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ABSTRACT 
 Occupational accidents in manufacturing industries pose a 

significant risk, necessitating advanced strategies to ensure 

worker safety and enhance operational productivity. The 

unpredictable nature of worker movements, influenced by varied 

tasks such as material transportation, machine operation, and 

collaborative efforts, highlights the critical need for effective 

trajectory prediction mechanisms. This paper introduces an 

innovative approach utilizing Spatio-Temporal Graph Attention 

Networks (STGAT) and Spatio-Temporal Graph Convolutional 

Neural Networks (STGCNN) to predict worker trajectories with 

high accuracy and to analyze worker interactions within the 

manufacturing environment. Our methodology employs 

qualitative evaluation techniques to reveal intricate worker 

dynamics during assembly line processes, offering new 

perspectives on spatial-temporal interplays in a factory setting. 

By applying this method to movement data from a detailed case 

study involving six workers on a tribike assembly line, we 

demonstrate the effectiveness of our proposed algorithm in real-

world scenarios. The utilization of advanced Graph Neural 

Network technologies allows for the precise modeling of complex 

spatial-temporal relationships, enabling the accurate prediction 

of worker paths. This research contributes significantly to the 

fields of occupational safety and industrial efficiency by 

providing a comprehensive framework for anticipating worker 

movements and understanding their interactions in intricate 

manufacturing landscapes. Moreover, it addresses existing 

challenges in trajectory prediction and outlines potential 

directions for future research, aiming to broaden the application 

of predictive analytics in enhancing safety protocols and 

operational strategies in the manufacturing sector. 

 

Keywords: Human motion trajectory prediction, Graph 

Neural Networks, Smart factory, Engineering Informatics, 

Intelligent Manufacturing. 

 

1. INTRODUCTION 
 In the realm of manufacturing industries, the safety and 

efficiency of factory operations are paramount. The dynamic 

interplay of machinery, human workers, and logistical processes 

presents a complex environment where occupational accidents 

are a significant concern. Human workers, central to the 

production process, navigate these environments, making 

spontaneous decisions for material transfer, collaboration, and 

information exchange. This unpredictable aspect of human 

movement poses challenges to maintaining a safe and efficient 

workspace. Predicting worker movements within such an 

environment can offer substantial benefits, from enhancing 

safety protocols to optimizing the overall productivity of the 

manufacturing process. The urgency for such advancements is 

underscored by the need to prevent accidents and collisions, 

which can lead to significant downtime, financial loss, and, most 

importantly, injury to personnel.  

This paper introduces a novel approach to worker trajectory 

prediction within manufacturing settings, focusing on improving 

safety measures and operational efficiency. Traditional methods 

often fall short in addressing the dynamic and interactive nature 

of factory environments. Our work leverages Spatio temporal 

Graph Attention Network models to predict worker movements 

and worker interactions using the attention weights. By 

incorporating these attention weights, we can conduct a 

qualitative evaluation of various working scenarios, such as 

instances when all workers are dwelling, a mix of workers in 

transition and dwelling, and situations where workers are nearby 

or further apart. This evaluation facilitates the classification and 
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creation of an event log of workers based on position data, which 

is pivotal for incident reporting, safety monitoring, process 

optimization and understanding the flow of human activity in 

complex industrial spaces. The research contributes to 

establishing a baseline trajectory prediction performance 

measure for a product assembly factory using state-of-the-art 

prediction approaches. 

Illustrated through an empirical study of six workers in a 

tribike assembly line, our findings demonstrate the potential of 

our proposed method in real-world applications. The analysis not 

only showcases the accuracy of our predictions but also sheds 

light on the intricacies of human movement within a 

manufacturing context. Through this exploration, we aim to 

contribute to the ongoing efforts to create safer and more 

productive factory environments, addressing both the immediate 

challenges of occupational safety and the broader objectives of 

industrial efficiency. Furthermore, by modeling and predicting 

worker paths, our approach facilitates the design of more 

efficient workflows, reducing unnecessary movement and 

optimizing the layout of physical spaces for smoother operations. 

In the following sections, we delve into the methodology 

behind our prediction algorithm, discuss the data collection 

process in the assembly line scenario, present our findings, and 

explore the implications of our research for future technological 

and process advancements in the field of manufacturing. 

 

2. RELATED LITERATURE 

 

2.1 Related literature on worker’s movement prediction 

In the advanced manufacturing industry, predicting 

workers' movement is paramount for operational efficiency, 

considering the integrated environment of products, tools, 

machines, processes, and human workers. Designing effective 

movement systems within the factory largely depends on human 

awareness. Compared to path planning, which aims to find the 

optimal paths between destinations, trajectory predictions 

foresee future trajectories by learning from past movement 

positions. This worker’s trajectory prediction has been helpful 

for multiple applications, including adjustable route planning for 

automated guided vehicles, congestion elimination, collision 

detection, and process scheduling. The path dynamics between 

humans and robots are widely discussed in the literature. 

Multiple literature surveys exist on human motion trajectory 

prediction [1-7]. This section discusses the importance of 

trajectory prediction, and research focusing on manufacturing 

and other domains. 

 

2.2 Importance of Trajectory Prediction 

Understanding uncertainties of human behaviour through 

human movement trajectory has wider applications. Aliabadi et 

al. [8] identified that safety policies and procedures and their 

understanding play a vital role in predicting accidents and 

influencing a safer climate in an organization. Trajectory 

predictions could develop an effective safety procedure based on 

workers’ movement observations and behavioural changes. 

