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Abstract
Industrial Internet of Things (IIoT) is a pervasive network of interlinked smart devices
that provide a variety of intelligent computing services in industrial environments. Several
IIoT nodes operate confidential data (such as medical, transportation, military, etc.) which
are reachable targets for hostile intruders due to their openness and varied structure.
Intrusion Detection Systems (IDS) based on Machine Learning (ML) and Deep Learning
(DL) techniques have got significant attention. However, existing ML and DL‐based IDS
still face a number of obstacles that must be overcome. For instance, the existing DL
approaches necessitate a substantial quantity of data for effective performance, which is
not feasible to run on low‐power and low‐memory devices. Imbalanced and fewer data
potentially lead to low performance on existing IDS. This paper proposes a self‐attention
convolutional neural network (SACNN) architecture for the detection of malicious ac-
tivity in IIoT networks and an appropriate feature extraction method to extract the most
significant features. The proposed architecture has a self‐attention layer to calculate the
input attention and convolutional neural network (CNN) layers to process the assigned
attention features for prediction. The performance evaluation of the proposed SACNN
architecture has been done with the Edge‐IIoTset and X‐IIoTID datasets. These datasets
encompassed the behaviours of contemporary IIoT communication protocols, the op-
erations of state‐of‐the‐art devices, various attack types, and diverse attack scenarios.
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1 | INTRODUCTION

Researchers have shown a great deal of interest in the Internet
of Things (IoT), which is considered to be one of the most
advanced technologies. The proliferation trend of IoT appli-
cations has grabbed several industries including agriculture,
health, smart security, air and water pollution, transport,
smart cities, and smart homes to implement IoT features
[1, 2]. Industrial IoT is a subcategory of IoT that refers to the

expansion of IoT into industrial sectors such as factory floors
and warehouses. Industrial Internet of Things (IIoT) consists
of interlinked smart machinery and real‐time analytics systems
and intelligent services that process the data produced by
those machines [3–6]. For instance, an IIoT‐managed in-
ventory system can handle ordering supplies just before they
run out of stock, significantly simplifying the task of main-
taining inventory and freeing up the employee to do other
duties [7].

Abbreviations: ACC, accuracy; AE, autoencoder; AUC, area under the curve; CNN, convolutional neural network; DL, deep learning; DNN, deep neural network; GRU, gated
recurrent units; IDS, intrusion detection system; IIoT, industrial internet of things; IoT, internet of things; LR, linear regression; LSTM, long short‐term memory; ML, machine learning;
MLP, multi‐layer perceptron; NB, nave bayes; P, precision; R, recall; SACNN, self‐attention convolutional neural network; SVM, support vector machine.
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Nevertheless, despite the IIoT paradigm's unquestionable
benefits, such benefits are accompanied by critical security flaws
[8]. For example, numerous IIoT applications deal with sensitive
and confidential data, such as medical, transportation or military
systems making them attractive targets for adversarial intruders
[9–11]. Additionally, IIoT devices are usually poorly designed
with many overlooked security aspects rendering them vulner-
able to reprogramming and manipulating. This could have a
profound impact on the IIoT system, resulting in significant
economic and reputational losses. To overcome such security
concerns, numerous Intrusion Detection Systems (IDS) in
which Machine Learning (ML) and Deep Learning (DL) play
vital roles have been developed [12–15]. However, existing ML
and DL‐based IDS still face a number of obstacles that must be
overcome. First, the state‐of‐the‐art IDS systems have difficulty
detecting multi‐class category and multi‐class sub‐category at-
tacks efficiently. Second, existing DL approaches require an
extremely large volume of data for efficiently training the
models placing a high burden on the limited storage and
computing resources of IIoT devices. Third, existing IDS
techniques address primarily binary classification with balanced
datasets rendering them inefficient for multi‐class learning with
imbalanced datasets.

This paper proposes a self‐attention convolutional neural
network (SACNN) architecture and a suitable feature extraction
technique to identify malicious activity in IIoT networks,
addressing the limitations of current IDS approaches. The
proposed system handles the imbalance issue of input data by
dividing input features into equal sizes of vectors and processing
them in parallel. Parallel processing of these vectors increases
the learning rate and improves the detection performance of
malicious activities in IIoT networks. The proposed architecture
has a self‐attention layer to calculate the input attention and
CNN layers to process the assigned attention features for pre-
diction. The fundamental benefit of CNN over other DL al-
gorithms is its ability to capture the importance of features [16].
Moreover, CNN operates with fewer parameters, resulting in
faster performance [17]. The performance assessment of the
proposed SACNN architecture has been done with the Edge‐
IIoTset and X‐IIoTID datasets. Edge‐IIoTset contains 14 at-
tacks associated with IoT and IIoT communication protocols
that are classified into five classes: DoS/DDoS, Information
gathering, Man in the middle, Injection, and Malware attacks
[18]. On the other hand, the X‐IIoTID dataset comprises real‐
time IIoT network traffic data, encompassing contemporary
IIoT communication protocol behaviours, state‐of‐the‐art de-
vices operations, a wide range of attack types, diverse attack
scenarios, and various attack protocols. Moreover, several ML
and DL algorithms were tested in the same environment and
compared with the SACNN architecture. In summary, this
article introduces the following contributions:

� A novel approach self‐attention convolutional neural
network (SACNN) is proposed for the detection of mali-
cious activities in IIoT networks. It focuses on multi‐class
categories and multi‐class sub‐categories of attacks. A self‐
attention layer is used to divide input features into equal

sizes of heads and process them in parallel to calculate the
attention value for each head, and CNN layers are used to
process the calculated attention and predict the communi-
cation activities in the network.

