbers, respectively. We let K
denote the class of continuous, strictly increasing functions
R+ → R+ which are zero at zero. The subset of K of
unbounded functions is denoted K∞. The symbol KL denotes
functions which are K in their first variable, and continuous
and decreasing to zero in their second. The sets K, K∞
and KL are all common in nonlinear control theory, and are
examples of so-called comparison functions, see [24].

II. A WAVE-ENERGY CONVERTER MODEL

Consider the following model for the vertical displacement z
of a PA WEC moving in the heave direction:

mz̈+ frad + fvis + fbuoy − fex + fPTO + fmoor = 0 . (II.1a)

The terms in (II.1a) are described in Table II.1.

Term Description Term Description
m mass of device fex external excitation force
fmoor mooring force fPTO power take-off force
frad radiation force fvis viscous (damping) force
fbuoy buoyancy force

TABLE II.1: Terms appearing in equation (II.1a)

Despite included in (II.1a) for correctness, we shall in fact
for simplicity assume throughout that the mooring force is
equal to zero, and so it shall play no role. We assume that the
buoyancy term is a linear function of displacement, that is,

fbuoy = kz , (II.1b)

for positive constant k = gρSw, the product of acceleration
due to gravity g, the water density ρ, and the surface area of
the body cut at the mean water level Sw.

In wave-energy conversion applications, the power take-off
force is a control variable, which we label u := fPTO. The
excitation force fex in (II.1a) is an external forcing term.

We wish to allow for the situation that the viscous drag
term fvis is nonlinear. Our theoretical development places only
qualitative assumptions on fvis, which we shall impose as
required. As a concrete example, functions which fall within
the scope of our results include

d0v + d1v|v|r ∀ v ∈ R ,

for r ∈ N, d0, d1 ≥ 0 with not both zero. Functions of this
form have been considered as models of nonlinear viscous
damping, such as in [25, equation (6)], which itself is based
on the experimental law proposed in [26].

The radiation force frad is usually described mathematically
by the Cummins’ [27] equation

frad(t) = m∞z̈ + (hr ∗ ż)(t) , (II.1c)

where ∗ denotes convolution, the positive constant m∞ is
the so-called “added mass”, and hr for some non-parametric

kernel (or impulse response). This kernel is typically deter-
mined numerically using hydrodynamic software such as the
WAMIT [28] or FOAMM [29] toolboxes; see [30].

For notational convenience, we absorb m∞ into the mass
of the device by setting M := m + m∞. We assume a
finite-dimensional state-space approximation of order nr of
the convolution term in (II.1c), yielding

ẋr = Arxr +Brż, yr = B⊤
r xr

(
= Gradż

)
, (II.1d)

and, consequently,

frad(t) = m∞z̈(t) + yr(t) . (II.1e)

The state-space system (II.1d) is assumed to be stable and
passive, here meaning that Ar is Hurwitz and that

A⊤
r +Ar ≤ 0 . (II.2)

A. An extracted-energy optimal control problem

We consider an extracted-energy optimal control problem
associated with the PA WEC model (II.1), in the spirit of
the energy-balance method of [31]. In full generality, the
energy-balance method applies to control systems represented
as linear graphs (see, for example [32, Section 2.1]). This level
of generality is not required here, and instead we appeal to the
principles of the energy-balance method. The first ingredient
is the energy of the device, equal to the sum of the kinetic
and potential energy of the device, and so given by

E(z(t)) :=
1

2
Mż2(t) +

1

2
kz2(t) . (II.3)

The energy-balance equation for the PA WEC model (II.1)
with energy (II.3) is given by

E(z(t1))− E(z(t0)) +

∫ t1

t0

żudt

=

∫ t1

t0

−fvisż − yrż + żfex dt . (II.4)

Equation (II.4) is an expression of conservation of energy.
The left-hand side of (II.4) equals the change in internal
energy plus the extracted energy, both over the given time
horizon [t0, t1]. The three terms on the right-hand side of (II.4)
correspond to the energy dissipated by the viscous damping,
the energy dissipated by the radiation system, and the supplied
energy, respectively, again each over the time horizon [t0, t1].