Löcklin et al. [9] proposed a Bayes classifier to predict the 

probability of the next destination utilising manufacturing 

schedule and real-time position data. They argued that human 

motion intentions and abstract activity modelling (rather than a 

fixed point of interest) help increase prediction reliability up to 

80% with a few training data sets due to restricting the number 

of probable destinations. However, prediction drops if the 

intentions are unclear. Although schedule awareness helps in 

path predictions, Ayse et al. [10] observed that workers 

significantly deviate from the assigned schedule based on task 

needs. So, the schedule awareness should also be dynamically 

updated to improve trajectory prediction. 

Besides the manufacturing domain, human trajectory 

prediction is widely used in construction[11-12], warehouse 

[13], and emergency situations like fire evacuation [14]. Cai et 

al. [11] applied Deep Reinforcement Learning to predict the 

movements of construction workers that can be integrated to 

achieve safer path planning for robots. Although efficient path 

planning was achieved with this approach, the collision rate was 

reduced only by 23%. There is a significant scope for 

improvement in collision prevention. Similarly, Hu et al. [12] 

applied a context-aware Long Short-Term Memory (LSTM)-

based method to predict worker's trajectory in construction robot 

path planning. Gong et al. [13] highlighted the importance of 

uncertainties of human behaviour in pickup and delivery task 

planning and proposed a human-swarm hybrid system to 

accomplish storage system tasks. Hong et al. [15] used a 

reinforcement learning method (deep Q-network) to find optimal 

path prediction to evacuate workers in case of an accident. 

Also, providing a proactive warning for collision detection 

is vital to prevent accidents. Kim et al. [16] used deep neural 

networks to achieve an average proximity error of 0.95 m in 

predicting 5.28 s future proximity distance between a worker and 

a truck. Luo et al. [17] highlighted the importance of trajectory 

prediction in layout design and its influence on the efficiency of 

the goods-picking system. Li et al. [18] used a discrete-time 

Markov chain mathematical model to identify hazardous regions 

on the construction site using a real-time location system. Tang 

et al. [19] utilised a long short-term memory (LSTM) encoder-

decoder in video frames to predict worker and equipment motion 

trajectories on construction sites. The results show average 

localisation errors of 7.30, 12.71, and 24.22 pixels for 10, 20, and 

40 future steps, respectively. Task allocation based on trajectory 

prediction was also studied in mobile crowdsensing and 

crowdsourcing applications [20]. A longer prediction horizon is 

a major challenge in various studied domains.  

 

2.3 Human Trajectory Prediction Algorithms 

The conceptual framework for understanding human 

trajectory dynamics in groups was established by Helbing et al. 

[21] through the Social Force Model. This model introduced the 

idea of using attractive forces to guide individuals towards their 

goals while employing repulsive forces to maintain personal 

space and avoid collisions. Despite its foundational importance, 

the model's reliance on predetermined potential functions proved 

too simplistic to capture the complex interplay of social 
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interactions. This limitation was also evident in subsequent 

models that extended the Social Force concept. 

 

2.3.1 Deep Learning based Algorithms 

The introduction of deep learning to the domain marked a 

paradigm shift. The pioneering Social-LSTM [1] utilized 

recurrent neural networks (RNNs) to model the motion of 

individuals within a crowd, aggregating these motions through a 

pooling mechanism to predict future trajectories. Subsequent 

enhancements, such as Peek into the Future (PIF) [22] and State-

Refinement LSTM (SR-LSTM) [23], incorporated visual cues 

and innovative pooling strategies to refine prediction accuracy. 

Deep learning combined with modelling social interactions 

has been instrumental in the evolution of human trajectory 

prediction. Earlier models like Social GAN [24] and Sophie  [25] 

were some of the first to employ deep generative models and 

attention mechanisms, setting the stage for future developments. 

increasingly focused on accurately modeling social interactions 

within crowds. Techniques exemplified by Social-GAN [24] and 

Sophie emphasize the importance of considering the multi-

modal nature of human movements. The Social-BiGAT [26] 

model employs graph attention networks to dynamically weigh 

the influence of individual trajectories, showcasing the shift 

towards more interactive and adaptive models. 

 

2.3.2 Graph-Based Approaches 

A significant advancement in the trajectory prediction field 

has been the adoption of graph-based models. This approach 

treats human trajectories and interactions as graphs, allowing for 

a more nuanced representation of social interactions. The 

development of Graph Convolutional Networks (GCNs) and 

their application across various domains paved the way for 

models like ST-GCNN [27] STGlow [28] which adapted graph 

convolutions for spatio-temporal data analysis.[29] 

 

2.3.3 Transformer Models 

Agent Former and Transformer TF [30] explored the use of 

transformer models, adapting the architecture for socio-temporal 

multi-agent forecasting, showcasing the versatility of 

transformers in capturing dynamic interactions. 

PECNet [31] and Sophie [25] focused on endpoint 

conditioned prediction and attentive GAN frameworks, 

respectively, proposing novel pathways to address the prediction 

of socially and physically constrained paths. 

 

2.3.4 State-of-the-art Models and Recent Breakthroughs 

AMEND [32] and MemoNet [33] represent the cutting edge, 

incorporating mixture of expert’s frameworks and memory-

augmented networks to tackle the challenge of long-tailed 

trajectory predictions, indicating a shift towards more nuanced 

and context-aware modeling. 

ExpertTraj [34] and Pishgu [35] introduce highly 

specialized approaches, with ExpertTraj offering dynamic 

prediction based on expert goal examples and Pishgu proposing 

a universal path prediction network for edge systems. Neural 

Social Physics (NSP) [36] presents a unique approach to human 

trajectory prediction by encapsulating social physics concepts 

within neural networks. It emphasizes understanding the 

underlying social forces that govern human movement in 

crowds. 

