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Abstract. The perpetual evolution of cyberattacks, especially in the
realm of Internet of Things (IoT) networks, necessitates advanced, adap-
tive, and intelligent defence mechanisms. The integration of expert knowl-
edge can drastically enhance the efficacy of IoT network attack detection
systems by enabling them to leverage domain-specific insights. This pa-
per introduces a novel approach by applying Neurosymbolic Learning
within the Explainable Artificial Intelligence (XAI) framework to en-
hance the detection of IoT network attacks while ensuring interpretabil-
ity and transparency in decision-making. Neurosymbolic Learning syn-
ergizes symbolic AI, which excels in handling structured knowledge and
providing explainability, with neural networks, known for their prowess in
learning from data. Our proposed model utilizes expert knowledge in the
form of rules and heuristics, integrating them into a learning mechanism
to enhance its predictive capabilities and facilitate the incorporation of
domain-specific insights into the learning process. The XAI framework
is deployed to ensure that the predictive model is not a ”black box,”
providing clear, understandable explanations for its predictions, thereby
augmenting trust and facilitating further enhancement by domain ex-
perts. Through rigorous evaluation against benchmark IoT network at-
tack datasets, our model demonstrates superior detection performance
compared to prevailing models, along with enhanced explainability and
the successful incorporation of expert knowledge into the adaptive learn-
ing process. The proposed approach not only fortifies the security mecha-
nisms against network attacks in IoT environments but also ensures that
the knowledge discovery and decision-making processes are transparent,
interpretable, and verifiable by human experts.

Keywords: Neurosymbolic learning · Attack detection · Explainable
artificial intelligence · Expert knowledge.

1 Introduction

In the constantly changing world of cyber security, identifying and preventing
cyber threats is a critical challenge. Traditional security methods are often not
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sufficient against complex and evolving cyber-attacks. This situation calls for a
new strategy that not only improves threat detection but also makes the pro-
cess behind these detections more transparent and understandable. This paper
introduces a novel approach that blends advanced learning techniques with hu-
man expert knowledge for better detection of cyber threats. This innovative
method combines the best of two worlds: the pattern recognition ability of ad-
vanced learning systems and the logical problem-solving of human-like reasoning.
By integrating insights from cybersecurity experts, this approach ensures that
threat detection is not only based on extensive data analysis but also enriched
with deep, field-specific knowledge. Our research focuses on how this combined
method can improve the detection of cyber threats. We examine its ability to
handle large amounts of data, identify complex patterns, and explain its find-
ings in a clear and understandable manner. The importance of including expert
knowledge to refine and ensure the accuracy of the detection process is also
highlighted. We start by discussing the current issues in detecting cyber threats
and then introduce the concepts behind our advanced, integrated approach. Our
paper presents a new model that applies this method, showing its effectiveness
in identifying a variety of cyber threats. We also discuss the challenges of im-
plementing such a system and offer potential solutions. The primary goal of our
study is to show that this approach is not just a theoretical idea but a practi-
cal and powerful tool for defending against cyber threats. By offering improved
detection capabilities along with clear explanations, this method represents a
significant advancement in cyber security, providing stronger protection against
an increasingly diverse range of cyber threats. This model is based on neurosym-
bolic Artificial intelligence and eXplainable Artificial Intelligence (XAI).

neurosymbolic artificial intelligence is a blend of neural network-based meth-
ods and symbolic knowledge-based approaches. This hybrid technique capitalizes
on the strengths of both: neural networks are adept at processing vast amounts
of data and discerning intricate patterns from raw input, while symbolic ap-
proaches excel in logical reasoning. The integration of these methods not only
harnesses the representational abilities of neural networks but also addresses
their common challenge of providing transparent explanations for their deci-
sions [12]. The limited application of neural networks beyond academic and
commercial research settings, despite a decade of promising development begin-
ning in the mid-1980s, is partly due to certain limitations. In contrast, symbolic
knowledge-based methods, such as rule-based systems or expert systems, utilize
logical reasoning and clear knowledge representations. These approaches excel
in accumulating domain-specific knowledge and providing transparent explana-
tions for their conclusions [12], [5]. However, these techniques often struggle with
handling ambiguous or incomplete data and typically lack the capacity to derive
insights from vast datasets [12]. Over the past five years, there has been a surge
of interest in NeuroSymbolic AI, an approach that integrates neural and sym-
bolic AI methodologies. The fusion of these two paradigms is not a new concept;
the term ’Neural-Symbolic’ was first introduced as early as the early 2000s [5].
The 1990s witnessed several efforts to integrate fuzzy rules and connectionist ap-
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proaches [2]. The idea of merging intuitive and logical aspects of AI was hinted
in the groundbreaking paper ”A Logical Calculus of the Ideas Immanent in Ner-
vous Activity” by McCulloch and Pitts [7]. The renewed interest in this method
can be linked to various reasons, which we will examine within the scope of cy-
bersecurity. In this paper, we integrate neurosymbolic artificial intelligence with
our previously developed explainable artificial intelligence model [3], [4]. This
combination incorporates expert knowledge to improve the detection of cyber-
attacks while ensuring a clear explanation of the decision-making process and
detected attack. The main contributions of this paper are as follows.