Energy-balance equations are valid under quite general
assumptions, see [31], but here (II.4) is most simply derived
by differentiating the energy (II.3), using the equations (II.1),
then integrating both sides from t0 to t1, and rearranging.

The left-hand side of (II.4) is the desired quantity to be
maximised which, for convenience, we record as

E(z(t1))− E(z(t0)) +

∫ t1

t0

żudt . (II.5)

We comment that in much (if not all) of the optimal control
of WEC literature, the cost functional of extracted energy∫ t1

t0

żudt , (II.6)



is considered instead. However, we contend that maximis-
ing (II.5) is, in fact, much simpler than maximising (II.6).
Roughly speaking, this is because (II.5) removes unwanted
boundary effects associated with optimal control (namely, as
currently formulated, that there is no time beyond t1). Further-
more, the time horizon [t0, t1] is determined practically by the
horizon over which the excitation force fex may be predicted.
For long-term WEC deployment, the cost-functional (II.5)
shall be maximized over a series of successive time intervals
[tk, tk+1], leading to maximising

N∑
k=0

(
E(z(tk+1))− E(z(tk)) +

∫ tk+1

tk

żudt
)

= E(z(tN+1))− E(z(t0)) +

∫ tN+1

t0

żudt . (II.7)

Over many time intervals, we expect that the difference
between (II.6) and (II.7) is “small”.

The essence of the energy-balance method is to max-
imise (II.5) — the left-hand side of (II.4) — by, equivalently,
maximising the right-hand side of (II.4). The right-hand side is
independent of u and, as discussed extensively in [31], is often
simpler to maximise than (II.5) directly. To do so we view (in
this case), ż appearing in the right-hand side of (II.4) as the
independent variable for the optimisation, and use the dynamic
equation (II.1a) to define the corresponding optimal u.

To provide “ground truths” against which our later numeri-
cal method may be compared, we maximise (II.5) in the cases
of linear and non-linear viscous damping separately.

B. Linear viscous damping

Here we assume that the viscous damping force fvis is linear
in ż, that is, fvis(ż) = dż for d > 0. With this assumption the
right-hand side of (II.4) is quadratic in ż, and we may solve
the optimisation problem exactly by completing the square
in the L2-inner product. For which purpose, set v := ż and
G := dI+Grad which is strongly passive, and hence invertible
with passive inverse. We express the right-hand side of (II.4)
in terms of the L2-inner product, namely,

−
〈
Gv − fex, v

〉
L2(t0,t1)

= −
〈
Gv − fex

2
, G−1

(
Gv − fex

2

)〉
L2

+
〈fex

2
, G−1 fex

2

〉
L2

where we have written L2 instead of L2(t0, t1) for brevity.
Observe that the first term on the right-hand side of the above
equality is non-positive as G−1 is passive, and the second term
is independent of v. Consequently, both sides of the above are
maximised by setting

v∗ := G−1(fex/2) , (II.8)

and the maximum is equal to

1

4

〈
fex, G

−1fex
〉
L2(t0,t1)

=
1

4

∫ t1

t0

fex(t)(G
−1fex)(t) dt .

Recall that (II.8) corresponds to the optimal velocity profile
of the WEC device, and the dynamic equation (II.1a) is

used to define the corresponding optimal control u∗. As a
common sense check, in the case that Grad = 0 (meaning
no radiation system is present), then G is a static input-
output operator Gv = dv, so that G−1v = v/d. Then, the
expression (II.8) the optimal velocity profile simplifies to

ż∗ = fex/(2d) .

The above formula is well known; see, for example [33,
equation (6.44), p. 206] for a frequency domain expression,
or [34, equation (2.12)]. The resulting optimal control goes
by a number of terms, as discussed in [33, p. 206], such as
phase and amplitude control or complex-conjugate control.

