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Abstract
The correct determination of user intent is key in dialog sys-
tems. However, an intent classifier often requires a large, la-
belled training dataset to identify a set of known intents. The
creation of such a dataset is a complex and time-consuming
task which usually involves humans applying clustering tools
to unlabelled data, analysing the results, and creating human-
readable labels for each cluster. While many Open Intent Dis-
covery works tackle the problem of discovering clusters of com-
mon intent, few generate a human-readable label that can be
used to make decisions in downstream systems. To address
this, we introduce a novel candidate label extraction method
then evaluate six combinations of candidate extraction and label
selection methods on three datasets. We find that our extraction
method produces more detailed labels than the alternatives and
that high quality intent labels can be generated from unlabelled
data without resorting to applying costly pre-trained language
models.
Index Terms: open intent discovery, label generation, plm
prompting

1. Introduction
In the development of modern goal-oriented dialogue systems,
a crucial first step is to define the set of user intents that the
system needs to be able to recognise. Given these, intent de-
tection is typically viewed as a supervised learning, multi-class
classification problem where the user utterances form the in-
put and the model learns the mapping to a set of known intents
[1, 2, 3, 4, 5, 6]. However, the task of defining a comprehensive
set of intents in real-world applications can be far from trivial.
For example, a domain expert may initially be able to success-
fully cover all intents that currently exist in a set of help-desk
dialogues, however, user needs tend to change through time, re-
sulting in an ever growing number of intents. Manual intent
discovery would need to be repeated periodically to ensure any
emerging intents are identified and handled. Thus, there have
been a number of recent works directed towards automatically
discovering the intents that are present in the data, without the
need for a domain expert.

Solutions to this problem of Open Intent Discovery (OID)
seek to discover one or more intents from text utterances which
may not have been present in the training data. In many OID
works the focus is discovering clusters of similar intent [7, 8, 9,
10, 11], however they do not generate human-readable labels to
represent the clusters. If such clusters were to be put to use in
production systems, a human analyst would first need to analyse
their contents to decide what the intent represents and assign
natural language labels to each. The resulting labelled dataset
can then be used to train an intent classifier and downstream

systems would be able to identify and act on the intent, e.g. a
virtual assistant could perform the task that the intent requires.
Very few OID works attempt to label the discovered clusters
with either a manual [12] or automated means [13, 14].

In this paper, we focus on the generation of high quality
labels produced by combining a candidate extraction method
with a label selection method. We first propose a new candidate
extraction method that addresses the shortcomings of previous
work, then evaluate six combinations of extraction/selection
methods on three datasets. We find that our extraction method
produces detailed, high quality candidates for all evaluated
datasets, without requiring the use of a Pre-trained Language
Model (PLM). Our key contributions include: (1) We extend
the experiments from previous intent label generation work with
more challenging datasets and additional techniques. (2) We in-
troduce a new extension1 to the extraction method used by Liu
et al. [14]. (3) We compare our results to prompting a large
generative PLM to perform the task.

2. Related work
The state-of-the-art OID techniques use semi-supervised learn-
ing, utilising limited labelled data [9, 11]. DSSCC (Deep Semi-
Supervised Contrastive Clustering) [11] is the current state-of-
the-art in many datasets. Given a set of known intents, tech-
niques such as DSSCC and DeepAligned [9] can estimate the
number of unknown intents, using the known intents as a guide
for clustering. SCL (Supervised Contrastive Learning) [10] dif-
fers from DSSCC and DeepAligned in that the representation
model is trained on a labelled dataset in the same domain as
the target unlabelled dataset. Unsupervised K-Means clustering
is then used on the unlabelled dataset to discover new intents.
Chatterjee and Sengupta proposed an unsupervised technique
ITER DBSCAN [12], a variant to the DBSCAN clustering al-
gorithm [15] which allows for unbalanced data distribution.