– Develop a data-driven cybersecurity knowledge graph to identify legitimate
attacks from detected anomalous network behaviours.

– Develop a method for integrating expert knowledge into the existing knowl-
edge graph, thereby bridging the gap between data-driven models and human
expertise.

– Develop a main neurosymbolic model with integration of our previous XAI
model to enhance cyberattack detection.

– Define security rules based on traffic features (Threshold values for each
traffic feature for attack detection).

– Evaluate the model’s performance by comparing it with existing research in
the field.

The structure of the rest of the paper is organized as follows: Section 2
presents background and related work. Section 3 details the proposed algorithm.
Section 4 discusses the experimental setup, while Section 5 describes the evalua-
tion process and any adjustments made. Finally, the paper concludes in Section
6.

2 Background and Related work

2.1 IoT Network Attacks

The Internet of Things (IoT) is an expanding network of interconnected devices
ranging from simple sensors to sophisticated industrial machinery. This inter-
connectivity, while advantageous, also increases vulnerability to cyber threats,
such as DDoS, Man-in-the-Middle, ransomware, data theft, device hijacking, and
side-channel attacks.

Security in IoT faces multiple challenges due to device diversity, varying
protocols, and the sheer volume of devices, many of which have limited compu-
tational resources that impede the use of advanced security measures [4]. The
fast-paced growth of the IoT sector demands scalable security solutions. En-
suring data privacy while maintaining effective security is a critical concern. A
further complication is the infrequency of security updates for many IoT devices,
leaving them open to exploitation. The complexity of IoT ecosystems makes it
challenging to pinpoint attack origins and types. Real-time detection and re-
sponse are essential for the integrity of IoT operations, especially since many
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devices are physically accessible, increasing the risk of tampering. These unique
challenges highlight the importance of developing innovative security strategies
for IoT networks [6].

2.2 neurosymbolic AI in cybersecurity

Neurosymbolic AI aims to bring together the best of both worlds: the learning
and pattern recognition capabilities of neural networks and the interpretability
and logical reasoning of symbolic AI. Firstly, by employing a blend of data-
driven methods and symbolic reasoning, it is possible to trace the sequence of
events or actions leading to the model’s conclusion. This forms a compelling
case for adopting neurosymbolic approaches in cybersecurity and privacy [8].
Such approaches are particularly valuable in addressing challenges like threat
detection and analysis, where it is crucial to contextualize patterns observed
across different systems over time, rather than merely detecting those [11]. neu-
rosymbolic methods are capable of achieving this while maintaining privacy, such
as by integrating privacy policies, regulations, and compliance measures. For in-
stance, a neurosymbolic model can apply logical reasoning to manage the use
of sensitive network flow data by the neural network detector, adhering to ex-
plicit privacy policies. Additionally, it can ensure compliance through the use of
privacy-protecting techniques like differential privacy or secure multi-party com-
putation [9]. Secondly, ensuring the safety and security of AI systems is crucial.
The reliance on data-driven models for automated vulnerability assessment can
be limiting, as these systems only learn from the vulnerabilities they are trained
on. Adopting a neurosymbolic approach can enhance safety. In this approach,
experts act as simulated adversaries during the training of AI-based software
systems. This enables the AI model to dynamically learn and apply rules and
policies, rather than relying solely on pre-trained vulnerabilities [12]. Moreover,
an AI system’s reliability and security can be significantly enhanced if knowledge
from security specification documents is explicitly encoded using symbolic meth-
ods and applied as behavioural constraints. This aspect is of immediate interest
to legislators and regulators in many countries. Without human knowledge or
expertise, advanced AI systems run a substantial risk of generating information
that could be hazardous or harmful.