Y-Net [37] takes inspiration from waypoints and paths, 

offering long-term human trajectory forecasting. It integrates 

goal-oriented behaviour with neural network capabilities to 

predict movements over extended periods accurately. V2-Net 

[38] employs a hierarchical structure for trajectory prediction, 

utilizing Fourier spectrums to capture both the spatial and 

temporal aspects of pedestrian movements. This method offers a 

novel perspective by looking at the problem vertically. 

Although human motion movement is largely discussed in 

pedestrian’s domain, the applications of latest motion prediction 

methods to the manufacturing domain are limited. As 

manufacturing environments continue to evolve towards greater 

automation and integration, the ability to accurately predict 

worker movements becomes increasingly crucial. The 

advancements highlighted in the literature point towards a future 

where trajectory prediction models not only enhance safety 

protocols and efficiency but also pave the way for innovative 

solutions to managing human-machine interactions. This 

evolution of prediction models holds the promise of creating 

more adaptive, safe, and efficient manufacturing ecosystems.  

 

3. RESEARCH AIM AND METHODOLOGY 

 

3.1 Problem Definition 

There are multiple prediction problems, such as location-, 

position-, destination- and route prediction. With the taxonomy 

proposed by Rudenko et al. [1], compared to physics-based 

motion prediction, pattern- and planning-based approaches are 

widely used for prediction, considering the advancement of real-

time Location Systems (RLTS). Also, the taxonomy emphasizes 

the importance of dynamic and static environment cues.  

Based on the taxonomy our approach leverages route 

prediction modelling using sequential models, which are adept 

at capturing the time-continuity inherent in human movement. 

By implementing sequential models, we can use past trajectories 

to predict future locations, effectively modelling the movement 

dynamics of individuals and groups over time. 

Furthermore, our methodology can also be incorporated to 

context-based dynamic environment cues, which are integral to 

understanding and anticipating human movement within a 

certain area. These cues encompass a range of factors, from the 

static environment, such as the layout of a factory floor, to 

dynamic elements like moving machinery or the presence of 

other workers. The interplay of these factors influences decision-

making processes and subsequent movement patterns of 

workers, necessitating a model that can account for such 

complexities. 

Group-aware agents form a crucial aspect of our model. 

Recognizing that workers do not operate in isolation, our system 

accounts for the collective behaviours and interactions within a 

group. By understanding social dynamics and the rules that 

govern group behaviours, the model can predict not only 
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individual trajectories but also the collective movement of 

groups. 

The research aims to develop a novel trajectory prediction 

approach that emphasizes integrating individual trajectories and 

the temporal dependencies between workers over time. We 

examine a dynamic scene with 𝑁 workers, represented as 

𝑝1, 𝑝2, … , 𝑝𝑁. The position of a worker 𝑝𝑖  (where 𝑖 ranges from 

1 to 𝑁) at a given time step 𝑡 is denoted by 𝑆𝑖
𝑡 = (𝑥𝑖

𝑡 , 𝑦𝑖
𝑡). Our 

dataset comprises the recorded positions 𝑆𝑖
𝑡 for each worker 𝑖 =

1,2, … , 𝑁 at discrete time steps 𝑡 = 1, … , 𝑇obs . The goal is to 

predict the trajectory, i.e., the sequence of future positions 𝑆𝑖
𝑡, for 

the forthcoming time steps 𝑡 = 𝑇obs + 1, … , 𝑇pred. 

Let's denote the set of workers at time step 𝑡 as 

{𝑝1
𝑡 , 𝑝2

𝑡 , … , 𝑝𝑁
𝑡 }, where each 𝑝𝑖

𝑡 is a vector representing the 

position of worker 𝑖 in a graph structured data. The attention 

parameter 𝛼𝑖𝑗
𝑡  represents the weight of the edge from worker 𝑗 to 

worker 𝑖 at time step 𝑡, which is calculated as: 

 

𝛼𝑖𝑗
𝑡 =

exp (LeakyReLU(𝐚𝑇[𝐖ℎ𝑖
𝑡   ∥  𝐖ℎ𝑗

𝑡]))

∑ exp (LeakyReLU(𝐚𝑇[𝐖ℎ𝑖
𝑡   ∥  𝐖ℎ𝑘

𝑡 ]))
𝑘∈𝒩𝑖

  

 

(1) 

 

 

 

where: 

 

• ℎ𝑖
𝑡 is the feature vector of worker 𝑖 at time step 𝑡, 

• ∥ denotes concatenation, 

• 𝐖 is a shared linear transformation applied to the 

feature vector of each worker, 

• 𝐚 is a weight vector of a single-layer feedforward neural 

network, 

• 𝒩𝑖  is the set of neighbors of worker 𝑖 in the graph, 

• LeakyReLU is an activation function with a small slope 

for negative values to allow a small gradient when the 

unit is not active, 

• exp denotes the exponential function, 

• 𝛼𝑖𝑗
𝑡  is normalized across all choices of 𝑗 using the 

softmax function to ensure that the weights sum to 1. 

 

This attention mechanism allows the model to focus on 

certain parts of the input graph, which is crucial for learning 

complex dependencies between workers. By assigning these 

weights dynamically for each time step, the model can adapt the 

influence of the surrounding workers' positions on the predicted 

trajectory of a particular worker. 

In this research, we explore the prediction of worker path 

movement within environments, such as factories or 

construction sites, leveraging advanced graph neural network 

architectures. Our methodology uses two models "STGCNN: A 

Social Spatio-Temporal Graph Convolutional Neural Network 

for Human Trajectory Prediction" [27] and "STGAT: Modeling 

Spatial-Temporal Interactions for Human Trajectory Prediction" 

[39]. Specifically, we adapt the Graph Attention Network 

(GATv2) [40] for enhanced performance and employ the second 

study's framework for qualitative analysis on our worker dataset. 