� A new feature extraction approach based on the extra tree
classifier (ETC) is adopted to enable more efficient extrac-
tion of the most significant features.

� An extensive empirical evaluation has been conducted using
both heavy and light versions of the dataset to showcase the
effectiveness of the SACNN model in comparison to state‐
of‐the‐art methods.

This paper is organised as follows: Section II overviews the
latest related works pertaining to IDS in IIoT‐based networks.
Section III describes the pre‐processing steps and our proposed
SACNN model highlighting its main features. Section IV
thoroughly discusses experiments and performance evaluation
results. Finally, Section V contains the conclusion of the paper.

2 | RELATED WORK

Several experts have been actively dedicated to enhancing the
security of IIoT networks. Significant research efforts have
recently been directed towards developing more efficient DL‐
based models for intrusion detection. Li et al. [19] designed a
multi‐CNN fusion paradigm for the identification of cyber-
attacks in IIoT network communication. They evaluate the
designed paradigm with the NSL‐KDD dataset. Bovenzi et al.
[20] introduced a multimodal deep autoEncoder (M2‐DAE)
method for identifying cyberattacks in IoT network communi-
cations. The model's performance was evaluated using the Bot‐
IoT dataset, and it achieved an F1‐score of 99% on the utilised
dataset.

Abdel‐Basset et al. [21] presented a forensics‐based DL
framework for identifying malicious attacks in IIoT traffic. The
presented framework was tested in a fog computing environ-
ment and the Bot‐IIoT dataset was used to prove the efficiency
of the presented framework. Kasongo [22] proposed a genetic
algorithm (GA) for attributes extraction and random forest
method to detect intrusions in IIoT network communication.
They utilised UNSW‐NB15 dataset to assess the effectiveness
of the model.

Liu et al. [23] proposed a variational autoencoder (VAE)
paradigm for intrusion detection utilising a conditional
balancing strategy. The VAE paradigm was evaluated using the
CSE‐CIC‐IDS2018 dataset. Telikani et al. [24] designed a
combined architecture of stacked autoencoders and CNNs for
malicious activity detection. They utilised ToN‐IoT and UNSW‐
NB15 datasets to assess the efficacy of the model. Zhang et al.
[25] adopted IDS based on the graph neural network (GNN) to
detect cyberattacks in IIoT networks communications. They
utilised Mississippi cyberattack datasets to validate the proposed
method. Khan et al. [26] designed a DAE IDS based on LSTM
networks to distinguish between normal and malicious traffic in
the IIoT networks. To analyse the effectiveness of the proposed
system, the UNSW‐NB15 dataset was utilised. Le et al. [27]
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presented an extreme gradient boosting (XGboost) paradigm
for detecting malicious activities in IIoT networks focusing on
imbalanced datasets. X‐IIoTDS and TON_IoT datasets were
utilised to assess the efficacy of the presented algorithm. Li et al.
[28] proposed a hybrid architecture of CNN and Bi‐directional
long short‐term memory (BiLSTM) for the classification of
cyberattacks in IIoT networks. The proposed architecture was
analysed with the NSL‐KDD dataset.

Altunay et al. [29] introduced a hybrid DL model known as
CNN‐LSTM for detecting cyberattacks in industrial IoT. They
assessed the CNN‐LSTM model using the UNSW‐NB15 and
X‐IIoTID datasets, achieving detection accuracies of 92.9%
and 99.8%, respectively. Lilhore et al. [30] developed an
Optimised CNN‐LSTM architecture for detecting suspicious
network flow in industrial IoT. They evaluated the proposed
system using the ToN‐IoT and UNSW‐NB15 datasets. The
designed model achieved precision rates of 92.7% and 94.25%
for the utilised datasets, respectively. Wang et al. [31] presented
a combined ResNet, Transformer, and BiLSTM (Res‐Tran-
BiLSTM) algorithm for the detection of malicious activities in
IIoT. The model was evaluated using the NSL‐KDD and CIC‐

IDS2017 datasets, and they addressed the data imbalance issue
by applying the SMOTE method. The results of the presented
model demonstrated detection accuracies of 90.99%, 99.15%,
and 99.56% on the utilised datasets, respectively.

