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Abstract
Digital twins (DTs) are an emerging digitalization technology with a huge impact on today’s innovations in both industry and research. DTs

can significantly enhance our society and quality of life through the virtualization of a real-world physical system, providing greater insights
about their operations and assets, as well as enhancing their resilience through real-time monitoring and proactive maintenance. DTs also pose
significant security risks, as intellectual property is encoded and more accessible, as well as their continued synchronization to their physical
counterparts. The rapid proliferation and dynamism of cyber threats in today’s digital environments motivate the development of automated
and intelligent cyber solutions. Today’s industrial transformation relies heavily on artificial intelligence (AI), including machine learning
(ML) and data-driven technologies that allow machines to perform tasks such as self-monitoring, investigation, diagnosis, future prediction,
and decision-making intelligently. However, to effectively employ AI-based models in the context of cybersecurity, human-understandable
explanations, and their trustworthiness, are significant factors when making decisions in real-world scenarios. This article provides an extensive
study of explainable AI (XAI) based cybersecurity modeling through a taxonomy of AI and XAI methods that can assist security analysts
and professionals in comprehending system functions, identifying potential threats and anomalies, and ultimately addressing them in DT
environments in an intelligent manner. We discuss how these methods can play a key role in solving contemporary cybersecurity issues in
various real-world applications. We conclude this paper by identifying crucial challenges and avenues for further research, as well as directions
on how professionals and researchers might approach and model future-generation cybersecurity in this emerging field.
© 2024 The Author(s). Published by Elsevier B.V. on behalf of The Korean Institute of Communications and Information Sciences. This is an open
access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Digital twins (DTs) are a virtual representation of a physical
entity or system that uses data and Artificial Intelligence (AI)
to simulate and analyze its behavior, performance, and other
characteristics [1,2]. DT can be used in a wide range of in-
dustries, including manufacturing [3], smart cities [4], critical
services [5], healthcare [6], agriculture [7], energy [8], and so
on to improve efficiency, optimize processes, and reduce costs.
DT can provide organizations with useful insights extracted
from data about their operations and assets. However, DT can
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also be vulnerable to cyber threats such as unauthorized ac-
cess, data breaches, or other malicious attacks as DTs become
increasingly interconnected with other systems and devices
through the Internet of Things (IoT) and other smart tech-
nologies, discussed briefly in Section 3. Cybersecurity threats
can impact the confidentiality, integrity, and availability of DT
data, as well as the safety and reliability of the physical system
being represented by DT. Therefore, it is crucial to take into
account an automated and intelligent cybersecurity systems
design that meets today’s needs.

Recent advancements in AI, including machine learning
(ML) methods, significantly changed how we might combine
and analyze data, and eventually apply the extracted insights
or knowledge for automation and intelligent decision-making
processes in various real-world application areas [9]. By gath-
ering massive amounts of data and effectively analyzing it to
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dentify harmful patterns and unusual behaviors, AI technolo-
ies have become essential to the cybersecurity industry [10].
owever, to use AI-based models effectively in the context of

ybersecurity in DT, human-understandable explanations, and
heir trustworthiness, are considered significant factors when

aking decisions in real-world scenarios. Thus the key aspects
re:

• Automation: It involves the use of automated processes,
algorithms, and tools to streamline and enhance cyber-
security tasks within a digital twin environment. With
the automation of repetitive and time-consuming security
tasks, organizations can detect and respond to security
threats more rapidly, reduce manual work and human
error, and free up staff resources for more strategic
security initiatives.

• Intelligence: Typically, intelligence refers to the capabil-
ity of learning, understanding, and applying knowledge
for intelligent decision-making to perform tasks that re-
quire human intelligence. Thus, it includes analyzing
and interpreting enormous amounts of data produced
within the digital twin ecosystem. The discovered knowl-
edge from data enables organizations to gain insight into
emerging threats, detect anomalous behavior, identify po-
tential vulnerabilities, predict cyber threats, and generate
actionable insights to improve security.

• Trustworthiness: This encompasses the reliability, in-
tegrity, and credibility of the security mechanisms and
processes implemented within the digital twin environ-
ment. Transparency in implementing and validating cy-
bersecurity measures, as well as accountability for secu-
rity incidents and breaches, contribute to trustworthiness.
It is crucial to establish trustworthiness in cybersecu-
rity within digital twin ecosystems to promote confi-
dence among stakeholders and ensure their resilience and
sustainability.

Overall, the key aspects for cybersecurity modeling in a
digital twin ecosystem are automation, i.e., reducing manual
fforts with self-learning, intelligence, i.e., informed decision-
aking based extracted insights, and trustworthiness, i.e.,

human-interpretable cyber decisions, which enable efficient
and effective protection against evolving threats in increasingly
complex digital environments. Thus, a trade-off among “Au-
tomation”, “Intelligence”, and “Trustworthiness”, representing
“CyberAIT” in short, is important as shown in Fig. 1. A more
transparent and understandable AI model, also known as XAI,
could therefore make cybersecurity modeling more effective.
In a DT environment, analysts and security professionals can
use this information to comprehend how the system operates,
identify potential vulnerabilities and threats, and ultimately
make the best actionable decisions to successfully address
them. A motivational scenario highlighting the significance of
XAI has also been presented in Fig. 2. Taking into account the
key aspects of “CyberAIT”, this paper focuses on AI and XAI-
based methods for cybersecurity modeling with their potential
real-world applications.
936
Fig. 1. An illustration of the key aspects — Automation (A), Intelligence
(I) and Trustworthiness (T) of today’s Cybersecurity (CyberAIT).