This section delineates the architecture, functional definitions, 

loss functions, graph implementations, and application of these 

models to our dataset. 

 

3.2 Model Overview 

 

3.2.1 STGAT Model for Worker Path Prediction 

The model architecture from Huang et al. [39] forms the 

basis for our qualitative analysis, offering a robust mechanism to 

model spatial-temporal interactions among workers. The 

STGAT framework incorporates LSTM networks to encode 

individual worker trajectories [41] and GAT layers to capture the 

complex dynamics of worker interactions over time. This dual 

approach ensures a comprehensive analysis of both individual 

movement patterns and group dynamics, essential for accurate 

trajectory prediction. In our scenario, we consider N workers 

present within a factory scene, denoted as n1, n2, … , n. The 

position of worker ni(i ∈ [1, N]) at time-step t is represented as 

Pi
t = (xi

t, yi
t). 

To capture each worker's unique motion pattern, we employ 

an LSTM for each, termed M-LSTM (Motion Encoding LSTM). 

Initially, we calculate each worker's relative position change: 

 

Δxi
t = xi

t − xi
t−1, Δyi

t = yi
t − yi

t−1 (2) 

 

These relative positions are then transformed into vectors ei
t 

using an embedding function ϕ with weight Wee, and fed into 

the M-LSTM: 

 
ei

t = ϕ(Δxi
t, Δyi

t; Wee) (3) 

 
mi

t = M − LSTM(mi
t−1, ei

t; Wm) (4) 

 
Here mi

t is the hidden state of the M-LSTM at time-step t, with 

Wm being the weight of the M-LSTM cell. These parameters are 

uniformly applied across all workers.  

The uniform application of parameters across all workers in the 

model serves several key purposes. Firstly, it ensures 

consistency in the representation and processing of motion 

patterns across different individuals within the same 

environment. This consistency is critical for the model to learn 

generalized patterns of motion that are not specific to any single 

worker but rather applicable to any worker within the work 

environment. By applying the same set of parameters, the model 

can effectively capture and learn from the collective dynamics of 

worker movements, which is essential for accurately predicting 

future trajectories in a diverse workforce. 

The simplistic approach of using one LSTM per worker does 

not account for the complex interactions between workers in a 

crowded factory environment. To facilitate information sharing 

among workers and model human-human interactions 

effectively, we conceptualize the workers in a scene as nodes in 

a graph and employ a GAT mechanism for information 

aggregation. The GAT mechanism operates on graph-structured 
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data, calculating the features of each graph node by attending 

over its neighbours through a self-attention strategy. By stacking 

graph attention layers, the GAT model can compute the output 

features h′ = {h1
′ , h2

′ , … , hN
′ } from the input features h =

{h1, h2, … , hN}, where N is the number of nodes (workers) [39]. 

The hidden states mi
t (for t = 1, … , Tobs) derived from each 

worker are introduced into the graph attention framework. 

Within this context, the interaction strength between any two 

workers (i, j) at a given time step t is quantified using attention 

coefficients, calculated using Eq. 1. 

Upon normalization of the attention coefficients, the 

resultant output for node i at time t, following one graph attention 

layer, is articulated as: 

 

m̂i
t = σ(∑ αij

t Wmj
t

j∈Ni

) (5) 

 

where σ represents an activation function. Equations 

pertaining to the computation of attention coefficients and 

subsequent output highlight the operational essence of a single 

graph attention layer. For our model, we incorporate two such 

layers, culminating in m̂i
t, which aggregates the hidden states 

post two layers of graph attention, encapsulating the spatial 

influences exerted by adjacent workers on worker i at time t. 

To adequately capture worker interactions within densely 

populated factory environments, traditional LSTM-based 

frameworks often exchange hidden states between workers. 

Nonetheless, these approaches focus on simultaneous time-step 

interactions, omitting the intricate temporal dynamics that unfold 

between these interactions. Addressing this gap, we introduce a 

novel LSTM variant, dubbed G-LSTM, aimed at explicitly 

modelling the temporal dependencies that interlink worker 

interactions over time: 

 
gi

t = G-LSTM(gi
t−1, m̂i

t; Wg) (6) 

 
Here, m̂i

t is derived from Eq.5, representing the aggregated 

spatial information at time-step t, while Wg signifies the shared 

G-LSTM weight across all worker sequences. 

Within the encoder phase, two distinct LSTM models (M-

LSTM for individual motion patterns and G-LSTM for 

interaction-based temporal correlations) are employed. These 

models synergize to meld spatial and temporal data streams 

effectively. At the observation endpoint Tobs each worker is 

associated with dual hidden states (mi

Tobs , gi

Tobs) emanating 

from the respective LSTMs. Preceding concatenation, these 

states are individually processed through separate multilayer 

perceptron’s (δ1  and δ2 ): 
 

m̄i = δ1(mi

Tobs) (7) 

 

ḡi = δ2(gi

Tobs) 

 

(8) 

hi = m̄i ∥ ḡi (9) 

 

Addressing the unpredictability of worker movements, we apply 

a variety loss to encourage diverse trajectory predictions. The 

model's intermediate state vector includes M-LSTM and G-

LSTM hidden states, alongside added noise: 

 

di

Tobs = hi ∥ z  (10) 

 
Predicted relative positions are derived using a decoder LSTM 

(D-LSTM): 

 

di

Tobs+1
= D-LSTM(di

Tobs , ei

Tobs; Wd) 

 

 

(11) 

 

(Δxi

Tobs+1
, Δyi

Tobs+1
) = δ3(di

Tobs+1
) 

 

 

(12) 

Here, Wd denotes the D-LSTM weight, and δ3 is a linear 

transformation layer, with ei

Tobs stemming from Eq. 3. 