Another reason for the usefulness of combining rule-based and data-driven
methods is the scarcity of high-quality data needed for reliable conclusions. This
challenge is common in fields where sensitive data is scarce or challenging to
distribute for experiments. Nevertheless, alternative sources, such as textual de-
scriptions of the sensitive data, might be accessible. These alternatives can be
utilized to establish common rules. When the available data alone is not enough
to make reliable conclusions, these derived rules can be used to reinforce the
conclusions drawn from the data [5]. During the learning process, they can also
be supplied as an input to the data-driven model. Furthermore, certain areas are
highly dynamic, with data that accurately represents conditions only for a brief
period. Consequently, conclusions drawn from such data may also be short-lived.
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This situation is particularly relevant in fields like fraud detection and cyber-
security. Patterns identified from our existing dataset may be effective against
current cyberattacks but may not remain relevant in the future. In scenarios like
these, combining deep network-based detection systems with explicit rules that
account for changes in data trends or the time-limited applicability of a model
can be advantageous [10].

Neurosymbolic AI, which combines symbolic AI with neural networks, is in-
creasingly relevant in cybersecurity. It enhances areas such as threat intelligence,
malware analysis, intrusion detection, and vulnerability assessment, thereby bol-
stering overall security system effectiveness [11]. This approach is pivotal in
evolving Security Operations Centres (SoCs) into next-generation facilities. Here,
the integration of AI methods with human monitoring creates a more sophis-
ticated and efficient system for managing and responding to security threats.
Consider a scenario where security analysts, working in a Security Operations
Centre, play a vital role in upholding an organization’s security. Their effective-
ness in detecting attacks relies significantly on their experience and knowledge
of emerging and novel threats. This expertise is especially important when in-
terpreting outputs from deep neural networks or machine learning (ML)-based
systems that analyze incoming data streams. Their prior understanding of new
attack patterns is crucial in effectively identifying potential security breaches.
To assist analysts, we can collect information from publicly available threat
intelligence sources, such as threat feeds or detailed accounts of cyberattacks.
This data is then organized and stored in a Cybersecurity Knowledge Graph
(CKG). We propose two methods that utilize the structured data within CKGs
for subsequent tasks, focusing particularly on explainability through reasoning
and inference. The first method involves creating complex rules using an existing
knowledge engine and actual data, forming a rule-based framework. The second
method revolves around developing new cybersecurity strategies (knowledge-
guided models) by incorporating established rules into subsequent data-driven
AI models.

The primary aim of a rule-based framework is to develop the most effec-
tive and robust rules possible for protecting target machines from all forms of
threats and hostile activities. These rules, varying from simple to complex, are to
be applied to any system or subsystem needing defence. The focus on knowledge-
guided models is to tackle emerging or evolving cyberthreats that aren’t covered
in existing datasets for data-driven research. To identify novel adversaries and
consequently new defence mechanisms, techniques such as Reinforcement Learn-
ing (RL) and other exploratory modelling methods are crucial. Our experiments
have shown that Cybersecurity Knowledge Graphs (CKGs) can guide these ex-
ploratory learning methods, enhancing their efficiency, speed, and clarity
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3 Proposed Model

3.1 Overview

This research introduces a novel neurosymbolic approach for anomaly detection
in network data. The methodology synergistically combines neural network-
based anomaly detection using autoencoders with symbolic reasoning via a
knowledge graph. This integration leverages the strengths of both neural and
symbolic AI, providing robust anomaly detection while enhancing interpretabil-
ity and decision-making. Finally, we use a data-driven approach for the knowl-
edge graph development and expert knowledge integration for the enhanced
knowledge graph. Figure 1 illustrates the architecture of the model, with each
components describe as follows.

1. IoT Network Traffic: This represents the data flow within an IoT network,
which includes both normal operations and potential security threats.

2. Anomaly Detection: A system or model that processes the IoT network traffic
to identify unusual patterns or activities that deviate from the established
norm, which could indicate potential security incidents.

3. Benign Traffic: This is the subset of network traffic that has been identified
as normal and safe by the anomaly detection system.