Table 1 provides an overview of the related work of cyber-
attack prediction in IIoT. The analysis of the relevant literature
reveals that most studies have focused on a limited number of
attacks due to data imbalance issues in the datasets. As a result,
when these systems are confronted with a diverse range of attack
classes, these systems face challenges in achieving precise
detection outcomes. Furthermore, from the literature analysis,
we have observed that most papers concentrate on multi‐class
classification within major categories and do not explore the
subcategories of attacks. Moreover, we noted that all the related
papers worked with extensive datasets, without considering
lightweight data suitable for low‐memory devices. This paper
addresses these issues by considering a higher number of attack
classes using both extensive and lightweight data. Additionally,
for performance improvement, this paper introduces a novelDL
model called SACNN, designed to address the dataset imbalance
issue for a limited and diverse number of attack classes.

TABLE 1 Related work overview of cyberattacks detection in IIoT.

Papers Years Method Dataset Evaluation metrics
Average finding
score (in %)

No. of
attacks

Multi‐class
category

Multi‐class
sub‐category

Light
data

[19] 2020 Multi‐CNN NSL‐KDD Accuracy, precision, recall,
F1‐Score

86.95, 89.56, 87.25,
88.41

4 ✓ � �

[20] 2020 M2‐DAE Bot‐IoT F1‐score 99.7 3 ✓ � �

[21] 2021 Forensics‐DL Bot‐IIoT, UNSW‐
NB15

Accuracy, precision, recall,
F1‐Score

98.93, 97.52, 98.1,
97.82

5, 9 ✓ � �

[22] 2021 GA UNSW‐NB15 Accuracy, precision, recall,
F1‐Score

77.64, 83.09, 77.64,
80.27

9 ✓ � �

[23] 2022 VAE CSE‐CIC‐IDS2018 Accuracy, precision, recall,
F1‐Score

98.57, 91.33, 82.18,
84.03

6 ✓ � �

[24] 2022 SAE‐CNN ToN‐IoT, UNSW‐
NB15

Precision, recall, F1‐Score 93.35, 97.6, 95.2 9, 9 ✓ � �

[25] 2022 GNN Mississippi Accuracy, precision, recall,
F1‐Score

97.2, 98, 90, 93 7 ✓ � �

[26] 2022 DAE UNSW‐NB15 Accuracy, precision, recall,
F1‐Score

97.95, 98, 96.63,
97.89

9 � � �

[27] 2022 XGboost X‐IIoTDS,
TON IoT

Precision, recall, F1‐Score 9.91, 99.84, 99.88 9, 7 ✓ � �

[28] 2022 CNN‐
BiLSTM

NSL‐KDD Accuracy, Detection rate,
Precision

96.3, 97.1, 98.9 4 ✓ � �

[29] 2023 CNN‐LSTM UNSW‐NB15, X‐
IIoTID

Accuracy, precision, recall,
F1‐Score

96, 96.06, 96.09,
96.07

9, 9 ✓ � �

[30] 2023 OCNN‐
LSTM

ToN_IoT UNSW‐
NB15

Accuracy, precision, recall,
F1‐Score

93.56, 93.48, 53.7,
50.86

7, 9 ✓ � �

[31] 2023 Res‐
TranBiLSTM

NSL‐KDD, CIC‐
IDS2017

Accuracy, precision, recall,
F1‐Score

95.07, 95.27, 95.04,
94.02

4, 6 ✓ � �

This
study

2023 SACNN Edge‐IIoTset, X‐
IIoTID

Accuracy, precision, recall,
F1‐Score

99.62, 99.44, 99.11,
99.27

14, 9 ✓ ✓ ✓
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3 | THE PROPOSED INTRUSION
DETECTION SYSTEM

This section overviews our proposed approach for detecting
cyberattacks within IIoT networks. It also describes the pre-
liminary steps required including data preparation, features
extraction, normalisation, and data splitting.

3.1 | Datasets description

Edge‐IIoTset and X‐IIoTID are renowned datasets that are
used by several researchers in the field of ML and DL‐based
IDS. These datasets contain IoT and IIoT traffic samples
generated by a real‐world testbed deployment consisting of
seven interconnected layers, including cloud computing,
network functions virtualisation, blockchain network, fog
computing, software‐defined networking, and edge computing,
in addition to IoT and IIoT perception layers. More than ten
types of devices were used to generate the data including soil
and water monitoring, temperature, and humidity among other
IoT devices. Edge‐IIoTset contains 14 attacks associated with
IoT and IIoT communication protocols that are classified into
five classes: DoS/DDoS, Information gathering, Man in the
middle, Injection, and Malware attacks. Data were collected
from network packets in the form of pcap files which were
converted to CSV using Zeek and TShark tools [18]. This
dataset is available in two versions: heavy and light. The heavy
version contains 2,219,201 instances, while the light version
contains 157,800 instances. The X‐IIoTID dataset was created
by monitoring a real‐time IIoT network, which encompassed

the behaviours of contemporary IIoT communication pro-
tocols, the operations of state‐of‐the‐art devices, various attack
types, and diverse attack scenarios, as well as several attack
protocols [32]. The dataset consists of 65 input features and a
total of 820,834 instances. Among these instances, 421,417 are
categorised as normal, while the remaining 399,417 instances
correspond to different attack types. A full breakdown of these
datasets is given in Table 2.