1.1. Related surveys and our contributions

Throughout the last few years, surveys on XAI have been
typically conducted with an emphasis on Black-Box models
(internal workings and decision-making processes are opaque
and difficult to interpret by humans), e.g., deep neural network-
based modeling. For instance, Adadi et al. [12] presented
a survey on XAI peeking inside the Black-Box. Similarly,
Ibrahim et al. [13], and Guidotti et al. [14] presented XAI fo-
cusing Black-Box systems, methods, and relevant applications
in their survey. Recently, Dwivedi et al. [15] explored XAI
in terms of approaches, programming frameworks, and soft-
ware toolkits in more detail. For the academic and industrial
communities, these surveys offer fundamental knowledge and
valuable lessons. There is still a need for a succinct exposition
of AI’s use in cybersecurity and digital twin, though. There
have been some literary efforts regarding XAI for cyberse-
curity, although they have tended to concentrate on particular
goals. For example, Capuano et al. [16] and Alcaraz et al. [2]
presented XAI focusing on various cyber threats and ap-
proaches in the context. More related works are summarized
in Table 2. However, an extensive study on AI/XAI-based
modeling with their explainable capabilities by taking into
account “CyberAIT” needs to be explored to comprehend its
potential real-world use cases in the context of cybersecurity
in the digital twin. Thus we have formulated five key questions
below to understand the main focus of this paper, which are
needed to answer and discuss to make this paper beneficial for
the cyber and DT community:

(i) Is modern cybersecurity modeling in DT required to be
automated and intelligent with trustworthy decisions?

(ii) Does AI-based cybersecurity modeling including ma-
chine learning and data-driven technologies have the
potential to meet today’s diverse security concerns in
DT?

(iii) What aspects and characteristics do AI and XAI-based
methodologies have that make the decision-making pro-
cess human-understandable and resolve today’s cyber
issues in DT more effectively?

(iv) What are the diverse real-world usage potentials within
the context of cybersecurity in digital twin and how
AI/XAI-based methods can lead to?

(v) What are the key challenges of AI-based cyber model-
ing, and how can scientists and researchers overcome
the issues in this emerging area of study?
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Fig. 2. A motivational scenario highlighting Black-Box AI modeling (internal workings and decision-making processes are opaque and difficult to interpret
by humans) vs XAI-based cyber modeling from the perspective of a cyber user (adopted from Sarker et al. [11]).
In this paper, we aim to answer these important ques-
tions from the perspective of AI and XAI-based cybersecurity
modeling with their potentiality in various real-world use
cases, which builds the foundation of our contribution. To
the best of our knowledge, this study is the first effort to
provide a thorough synthesize, analysis, and discussion about
the AI/XAI-based cybersecurity modeling exploring multi-
aspects intelligence such as machine learning, deep learning,
data-driven, rule discovery, semantic knowledge, as well as
multimodal intelligence for future enhancements of cyberspace
by taking into account CyberAIT.

Overall, our specific contributions are as follows:

• We survey and compare the existing literature to iden-
tify the scope of our paper regarding cybersecurity au-
tomation, intelligence, and trustworthiness in the DT
environment.

• We emphasize DT for enhancing cyber resilience. We
also highlight possible threats and anomalies in DT that
are needed to mitigate. For this, we explore diverse func-
tional layers from the physical to the application layer of
a digital twin with associated cyber issues and the neces-
sity to employ AI/XAI-based cybersecurity modeling.

• We present a taxonomy of AI/XAI-based cybersecurity
modeling methods and discuss their computing capabili-
ties and potential. Our discussion also focuses on making
them human-understandable in a cybersecurity context.

• We explore how AI/XAI-based cybersecurity models can
be used in real-world applications, ranging from anomaly
detection to mitigation. In addition, we discuss how these
methods can be used to make cyber systems automated,
intelligent, and trustworthy as necessary.

• Our study identifies and summarizes several key chal-
lenges and research issues that need to be addressed
for further improvement. In addition, we discuss possi-
ble next-generation cyber modeling directions within the
context of digital twins.
937
1.2. Article organization

The remainder of this article is structured as follows. The
background in related technologies, such as digital twins,
cybersecurity, and artificial intelligence, is summarized in Sec-
tion 2, along with the scope of this work and existing literature.
Cybersecurity resilience and potential threats and anomalies in
the various functional layers of the digital twin are explored
in Section 3. Section 4 presents a comprehensive analysis
of AI/XAI approaches for cybersecurity modeling along with
their taxonomy building. Different real-world usage scopes
are presented in the context of cybersecurity modeling in
DT in Section 5, along with a discussion of the potential
contributions of these techniques. Section 6 provides a list
of research problems and prospects that indicate possible
directions. Several key points are outlined in Sections 7 and
8 concludes this paper. In addition, Table 1 contains a list of
acronyms and their definitions.

2. State-of-the-art

We begin by exploring the background of digital twins
(Section 2.1), cybersecurity in digital twins (Section 2.2), and
AI-enhanced cybersecurity (Section 2.3). Then, we review the
related surveys within the scope of our study (Section 2.4) to
identify the study gap.

2.1. Digital twin

A “Digital Twin” is a digital representation of a physical
product, system, or process that typically serves as its virtually
identical digital counterpart to simulate and analyze its behav-
ior and performance. DT can be characterized with three main
spaces [2] -

• Physical space: It includes operational technologies
(OTs) that are used in real-world settings, including sen-
sors, actuators, and controllers like remote terminal units
(RTUs) and programmable logic controllers (PLCs).
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ist of key acronyms.