In general, computing ż = v from (II.8) requires both
inverting G = dI + Grad and knowledge of the excitation
force fex. Since here we are assuming that Grad has a
finite-dimensional state-space realisation (Ar, Br, B

⊤
r ), then

clearly (Ar, Br, B
⊤
r , dI) realises G, and it is well known

that (Ar−Br(1/d)B
⊤
r ,−Br/d,B

⊤
r /d, 1/d) realises G−1; see,

for example [35, p.279]. We comment further that here the
right-hand side of (II.4) could be maximised by completing
the square, essentially exploiting the quadratic structure of
the optimisation problem. Thus, we avoided the use of more
involved direct or indirect optimization tools, such as the
Pontryagin Principle (see, for instance [36, Theorem 2, p. 85]).

C. Nonlinear viscous damping

Here we consider a general nonlinear viscous damping term
fvis which is assumed to be differentiable and satisfy:

fvis(v)v ≥ 0 and g(v) :=
(
fvis(v)v

)′
invertible. (II.9)

The right-hand side of the energy-balance equation (II.4) reads∫ t1

t0

−fvis(ż)ż − (Gradż)ż + żfex dt , (II.10)

which we aim to maximise by again setting v = ż as the
independent variable. However, when Grad ̸= 0 then the
integrand in (II.10) contains both a nonlinear term, which
need not be quadratic, and a term with memory. As such,
completing the square in the L2-inner product will generally
not be applicable, and neither will pointwise maximisation of
the integrand — another method is required. We shall in fact
present a numerical method in Section V which exploits the
expected (almost) periodic nature of the problem.

Again for the purpose of later comparison, in the simplify-
ing case that Grad = 0 (that is, no radiation system is present),
then the optimization problem may be solved by pointwise
maximisation of the integrand in (II.10), that is, by maximising

v 7→ −fvis(v)v + vfex(t) ,

at every t ∈ [t0, t1]. Routine calculus gives that a necessary
condition for a maximum is

g(v) = fex(t) (II.11)

which has a unique solution g−1(fex(t)) by hypothesis (II.9).



As an example, in the case that fvis(v) := dv|v| for all
v ∈ R, where d > 0 is a positive constant, we compute that

g(v) = 3dv2sign (v) ∀ v ∈ R ,

which is invertible. In this case, the solution of (II.11) in the
case that Grad = 0 is given by

v∗(t) = g−1(fex(t)) = sign(fex(t))

√
|fex(t)|
3d

. (II.12)

We conclude this section by noting that, upon setting

x :=

 z
ż
xr

 , A :=

 0 1 0
−k/M 0 −B⊤

r /M
0 Br Ar


B :=

(
0 1/M 0

)⊤
, C :=

(
0 1 0

)
,

the PA WEC model (II.1) is of the form

ẋ = Ax−Bfvis(Cx) +B(fex + u) ,

that is, a so-called forced Lur’e equation which comprises the
focus of the next section.

III. A SEMI-GLOBAL INCREMENTAL PASSIVITY THEOREM
FOR LUR’E SYSTEMS

Here we report so-called incremental stability results for the
following system of forced nonlinear differential equations

ẋ(t) = Ax(t)−Bf(Cx(t)) +Bw(t) t ≥ 0 , (III.1)

called a Lur’e system for brevity. The terms A, B and C
in (III.1) are n× n, n×m and m× n matrices, respectively,
for fixed integers m,n. The terms x and w, taking values in Rn

and Rm, are the state- and forcing-variables, respectively. In
the subsequent wave-energy conversion applications, w shall
comprise a forcing term plus a control term. Furthermore, the
nonlinearity f : Rm → Rm is assumed to be locally Lipschitz.