Subsequent D-LSTM inputs are iteratively adjusted based on the 

latest predicted relative positions, facilitating a seamless 

transition to absolute positioning for loss computation. 

The variety loss, as delineated by [24], incentivizes the 

model to yield multiple trajectory forecasts per worker by 

random sampling of z from a standard normal distribution. 

Among these, the trajectory nearest to the actual path is selected 

for loss computation, promoting model versatility and adherence 

to historical movement patterns: 

 

Lvariety = min k ∥ Yi − Ŷi
k ∥2 (13) 

 
This loss mechanism not only underscores the model's 

capacity to navigate the spectrum of possible outcomes but also 

aligns closely with our overarching goal of enhancing workplace 

safety and efficiency through precise and adaptable worker 

movement predictions.  

 

3.2.2 STGCNN Model Architecture for Worker Path 

Prediction 

We replace the original GAT with GATv2 in the Social-

STGCNN framework to leverage its improved attention 

mechanism, which facilitates more effective learning of spatial 

dependencies among workers. The GATv2 version enhances the 

model's ability to focus on relevant nodes (workers) 

dynamically, improving the prediction accuracy of their future 

positions. This adaptation allows for a more nuanced 

understanding of social interactions and spatial-temporal 

correlations within crowded work environments. This model 

merges two primary components: the Spatio-Temporal Graph 

Convolution Neural Network (ST-GCNN) for feature extraction 

from worker trajectories, and the Time-Extrapolator 

Convolution Neural Network (TXP-CNN) for forecasting future 

movements. 

We construct spatial graphs Gt for each time step t, 
symbolizing the positional interrelations of workers. Each graph 
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Gt = (Vt, Et) comprises vertices Vt representing workers and 

edges Et  indicating their interactions. The adjacency matrix At, 

weighted by kernel function outcomes aij,t encapsulates the 

strength of these interactions. 

ST-GCNN for Feature Extraction: Utilizing the graph 

representations, ST-GCNN performs spatio-temporal 

convolution operations to derive a compact set of features, 

encapsulating the historical trajectory information of all 

observed workers. 

 TXP-CNN for Trajectory Prediction: Building upon the 

extracted features, TXP-CNN extrapolates these spatio-temporal 

embeddings to predict collective future movements, leveraging 

convolutional operations for temporal expansion. 

To facilitate learning, we normalize each temporal slice of 

the adjacency matrix At symmetrically, enhancing the efficacy 

of subsequent graph convolution operations. This normalization 

process employs the diagonal node degree matrix Λt to adjust At 

ensuring balanced feature propagation. 

ST-GCNN layers aggregate and process the information 

from worker nodes and their interactions across both spatial and 

temporal dimensions. The resulting embeddings, denoted as V̄, 

serve as a comprehensive representation of the workers' 

movement patterns and mutual influences over the observed time 

frame. Receiving the spatio-temporal node embeddings V̄ from 

ST-GCNN, TXP-CNN manipulates the time dimension of these 

embeddings to predict future trajectories. It employs a series of 

convolutional layers, some with residual connections, to model 

the temporal progression of worker movements effectively. This 

component allows our model to address the variable nature of 

industrial workspaces, predicting multiple potential future paths 

for each worker. 

The first layer of TXP-CNN, directly interfacing with ST-

GCNN outputs, lacks a residual connection due to dimensional 

discrepancies between the observed and predicted samples. 

Subsequent layers incorporate residual connections to refine the 

prediction accuracy, ensuring a coherent transition from 

historical data to future trajectory forecasts. 

 

3.3 Dataset and Performance Evaluation Metrics 

Our study employs two well-regarded human trajectory 

prediction datasets: ETH and UCY, to train and evaluate the 

Social-STGCNN v2 and the STGATv2 models. 

• ETH Dataset: This dataset comprises two distinct 

scenarios, ETH and HOTEL, offering diverse settings 

to test the models' robustness across different pedestrian 

behaviours and environments. 

• UCY Dataset: Encompassing three scenarios named 

ZARA1, ZARA2, and UNIV, the UCY dataset provides 

additional variability with its inclusion of rich human-

human interaction data and complex movement 

patterns. 

Both datasets are sampled at intervals of 0.4 seconds, 

providing a detailed temporal resolution for trajectory analysis. 

In aligning with prior benchmark practices such as those 

employed in Social-LSTM, the models are trained on subsets of 

specific datasets and tested against the remaining data, validating 

across all five data subsets of both the ETH and UCY datasets 

for comprehensive evaluation. 

Worker dataset: The dataset consists of 2D worker 

position data that has been collated through indoor localization 

sensors (UWB tags) used for tracking of worker movements 

during a three-hour work shift. [43]. The UWB data presents a 

consistent stream of position samples which are sampled at 

intervals of 1 second. Each worker is tagged, allowing for 

individual movement patterns to be analyzed. The data is time-

stamped, enabling the study of movement over the course of the 

shift. 

To assess the performance of our models, we employ two 

standard metrics widely recognized in trajectory prediction 

research: Average Displacement Error (ADE) and Final 

Displacement Error (FDE).[44] 

 

Average Displacement Error (ADE): This metric calculates 

the mean Euclidean distance between the predicted positions and 

the actual ground truth positions across all points in the 

trajectory. It provides an overall measure of the model's accuracy 

throughout the prediction horizon. 