Acronyms Meaning

DT Digital Twin
AI Artificial Intelligence
XAI Explainable Artificial intelligence
AIT Automation, Intelligence, and Trustworthiness
ML Machine learning
DL Deep learning
DNN Deep Neural Network
CNN Convolutional Neural Network
RNN Recurrent Neural Network
GAN Generative Adversarial Network
AE Autoencoder
DBN Deep Belief Network
KDD Knowledge Discovery from Data
MLP Multi-layer Perceptron
NLP Natural Language Processing
LLM Large Language Model
SHAP SHapley Additive exPlanations
LIME Local Interpretable Model-Agnostic Explanations
CIA Confidentiality, Integrity and Availability
CPS Cyber-Physical Systems
DDoS Distributed Denial-of-service
DoS Denial-of-service
IDS Intrusion Detection System
IoT Internet-of-Things
QoS Quality-of-Services
SIEM Security Information and Event Management
SOC Security Operation Centre
SOAR Security, Orchestration, Automation, Response

• Digital space: To represent physical assets using digital
assets, it mimics the states or situations, circumstances,
and configurations while making decisions about the
physical space.

• Communication space: It bridges the physical and digital
worlds, allowing the DT to control information flows and
production processes.

With advancements in technologies like AI, machine learn-
ng, and data analytics, digital twins are becoming more ad-
anced and are expected to play a significant role in driv-
ng digital transformation across various industries in the fu-
ure [17,18]. DTs can be used in various industries and critical
nfrastructures, such as manufacturing, healthcare, business,
ransportation, energy, water, defense, smart cities, and so on
o gain insights, optimize operations, and make data-driven
ecisions [1,2,19]. Data from the physical object is collected
n real time and used to update the digital twin, which in
urn provides insights, analytics, and visualization to better
nderstand and manage the physical counterpart. The relevant
erms “Digital Model” and “Digital Shadow” can be distin-
uished according to the data flow and interaction between
he physical and digital entities, as shown in Fig. 3. A digital

odel does not include any automated data flows between
he digital and physical worlds, is more or less static (unless

anually updated), and exists in isolation. On the other hand, a
igital twin has a connection between the digital and physical
orlds with fully integrated data exchanges in both directions.
digital shadow lies in between with automated data flowing
938
Fig. 3. An understanding of digital twin comparing with digital model and
digital shadow by taking into account the data flow between physical and
digital object.

from the physical world to the shadow, but not from the
shadow to the physical world. Overall, digital models, digital
shadows, and digital twins can be differentiated based on their
data flow architectures as well as their intended uses. Digital
shadows are more capable than digital models but less capable
than digital twins.

Overall, DT technology involves creating a virtual replica
of a physical system or device to improve efficiency, re-
duce costs, enhance performance, and enable innovation by
allowing organizations to better understand and manage their
physical assets and processes in a virtual environment. In
terms of cyber threats and security, DT technology raises new
challenges and opportunities in real-world application areas,
discussed in the following.

2.2. Cybersecurity and digital twin

Cybersecurity typically involves numerous measures and
technologies that ensure the confidentiality, integrity, and avail-
ability of data, and safeguard digital assets [31]. Cybercrimi-
nals have become increasingly sophisticated in the real world
of cyberspace, and the evolution of computer crime towards
the use of ICT and AI technologies can be summarized as
cybercrime, computer crime, and AI crime [10,11,32].

Digital twins and cybersecurity can be characterized into
two different but related perspectives such as “DT for cyber-
security” which is about DT technology as a tool or solution
to enhance cybersecurity resilience in a system or organi-
zation [33]. This means leveraging the capabilities of DT
technology to simulate, model, and analyze potential cyber
threats, vulnerabilities, and attack scenarios to proactively
identify and mitigate cybersecurity risks. Another perspective
could be “Cybersecurity for DT”, which is about implement-
ing cybersecurity measures to protect DT environments from
potential cyber threats [34]. This means implementing appro-
priate cybersecurity controls, practices, and technologies to
safeguard the digital twin environments from potential cyber
threats, such as unauthorized access, data breaches, or other
malicious activities. To mitigate today’s cyber threats, indus-
tries, and businesses need to move towards a more proactive
and predictive approach, which can be achieved by using
digital twins. As mentioned earlier, DT has the such capability
to provide organizations with better decision-making insights
to enhance the cybersecurity resilience of their infrastructure.
However, it is also crucial to ensure the security of DT itself
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Alcaraz et al. [2], 2022 x ✓* x x x x x x * ✓ An extensive study on security threats in digital twin

Rathore et al. [19], 2021 x x x x x x * x * ✓ Exploring AI, ML, big data in digital twin

Kaloudi et al. [10], 2020 x x ✓ ✓ x x x ✓ * * Presented AI-based cyber threat landscape

Hu et al. [20], 2022 x x ✓ ✓ x x x ✓ * * Presented AI-threats and countermeasures

Kaur et al. [21], 2022 x x x x ✓ x ✓ x ✓ ✓ Presented a review on trustworthy AI

Guidotti et al. [14], 2018 x x x x ✓ x x x * * Presented a brief summary of XAI for black box systems

Kuzlu et al. [22], 2021 x x ✓ ✓ * x x ✓ * * Explored the role of AI in the IoT cybersecurity

Samtani et al. [23], 2020 * x ✓ ✓ * x x ✓ * * Offered a multi-disciplinary AI for Cybersecurity

Alazab et al. [24], 2021 * x * * x x x * ✓ ✓ An extensive study on federated learning for cybersecurity

Dwivedi et al. [15], 2021 x x x x ✓* x ✓ * * * An extensive study on XAI techniques and tools

Arrieta et al. [25], 2020 x x x x ✓ x ✓ x ✓ ✓ Presented an extensive study on XAI

Capuano et al. [16], 2022 x x * ✓ ✓ ✓ * ✓ * * Presented an extensive study on XAI in cybersecurity

Seale et al. [26], 2022 x x * ✓ ✓ ✓ ✓ * * * Exploring X-IDS methods in cybersecurity

Rawal et al. [27], 2022 x x x x ✓ x ✓ x ✓ ✓ Presented recent advances in trustworthy XAI

Charmet et al. [28], 2022 x x * ✓ * * * x * ✓ A study on XAI in cybersecurity

Ahmed et al. [29], 2022 x x ✓ ✓ ✓ x * x ✓ ✓ Presented a study form AI to XAI in Industry 4.0

Ibrahim et al. [13], 2023 x x x x ✓ x ✓ x ✓ ✓ Presented Explainable CNN focused XAI

Saeed et al. [30], 2023 x x x x ✓ x ✓ x ✓ ✓ Presented a systematic meta-survey on XAI

This paper (Sarker et al.) ✓* ✓* ✓* ✓* ✓* ✓* ✓* ✓* ✓* ✓* An extensive study on AI/XAI for cybersecurity
focusing diverse cyber issues in DT, taxonomies,
multi-dimensional cyber usage scopes, challenges
research directions from the perspective of Cyber
AIT (Automation-Intelligence-Trustworthiness).