4. Explanation XAI (Explainable Artificial Intelligence): A component that
provides insights into the decision-making process of AI models, making the
outcomes understandable to humans. In the context of anomaly detection,
this would explain why certain traffic was flagged as anomalous.

5. Security Knowledge Graph: A structured representation of cybersecurity
knowledge, including concepts, relationships, and rules that define and de-
scribe the security aspects of the IoT network.

6. Security Knowledge Graph Constructor: This is the process or the tool that
builds the security knowledge graph, possibly by integrating various data
sources and expert input to form a comprehensive security model.

7. Security Expert: A human expert who provides additional insights and vali-
dation to the reasoning model, ensuring that the system’s outputs align with
real-world cybersecurity knowledge and practices.

8. Knowledge Extractor: A tool or process that extracts relevant information
from the security knowledge graph to support the reasoning model, providing
context and detailed explanations about detected anomalies.

3.2 Neural Network-Based Anomaly Detection

The methodology is based on the use of an autoencoder, which is a type of neural
network with a proficiency for creating compact representations of data. The au-
toencoder operates through two main processes: encoding and decoding. During
encoding, it compresses network data into a lower-dimensional space, retain-
ing the essential features. Subsequently, in the decoding process, the compressed



Neurosymbolic AI-XAI-Expert knowledge integration for Attack detection 7

Fig. 1. Proposed Neurosymbolic learning in the XAI framework architecture for IoT
attack detection.

data is expanded back to its original dimension. The critical metric used to evalu-
ate the performance of an autoencoder in this setting is the reconstruction error,
which assesses the discrepancy between the original data and the reconstructed
output. A commonly employed measure for this error is the Mean Absolute Er-
ror (MAE). In the realm of anomaly detection with autoencoders, the MAE is
especially significant. It provides insight into whether the reconstruction error
exceeds a certain threshold, which would indicate an anomaly. This threshold
is typically set based on the error distribution of normal data instances. The
fundamental assumption is that normal data will have lower reconstruction er-
rors, while anomalous data will exhibit higher errors due to significant deviations
from the model’s learned patterns.

3.3 Symbolic Reasoning with SHAP and Knowledge Graphs

To enhance the interpretability and decision-making capabilities of the model, we
integrate SHAP (SHapley Additive exPlanations) values, grounded in game the-
ory, to attribute significance to individual features in anomaly detection. SHAP
values are instrumental in pinpointing the contribution of each feature to the
detected anomalies, thereby unravelling the rationale behind the model’s deci-
sions. Specifically, for each anomalous instance detected by the model, SHAP
values elucidate which features are most influential in signalling the anomaly,
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enabling a granular analysis of the model’s behaviour. Parallel to this, we de-
velop a domain-specific knowledge graph, leveraging real attack data to map
anomalous behaviours indicative of genuine cybersecurity threats as shown in
Algorithm 1. This knowledge graph, tailored to network security, constitutes a
structured representation of expert insights and heuristic rules. Its nodes sym-
bolize individual features of network data, while its edges represent the intricate
relationships and constraints among these features. The graph effectively encap-
sulates the complex interplay of network characteristics that signify potential
security breaches.

Crucially, in the context of detected anomalies, the knowledge graph utilizes
the Maximum Mean Absolute Error (Max MAE) – a metric derived from the
model’s performance – to delineate normal from abnormal behaviour. The Max
MAE reflects the highest deviation in reconstruction error when the model en-
counters an anomalous pattern. By associating the Max MAE with real feature
values corresponding to known attack classes in the knowledge graph, we can as-
certain whether a detected anomaly constitutes a legitimate attack or merely an
unusual but benign network behaviour. In essence, the integration of SHAP val-
ues and the knowledge graph achieves a two-fold objective: Firstly, SHAP values
provide an in-depth explanatory analysis of why certain instances are flagged
as anomalies, based on feature contributions. Secondly, the knowledge graph
validates these anomalies against real-world attack patterns, discerning genuine
threats from false alarms. This dual approach not only bolsters the model’s ac-
curacy in detecting attacks but also offers a comprehensive understanding of the
nature of each detected anomaly, ensuring robust and reliable network security.