 

𝐴𝐷𝐸 =

∑ ∑ ∣∣ �̂�𝑛𝑡 − 𝑝𝑛𝑡 ∣∣2𝑡∈𝑇𝑝
𝑛∈𝑁

𝑁 × 𝑇𝑝

 

 
(14) 

 
Here, 𝑁 represents the total number of pedestrians, 𝑇𝑝 

denotes the prediction time steps, �̂�𝑛𝑡  is the predicted position, 

and 𝑝𝑛𝑡 is the ground truth position at time 𝑡 or pedestrian 𝑛. 

 

Final Displacement Error (FDE): This metric focuses on the 

Euclidean distance between the predicted and actual positions at  

the final time step 𝑇𝑝 of the prediction horizon. It specifically 

evaluates the accuracy of the model's endpoint prediction. 

 

𝐹𝐷𝐸 =

∑ ∣∣ �̂�𝑛𝑇𝑝
− 𝑝𝑛𝑇𝑝

∣∣2
𝑛∈𝑁

𝑁
 

 

(15) 

 

 

Both ADE and FDE are computed using the closest sample to 

the ground truth out of 20 samples generated from the predicted 

bi-variate Gaussian distribution. This approach aligns with the 

evaluation strategy adopted in seminal works like Social-LSTM 

and Social-GAN, facilitating a fair comparison across models 

and ensuring the evaluation reflects the models' capability to 

predict plausible pedestrian trajectories. 
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4. RESULTS AND DISCUSSION 
 

4.1 Model Configuration and Training Setup 

For the STGCNN v2 model, we opted for a training batch 

size of 128, conducting the training over 250 epochs. We 

employed Stochastic Gradient Descent (SGD) as the 

optimization technique to adjust the model weights. Initially, the 

learning rate was set to 0.01 to facilitate rapid convergence 

towards the global minimum of the loss function. Recognizing 

the need for fine-tuning as training progressed, we reduced the 

learning rate to 0.002 after the first 150 epochs. This strategy 

helped in achieving a balance between convergence speed and 

training stability, allowing the model to learn the nuances of the 

dataset effectively. 

The training configuration for the STGAT v2 model was 

similarly tailored to the demands of our trajectory prediction task 

but with some variations to cater to the model's architecture and 

learning dynamics. We decided on a smaller batch size of 64 for 

STGAT v2, running the training for a total of 400 epochs to 

provide ample opportunity for the model to learn from the 

complex spatial-temporal relationships in the data. The Adam 

optimizer was chosen for its adaptive learning rate capabilities, 

starting with a learning rate of 0.01 to expedite the initial learning 

phase. To further refine the model's accuracy, we decreased the 

learning rate to 0.005 after 250 epochs, aiding in the fine-tuning 

of the model's parameters as it approached optimal performance. 

We utilized a data split ratio of 70% for training, 15% for 

validation, and 15% for testing.  

 

4.2 Quantitative Analysis 

The quantitative analysis of human path prediction models 

offers insights into their performance across various 

environments represented by the ETH, HOTEL, UNIV, ZARA1, 

ZARA2, and Worker datasets. We evaluated the models based on 

two key metrics: Average Displacement Error (ADE) and Final 

Displacement Error (FDE), which measure the prediction 

  

  

 

 

accuracy over entire predicted trajectories and at their final 

positions, respectively. 

The depicted image Figure 1 illustrates the trajectory 

prediction for a worker within a manufacturing environment, 

showcasing three key components: the input path, the ground 

truth, and the model's prediction. The red line represents the 

worker's actual path leading up to a certain point in time, serving 

as the input for the prediction model. The blue path, on the other 

hand, delineates the ground truth—the actual movement of the 

worker following the last known point of the input path. This 

serves as the benchmark against which the model's predictive 

accuracy is measured. The model's prediction is visualized 

through black dashed lines, extending from the end of the input 

path to forecast the worker's future movements. 

From Table 1 the LSTM model for path prediction has ADE 

values ranging from 0.41 to 1.09 and FDE values between 0.88 

and 2.41. It performs best on the ZARA1 dataset, indicating its 

efficacy in less dynamic environments but struggles with the 

more complex Worker dataset, suggesting limitations in handling 

intricate social interactions and environmental complexities. 

STGCNN significantly improves upon LSTM, especially in 

the HOTEL and ZARA2 datasets, showcasing its strength in 

capturing spatial-temporal relationships. Its lowest ADE and 

FDE values in the ZARA2 dataset highlight its capability to 

accurately predict paths in highly interactive environments. 

STGAT demonstrates a marginal improvement over 

STGCNN in the HOTEL dataset but exhibits a slight increase in 

error rates in the Worker dataset. This suggests that while the 

attention mechanism provides an edge in certain scenarios, it 

may not always translate to improved performance in complex 

settings STGCNN v2 shows an interesting balance, with slight 

improvements over the original STGCNN in most datasets 

except for a marginal increase in ADE and FDE in the ETH and 

Worker datasets. This indicates that version 2 enhancements 

primarily benefit spatial-temporal reasoning without 

significantly impacting the model's overall predictive 

capabilities. 

 Model/Datasets  ETH HOTEL UNIV   ZARA1 ZARA2   Worker 

LSTM 1.09 0.86 0.61 0.41 0.52 1.16 

2.41 1.91 1.31 0.88 1.11 2.13 

 STGCNN 0.64 0.41 0.48 0.34 0.30 0.65 

1.11 0.68 0.91 0.53 0.48 0.70 

STGAT 

 

0.65 0.35 0.52 0.34 0.29 0.55 

1.12 0.66 1.10 0.69 0.60 0.76 

STGCNN v2 0.72 0.41 0.48 0.33 0.30 0.64 

1.20 0.67 0.91 0.51 0.48 0.68 

STGAT v2 
 

ADE FDE 
 

0.63 0.33 0.51 0.35 0.31 0.53 

1.11 0.68 1.12 0.68 0.66 0.74 

Table 1 ADE and FDE values for the models on respective datasets for Tin = 8 and Tpred =12 seconds. 
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FIGURE 1: Trajectory Prediction: A Comparative 

Visualization of Input Path (Red), Ground Truth (Blue), and 

Predicted Path (Black Dashed Lines) 

 

STGAT v2 offers the best performance among all models, 

particularly in the HOTEL and ZARA1 datasets. The updated 

attention mechanisms and model refinements contribute to its 

superior ability to navigate complex social interactions, although 

it still faces challenges in the Worker dataset, like its 

predecessors. 