Thus far, the techniques discussed have not automatically
generated a human-readable label for the identified intent clus-
ters. Liu et al. address both intent discovery and label genera-
tion, and also approached the problem from a completely unsu-
pervised perspective [14]. Their proposed two-stage technique
first finds semantically similar utterances through K-Means
clustering, then extracts Action(verb)-Object(noun) pairs using
a dependency parser to generate candidate labels. The most fre-
quent candidate is chosen as the final label for the cluster. Eval-
uation is limited to a single dataset, SNIPS [2], and the cluster-
ing stage was accurate. The generated labels were not evaluated
by any similarity measure to their ground truth counterparts but
the semantic mapping was very clear and would have required
little human effort to understand given the low number of intents

1https://github.com/GAnderson01/intent-label-generation



(7 intents). However, for a more complex dataset this could
be an intensive task, requiring domain knowledge. Vedula et
al. [13] looked at intent discovery as a sequence tagging task.
A neural model sequence tagger is trained to tag action and ob-
ject words in text utterances. This technique differs in that it
will produce an intent for every text utterance and may produce
many distinct pairs that express the same intent.

3. Methods
Given the abundance of intent grouping literature, our task as-
sumes a set of clusters of utterances are grouped by similar se-
mantic intent. We then perform automatic label generation to
create a natural language label for each cluster. Candidate la-
bels are extracted or generated from the utterances in each clus-
ter, and a label per cluster is chosen from these candidates.

3.1. Candidate label extraction

Conceptually, every textual utterance within an identified clus-
ter could either have a candidate intent extracted or inferred
from it. The best technique for finding a candidate will differ for
each type of intent that is present in a dataset. For example, an
‘actionable intent’ in the form of an Action(verb)-Object(noun)
pair can be easily extracted by considering the dobj rule with
a dependency parser. However, a more abstract intent such as
‘query’ could not be identified in this way. Also, the technique
as presented in [14] does not consider compound nouns, nega-
tions, or adjectives and so could miss vital context, e.g. “no
don’t reschedule the delivery” and “yes reschedule the deliv-
ery” would both produce the same intent candidate. It will also
fail to extract an intent in simple utterances such as ‘hello’, ‘yes
please’, ‘no’ or ‘thanks’.

We implement three techniques to extract candidates from
the identified clusters and compare them:

Action-Object The first extracts Action-Object pairs from
utterances as in [14]. An Action-Object pair consists of a
verb/infinitive (the Action) and it’s target, a noun or subject (the
Object). e.g. “I need to reschedule my delivery” contains the
Action-Object pair reschedule-delivery.

Action-Object Extension We extend Liu et al.’s Action-
Object extraction method, by expanding the definition of an Ac-
tion and an Object. Liu et al. require the Object to have been
tagged by a dependency parser as a noun only, we remove this
restriction to allow other tags such as proper noun. We use the
compound and amod rules to find compound nouns or descrip-
tive words that apply to the Object. We also utilise the neg rule
to look for negations attached to the Action. This allows for a
more descriptive candidate that takes the form:

(NEG )ACTION-
(ADJECTIVES )(COMPOUNDS )OBJECT

where the terms in parentheses are only present if they exist in
the utterance.

PLM Prompting The final candidate extraction technique
utilises prompting a PLM. Prompting PLMs has shown impres-
sive results in various tasks and could be used to generate a can-
didate intent, without the restrictions of the other techniques.
This makes it a more flexible approach but it requires effort to
craft a good prompt. We use a locally deployed PLM to gener-
ate a candidate for each utterance with the prompt below. The
response from the PLM becomes a candidate intent for the clus-
ter.

“Given the following utterance: [utterance]. The
intent was to”

3.2. Intent label selection

Finally, an intent must be chosen to represent each cluster and
provide a natural language label. We implement two selection
techniques.

Most Frequent The most common candidate is found from
the set of all candidates in a cluster, ignoring any that contain the
word ‘NONE’ to avoid choosing an incomplete Action-Object
pair (as in [14]). In the rare occasion that there are no valid
candidates, the generated label will be an empty string.