3.2 | Preprocessing techniques

This section comprises preprocessing procedures. In this
experiment, three preprocessing procedures were used: data
preparation, feature extraction, and normalisation.

3.2.1 | Data preparation

This is the first step in the preprocessing stage to address the
problem of missing values and convert categorical features into
numeric features. There are no null values in the Edge‐IIoTset
dataset. The utilised dataset contains categorical attributes that
include numerous data categories. We considered using a one‐
hot encoder to map categorical attributes to numeric values;
however, this mechanism requires a large amount of memory
and introduces significant latency [33]. As a result, we instead
used the label encoder mechanism for the conversion task. In
this method, each label is assigned a distinct numeric value
based on alphabetical order that does not require additional
memory.

TABLE 2 A detailed presentation of datasets.

Heavy version of Edge‐IIoTset Light version of Edge‐IIoTset X‐IIoTID

Category Instances Sub category Instances Category Instances Sub category Instances Class Instances

Normal 1,615,643 Normal 1,615,643 Normal 24,301 Normal 24,301 Normal 421,417

DDoS 337,977 UDP 121,568 DDoS 49,396 DDoS_UDP 14,498 RDOS 141,261

ICMP 116,436 DDoS_ICMP 14,090

TCP 50,062 DDoS_TCP 10,247 Reconnaissance 127,590

HTTP 49,911 DDoS_HTTP 10,561

Injection 104,752 XSS 15,915 Injection 30,632 XSS 10,052 Weaponization 67,260

SQL 51,203 SQL 10,311 Exfiltration 22,134

Uploading 37,634 Uploading 10,269

Malware 85,940 Password 50,153 Malware 31,109 Password 9989 Lateral 31,596

Backdoor 24,862 Backdoor 10,195 Movement 5122

Ransomware 10,925 Ransomware 10,925 Tampering

Scanning 73,675 Port 22,564 Scanning 21,148 Port 10,071 C&C 2863

Fingerprinting 1001 Fingerprinting 1001 Cryoti 458

Vulnerability 50,110 Vulnerability 10,076 Ransomware

MITM 1214 MITM 1214 MITM 1214 MITM 1214 Exploitation 1133

4 - QATHRADY ET AL.
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3.2.2 | Feature extraction

Feature extraction is the process of reducing a high‐dimensional
dataset into a low‐dimensional dataset with the goal of selecting
the most significant features. The key benefit of feature
extraction is to improve the effectiveness of the classification
model by avoiding overfitting and introducing less processing
power, and better memory utilisation [34–37]. In our proposed
technique, we opted to use the extra‐tree classifier (ETC)
method to extract the most significant features due to its many
advantages over the other extraction methods [38]. The ETC
operates on the gain value that represents the impact of an
attribute on the output category.

The ETC is an ensemble learning technique that combines
the outcomes of numerous decision trees, which are uncorre-
lated, to form a ‘forest’ to produce its classification results. In
this method, each decision tree is built from the original training
sample. During testing at each node, a random subset of k
features is provided to each tree from the feature set. Conse-
quently, each decision tree independently selects the optimal
feature for data splitting using Equation (1).

GainðS;AÞ ¼ EntropyðSÞ −
X

v∈ValuesðAÞ

jSvj

jSj
⋅ EntropyðSvÞ

ð1Þ

Where Gain(S, A) is the information gain which splits the
dataset S based on attribute A. Values(A) are distinct values that
the attribute A can take. Sv is the Subset of examples in S for
which attribute A has value v. |Sv| represents the number of
examples in subset Sv. And |S| denotes the total number of
examples in the dataset. The final information gain for each
feature is computed as an average of overall decision trees in the
ETC. The goal is to identify features that consistently provide
high information gain across multiple trees. Attributes with a
total information gain value greater than 0 were extracted, while
0 information gain value attributes had no impact on the output.
After the filtering process, 54 attributes were extracted with
greater than 0 gain value. The remaining eliminated 7 attributes
have 0 gain value.

3.2.3 | Normalisation and splittings

Normalisation is a method of rescaling data into a common
range. For ML and DL classifiers, there is no need to rescale
the dataset if the scales of the attributes are not much variant.
Different range‐scaled attributes of the dataset affect the
effectiveness of the classifiers [39, 40]. The edge‐IIoT set
dataset has a varied range of attributes that need to be nor-
malised. In our proposed approach, the min–max normal-
isation technique is used to scale the attributes between 0 and
1, as represented in Equation (2). To verify the efficacy of the
SACNN, we divided the normalised form of the dataset into
two portions, one containing 80% of the data for training and

the other 20% for testing purposes. The stratified technique is
applied to divide the data into identical sets for each class.