Let w : R+ → Rm be measurable and locally essentially
bounded. A locally absolutely continuous function x : R+ →
Rn which satisfies (III.1) almost everywhere on R+ is called
a global solution of (III.1), and we call the corresponding pair
(w, x) a trajectory of (III.1), the set of which is denoted B.
In the usual absolute stability framework, the function f is
uncertain, and rather only expressed in terms of qualitative
properties. Under the typical assumption that f(0) = 0, then
(0, 0) is a constant (equilibrium) trajectory of (III.1). In this
case, the Lur’e system (III.1) is called

• Input-to-state Stable (ISS) if there exist ψ ∈ KL and ϕ ∈
K such that, for all (w, x) ∈ B,

∥x(t)∥ ≤ ψ(∥x(0)∥, t) + ϕ(∥w∥L∞(0,t)) ∀ t ≥ 0 .

• Exponentially Input-to-State Stable if there exist L, γ > 0
such that, for all (w, x) ∈ B,

∥x(t)∥ ≤ L
(
e−γt∥x(0)∥+ ∥w∥L∞(0,t)

)
∀ t ≥ 0 .

That is, the exponential ISS property is an ISS bound with

ϕ(s, t) := Le−µts and ψ(s) := Ls ∀ (s, t) ∈ R+ × R+ .

Presently, the relevant incremental stability concept is the
following, we say that (III.1) is semi-globally incrementally
ISS if, for all Q > 0 there exist ψ ∈ KL and ϕ ∈ K such that,
for all (vi, xi) ∈ B, i = 1, 2, with ∥xi(0)∥+ ∥wi∥L∞ < Q,

∥x1(t)− x2(t)∥ ≤ ψ(∥x1(0)− x2(0)∥, t) + ϕ(∥w1 −w2∥L∞(0,t)) ,

for all t ≥ 0. The concept of semi-global incremental
exponential ISS is formulated analogously. The above bound
estimates the difference of solutions of (III.1) in terms of
(in general nonlinear functions of) the difference of their
initial states and difference of forcing terms. In particular, the
functions ψ and ϕ may depend on Q. Since Q is fixed, but
arbitrary, semi-global stability concepts seem no less useful in
practical settings. Evidently, incremental stability concepts are
equivalent to their non-incremental versions for linear control
systems, but not for nonlinear control systems.

We record the following assumptions.
(A1) The pair (C,A) is detectable, and there exists a sym-

metric positive semi-definite P ∈ Rn×n such that(
A⊤P + PA PB − C⊤

B⊤P − C 0

)
≤ 0 . (III.2)

(A2) For every compact set Γ ⊂ Rm, there exists θΓ ∈ K∞
such that

∥f(y + z)− f(z)∥ ≤ θΓ(∥y∥) ∀ y ∈ Rm, ∀ z ∈ Γ .

(A3) For every compact set Γ ⊂ Rm, there exists αΓ ∈ K∞
such that

∥y∥αΓ(∥y∥) ≤ ⟨y, f(y+z)−f(z)⟩ ∀y ∈ Rm, ∀z ∈ Γ .

(A4) For every compact set Γ ⊂ Rm, there exist µΓ, cγ ≥ 0,
µΓcΓ ≥ 1, such that

∥f(y + z)− f(z)∥ ≤ cΓ⟨y, f(y + z)− f(z)⟩
∀ y ∈ Rm, ∥y∥ ≥ µΓ, ∀ z ∈ Γ .

Commentary on the above assumptions is given below. Here
⟨·, ·⟩ denotes the usual inner-product on Rm. The following
result contains sufficient conditions for two semi-global incre-
mental stability notions for the Lur’e system (III.1), and is an
incremental generalisation of [37, Theorem 1]. An expanded
version of this result, with proof, appears in [13].

Theorem III.1. Consider the Lur’e system (III.1). If (A1)–
(A4) hold, then (III.1) is semi-globally incrementally ISS.
If, additionally, αΓ(s) = εΓs in (A3) for some εΓ > 0,
then (III.1) is semi-globally incrementally exponentially ISS.