PLM Prompting We also experiment with prompting a
PLM at this stage. We prompt a PLM with the following:

“Given these utterances: [cluster utterances].
What is the best fitting intent, if any, among the
following: [top 3 candidates]”

where [cluster utterances] is a string of the utterances in the
cluster and [top 3 candidates] are the three most common can-
didates in the cluster. This instruction should lead the PLM
towards choosing one of the candidates but still allows it the
freedom to generate something unique if none are appropriate.

4. Experiments
4.1. Experimental setup

Each combination of candidate extraction and intent label se-
lection is executed, and each set of generated labels is evalu-
ated as described in Section 4.3. We refer to a combination of
techniques as a configuration. The configuration that produced
the best result, alongside the corresponding labels and scores
are the final output. To obtain initial clusters for each dataset,
we use the DeepAligned Clustering technique from [9]. While
this is a semi-supervised technique, the intent label generation
process is purely unsupervised and generates new labels for all
identified clusters.

There are many options available for a PLM. Given that we
would be prompting the PLM with an entire dataset multiple
times (once for candidate extraction and three times for label
selection), we chose a model that can be deployed locally rather
than a model such as OpenAI’s ChatGPT or Anthropic’s Claude
whose pricing is based on number of tokens. We chose T0pp
for our experiments as it has been shown to produce impressive
results [16] but is a small enough model (11 billion parameters)
to be deployed on accessible hardware. However, clusters can
be very large and the aggregated lengths of the utterance strings
may lead to a very long prompt which exceeds the input token
limit of T0pp. We therefore build multiple prompts for these
large clusters to ensure every utterance is used and the most
common response is selected as the final intent label.

For configurations involving prompting, we use a
g4dn.12xlarge AWS EC2 instance with 4 NVIDIA T4 GPUs.
For all other configurations, a g4dn.xlarge was used.

As a baseline, we use Claude Instant v1.22 to perform the
entire intent label generation process with the below prompt.

“Human: Given these utterances: [clus-
ter utterances] Generate a short two or three
words phrase to represent the user intent.
\n\nAssistant: Short intent: ”

We chose Claude Instant as it has a 100k token context win-
dow which was large enough to handle the largest of our clus-
ters of utterances, and at the time of the experiments had the
best price/performance ratio of large PLM options available.

2https://aws.amazon.com/bedrock/claude/



Table 1: Features of Each Dataset

Dataset Intent Type No. of
Samples

No. of
Intents

SNIPS Action-Object 14484 7
Banking Action-Object/Topic 13083 77
CLINC Action-Object/Topic/Question 22500 150

4.2. Datasets

In this section we discuss the datasets used in our experiments
and describe their features (Table 1).

SNIPS [2] is an intent dataset containing around 14.5K
crowd-sourced natural language utterances that have been gath-
ered from virtual personal assistant commands. These cover 7
Action-Object intents: PlayMusic, AddToPlaylist, GetWeather,
BookRestaurant, SearchScreeningEvent, SearchCreativeWork,
and RateBook. Banking77 [17] is made up of over 13K
queries in the banking domain. There are 77 fine-grained in-
tents that include both the Action-Object and topic format e.g.
card payment fee charged, request refund, lost or stolen card,
pin blocked, and cancel transfer. CLINC [18] contains 22.5K
queries across 10 domains with a total of 150 intents. The
intent definition is very loose, with some taking the Action-
Object form, others are topics or even specific questions e.g.
update playlist, traffic, and how old are you. The label distri-
bution of both SNIPS and CLINC are balanced, while Banking
has an imbalance ratio of 3. All datasets are in English.

4.3. Evaluation

We evaluate each pair of extraction/selection techniques by cal-
culating both the average cosine similarity and the average
BARTScore [19] between the normalised ground-truth and gen-
erated labels. We normalise by splitting on Pascal/snake case,
removing hyphens and converting to lower case. To obtain a
vector representation for cosine similarity, we embed the nor-
malised labels using Universal Sentence Encoder [20].