The variations in evaluation metrics between the models 

highlight the intricate balance between capturing spatial-

temporal dynamics and accurately modeling social interactions. 

While LSTM serves as a strong baseline, the introduction of 

graph convolutional networks (STGCNN) and attention 

mechanisms (STGAT) markedly improve performance, 

especially in scenarios with rich pedestrian interactions. 

The second versions of STGCNN and STGAT (v2) illustrate 

incremental improvements, with STGAT v2 leading in terms of 

both ADE and FDE across most scenarios. This suggests that 

while foundational model architectures provide substantial 

benefits, iterative refinements, especially in attention 

mechanisms, offer critical enhancements in prediction accuracy. 

The comparative analysis underscores the importance of 

model choice based on the specific characteristics of the 

environment and the nature of human interactions within it. 

While STGCNN models excel in environments with clear 

spatial-temporal patterns, STGAT models, with their attention 

mechanisms, are better suited for scenarios where individual 

interactions significantly influence movement patterns. 

The consistent challenge across models in accurately 

predicting worker movements in the Worker dataset indicates a 

need for further research into models that can more adeptly 

handle the unpredictability and complexity of industrial 

environments. This suggests an opportunity for integrating 

additional contextual information, such as environmental 

constraints and individual worker objectives, to further refine 

prediction accuracy. 

 

 
 

FIGURE 2: Comparative Analysis of Average Displacement 

Error (ADE) in meters Across Different Models and Datasets in 

Worker Trajectory Prediction. 

 

 
 

FIGURE 3: Comparative Analysis of Final Displacement Error 

(FDE) in meters Across Different Models and Datasets in 

Worker Trajectory Prediction. 

 

4.3 Qualitative Analysis 

This qualitative analysis explores how the model's attention 

weights adapt to different spatial and behavioural dynamics 

among workers, such as dwelling, transitioning, and proximity 

variations and while exchanging assembled sub parts. 

 

Scenario 1: All Workers Dwelling 

Description: In this scenario, all workers are stationary, focusing 

on tasks at their respective stations without moving significant 

distances. 

Attention Mechanism Implications: 

• The attention weights in this scenario might be lower 

between distant workers, as their current stationary 

states have minimal influence on each other's future 

movements. 

• Nearby workers could have moderate attention weights 

(0.4 < 𝛼𝑖𝑗
𝑡 < 0.7), reflecting the potential for 

interaction should one decide to move. However, the 

overall attention levels might remain subdued due to the 

general lack of movement. 
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In the visualizations shown below in Figure 4 depicting 

attention weights, each image focuses on one worker (T), 

represented without circles, while other workers are denoted 

by differently colored circles denoting different time steps. 

The size of the circles varies across different time steps, 

indicating the magnitude of attention weights assigned to 

each worker with respect to the target. 

 

 
  

FIGURE 4: Attention weights visualized for Workers Dwelling 

and stationary at their position for t = 8 sec. 

 

Scenario 2: N-Workers in Transition, Others Dwelling 

Description: Among a group of workers, two are moving 

between locations (in transition) while the others remain 

stationary at their workstations as shown in Figure 5. 

Attention Mechanism Implications: 

• The transitioning workers are likely to have higher 

attention weights between themselves, especially if 

their paths are converging or if they are moving within 

close proximity, indicating a higher level of interaction 

and potential collision avoidance. 

• Stationary workers near the paths of the transitioning 

workers might exhibit increased attention weights 

towards these moving workers, reflecting the model's 

anticipation of possible interactions or obstructions. 

• Distant dwelling workers may still have minimal 

attention weights towards the transitioning workers, 

given the low immediate impact on their movements. 

 

Scenario 3: Workers Working Nearby Each Other 

Description: Workers are in close proximity to each other, either 

stationary or performing tasks that require minimal movement as 

depicted in Figure 6. 

Attention Mechanism Implications: 

• High attention weights (0.7 < 𝛼𝑖𝑗
𝑡 < 1.0 ) are expected 

among these workers, as their close proximity increases 

the potential for interaction. This includes sharing tools, 

materials, or even navigating around each other. 

The model's attention mechanism would prioritize the 

spatial dynamics within this cluster of workers, 

predicting their movements with consideration to 

maintaining safe distances and efficient task 

collaboration. 

 
 

FIGURE 5: (a) Attention weights visualized for One Worker (2) 

in Transit and others stationary at their position (b) Two workers 

(Target and Worker 3) in transit and other workers dwelling for t 

= 8 sec. 

 

FIGURE 6: (a) Scenario of two workers in transition and Target 

worker dwelling (b) Target worker in transition and other 

workers dwelling. 

 

• The model's attention mechanism would prioritize the 

spatial dynamics within this cluster of workers, 

predicting their movements with consideration to 

maintaining safe distances and efficient task 

collaboration. 

 

In Figure 7 (a) The Target worker T works nearby Worker 1 and 

hence a high attention weights are associated indicating high 

potential for interaction. Whereas the other workers away were 

given a lower and similar attention weights as they do not 

interact with the target worker and are static at their workplaces. 