Symbol Used: High Coverage (✓*), Mid Coverage (✓), Low Coverage (*) and No Coverage (x).
to protect against cyber threats that could compromise the
integrity and effectiveness of the DT system and the physical
counterpart it represents, discussed briefly in Section 3.

2.3. AI-enhanced cybersecurity in digital twin

The widespread usage of DTs raises several concerns about
cybersecurity that need to be addressed to utilize the full po-
tential of DT in our real-world application areas. AI-enhanced
cybersecurity plays a critical role in protecting digital twin
environments from cyber threats, and making the systems
automated and intelligent. In Section 1, we defined these key
terms automation, intelligence as well as trustworthiness. AI
is typically involved with training machines to think in such
a way that requires intelligence to enable machines to carry
out certain jobs. AI systems can be of different types like an-
alytical, functional, interactive, textual, and visual depending
on the nature of the problem and data [9,18]. Similar to deep
learning taxonomy, presented by Sarker et al. [35], AI can also
be categorized into generative, discriminative, and hybrid by
taking into account the modeling type and outcome, defined
below -

• Generative AI — typically focuses on modeling the
underlying data distribution and generating new content
or data accordingly, e.g., to generate realistic synthetic
data, simulating attacks, etc.

• Discriminative AI — typically focuses on finding a de-
cision boundary given a set of input features and to
939
classify or predict the output for new data points accord-
ingly, e.g., intrusion or anomaly detection, identifying
suspicious activities, etc.

• Hybrid AI — typically focuses on solving more complex
problems that require both generative and discrimina-
tive approaches, e.g., incident response by identifying
the source and nature of a cyber attack and generating
responses to mitigate.

The choice of which approach to use depends on the
specific task and the nature of the data involved. For exam-
ple, a hybrid cyber model could use a generative model for
anomalous patterns of network traffic, and a discriminative
model to classify the type of attack that is being carried
out. Machine learning techniques including deep learning are
broadly used in such AI modeling processes which typically
allow computers to automatically learn from data and to solve
a particular cyber issue [36,37]. Thus, the cybersecurity as-
pects of a DT can be enhanced and automated using AI.
In our context of study the term “Explainable” focuses on
high-performance AI models with the capability of human-
understandable decision-making. Researchers often use the
terms “explainability”, “interpretability”, “trustworthy”, “reli-
ability”, and so on interchangeably in different contexts. This
can also be considered as the foundation of “Responsible AI”
aiming to ensure that AI technologies are developed and used
in ways that benefit individuals, communities, and society as a
whole. Hence, we broadly take into account these phrases as a
problem under the category of explainable AI. Various types of
AI techniques for cybersecurity modeling and their explainable
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apabilities within the context of our study are discussed in
ection 4.

.4. Related surveys and study scope

The development trend of the DT research is growing
apidly highlighting the formation stage, incubation state, and
rowth stage [38]. A comparison of related surveys is pre-
ented in Table 2. We base our position on ten relevant key
spects, as shown in Table 2. The scope of the study and the
ontributions of our work are then highlighted by a comparison
ith earlier surveys from the viewpoint of these key aspects.
hree main attributes are used in this survey, i.e., AI, cyberse-
urity, and digital twins. Thus, we mainly use a combination of
he search keywords “Cybersecurity”, “Artificial Intelligence”,
AI”, “Explainable AI”, “Machine Learning”, “Data Science”,
Digital Twin” etc. while searching relevant papers. Peer-
eviewed scientific journals, conferences, and books published
etween 2010 and 2024 are taken into consideration. In terms
f databases, we consider several popular repositories such as
Google Scholar”, “Science Direct”, “Springer Nature”, “Sco-
us”, “ACM”, and “IEEE Explore”. Through our review of the
rticles’ abstracts, introductions, discussions, and conclusions,
e assess the paper’s relevance to our study in this paper.
ventually, we have listed 142 papers to support our study,
8 of which are survey papers comparing our study listed
n Table 2. Some surveys concentrate on DT but have no
xploration to do with AI-enhanced cybersecurity [1,2,17]. For
nstance, Barricelli et al. [1] present a DT survey focusing on
efinitions, characteristics, applications, and design implica-
ions. Alcaraz et al. [2] analyze the current state of the DT
aradigm and their associated security threats. Wagg et al. [17]
resent the state-of-the-art prospects of DT for engineering dy-
amics applications. Similar to this, some surveys concentrate
n AI but ignore the potential of trustworthiness in decision-
aking [12,19]. For instance, Rathore et al. [19] present a

eview of the role of AI, machine learning, and big data in
igital twinning. Some surveys like [14,16,29] concentrate on
AI methods, particularly focusing on black-box modeling.

n addition to black-box modeling, some other works have
een conducted with additional techniques in the context of
ybersecurity [39]. In general, the choice between black box
nd white box models depends on the application’s specific re-
uirements, including transparency, interpretability, accuracy,
nd regulatory compliance. A list of related works and their
ey objectives can be found in Table 2. The lack of a compre-
ensive study of AI/XAI-based modeling in cybersecurity and
T motivates us to conduct this survey. Thus, we begin with a
ariety of security concerns in DT in our paper. Following that,
e provide a thorough analysis of several AI/XAI techniques

or cybersecurity modeling using a taxonomy that includes
heir explicable features. This can help analysts and security
pecialists identify potential threats and anomalies, understand
ow the system functions, and ultimately determine the best
ath to take. We also go over the potential applications of
I/XAI-based techniques in various cyber domains within

he context of DT. We conclude by highlighting the research
940
challenges that have been identified and suggesting possible
study avenues for further cyber research and development in
DT. We cover all ten key aspects, including CyberAIT, which
makes our survey unique compared with other studies in this
emerging field.