3.4 Neurosymbolic Integration

Our methodology epitomizes the synergy of neural network outputs and symbolic
reasoning, forming an integrated framework for anomaly detection in IoT net-
works. This begins with each data instance being evaluated by the autoencoder,
which calculates the reconstruction error and SHAP values. These SHAP values
are crucial, as they indicate the influence of individual features on the model’s
predictions. In this setup, SHAP values are instrumental. They are carefully as-
sessed against predetermined thresholds and rules within a custom-built knowl-
edge graph. Initially formed from data-driven insights, this graph encapsulates
typical network behaviour and recognized anomaly patterns. Crucially, when
the SHAP value identifies a feature as highly influential, the model checks the
corresponding original feature value against the maximum Mean Absolute Error
(MAE). If this value surpasses the feature’s threshold in the knowledge graph, the
instance is identified as an attack. IoT networks, known for their context-specific
characteristics, present challenges in generalizing models. To address this, we
enhance our initially data-driven knowledge graph with expert knowledge. This
addition is vital, as it incorporates a deeper, more nuanced understanding of
network behaviours and threat landscapes – aspects that might not be com-
pletely apparent from data alone. This integration of expert knowledge into the
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knowledge graph substantially improves the model’s ability to detect and con-
firm anomalies. When an instance is flagged based on influential SHAP values,
the model undertakes symbolic reasoning. This reasoning is grounded not only in
data-driven thresholds but also in expert insights and rules. Such a comprehen-
sive approach ensures more accurate and contextually relevant interpretations of
anomalies and provides potential recommendations and actions. In essence, our
methodology marries data-driven analysis with expert insights. While SHAP val-
ues direct us to the most significant features in detecting anomalies, the enhanced
knowledge graph, enriched with expert understanding, corroborates these detec-
tions. This ensures that the model’s interpretations and responses are precisely
aligned with the complex and dynamic nature of IoT network security.

Algorithm 1 Neurosymbolic Anomaly Detection with SHAP and Knowledge
Graph Integration

Require: X — Anomaly instance that needs to explain, X1..i — instances used by
kernel SHAP, autoencoder model— trained autoencoder model for anomaly detec-
tion, expert knowledge — expert knowledge integrated into the knowledge graph,
Feature thresholds — thresholds for Feature values derived from the knowledge
graph.

Ensure: shap top features — SHAP values for each feature within top R features,
detected anomalies — list of detected anomalies with decision reasoning.

1: top R features← top value from Error List derived from reconstruction errors
2: for each i in top R features do
3: explainer ← shap.KernelExplainer(autoencoder model.predict,X1..i)
4: shap values[i]← explainer.shap values(X, i)
5: end for
6: knowledge graph← construct knowledge graph(expert knowledge)
7: for each feature,Original value in shap top features do
8: if knowledge graph.nodes[feature][′threshold′] < Original value then
9: detected anomalies.append(feature)
10: symbolic reasoning(feature,Original value, knowledge graph)
11: end if
12: end for
13: return detected anomalies

4 Experimental Setup

4.1 Dataset

The USBIDS dataset was not only chosen for its comprehensive feature expla-
nations but also served as the foundational data for model training in our study.
Comprising seventeen labelled CSV files, this dataset encapsulates a breadth
of network traffic information. It includes sixteen files that detail a range of
non-standard network conditions, with one file exclusively documenting benign
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traffic flows that have not been subjected to attacks, alongside records of com-
bined defence modules and Denial of Service (DoS) attack data. These network
flows were meticulously measured using the CIC FlowMeter2, ensuring precise
data for analysis. Each of the sixteen non-normative CSV files is named to pro-
vide immediate insight into the data collection context. For instance, ’HULK-
NoDefense.csv’ denotes network flows captured during the HULK attack, con-
ducted without the deployment of defensive strategies. This dataset, with its
explicit annotations and diverse traffic scenarios, provided a robust platform for
training our model, enabling it to learn and adapt to a wide spectrum of network
behaviours and potential security threats.