Similarly in Figure 7 (b) Target worker and worker 1 are working 

near each other indicating higher attention weights associated to 

worker 1. 

 

Scenario 4: Workers Far Apart from Each Other 

Description: Workers are dispersed across a wide area, with 

significant distances separating them as shown in Figure 8. 
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FIGURE 7: Workers working nearby each other for t = 8 secs 

 

Attention Mechanism Implications: 

• Low attention weights (0 < 𝛼𝑖𝑗
𝑡 < 0.4) would be 

characteristic of this scenario, as the spatial separation 

minimizes direct interactions. Each worker's movement 

is less likely to influence the immediate actions of 

others. 

• The model may focus more on the individual movement 

patterns and tasks of each worker, rather than the 

complex inter-worker dynamics present in more 

crowded settings. 

 

FIGURE 8: Visualization of attention weights for workers Far 

apart from each other. 

 

4.3 Limitations and Drawbacks 

Regarding the limitations and drawbacks of our approach in 

predicting worker trajectories within manufacturing settings, 

several aspects of our study merit further exploration and 

critique. Firstly, while our methodology significantly advances 

the precision of trajectory predictions using Spatio-temporal 

Graph Attention Network (STGAT) and Social-STGCNN 

models, it is primarily reliant on the accuracy of position data 

collected via sensors. Sensor inaccuracies or the occurrence of 

workers performing tasks outside predefined zones could lead to 

discrepancies in activity event detection. This is a critical 

consideration since our detection mechanism hinges on spatial 

data and predefined factory layout, marking regions assigned for 

specific tasks. 

While the Average Displacement Error (ADE)/ Final 

Displacement Error (FDE) metrics are commonly utilized for 

evaluating trajectory prediction models, they present an 

incomplete picture of a model’s prediction quality and 

performance. The Best-of-N (BoN) metric, though attempting to 

address this, does not quantify all generated samples, thus not 

fully capturing the model’s predictive capability. To overcome 

this, introducing metrics like Average Mahalanobis Distance 

(AMD) and Average Maximum Eigenvalue (AMV) could 

provide a more comprehensive understanding of how closely 

predictions align with actual trajectories and the overall spread 

of predictions [45]. 

The accuracy of trajectory predictions in industrial settings 

can be significantly impacted by unforeseen events, varying 

machine states, and dynamic factory layouts. However, the 

current dataset utilized in our research lacks representation of 

such factors. Worker trajectories are influenced by a multitude of 

variables including production planning, machine faults, time of 

day, date of the year, accidents, and individual worker 

characteristics. The absence of these diverse examples and 

related input variables in the dataset poses a limitation to our 

study, as our models are unable to account for these real-world 

scenarios during prediction, potentially leading to errors. 

Nevertheless, as the dataset size grows to encompass a wider 

range of industrial operating conditions, these limitations can be 

mitigated. Furthermore, the dataset used in our research lacks 

labels corresponding to specific events, thereby limiting the 

depth of qualitative analysis that can be conducted. The absence 

of event-specific labels hinders our ability to verify qualitative 

insights into worker behaviours and interactions. Addressing 

these limitations would enhance the robustness and applicability 

of our methodology in real-world industrial environments. 

 

4.4 Future Work 

The future work stemming from this research opens several 

avenues for exploration and refinement. An immediate direction 

involves enhancing the accuracy of task-specific worker 

movement prediction by integrating more sophisticated sensor 

technologies and data fusion techniques. Additionally, 

expanding the dataset to include labelled events related to 

specific manufacturing tasks will allow for more granular 

analysis and validation of the proposed models against ground 

truth data. 

To provide a comprehensive understanding of the proposed 

methodology's efficacy, a thorough comparison with existing 

approaches should be done. This will involve outlining the 

performance metrics and highlighting the distinctive features of 

the proposed STGAT and STGCNN models. Such comparisons 

are crucial for elucidating the relative strengths and weaknesses 

of these models. Testing the dataset on some of the current state-

of-the-art models is necessary to further validate our findings and 

establish a solid benchmark. 

Most of the state-of-the-art models have better evaluation 

metrics scores on benchmark datasets when compared to the 
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above models but lack the internal decision-making evaluation 

essential to observe the attention metric while predicting the 

path. To enhance the paper's contribution, further evaluation 

using larger and more diverse datasets from various industrial 

settings is warranted to assess the robustness and applicability of 

the proposed approach. Incorporating newly proposed evaluation 

metrics such as Average Mahalanobis Distance (AMD) and 

Average Maximum Eigenvalue (AMV) [45] across more diverse 

datasets will further validate their effectiveness and reliability 

over traditional metrics like ADE/FDE. 

 

5. CONCLUSION 
In conclusion, this study presents a pioneering approach to 

worker trajectory prediction within manufacturing environments 

using state-of-the-art Spatio Temporal Graph Attention Network 

models. Our research demonstrates the potential of leveraging 

advanced machine learning techniques to predict worker 

movements and interactions, offering significant contributions to 

enhancing factory safety and operational efficiency. By 

integrating graph-based models and attention mechanisms, we 

have developed a method capable of capturing the complex 

dynamics of worker movements and providing insights into 

worker interactions through qualitative analysis of attention 

weights. This research underscores the importance of adopting 

advanced predictive analytics in the manufacturing industry. As 

factories become increasingly integrated and automated, the 

ability to accurately model and predict worker movements will 

play a critical role in ensuring safety, minimizing operational 

disruptions, and optimizing production processes. Our work 

contributes to the growing body of knowledge in smart 

manufacturing, paving the way for more intelligent, responsive, 

and efficient manufacturing systems. 
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