Some remarks are in order. If the triple (A,B,C) is
controllable and observable, with positive real (as in [38])
transfer function G(s) := C(sI − A)−1B, then a positive
definite solution P = P⊤ to the LMI (III.2) follows from the
Positive Real Lemma; see, for example [39, Corollary 5.6].

The hypotheses (A2)–(A4) relate to the nonlinearity f . They
are, in essence, incremental versions of the hypotheses which
appear in the ISS result [37, Theorem 1]. It can be shown
that hypothesis (A3) implies (A4) in the case that m = 1,



paralleling the situation noted in [37, Remark 2]. To provide
further insight into (A3), first recall that the condition

⟨z1 − z2, f(z1)− f(z2)⟩ ≥ 0 ∀ z1, z2 ∈ R ,

which, in the scalar (m = 1) case, is equivalent to

0 ≤ f(z1)− f(z2)

z1 − z2
∀ z1, z2 ∈ R, z1 ̸= z2 ,

is simply monotonicity of f . In the scalar case, this is
also termed a lower slope restriction, somewhat common
in nonlinear control theory (e.g. [40]). Roughly speaking,
condition (A3) with αΓ ∈ K∞ “strengthens” the monotonicity
of f , capturing a lower bound for its rate of increase.

Example III.2. (1) For r ∈ N, the function

f(v) := d0v + d1v|v|r ∀ v ∈ R , (III.3)

for d0, d1 ≥ 0, not both zero, satisfies (A2)–(A4). In fact,
αΓ(s) = εΓs is valid if d0 > 0. The verification is a somewhat
tedious sequence of calculations which are presented in [13].

(2) Consider the so-called diagonal (or decoupled) nonlin-
earity f : Rm → Rm for m > 1 , that is, f satisfies(

f(v)
)
i
= fi(vi) ∀ v ∈ Rm, ∀ i ∈ {1, 2, . . . ,m} , (III.4)

for given component functions fi : R → R. It can be shown
that f satisfies (A2)–(A4) if every fi does.

IV. CONSEQUENCES OF INCREMENTAL STABILITY —
RESPONSE TO ALMOST PERIODIC FORCING TERMS

Here we present consequences of the incremental stability
results of Section III, namely, investigating the response of
such Lur’e systems to (almost) periodic functions. The subse-
quent results provide a theoretical underpinning for “frequency
response” techniques for such nonlinear control systems.

We recall a few concepts of almost periodicity (in the sense
of Bohr), and refer to the text [41] for further background.
Let R = R+ or R, and let C(R,Rn) denote the space of
continuous functions R → Rn. A set S ⊆ R is said to be
relatively dense (in R) if there exists l > 0 such that

[a, a+ l] ∩ S ̸= ∅ ∀ a ∈ R .

The integers Z are relatively dense in R, for instance. For ε >
0, we say that τ ∈ R is an ε-period of v ∈ C(R,Rn) if

∥v(t)− v(t+ τ)∥ ≤ ε ∀ t ∈ R .

We denote by P (v, ε) ⊆ R the set of ε-periods of v and we say
that v ∈ C(R,Rn) is almost periodic if P (v, ε) is relatively
dense in R for every ε > 0. We denote the set of almost
periodic functions v ∈ C(R,Rn) by AP (R,Rn) which is a
vector space (note, unlike the set of periodic functions). It is
clear that any continuous periodic function is almost periodic.

The archetypal almost periodic functions are trigonometric
polynomials, which are of the form

p(t) =

N∑
k=0

ake
iωkt ∀ t ∈ R , (IV.1)

for (in this case) ak ∈ Cn and ωk ∈ R. It is well-known that

AP (R,Rn) = clo(TP (R,Rn)), R = R or R+ ,

providing a somewhat concrete description of almost periodic
functions, and where the closure is taken in the space of
bounded, uniformly continuous functions R → Rn with the
supremum norm.