4.2 Experimental Environment

Our experimental environment was established with the objective of assessing
the model’s capability to discern between normal and anomalous network traffic.
The training phase exclusively utilized benign data, fostering a model attuned
to recognizing typical network behaviour. For testing, we integrated benign data
with two distinct sets of attack data, challenging the model to identify deviations
indicative of network attacks. The model’s architecture was a fully connected au-
toencoder with a Rectified Linear Unit (RELU) activation function. It featured
a concise network structure with just two hidden layers, deliberately designed
to minimize the model’s complexity. These layers comprised 10 and 32 neurons
respectively, sufficient for capturing essential data patterns without overburden-
ing the system. To define the threshold for anomaly detection, we computed the
highest mean absolute error (MAE) during the training phase using benign data.
This threshold was crucial for distinguishing between normal traffic flows and
potential threats during the evaluation phase. The implementation of our pro-
posed algorithm was executed using Python, leveraging TensorFlow lite and the
Keras library for their efficiency and ease of use. The optimization of the model
was facilitated by the Adam optimizer, selected for its robust performance in
various conditions. Our training and testing processes spanned over 40 epochs,
with a learning rate set at 0.01 to balance speed and accuracy. The hardware
employed for our experiments included an ASUS ZenBook, equipped with a 2.30
GHz Intel Core i7 processor and 16 GB of RAM, ensuring swift computation
and high efficiency. Additionally, a Raspberry Pi Model B with 4 GB of RAM
was used, showcasing the model’s adaptability and potential for deployment in
resource-constrained environments typically found in IoT networks. Our exper-
iment involves a comprehensive dataset comprising both benign and malicious
network traffic. The dataset is first normalized and then fed into the trained
autoencoder. The reconstruction error thresholds are determined based on the
distribution of errors in benign samples. Meanwhile, the knowledge graph is pop-
ulated with feature-specific thresholds and rules informed by network security
expertise.
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5 Evaluation and Adjustment

5.1 Case 1 Experiment with Data-driven Knowledge Graph

In the first case study, we conducted an evaluation of our model using the US-
BIDS dataset, complemented by a data-driven knowledge graph. The initial
phase involved training the model with the dataset and subsequently testing
it to validate its performance. During testing, we determined the most influ-
ential features for each anomalous instance, which served as a critical step in
understanding the anomalies. Subsequently, we constructed a knowledge graph.
This construction process was based on identifying the maximum Mean Abso-
lute Error (MAE) from the benign data during the reconstruction error analysis.
For each feature corresponding to this maximum MAE, we recorded its original
values.

After establishing the knowledge graph, we conducted tests on the model us-
ing a distinct set of attack data. This step was crucial for assessing the model’s
practical effectiveness and its ability to differentiate between normal network op-
erations and potential security threats. In our evaluations of various models, the
one described earlier stood out due to its exceptional performance in diverse at-
tack scenarios. Specifically, it achieved a 0.98 detection rate for the ’Attack Hulk
No Defense’, and it successfully identified both the ’Attack Hulk Evasive’ and
the ’Attack Hulk Reqtimeout’ scenarios with perfect scores of 1.0. Notably, when
tested against the combined dataset comprising all 16 attack types, the model
maintained an overall accuracy of 96.8%Post detection, each instance marked
anomalous undergoes a reasoning phase where decisions are assessed against the
knowledge graph. This phase aims not only to validate the anomalies but also to
iteratively refine the model by incorporating new insights and patterns observed
in the data as Table 1. This model significantly reduces the rate of false positives
compared to current state-of-the-art approaches by validating identified anoma-
lies with the knowledge graph. It distinguishes whether each anomaly represents
a legitimate attack or just normal, anomalous behaviour.

Table 1. Proposed model comparison with the current state of the art [1]

Detection Method Hulk No Defense Hulk Evasive Hulk Reqtimeout Overall

DT 0.97 0.06 0.97 -
RF 0.98 0.00 0.98 -
DNN 0.67 0.05 0.66 -
Proposed model 0.98 1.0 1.0 0.96

5.2 Case 2 Nurosymbolic integration

In the second experimental scenario, we utilized a dataset uniquely compiled by
our team, which was gathered from various IoT environments, each with its dis-
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tinct context. In our experiment, we utilized a real-time IoT network to gather
network traffic data, focusing on the impact of various types of attacks on a
target device. The experiment spanned five days within a smart home network
environment, consisting of eight IoT devices and three non-IoT devices.The IoT
devices, procured from local stores, varied in types and functions. This diversity
was crucial to understanding how different devices generate traffic and interact
within the network. All IoT devices were connected via Wi-Fi, while the router
was categorized as a non-IoT device. For network traffic capture, we employed
Wireshark 1 and the CICFlowMeter 2 tools. Wireshark facilitated manual exper-
iments, capturing live data traffic, whereas the CICFlowMeter was instrumental
in extracting features from the PCAP files. A specific device was designated
to simulate attack traffic towards the victim device, replicating several scenar-
ios and conditions akin to those in the USBIDS dataset. The generated attack
data was meticulously recorded and saved in CSV format for subsequent experi-
mental analysis. Then we experimented with the above model without changing
knowledge graph values. It reduces the accuracy of the model significantly and
increases the false positives as shown in Table 2