Xnorm ¼
x − xmin

xmax − xmin
ð2Þ

3.3 | The proposed SACNN architecture

The proposed SACNN architecture consists of a self‐attention
layer and convolutional neural networks (CNN) layers, as
shown in Figure 1. The self‐attention layer divides the input
features into vectors of equal size called heads. It processes all
heads in parallel and computes the attention value for each head.
CNN layers are used to process the computed attention and
predict the attack class, as Algorithm 1 outlines the details using a
pseudo‐formatted flow. The proposed SACNN approach
operates input shape (instances_set, attributes, 1), where
‘instances_set’ represents the batch size, ‘attributes’ represents
the number of input features, and ‘1’ represents the individual
input instance. In the proposed architecture, self‐attention splits
the input features into eight equal vectors (heads) [41]. The head
size is calculated in Equation (3), whereHs is the size of the head,
Is is the total number of input attributes, andNh is the number of
splitting heads. Self‐attention layer computes the attention based
on queries (Q), keys (k), and values (V). Q, K, and V are
demonstrated in Equation (4), Equation (5), and Equation (6),
respectively, where X represents the input vector and W repre-
sents the weight. The attention of each head is computed using
Equation (7), where dq is the length of Q. All the computed
attentions of the heads are combined to generate the output of
the self‐attention layer, as expressed in Equation (8). Add and
norm layer was used to handle the vanishing gradient issue [42].

Hs ¼ ⌈
Is
Nh

⌉ ð3Þ

Q¼ X�WQ ð4Þ

K ¼ X�WK ð5Þ

V¼ X�WV ð6Þ

Zi ¼ softmax

 
Q�KT

ffiffiffiffiffi
dq

p

!

� V ð7Þ

Z¼ Zið1;…; nÞ ð8Þ

Algorithm 1 Proposed SACNN algorithm

Require: Input data vector X
Ensure: Output predicted probabilities Y
1: function SELFATTENTION(X)
2: Q, K, V ← LinearTransform(X)

▹ Linear transformations
3: H ← Attention_score(Q, K, V)

▹ Self attention
4: return H
5: end function
6: function CNNLAYERS(Hnorm)

QATHRADY ET AL. - 5
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7: HConvo ← Convo(Hnorm)
▹ Convolutional layers

8: HCNN ← MaxPool(Hconvo) ▹ Max
Pooling layer

9: return HCNN
10: end function
11: function DENSELAYERS(HCNN)
12: Ddense ← RelU(HCNN) ▹ Dense

ReLU layer
13: Y ← Softmax(Ddense) ▹ Softmax

layer for predictions
14: return Y
15: end function
16: H ← SELFATTENTION(X)
17: Hnorm ← Add_&_Norm(H þ X) ▹ Add

and layers normalisation
18: HCNN ← CNNLAYERS(Hnorm)
19: Y ← DENSELAYERS(HCNN)
20: return Y

The self‐attention layer computed the significance of
heads, where each head consists of multiple features. In the
next stage, we pass the output of the self‐attention layer to the
CNN layers for network intrusion detection. The fundamental
benefit of a CNN is its ability to capture the importance of
features. Moreover, a CNN operates with fewer parameters
than other DL algorithms, resulting in faster performance [43].
A CNN is typically made up of convolutional layers, pooling
layers, and fully connected layers [44]. In the proposed archi-
tecture, two 1D convolutional layers with a kernel size of three
and 26 filters, a max‐pooling layer with a pool size of four,
flatten, and two fully connected layers were utilised. The
convolutional layer highlights the significance of the features as
well as diminishes the noise [45]. The utilised convolutional
layers are expressed in Equation (9) and Equation (10), where
the input to the CNN is represented by xk, si signifies the
neurons of the previous layer, wik signifies the kernel size, and
bk depicts the bias. The output of the convolution operation is
denoted by yk where the ReLU activation method is employed.
The yield of the convolution operations passes into a

F I GURE 1 Flow diagram of the proposed architecture.

6 - QATHRADY ET AL.
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max‐pooling operation that converges to the most prominent
features as expressed in Equation (11). The flatten mechanism
is utilised to transform the yield of max‐pooling operations
into a 1D vector that passes into ReLU dense layer. The final
layer of the approach is the softmax dense layer that produces
the output, as demonstrated in Equation (12).

xk ¼ bk þ
XN

i¼1
ðsi;wikÞ ð9Þ

yk ¼maxð0; xkÞ ð10Þ

sk ¼ max
i∈ℜ yk ð11Þ

softmaxðxÞi ¼
exi

PK

j¼1
exj

ð12Þ

3.3.1 | Hyperparameters

Hyperparameters are established prior to the training of neural
networks, enabling the DL models to learn from the training
data. These hyperparameters play a crucial role in the training
process and can significantly impact the performance of the
model. Table 3 presents the most important hyperparameters
utilised in the proposed SACNN model.

3.4 | Experimental setup

The experiments of our proposed approach were carried out on
a Jupyter notebook with an Intel Core i5 8th generation pro-
cessor and 24‐GB RAM running Windows 11 Pro 64‐bit
operating system and Python 3.8. Several Python libraries
were utilised including Keras, TensorFlow, Pandas, Scikit Learn,
and NumPy.

4 | PERFORMANCE ASSESSMENT

This section covers a comprehensive assessment of the pro-
posed approach. Edge‐IIoTset datasets were used in this
experiment to assess the effectiveness of the proposed
approach. Experiments were conducted for multi‐class cate-
gories and multi‐class sub‐categories, and outcomes of the
SACNN approach are assessed in comparison to other ML and
DL methods.