Each cluster is assigned to one of the ground-truth (gt) la-
bels by finding the most common ground-truth (mcgt) label in
that cluster. We measure the similarity score between the em-
beddings of the generated label for the cluster and it’s mcgt
using cosine similarity or BARTScore (sim(c)). To obtain a
final score for a configuration, we cannot simply take the aver-
age of these similarity scores as it is possible that one or more
ground-truth labels have not been assigned to a cluster. There is
also the possibility that multiple clusters have been assigned the
same mcgt but have different generated labels. To handle this,
we calculate an average configuration score as follows.

For each unique gt label, we define C∗ as the subset of
clusters where mcgt equals gt. The score for each gt is then
the average of the similarity between the generated label and the
mcgt for each cluster in C∗. If none of the identified clusters is
assigned gt then the score is 0 (see Equation 1).

avg label sim(gt) =

{∑
c∈C∗ sim(c)

NC∗ , if NC∗ > 0

0 , if NC∗ = 0
(1)

where NC∗ is the number of clusters in C∗.
Finally, we take an average of these to obtain our final av-

erage similarity score for the configuration (see Equation 2).

config score =

∑
gt∈GT avg label sim(gt)

NGT
(2)

Table 2: Scores and timings for each configuration and the
Claude baseline. Standard deviations are shown in brackets.
Results with * are considered statistically significant when com-
pared with the baseline using a Paired T-test.3

Candidate
Extraction

Label
Selection

Avg. Cosine
Similarity

Avg.
BART Score Time

SNIPS
Action-Object Most Frequent 0.5773 (0.3140) -4.5967 (2.4445) 1m 59s
Action-Object T0pp Prompting 0.6904 (0.3135) -3.6534 (2.2614)* 14m 42s
Action-Object Ext. Most Frequent 0.6899 (0.3021) -3.7344 (2.4313) 1m 39s
Action-Object Ext. T0pp Prompting 0.7022 (0.2948) -3.6065 (2.2460)* 14m 56s
T0pp Prompting Most Frequent 0.4940 (0.1949) -5.0576 (2.0696) 3h 39m 59s
T0pp Prompting T0pp Prompting 0.6043 (0.2578) -4.2548 (2.4151) 3h 52m 48s

Claude Instant v1.2 Prompting 0.5220 (0.2870) -5.0056 (1.7390) 58s

Banking
Action-Object Most Frequent 0.3974 (0.2438)* -5.6216 (1.2992)* 1m 43s
Action-Object T0pp Prompting 0.2648 (0.2581)* -6.1862 (1.4438)* 16m 23s
Action-Object Ext. Most Frequent 0.3816 (0.2848)* -5.4319 (1.6261)* 1m 30s
Action-Object Ext. T0pp Prompting 0.2962 (0.2731)* -6.0337 (1.5213)* 16m 21s
T0pp Prompting Most Frequent 0.3495 (0.2828)* -5.6323 (1.6879)* 2h 50m 1s
T0pp Prompting T0pp Prompting 0.2766 (0.2630)* -6.0236 (1.6680)* 3h 4m 5s

Claude Instant v1.2 Prompting 0.5518 -4.4626 1m 20s

CLINC
Action-Object Most Frequent 0.5502 (0.2751) -4.4197 (1.6293)* 2m 47s
Action-Object T0pp Prompting 0.5273 (0.2667)* -4.5449 (1.5749) 20m 2s
Action-Object Ext. Most Frequent 0.4911 (0.2998)* -4.9655 (1.9709) 2m 32s
Action-Object Ext. T0pp Prompting 0.5001 (0.2936)* -4.9461 (1.8958) 19m 59s
T0pp Prompting Most Frequent 0.4787 (0.2898)* -4.7637 (1.7488) 5h 7m 13s
T0pp Prompting T0pp Prompting 0.4348 (0.2724)* -5.0062 (1.7494) 5h 25m 18s

Claude Instant v1.2 Prompting 0.5855 -4.8130 2m 13s

where GT is the set of all ground-truth intents and NGT is the
number of ground-truth intents. We score each possible config-
uration for each dataset and find it’s optimal configuration (best
config score).