3. Cybersecurity resilience and threats in digital twin

Digital twins can be used to improve cybersecurity re-
silience, but it is also important to consider the potential
security threats that may arise in digital twin systems [34].
To explore this, we first formulate two questions “How does
digital twin enhance cybersecurity resilience using AI?” and
“What are the potential security threats of digital twin, and
how AI can help to address these issues?” In this section, we
answer these two questions and discuss the need and potential
of AI to address this.

3.1. Enhancing cyber resilience

Digital twin technology can enhance cybersecurity resi-
lience by providing a virtual representation of a physical
system or object, which can be used for testing, monitoring,
and analysis of cybersecurity threats [33]. Hence we summa-
rize how digital twin technology can enhance cybersecurity
resilience using AI technologies:

• To simulate cyber attacks and test the security of a
system before it is deployed. AI-based algorithms can
be used to create realistic attack scenarios and test the
effectiveness of cybersecurity measures. By analyzing
large amounts of data in real-time, AI algorithms can
identify anomalies and potential security threats more
quickly and accurately than human analysts [36].

• To monitor physical systems in real-time, providing early
warning of cyber attacks or anomalies. AI algorithms can
be used to analyze data from sensors and identify patterns
that may indicate a security breach.

• To analyze historical data and predict future security
threats using AI technologies through identifying pat-
terns and trends. This can enable organizations to take
proactive measures to prevent cyber attacks before they
occur.

• To automate incident response, enabling digital twins
to quickly and effectively respond to security threats.
For example, AI-powered digital twins can automatically
isolate compromised devices, block malicious traffic, and
implement security protocols to prevent further damage.

• To simulate and analyze user behavior, providing data to
train AI models to detect anomalous user behavior that
may indicate a security threat. This can help organiza-
tions detect insider threats and prevent data breaches.

• To create intelligent access control systems that can
authenticate and authorize users based on their behavior,
location, or other factors, to prevent unauthorized access.
AI algorithms can be used to detect anomalies in user

behavior and alert security personnel.
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Overall, AI can play a crucial role in strengthening cy-
ersecurity resilience in digital twins. By leveraging machine
earning algorithms and other AI technologies, discussed in
ection 4, organizations can improve threat detection, vulner-
bility assessment, incident response, predictive maintenance,
nd access control, ensuring the integrity and safety of their
igital twin environments.

.2. Security threats in the digital twin

Digital twin technology provides many benefits, such as
nhanced system monitoring, predictive maintenance, and op-
imization, but it also poses significant security risks or threats
2,34]. According to [40], a security threat can be defined as
a set of circumstances that has the potential to cause loss
r harm”. In this section, we explore the possible threats of
igital twins considering the layer-by-layer architecture of a
igital twin. Motivated by our earlier paper Sarker et al. [41]
nd Alcaraz et al. [2], we take into account the 4-layered
rchitecture of a digital twin and their associated security
ssues in the following.

.2.1. Physical layer
The physical layer of a digital twin refers to the hardware

nd infrastructure that make up the physical environment of
he digital twin. This includes sensors, actuators, communi-
ation networks, and other physical devices that are typically
sed to collect and transmit data to the digital twin [1]. Some
ommon security threats in the physical layer of digital twins
nclude physical attacks that can include theft, tampering,
r sabotage of the physical system or its components [2,
2]. For example, an attacker could tamper with sensors or
ther critical components of the system, causing inaccurate
ata to be generated and potentially leading to erroneous
ecisions. Similarly, malfunctioning hardware components can
ause inaccuracies in sensor readings or other data, leading
o erroneous decisions. Environmental factors, such as tem-
erature, humidity, and electromagnetic interference, can also
ose a threat to physical systems. In addition, malicious code
an be introduced into the physical system through infected
oftware, firmware, or hardware. Attackers may use malicious
ode to gain unauthorized access to the system, steal data, or
isrupt its operations. Thus, security threats to the physical
ayer of a digital twin can have serious consequences, as they
an result in physical damage, loss of data, and disruption of
perations. AI-based solutions, discussed in Section 4 can be
sed to detect and prevent such security threats by monitoring
nd analyzing sensor data, diagnosing hardware failures, mod-
ling the effects of environmental factors, and detecting and
reventing cyber attacks on the physical system. For example,
nomaly detection using machine learning algorithms [43,44]
an be used to identify unusual behavior in control systems or
nexpected changes in sensor readings that deviate from the
orm as potential attacks.

.2.2. Data and communication layer
The data and communication layer of a digital twin typ-
cally facilitates the exchange of data between the physical
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system and the digital twin, as well as between different
components of the digital twin. Security threats in this layer
can arise from various sources, including data breaches, cyber
attacks on communication channels, and unauthorized access
to the digital twin. For example, data breaches can occur when
sensitive data is accessed or stolen by unauthorized parties.
Malware and viruses can infect the data and communica-
tion layer of a digital twin, compromising the integrity and
availability of data. Similarly, insider threats can occur when
authorized users misuse their access to the digital twin, either
intentionally or unintentionally. AI-based solutions, discussed
in Section 4 can be used to detect and prevent security threats
in the data and communication layer of a digital twin by
monitoring network traffic, identifying suspicious activity, and
flagging potential threats. For example, machine learning al-
gorithms [43,44] can be trained to detect unusual patterns of
data access or data transfer by authorized users or to detect
unusual patterns of network traffic that may indicate malware
or virus activity.