4.1 | Evaluation metrics

Several metrics are used in this study to assess the efficacy of
our proposed classification approach including accuracy,
macro‐precision, macro‐recall, and macro F1‐score.

� Accuracy (ACC) refers to the percentage of correctly pre-
dicted instances made by the classification model out of all
the predictions made and it is calculated as in Equation (13).
Where α, β, γ, and δ represent true positive, true negative,
false positive, and false negative, respectively.

ACC ¼
αþ β

αþ βþ γ þ δ
ð13Þ

� Precision (P) refers to the ratio between the True Positives
and all the instances classified as positive. Our model refers
to the number of true instances classified as abnormal out of
all instances classified as abnormal by the model as given in
Equation (14).

P ¼
α

αþ γ
ð14Þ

� Recall (R) refers to the ratio between the True Positives and
all the positive instances. In our model, it refers to the
number of true instances classified as abnormal out of all
abnormal instances as given in Equation (15).

R ¼
α

αþ δ
ð15Þ

It is worth indicating that normal samples are designated
as Negative, whereas abnormal samples are designated as
Positive in this study. There are situations when the precision
and recall measures conflict and thus, they should be carefully
investigated. Several researchers used the F1 score which is
the harmonic mean of precision and recall, as shown in
Equation (16).

F1 Score ¼
2� ð P � R Þ

Pþ R
ð16Þ

The area under the curve (AUC) is a metric that quantifies
the area beneath the receiver operating characteristic (ROC)
curve. The ROC curve is generated by graphing the true
positive rate (TPR) against the false positive rate (FPR) across
various classification thresholds. TPR and FPR are determined
using Equation (17) and Equation (18), respectively.

TPR¼
α

αþ δ
ð17Þ

FPR¼
γ

γ þ β
ð18Þ

TABLE 3 Utilised hyperparameters in the proposed SACNN.

Optimiser
Learning
rate Loss function

Batch
size Epochs

Adam 0.001 Sparse categorical cross‐
entropy

32 6
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4.2 | Results and discussion

The Adam optimiser, loss function sparse categorical cross‐
entropy, and batch size of 32 were used in this study. The
model was trained over a period of six epochs. For training and
testing the proposed architecture, a fivefold cross‐validation
approach is also used.

4.2.1 | Results on multi‐class categories of Edge‐
IIoTset

Table 4 shows the performance evaluation results of the pro-
posed SACNN approach on the Edge‐IIoTset dataset multi‐
class categories for both the heavy and light versions with
varying numbers of CNN layers. It is evident from the table
that the optimum intrusion detection performance of the
SACNN approach was achieved with two convolutional and
one max pooling layer on both heavy and light versions of the
dataset. All of the evaluation results were optimal when these
layers were used.

4.2.2 | Results on multi‐class sub‐categories of
Edge‐IIoTset

Table 5 shows the performance evaluation results of the
proposed SACNN approach on the Edge‐IIoTset dataset
multi‐class sub‐categories for both the heavy and light ver-
sions and again with varying numbers of CNN layers. Similar
to the results on the multi‐class categories, it is also clear that
the optimal performance of the proposed approach was
achieved under two convolutional layers and one max pooling
layer. All the evaluation results were optimal for these CNN
layers.

4.2.3 | Results on X‐IIoTID

Table 6 presents the performance evaluation results of the
proposed SACNN approach on the X‐IIoTID dataset for
multi‐class classification, with different numbers of CNN
layers. Similar to the findings in the Edge‐IIoTset results, it is
evident that the optimal performance of the proposed
approach was achieved with two convolutional layers and one
max pooling layer. All the evaluation results were optimal for
these CNN layers.

4.2.4 | Discussion

The optimal results for the utilised datasets on multi‐class
categories and multi‐class sub‐categories were achieved with
two 1D convolutional layers and a max pooling layer. It is
important to note that these datasets had imbalanced class
distributions. The average accuracy of the proposed DL
approach reached 99.66% for multi‐class categories and multi‐
class sub‐categories on both the heavy and light versions of the
Edge‐IIoTset dataset. Moreover, it achieved an accuracy of
99.72% on the X‐IIoTID dataset. To ensure that the proposed

TABLE 4 Results of the proposed SACNN on Edge‐IIoTset multi‐class categories.

Layers Heavy version of Edge‐IIoTset Light version of Edge‐IIoTset

Convolutional Max pooling P R F1‐score ACC AUC P R F1‐score ACC AUC

1 1 0.9974 0.9976 0.9975 0.9994 0.9998 0.991 0.994 0.9923 0.9927 0.9998

2 1 0.9979 0.998 0.9979 0.9995 0.9999 0.9945 0.9955 0.995 0.9949 0.9999

2 2 0.9948 0.9947 0.9947 0.9987 0.9991 0.9891 0.9895 0.9893 0.9892 0.9987

4 2 0.9961 0.9965 0.9963 0.9991 0.9995 0.9919 0.9904 0.9911 0.9914 0.9989

TABLE 5 Results of the proposed SACNN on Edge‐IIoTset multi‐class sub‐categories.