5. Results and analysis
Table 2 shows the average cosine similarity, average
BARTScore and end-to-end timings for each configuration and
dataset. In Table 3 the final labels generated for the best config-
urations are shown in italics. Alongside these we show the alter-
nate Action-Object extraction method, to highlight the benefits
of our extension. A sample of 10 labels are shown for Banking
and CLINC due to space restrictions.

We can see that the labels produced are of very good qual-
ity considering the label generation process uses completely
unlabelled data. For SNIPS, DeepAligned clustering has clus-
tered the intents correctly, with 7 clusters identified, each with
a unique most common ground truth. Both metrics agree
that Action-Object Extension combined with T0pp Prompt-
ing produces the highest quality labels. Three generated la-
bels, rate-book, Play-music and book-restaurant, were identi-
cal to their ground truths. add-song, Find-movie schedule and
Tell-weather forecast are semantically the same as their ground
truths. Find-TV show is similar to SearchCreativeWork, how-
ever, it may be too specific to be of use without some human
validation and modification.

For Banking, while 77 clusters are identified, only 68 in-
tents are assigned as the most common ground truths as 8 intents
were assigned to 2 or 3 clusters. The metrics disagree on the
best configuration. Action-Object with Most Frequent achieved
the highest cosine similarity score while Action-Object Exten-
sion with Most Frequent scores best according to BARTScore.
Many of the generated labels are clearly semantically simi-
lar to the most common ground truth, e.g. in both configura-
tions, verify-source was generated for verify source of funds

3https://en.wikipedia.org/wiki/Student%27s t-test



Table 3: Comparison between the labels produced using Action-
Object Extension and Action-Object extraction paired with the
label selection method from the datasets best configuration. La-
bel sets in italics scored the highest in one or both metrics.

Most Common GT Generated Label
w/Action-Object Ext.

Generated Label
w/Action-Object

SNIPS
PlayMusic Play-music play-music
SearchCreativeWork Find-TV show find-show
RateBook rate-book rate-book
SearchScreeningEvent Find-movie schedule find-schedule
BookRestaurant book-restaurant book-restaurant
AddToPlaylist add-song add-song
GetWeather Tell-weather forecast give-forecast

Banking
getting virtual card get-virtual card get-card
verify source of funds verify-source verify-source
verify my identity need-What do-check?
passcode forgotten reset-password reset-password?
get disposable virtual card get-disposable virtual card get-card?
card payment fee charged charge-fee charged-fee
card arrival receive-card receive-card?
request refund get-refund get-refund
edit personal details change-name change-name
exchange charge exchange currencies exchanging-currencies?

CLINC
transactions show-transactions show-transactions
play music play-song play-song
schedule meeting schedule-meeting schedule-meeting
plug type need-socket converter need-converter
oil change when change-oil change-oil
how old are you tell me tell-age
text send-text send-text
pto balance put-pto request have-days
who do you work for say-who take-orders
improve credit score improve-credit score improve-score

and reset-password for passcode forgotten.
For CLINC, 150 clusters are identified by DeepAligned, but

only 144 intents are assigned as a most common ground truth as
6 intents were assigned to multiple clusters. The metrics agree
that Action-Object paired with Most Frequent is the optimal
configuration. Again, we have generated labels which are very
semantically similar to the most common ground truth in many
clusters e.g. show-transactions for transactions, play-song for
play music and schedule-meeting for schedule meeting.