3.2.3. Digital and analytical layer
The digital and analytical layer of a digital twin typically

monitors physical twin behavior, performs data analysis, and
generates insights and recommendations based on the data
received from the physical counterpart. Security threats in this
layer can arise from various sources, including data tampering,
model poisoning, and algorithmic bias. For example, data
tampering can occur when data is modified or deleted by
unauthorized users, resulting in inaccurate analysis and faulty
recommendations. Similarly, model poisoning can occur when
attackers manipulate the training data or the machine learning
algorithms used to generate insights and recommendations,
resulting in biased or inaccurate results [45]. Algorithmic bias
could be another issue that can occur when AI algorithms
used to generate insights and recommendations are biased
against certain groups or individuals, resulting in unfair or
discriminatory outcomes. In addition, adversarial attacks can
occur when attackers attempt to manipulate the input data
to mislead or confuse the machine learning algorithms, re-
sulting in inaccurate or misleading results [46,47]. AI-based
solutions, discussed in Section 4 can be used to detect and
prevent security threats in the digital and analytical layer of
a digital twin by monitoring data integrity and data access,
detecting anomalies in the input data and the output results,
and preventing algorithmic bias and adversarial attacks. For
example, machine learning algorithms [43,44] can be trained
to identify patterns in sensor data and adjust the parameters of
the digital twin’s models to improve accuracy.

3.2.4. User and application layer
The Application Layer of a digital twin is responsible for

providing the user interface and functionality for interacting
with the system. Security threats in this layer can arise from
various sources, including phishing attacks, unauthorized ac-
cess to user accounts, and vulnerabilities in the user interface.
For example, insecure user accounts can be compromised
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Fig. 4. Major AI technologies for automation and intelligent decision-
making in the context of cybersecurity.

through weak passwords or social engineering attacks, allow-
ing unauthorized access to the digital twin. Phishing attacks
are a common form of social engineering that trick users into
providing sensitive information, such as login credentials or
financial information [48,49]. Similarly, vulnerabilities in the
user interface can occur when attackers exploit weaknesses
in the design or implementation of the user interface. Thus,
security threats to the application layer of a digital twin can
compromise the confidentiality, integrity, and availability of
data, as well as the functionality of the system. AI-based
solutions, discussed in Section 4 can be used to detect and
prevent security threats in the user and application layer of a
digital twin by monitoring user behavior, detecting anomalies
in application behavior, and preventing unauthorized access to
resources. For example, machine learning algorithms [43,44]
can be trained to detect discrepancies between the digital
twin’s outputs and the actual physical system’s behavior or to
identify unusual patterns of application usage.

Overall, by integrating AI-based solutions, as discussed
briefly in Section 4 into the digital twin systems, cybersecurity
can be improved, and the accuracy and reliability of the digital
twin can be enhanced.

4. AI/XAI methods and taxonomy

In this section, we explore multi-aspects AI/XAI methods
that are useful for cybersecurity modeling in DT and build
a taxonomy accordingly, as shown in Fig. 6. To achieve th-
is goal, we first summarize and discuss the potentiality of
diverse AI methods (Section 4.1) and then discuss their ex-
plainable capabilities (Section 4.2) from different perspectives.
Several popular techniques and their potential applications in
cyberspace are outlined in Table 3.
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Fig. 5. Machine learning taxonomy highlighting major learning categories
used for self-learning cyber automation and intelligence.

4.1. AI methods for cybersecurity modeling

In cybersecurity modeling, artificial intelligence offers ad-
vanced techniques for threat detection, risk assessment, ano-
maly detection, and incident response. To comprehend the
potential of diverse AI methods, we first classify them into
six key categories based on their working principles that
can be used for cybersecurity models, as depicted in Fig. 4.
The following subsections discuss these methods, emphasizing
their potential to make cybersecurity systems automated and
intelligent.

4.1.1. Machine learning
The rapid growth of data generated by digital systems

and the complexity of threats are making traditional methods
of detecting and preventing cyberattacks less effective. ML,
a core component of AI, has the potential to automate the
process of detecting and responding to threats, as well as
provide more effective and efficient cybersecurity solutions,
including intrusion detection, spam detection, malware detec-
tion, fraud detection, and user behavior analytics [44,64,65].
A key advantage of machine learning in cybersecurity is its
ability to analyze vast amounts of data gathered from network
traffic, user behavior, and system logs to identify patterns
and anomalies that may indicate a potential security threat,
which cannot be done manually by humans. In a broader
perspective, learning can be supervised (task-driven), unsuper-
vised (data-driven), and reinforcement (environment-driven)
as shown in Fig. 5. Semi-supervised could be another type
combining supervised and unsupervised learning. These can
be used in various cyber application areas depending on the
problem nature and availability of data [66]. For instance,
Cui et al. [67] demonstrate ML-based methods, e.g., k-means
clustering, and naive Bayes classification with Monte Carlo
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Fig. 6. A taxonomy of AI/XAI based methods for cybersecurity modeling.
simulation, to detect anomalies for load forecasting under
cyberattacks. A decision tree-based intelligent intrusion detec-
tion system has been discussed in [68]. Heartfield et al. [69]
present a self-configurable cyber–physical intrusion detection
system for smart homes using reinforcement learning. A tree-
based model has been presented in [70] for online diagnosis
services and in [71] for stealthy cyber-attack detection in
smart grid networks. Similarly, a variety of use cases using
machine learning techniques and their potential for security
modeling have been summarized in [43]. Based on the data
and modeling variations, different categories of ML modeling
are used to solve cyber issues. For instance, Alazab et al. [24]
highlight the potentiality of federated learning in cybersecurity,
which enables different devices to learn a collaborative ML
model. An active learning-based XGBoost model for cyber–
physical system against generic false data injection attacks
has been presented in [65]. However, the key challenge is
to ensure the availability of high-quality and labeled data for
training ML models, especially considering the complexity
943
and diversity of cyber threats. In the context of adversarial
machine learning, robust models are designed to withstand
adversarial attacks such as intrusion detection system evasions
or data poisoning attacks [31]. Overall, ML methods and their
variations could be one of the most promising tools for future-
generation cybersecurity systems, particularly when focusing
on self-learning automation and intelligent decision-making in
DT environments.