Layers Heavy version of Edge‐IIoTset Light version of Edge‐IIoTset

Convolutional Max pooling P R F1‐score ACC AUC P R F1‐score ACC AUC

1 1 0.9948 0.9889 0.9916 0.9994 0.9995 0.9906 0.9818 0.9856 0.9897 0.9993

2 1 0.9966 0.9911 0.9937 0.9995 0.9999 0.9921 0.9876 0.9897 0.9927 0.9998

2 2 0.9934 0.9867 0.9898 0.9993 0.9991 0.9802 0.9733 0.976 0.982 0.9995

4 2 0.9936 0.9846 0.9888 0.9992 0.9987 0.9792 0.9896 0.9837 0.9914 0.9997

TABLE 6 Results of the proposed SACNN on X‐IIoTID multi‐class.

Layers

P R
F1‐
score ACC AUCConvolutional

Max
pooling

1 1 0.9788 0.9697 0.9728 0.9917 0.9978

2 1 0.9911 0.9835 0.9871 0.9981 0.9995

2 2 0.9425 0.9534 0.9457 0.9899 0.9982

4 2 0.9922 0.9378 0.9601 0.9972 0.9987
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model did not suffer from overfitting or underfitting issues, we
analysed its training and validation performance. Figures 2–5
shows the training and validation performance for the
selected optimal layers of the SACNN model when applied to
both the heavy and light versions of the Edge‐IIoTset dataset.

Meanwhile, Figure 6 illustrates the training and validation
performance on the X‐IIoTID dataset. Notably, the training
and validation performance demonstrate consistent results,
providing evidence that the proposed SACNN model does not
suffer from overfitting or underfitting issues.

F I GURE 2 Training and validation performance of the proposed self‐attention convolutional neural network on the heavy version of Edge‐IIoTset multi‐
class categories.

F I GURE 3 Training and validation performance of the proposed self‐attention convolutional neural network on the light version of Edge‐IIoTset multi‐
class categories.

F I GURE 4 Training and validation performance of the proposed self‐attention convolutional neural network on the heavy version of Edge‐IIoTset multi‐
class sub‐categories.
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4.3 | Comparison with existing Machine
Learning and DL methods

We also compared the performance of our proposed approach
to that of several other ML and DL classifiers including CNN,
gated recurrent units (GRU), LSTM, autoencoder (AE), deep
neural network (DNN) multi‐layer perceptron (MLP), linear
regression (LR), Naive Bayes (NB), and support vector machine
(SVM) on the same dataset and using the same experimental
settings. In this research, we applied the same preprocessing
steps to prepare data for all DL and ML‐based IDS as the
proposed SACNN. This consistent approach is crucial for
making a fair comparison with other ML and DL techniques. If
different data preparation methods were used for each model, it
would be challenging to determine whether any differences in
performance were due to the model's design or the data pre-
processing. For all DL‐based models, we employed the Adam
optimisation function with sparse categorical cross‐entropy loss
and trained them for six epochs with a batch size of 32. The
implementation of DL‐based models, such as GRU, LSTM,
CNN, AE, and DNN, includes 2, 2, 4, 6, and 4 hidden layers,
respectively. In the CNN, the convolutional layers consist of 32
filters with a kernel size of 3 and use the same padding, while the
max pooling has a pool size of 4.

Tables 7 and 8 provide a comprehensive summary of the
evaluation results for the respective models on the multi‐class
categories of the Edge‐IIoTID dataset, both for the heavy and
light versions. These results clearly demonstrate that the pro-
posed SACNN model consistently outperforms all other
models in terms of accuracy, precision, recall, and F1‐score
across both versions of the Edge‐IIoTset dataset in the
multi‐class category. Similarly, Tables 9 and 10 present the
evaluation results for the respective models on the multi‐class
sub‐categories of the Edge‐IIoTset dataset, considering both
the heavy and light versions. Once again, the results clearly
indicate that the proposed model surpasses its counterparts in
terms of accuracy, precision, recall, and F1‐score for both
versions of the Edge‐IIoTset dataset in the multi‐class sub‐
category. In addition, Table 11 displays the evaluation results
for the same models applied to the X‐IIoTID dataset. As
expected, the results in this table also highlight the superiority
of the proposed model, showcasing higher accuracy, precision,
recall, and F1‐score when compared to other models for the
X‐IIoTID dataset.

It is worth noting that the superiority of our proposed
model over other models was obtained using an imbalanced
dataset with a smaller number of instances. It is also noticeable
that while other models did not perform well using the light

F I GURE 5 Training and validation performance of the proposed self‐attention convolutional neural network on the light version of Edge‐IIoTset multi‐
class sub‐categories.

F I GURE 6 Training and validation performance of the proposed self‐attention convolutional neural network on X‐IIoTID dataset.

10 - QATHRADY ET AL.