Then we consulted a few cybersecurity experts from academia and industry
and asked them to update the knowledge graph values based on their expertise.
They closely monitored the network traffic, and they updated the values of the
knowledge graph based on their expertise as shown in Algorithm 2. For this, we
gave another function to update features of the existing data-driven knowledge
graph as shown in algorithm. after updating all the corresponding most influen-
tial features respective to detect legitimate attacks and again we have done the
experiment with this dataset with an updated knowledge graph and model. It
achieves higher accuracy for the overall model as shown in comparison in Ta-
ble 2. Our model’s accuracy is determined through a systematic process. Firstly,
we establish ground truth by selecting a labelled dataset distinct from our train-
ing data and categorizing instances as ’normal’ or ’anomalous.’ Next, we deploy
our trained autoencoder on this dataset to detect anomalies. During this phase,
SHAP values are calculated for each instance to pinpoint the most influential
features. We then consult our knowledge graph, which uses Max MAE values, to
assess whether the detected anomalies signify actual attacks. Finally, we compare
our model’s predictions against the dataset’s ground truth, identifying true pos-
itives, false negatives, false positives, and true negatives. This method provides
a thorough evaluation of our model’s ability to accurately detect anomalies.

Table 2 showcases the accuracy of our model, which integrates expert knowl-
edge, compared to the performance of a purely data-driven knowledge graph in
our IoT network setup. This comparison highlights that IoT networks are highly
context-sensitive systems, making it challenging for data-driven approaches to
generalize across diverse IoT infrastructures effectively. In such scenarios, our
neuro symbolic approach demonstrates a higher attack detection rate with a
minimal false positive rate. This is primarily due to our model’s ability to adapt

1 https://www.wireshark.org/
2 https://github.com/ahlashkari/CICFlowMeter
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Algorithm 2 Update Node Attributes in a Graph

1: function update node attributes(graph, feature, new value)
2: if graph has a node with the given feature then
3: graph.nodes[feature][′original value′]← new value
4: else
5: print ”Feature ’feature’ not found in the graph.”
6: end if
7: end function

8: Manually updating the graph with new values:
9: update node attributes(G, ’Flow Packets/s’, 21830)
10: update node attributes(G, ’PSH Flags’, 15)

system features by integrating expert knowledge pertinent to each specific con-
text. In addition to enhancing detection accuracy, the model also elucidates the
underlying factors of each identified attack by pinpointing the most influential
features. This level of detailed explanation proves invaluable for cybersecurity
professionals, empowering them to make informed decisions and take appropriate
actions in response to the detected threats.

Table 2. Comparison of Model Accuracy: Data-Driven (DDKG) vs. Expert Knowledge
Integrated Knowledge Graph (EKIKG) on the real-time IoT data

Detection Method No Defense Evasive Reqtimeout Overall

DDKG 0.91 0.94 0.93 0.91
EKIKG 0.98 0.99 0.98 0.97

6 Conclusion

This study introduced a cutting-edge neurosymbolic method for detecting at-
tacks in IoT networks, combining neural network-based autoencoders with SHAP
explanations and expert-augmented knowledge graphs. This approach signifi-
cantly outperformed traditional models by accurately identifying and explaining
attacks, leveraging SHAP values and expert insights to effectively differenti-
ate between actual attacks and benign activities. The focus on key features for
anomaly detection enabled detailed, context-sensitive explanations, crucial in
the diverse and interconnected environment of IoT networks.

Experimental validation using the USBIDS dataset and real IoT network data
demonstrated the model’s superior accuracy and lower false positives, highlight-
ing its adaptability and deep insight into network security. This neurosymbolic
model’s success in a real-world setting points to a promising future for cyberse-
curity, emphasizing the role of neurosymbolic AI in improving anomaly detection
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systems’ interpretability and reliability. With the ongoing expansion of IoT net-
works, such innovative approaches are vital for defending against complex cyber
threats. Future work will incorporate Large Language Models for enhanced at-
tack explanation and publish the collected IoT network data for research. This
study not only marks a significant advancement in IoT security but also paves
the way for further neurosymbolic AI research and applications in complex, dy-
namic domains.
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