4.1.2. Neural networks and deep learning
Deep learning (DL), is a subset of a larger family of

ML that uses multiple layers to gradually extract higher-
level features from the raw input, and can also be leveraged
for cybersecurity modeling in DT environments. DL specifi-
cally neural networks with multiple hidden layers, can learn
complex patterns and representations from large amounts of
data, to identify patterns and make predictions, which can
be valuable for cybersecurity in digital twin systems. DL
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S

able 3
ummary of Various AI/XAI-based Methods Used in the Context of Cybersecurity Applications.

Broad area Cyber
applications

Methods used Explainabil-
ity

Main contributions

EAI/ML [50] Intrusion
Detection

Gini Index, DT Whitebox To build a generalized IntrudTree with the
top-ranked security features

AI/ML [36] Anomaly
Detection

Pearson correlation,
DT, RF, XGB, ANN, etc.

– Detecting cyber-anomalies and multi-attacks
with feature importance

EAI/ML [51] Intrusion
Detection

Classifier, SHAP Global,
Local

A framework to improve the interpretation
of IDSs

EAI/ML [52] Fraud Detection LR, Autoencoder, NN,
LIME, SHAP, etc.

Global Exploring explainability methods for runtime
tradeoffs on supervised and unsupervised models

EAI/ML [53] Anomaly
Detection

One Class SVM, DT,
K-Means, Rules

Model-
agnostic

To explain the anomalies detected by an
unsupervised OCSVM ML model through rules

EAI/ML [54] Intrusion
Detection

DT,
Human Expert Rules

Whitebox,
Rule-based

To propose a rule-based interpretable and
explainable hybrid intrusion detection system

EAI/ML [55] Malware
Detection

LR, DT Whitebox To propose a hardware-assisted malware detection
framework using explainable machine learning

EAI/DL [56] Phishing
Detection

Faster-RCNN,
Transfer Learning

Visual To design a hybrid deep learning system for
phishing identification

EAI/DL [49] Phishing Threat
Intelligence

Attention mechanism,
Multimodal

Visual Designing a multi-modal hierarchical attention
model for phishing website detection.

EAI/DL [57] Malware
Detection

MLP, NLP, Semantic Rule,
Attention mechanism

Textual,
Expert
Analysis

Designing a ML-based approach to interpret
the core malicious behaviors within apps.

EAI/DL [58] Malware Family
Identification

Deep Learning Visual Designing an interpretable deep learning model
for mobile malware and family identification.

AI/DL [48] Phishing
detection

K-medoids, DT, Searching,

Optimal Features, ANN

– Designing a NN phishing detection model based
on decision tree and optimal feature selection.

AI/DL [59] IoT Threat
detection

NLP, TFIDF, LogTF,
CNN

– Designing combined DL approach to detect the
pirated software and malware-infected files
across the IoT network

AI/DL [60] Botnet detection Fuzzy rules,
ANN

– Designing a fuzzy logic based feature engineering
method for botnet classification

EAI/DL [61] Botnet traffic
detection
and classification

CNN, SHAP Model
agnostic,
Global

Designing a DL model for botnet detection and
classification with decision explanation

EAI/ML [62] Twitter bot
detection

Ensemble, LR, CART,
MLP,
AdaBoost, RF, LIME

Visual Designing a ensemble ML approach for
explainable and multi-class bot detection

EAI/ML [63] Cyber–physical
systems

SOM, ANN, Histograms,
U-Matrix, Heat map

Global,
Local

Designing an explainable unsupervised machine
learning for cyber–physical systems
can be categorized into generative (e.g., GAN), discrimina-
tive (e.g., RNN), and hybrid modeling, discussed briefly in
Sarker et al. [35] and have many potential security applica-
tions. For instance, Lv et al. [72] utilized DL-based methods,
i.e., CNN-SVR, to solve the security problems of the coop-
erative intelligent transportation system in digital twins. Luo
et al. [73] discussed various aspects of deep learning-based
methods (i.e., DNN, CNN, LSTM) to identify anomalies in
cyber–physical systems and ensure the security of CPS. An in-
terpretable deep learning model for mobile malware detection
and family identification has been presented in [58]. Danilczyk
et al. [74] present a smart grid anomaly detection method using
a deep learning (CNN) digital twin that can classify the faults
with over 95% accuracy. A deep RNN-based approach for IoT
944
malware threat hunting approach has been presented in [75].
DL techniques in cybersecurity are advantageous because they
can learn from large volumes of data and identify complex
patterns that traditional approaches may overlook. However,
much attention might be needed to ensure the effectiveness of
the DL model and avoid potential biases or false positives in
DT environments.