The characteristic exponents of a function f ∈ AP (R,Rn)
are the λ ∈ R such that the following mean values

M(fλ) := lim
T→∞

1

2T

∫ T

−T

f(t)e−iλt dt ,

are non-zero, that is, the set Λ(f) given by

Λ(f) :=
{
λ ∈ R : M(fλ) ̸= 0

}
.

It is known that the above limit exists for all almost periodic
functions and, for such functions, the set of characteristic
exponents is countable (see [41, II, p.21] and [41, III, p.22],
respectively). The module associated with f ∈ AP (R,Rn)
is the set of finite linear integer combinations of elements in
M(fλ), that is,

mod (f) =
{ M∑

k=0

αkλk : λk ∈ Λ(f), αk ∈ Z, M ∈ N
}
.

Example IV.1. Let the trigonometric polynomial p be as
in (IV.1). The characteristic exponents of p are readily com-
puted to be Λ(p) =

{
ω1, ω2, . . . , ωN}, and consequently,

mod (p) =
{ N∑

k=0

αkωk : αk ∈ Z
}
.

We remark that there is a close relationship between
AP (R,Rn) and AP (R+,Rn), roughly by restriction or ex-
tension, (these spaces are isometrically isomorphic), and the
modules of functions in AP (R+,Rn) are equal to those of the
corresponding extension in AP (R,Rn); see [42, Appendix C].

The following proposition is an abridged version of [13,
Propositions 5.1, 5.2], and is the main result of this section.

Proposition IV.2. Consider the Lur’e system (III.1) with
f(0) = 0, w ∈ AP (R+,Rm), and assume that (A1)–(A4)
hold. Then there exists a unique zap ∈ AP (R+,Rn) such
that (w, zap) ∈ B and, for every ε > 0, there exists δ > 0
such that P1(w, δ) ⊂ P (zap, ε).

Let (ν, x) ∈ B. The following further statements hold.

(1) If ν ∈ L∞(R+,Rm) and ∥ν − w∥L∞(t,∞) → 0 as t →
∞, then

lim
t→∞

(
x(t)− zap(t)

)
= 0 .

(2) If w is periodic with period τ , then zap is τ -periodic.

(3) mod(zap) ⊆ mod(w).

(4) There exists θ ∈ K such that, for (ν, xap) ∈ B with
ν ∈ AP (R+,Rm) and xap ∈ AP (R+,Rm)

∥xap − zap∥L∞ ≤ θ(∥ν − w∥L∞) .



Loosely summarising, Proposition IV.2 gives the existence
of an unique (almost) periodic trajectory of (III.1) when
subject to an (almost) periodic input, which attracts all other
state trajectories subject to the same input and has continuous
dependence on the input data. Moreover, the module of the
resulting almost periodic state is contained in that of the
input. In particular, the “frequencies” of the resulting state are
necessarily integer linear combinations of those of the input.

There is some overlap with the above result, and [43,
Theorem 4.3]. The similarities and differences are discussed
in more detail in [13]. Briefly, these results have different
underlying hypotheses, and [43, Theorem 4.3] does not apply
to superlinear functions, such as those of the form (III.3).

One powerful consequence of Proposition IV.2 is that the
following Fourier series arguments may be rigorously de-
ployed. Suppose that the forcing term w to (III.1) is τ -periodic,
so that w admits a Fourier series

w(t) =

∞∑
k=−∞

wke
2πikt/τ ,

(which, note, is real when w−k := wk). Then a real, periodic
solution zap of (III.1) is ensured, so that,

zap(t) =

∞∑
k=−∞

zke
2πikt/τ ,

for some zk ∈ Cn. In practice, we would approximate these
series by large partial sums. Set λk := 2πk/τ . The trajectory
property of (w, zap) yields that

∞∑
k=−∞

(λkiI −A)eλkitzk = −Bf(Czap) +B

∞∑
k=−∞

wke
λkit .