Table 3 highlights the benefits of our Action-Object Exten-
sion method even in the cases where it does not produce the
best similarity metric scores. Consider the fine-grained intent
get disposable virtual card in Banking, with simple Action-
Object candidates the chosen label is too generic and contains
punctuation: get-card?. With Action-Object Extension we get
a complete, detailed label which matches the ground truth. It is
also worth noting that the configuration with the highest cosine
similarity scores only marginally higher than the configuration
using Action-Object Extension instead. We see the same lack
of detail in CLINC labels e.g. Action-Object produces improve-
score for improve credit score while Action-Object extension
matches the true label. Given the true labels, we can see the
semantic similarity between the labels generated with Action-
Object, however, if we had not known the ground truths, it
would be difficult to understand the true intent of some clus-
ters without further investigation. There was one case where
Action-Object produced zero candidate intents for a cluster with
mcgt: no, and so the generated label was an empty string.

Our strong baseline, Claude Instant v1.2, is able to gener-
ate high quality labels, however it did not always achieve the
best scores. We see a large difference in SNIPS where Claude

achieves the second worst quality labels. It appears to gener-
ate labels that are not generic enough to represent the intent,
e.g. Play classics for PlayMusic and Alana Davis add for Ad-
dToPlaylist. In the CLINC dataset, Claude achieves the high-
est average cosine similarity (by a small margin), but not the
best BARTScore. Although we prompted Claude to generate a
short two or three word phrase, it breaks that condition often
and generates multiple intents rather than just one e.g. Check
transaction, recent transaction, transaction history for transac-
tions. Claude will also sometimes continue to generate another
‘Human’ message, e.g. confirm identity Human: Okay, here
are some was generated for a cluster with mcgt are you a bot.
Claude achieves the best scores in Banking by a large margin.
This improvement over other configurations is quite striking
compared to the other datasets. Our hypothesis is that Bank-
ing77 was included in Claude’s training dataset but we cannot
verify this as its pre-training datasets were not made public.
Again, Claude suffers from the issue of generating multiple in-
tents for a single cluster in Banking as well e.g. Troubleshoot
contactless\nReset password for passcode forgotten.

Prompting T0pp was only in the top configuration for one
dataset. In SNIPS, it is only used for the final step, in choos-
ing the label from the candidates. This is not too surprising,
as SNIPS, Banking and CLINC are predominantly made up of
either commands to a personal assistant or specific requests for
help, meaning there are plenty of Action-Object candidates to
choose from. Inspecting the generated labels in Banking when
using Prompting for extraction and Most Frequent for selection
shows some very good and detailed intents, such as get a dis-
posable virtual card for get disposable virtual card and ver-
ify the source of funds for verify source of funds, however in
many cases it fails to capture the intent and seems to generate
something generic such as ask a question. It is possible that
the labels could be improved with more rigorous prompt tun-
ing, however it is encouraging to see that high quality labels
can be generated, completely unsupervised, without having to
resort to querying a PLM. Candidate extraction using T0pp had
the longest duration of all techniques, taking almost 3 hours to
complete for the smallest dataset. This may have been in part
due to the fact that it was deployed across 4 GPUs as we were
unable to obtain a single GPU device with sufficient memory.

6. Conclusions and future work
We have presented experimental results for different combina-
tions of techniques in automated human-readable label genera-
tion for Open Intent Discovery. We introduced an extension to
the Action-Object extraction technique used in [14], which can
extract more detailed and usable intents. We also performed
additional experiments on more challenging datasets than pre-
viously tested. Our results show that high quality, human-
readable intent labels can be generated for an unlabelled dataset
without requiring the use of an expensive PLM. Future work
may include expanding the evaluation datasets to either fur-
ther validate our findings or apply the approaches to languages
other than English. One limitation to our approach is we as-
sume the existing ground truth intent label is the best represen-
tation, therefore any metric based on similarity will naturally
score higher the more similar the generated label is. Therefore,
a technique for intent label generation could generate a label
that better represents the cluster but differs in content from the
ground truth, and thus receive a worse score according to the
metrics. Further investigation of alternative automated evalua-
tion metrics and a human evaluation would be beneficial.
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