 24682322, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/cit2.12352 by N

H
S E

ducation for Scotland N
E

S, E
dinburgh C

entral O
ffice, W

iley O
nline L

ibrary on [20/06/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



TABLE 7 Results comparison of the proposed SACNN with other models on the heavy version of Edge‐IIoTset multi‐class categories.

Algorithm P R F1‐score ACC AUC
Training time
(in sec)

Test time
(in sec)

LSTM [29] 0.9921 0.9957 0.9938 0.9983 0.9991 2689 171

GRU [46] 0.987 0.9887 0.9878 0.9983 0.9993 2514 202

CNN [29] 0.995 0.9938 0.9944 0.9986 0.9994 83 12

AE [47] 0.9952 0.9981 0.9966 0.9995 0.9998 98 12

DNN [48] 0.9944 0.9838 0.9889 0.9988 0.9996 81 10

MLP [49] 0.9937 0.9952 0.9944 0.9989 0.9997 104 1

LR [48] 0.9161 0.9111 0.9127 0.9859 0.9958 68 1

NB [48] 0.8767 0.8371 0.831 0.9422 0.9775 2 1

SVM [48] 0.9817 0.9855 0.9841 0.9954 0.9976 19,975 677

Proposed SACNN 0.9979 0.998 0.9979 0.9995 0.9999 181 18

TABLE 8 Results comparison of the proposed SACNN with other models on the light version of Edge‐IIoTset multi‐class categories.

Algorithm P R F1‐score ACC AUC
Training time
(in sec)

Test time
(in sec)

LSTM [29] 0.9675 0.9711 0.9692 0.9722 0.9949 162 12

GRU [46] 0.88 0.8584 0.8683 0.8952 0.9684 178 15

CNN [29] 0.9826 0.9827 0.9826 0.9816 0.9986 8 1

AE [47] 0.9926 0.9937 0.9931 0.9933 0.9993 7 1

DNN [48] 0.9915 0.9922 0.9918 0.9923 0.9989 6 1

MLP [49] 0.7932 0.8004 0.7968 0.9576 0.9642 46 0.5

LR [48] 0.9442 0.9468 0.9451 0.9403 0.9952 5 0.2

NB [48] 0.8198 0.7557 0.7454 0.7292 0.9683 1 0.4

SVM [48] 0.9727 0.9724 0.9725 0.9695 0.9962 110 15

Proposed SACNN 0.9945 0.9955 0.995 0.9949 0.9999 13 1

TABLE 9 Results comparison of the proposed SACNN with other models on the heavy version of Edge‐IIoTset multi‐class sub‐categories.

Algorithm P R F1‐score ACC AUC
Training time
(in sec)

Test time
(in sec)

LSTM [29] 0.9883 0.9911 0.9896 0.9991 0.9997 3096 211

GRU [46] 0.9414 0.9774 0.9547 0.9977 0.9994 3219 239

CNN [29] 0.9887 0.9836 0.9859 0.9988 0.9996 86 12

AE [47] 0.9829 0.9942 0.9879 0.9984 0.9991 103 12

DNN [48] 0.9944 0.9838 0.9889 0.9988 0.9995 81 10

MLP [49] 0.995 0.9845 0.9893 0.9992 0.9989 137 1

LR [48] 0.9297 0.9023 0.91 0.9962 0.9972 114 1

NB [48] 0.9582 0.9337 0.9404 0.9962 0.996 2 3

SVM [48] 0.9836 0.98 0.9817 0.9985 0.9992 432 241

Proposed SACNN 0.9966 0.9911 0.9937 0.9995 0.9999 187 19
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version compared to the heavy version, the proposed model
achieved comparable results under both dataset variants. This
demonstrates that our proposed model can detect attacks with
high accuracy even when trained on a small subset of the
dataset.

5 | CONCLUSION

This paper proposes a SACNN architecture for the detection of
malicious activity in IIoT networks and an appropriate feature
extraction method to extract the most significant feature. The
proposed architecture has a self‐attention layer to calculate the
input attention and CNN layers to process the assigned atten-
tion features for prediction. The performance evaluation of the
proposed SACNN architecture has been done with the Edge‐
IIoTset and X‐IIoTID datasets. The proposed approach ach-
ieved an average accuracy of 99.66% for multi‐class categories
and multi‐class sub‐categories on both versions of the Edge‐
IIoTID dataset. Moreover, it achieved an accuracy of 99.72%
on the X‐IIoTID dataset. The SACNN model successfully

addressed the issue of imbalance and fewer data and improved
the intrusion detection performance in IIoT networks.
Compare the performance of the proposed approach with other
classifiers to validate its efficacy. The proposed approach has
higher efficiency than other classifiers for multi‐class categories
and multi‐class sub‐categories on both datasets.

The proposed model improves the performance of
cyberattack detection in IIoT networks. Additionally, the pro-
posed SACNN demonstrates effective functionality on low‐
power and low‐memory devices, with an average processing
time compared to other models. While some other models may
offer quicker training and testing times, they fail to match the
detection performance of the proposed model. Furthermore,
the proposed model has the potential for additional
compression and optimisation, leading to reduced detection
time and enhanced performance.
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