Multiplying both sides by eλji for j ∈ Z, integrating over t
from 0 to τ , and simplifying, gives

(λjiI −A)zj = −1

τ

∫ τ

0

eλjitBf(Czap) dt+Bwj , (IV.2)

and so

Czj = G(λji)
(
− 1

τ

∫ τ

0

eλjitf
( ∞∑

k=−∞

Czke
λkit

)
dt+ wj

)
.

This is a nonlinear system of equations for the Czj , which
may be solved numerically, for instance by approximating the
integral via quadrature. Once Czj are (approximately) deter-
mined, then zj (and hence zap) may be recovered from (IV.2).

V. APPLICATION TO CONSTRAINED ENERGY
MAXIMISATION OF A WAVE-ENERGY CONVERTER MODEL

Here, we apply the results of Section IV to the wave-energy
optimisation problem of Section II-A. Recall, we seek to
maximise (II.5) subject to the WEC model (II.1), and that (II.5)
may be expressed via the energy-balance equation (II.10). Fur-
thermore, we have already noted that (II.1) may be expressed
as a Lur’e system (III.1). These models naturally satisfy the
hypotheses of Sections III and IV.

We make the following conjecture:

(C) When (II.1) is subject to an (almost) periodic forcing term
fex, then the optimal control is also (almost) periodic.

Assuming that (C) is true, then the input (optimal control plus
forcing term) to model (II.1) is almost periodic, which yields
(at least asymptotically) an almost periodic state response
in accordance with Proposition IV.2. For simplicity, here we
focus on the periodic case using Fourier series, and could treat
the almost periodic case via trigonometric polynomials. Thus,
our approach is to express the ż in (II.10) as a Fourier series,

ż(t) =

N∑
k=0

ak cos(2πikt/τ) + bk sin(2πikt/τ) (V.1)

with unknown 2N + 1 Fourier coefficients V :=(
a0 . . . aN b1 . . . bN

)⊤
, leading to a static optimisa-

tion problem, which may be solved numerically, particularly
if the integral is approximated by quadrature. Constraints are
approximately included as functions of V . Indeed, the velocity
condition

|ż(t)| ≤ vmax ∀ t ∈ [t0, t1] , (V.2)

is enforced at the fixed points sj ∈ [t0, t1], and encoded as(
W (sj)
−W (sj)

)
V ≤

(
vmax

vmax

)
,

where W (t) is the row-vector with components

W (t)k :=


1 k = 1

cos(2π(k − 1)t/τ) k = 2, . . . , N + 1

sin(2π(k − 1−N)t/τ) k = N + 2, . . . , 2N + 1 .

The displacement condition |z(t)| ≤ xmax for all t ∈ [t0, t1] is
derived similarly, only now to the integral of ż in (V.1). Recall
that in the present framework, the input (here denoting the
PTO force) fPTO = u is determined via (II.1a) once ż and z
are determined. Therefore, pointwise input constraints on the
magnitude of the input (maximum force of the PTO)

|u(t)| ≤ umax ∀ t ∈ [t0, t1] ,

or the level of reactive power the PTO is able to supply

u(t)ż(t) ≤ pmax ∀ t ∈ [t0, t1]

(cf. [44, equation (9)], up to sign convention) are also handled
as, in general nonlinear, constraints on V .

We claim that the model (II.1) satisfies the hypotheses of our
main results. The pair (C,A) is detectable, as can be shown
by a routine argument and, by hypothesis, I is a solution of
the LMI (III.2) for the triple (Ar, Br, B

⊤
r ). Therefore, in light

of (II.2), a straightforward calculation gives that

P := diag
(
k M I

)
,

is a symmetric, positive-definite solution of (III.2), showing
that (A1) holds. It has already been established in Exam-
ple III.2 that f in (III.3) satisfies hypotheses (A2)–(A4).

As a numerical simulation, we maximize (II.10) as a func-
tion of ż — via determination of V — in three cases:
(a) fvis is linear, and Grad ̸= 0



(b) fvis is nonlinear, and Grad = 0
(c) fvis is nonlinear and Grad ̸= 0

Observe that in cases (a) and (b) the exact optimum (in the
absence of constraints) is known, given by (II.8) and (II.12),
respectively. In each case we take t0 = 0, t1 = 2,

N = 4, λ = 2π
3

2
, fex(t) := cos(2λt) + sin(λt) ,

and approximate all integrals by the trapezoidal rule with 30
intervals. As an illustrative example, for simplicity we take

hrad(t) := 2e−2t − e−t .

For case (a), fvis(v) := 1.5v. For cases (b) and (c), we set
fvis(v) := 2v + v|v| (of the form (III.3) with d = 1).

Our results are plotted in Figure V.1. The optimization
problems were solving using fmincon in MATLAB. Panels
(a), (b) and (c) correspond to the cases above. In (a) and
(b) the exact optimal velocity profile v∗ is plotted in blue,
the numerically-computed optimum in red, and the optimum
subject to the velocity constraint (V.2) with vmax = 0.45 (a)
or = 0.2 (b) in black, enforced at the 21 points sk := 0.1k,
k = 0, 1, ..., 20. We see that the red and blue curves are
close, where presumably the difference is a consequence of
numerical approximation of the integrals. The black curve
qualitatively follows the two other curves, yet respects the
constraint. In panel (c) the numerical optimum is plotted in
red, as here there is no theoretical maximum to compare to,
and the constrained version plotted in black, with vmax = 0.25.

We comment that the above example was solved essentially
instantaneously on a standard laptop PC using one of the most
basic quadrature rules and a single initial condition in the
optimisation routine. Indeed, the numerical implementation
of the proposed method could undoubtedly be refined and
improved via NLP solvers, such as IPOPT [45]. The purpose
of the present example is to illustrate the underlying method.

VI. SUMMARY

Recent semi-global incremental stability results from [13]
for a class of forced Lur’e systems have been reported and,
novelly, deployed in the context of constrained extracted-
energy maximising control for heaving point-absorber wave-
energy converters. The trail of ideas is that incremental
stability results provide a theoretical underpinning of what
may be termed a “frequency response” for Lur’e systems. We
contend that this is highly-relevant for wave-energy conversion
given that the underlying problem is essentially one of safely
amplifying periodic or almost periodic motion of the device,
subject to the (almost) periodic motion of the sea. Another
motivation for the study is to help overcome the linear systems
barrier associated with frequency-domain methods.

The proposed framework is model-based, and device ag-
nostic so may incorporate other, more realistic, WEC models,
which is a strength. It relies on the underlying model admitting
the form of a forced Lur’e system. The framework permits
the inclusion of models of downstream components (such
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Fig. V.1: Numerical maximization of (II.10). See main text.

as PTOs, energy storage, grid connection). Here we have
assumed that only the viscous damping force is nonlinear,
which could be extended to incorporate other terms. However,
nonlinear energy-dissipating terms shall appear in the resulting
optimisation problem obtained via the energy-balance method,
and hence will need estimating. Similarly, the challenge of es-
timating the excitation force remains, as both ours and known
results show that this plays a key role in determining optimal
controls. Furthermore, the results of Section V produce an
open-loop control in terms of determination of unknown
Fourier coefficients. Practically, it may be desirable to close
the loop via feedback controllers to improve robustness, and
this shall comprise future study, as shall comparisons with
existing wave-energy conversion techniques.

Finally, we comment that the key intellectual step currently



taken to apply the frequency response ideas of Section IV in
Section V is the conjecture (C). If (C) is false, then the ap-
proach of Section V basically maximises (II.5) subject to (II.1)
over the subset of (almost) periodic controls. However, the
expressions (II.8) and (II.12) for the optimal velocity profile
in those respective cases, when substituted back into (II.1a),
give (almost) periodic u = fPTO when fex is. Consequently,
we have hope that such a conjecture may be true, at least quite
generally. An answer to validity of (C) may be available from
the theory of periodic optimal control; see, for instance, [46].
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