4.1.3. Rule mining and expert system modeling
Typically, knowledge mining involves extracting insights,

patterns, and relationships from large volumes of data [9]. An
important part of knowledge mining is rule mining, which
is used to find interesting relationships between variables in
large datasets. Using discovered knowledge or rules and expert
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ystems in cybersecurity modeling allows for enhanced threat
etection and mitigation. In rule mining, patterns, and cor-
elations are automatically discovered in vast datasets, which
an be used to identify vulnerabilities and malicious behavior.
ased on these rules, an expert system can be constructed that
mulates the decision-making capabilities of human cyberse-
urity experts. To discover rules, Sarker et al. [11] explored
taxonomy of diverse methods such as knowledge-based ap-

roach, i.e., based on human expertise, data-driven approach,
.e., extracting insights or useful knowledge from data, and
heir ensembles. Different types of rules can be discovered
epending on the data nature and the target cyber solution. For
xample, association rules [76] can be employed to identify a
orrelation between certain user behaviors and the likelihood
f a security breach. Similarly, classification rules [77] can
e used to identify the type of malware that is present on a
etwork and to determine the appropriate action to take to
itigate the threat. In addition, fuzzy rules [78,79] and belief

ules [80,81] based modeling can be used to handle uncertainty
nd imprecision in data. For instance, a fuzzy rule could be
sed to detect network traffic that is slightly anomalous but
ot necessarily indicative of a specific attack. Similarly, a
elief rule could be used to determine the likelihood that a
articular security event is a false positive, based on the level
f confidence in the detection algorithm and other relevant
actors. By using rule-based modeling, security analysts can
etect and respond to threats more effectively and find the
oot cause of such threats for proactive solutions. Through
ontinuous learning and adaptation, rule mining and expert
ystems enhance the resilience and security posture against
volving cyber threats. However, a balance between rule com-
lexity and interpretability is crucial to effective cybersecurity
ecision-making. Thus, much attention is needed while design-
ng innovative algorithms by taking into account essential rule
roperties such as completeness, non-redundant, conflict-free,
eneralization, and eventually higher accuracy [11] to solve a
articular cybersecurity issue.

.1.4. LLM and multimodal intelligence modeling
The Large Language Modeling (LLM) approach has signif-

cant potential for revolutionizing cybersecurity modeling by
arnessing advanced natural language processing (NLP) [9].
he use of NLP typically facilitates the identification of po-

ential vulnerabilities and suspicious activities by extracting
aluable insights from unstructured text data, such as se-
urity logs, incident reports, and threat intelligence feeds.
LMs enable deeper semantic understanding and contextual

easoning by understanding and generating human-like text.
he use of LLMs can allow cybersecurity systems to effi-
iently sift through vast amounts of unstructured data, identify
ubtle indicators of malicious activities, and make better-
nformed decisions in real time. However, much attention is
eeded to take into account diverse issues, e.g., data poisoning,
ne-tuning, and trustworthiness in different phases, such as
re-modeling, in-modeling, and post-modeling summarized by
arker et al. [82]. To generate a comprehensive understanding
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of potential threats, multimodal intelligence refers to the abil-
ity to process and integrate cyber information from various
modalities in DT environments, such as text, images, audio,
and sensors, rather than relying solely on one type of data. For
example, a cybersecurity model may analyze network traffic
data, e.g., text, and detect patterns of suspicious activities in
DT. It may also analyze images from security cameras and
detect unusual behavior or identify individuals who are not
authorized to be on the premises. Similarly, by analyzing both
the content of emails and the network traffic associated with
those emails, a system can more accurately detect and prevent
phishing attempts. A variety of machine learning, statistical,
and NLP techniques are used in textual analytics to extract
insights and patterns from massive amounts of unstructured
text [31]. For instance, NLP techniques (word embedding
GloVe + CNN) are used to prioritize vulnerabilities based
on their description [83]. Similarly, visual analytics extracts
insights from images or visual data. Chai et al. [49] present
an explainable multi-modal hierarchical attention model by
taking into account both the textual and visual information
for developing phishing threat intelligence. Thus, by analyzing
data from multiple modalities simultaneously, an AI system
can identify patterns that might not be visible with a single
modality and improve the accuracy of its predictions and
alerts. Although getting access to diverse datasets in DT is a
challenging issue, incorporating multimodal intelligence into
cybersecurity modeling can lead to more effective and efficient
detection and prevention of cyber threats.

4.1.5. Semantic knowledge representation and reasoning
By encoding domain-specific knowledge and facilitating

intelligent decision-making, semantic knowledge representa-
tion and reasoning offer a robust framework for advancing
cybersecurity modeling. Using semantic technologies such as
ontologies, i.e., formal representations of knowledge within a
specific domain, and knowledge graphs, i.e., structured repre-
sentation of knowledge that captures entities, their attributes,
and the relationships between them, enabling rich data integra-
tion and analysis, cybersecurity models can capture intricate
relationships among threats, vulnerabilities, assets, and defen-
sive measures. These semantic techniques are used in various
application areas such as security monitoring [84], malware
analysis [85] etc. For instance, a semantic knowledge graph
might represent the relationships between different actors, such
as threat actors, organizations, and malware families. By repre-
senting this information in a structured format, cybersecurity
professionals can analyze and reason about potential threats
and responses. Wang et al. [86] present a scheme to integrate
knowledge reasoning and semantic data for smart factories
where the reasoning engine analyzes the ontology model with
real-time semantic data. Overall, this structured representation
enables sophisticated reasoning capabilities, allowing models
to infer complex insights, identify potential attack scenarios,
and recommend tailored countermeasures based on contextual
understanding. However, much attention is needed to design
efficient algorithms and scalable inference mechanisms to de-
tect anomalies, identify patterns, and infer actionable insights
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rom large-scale semantic knowledge bases. The use of ma-
hine learning and knowledge or rule mining methods [11]
an augment knowledge graphs through tasks such as entity
inking, node classification, relation extraction, recommenda-
ion, searching, disambiguating, feature engineering, as well
s construction automation, making these applications more
seful and effective.

.1.6. Uncertainty modeling
Due to the inherent complexity and dynamic nature of inter-

onnected systems, cybersecurity modeling within digital twin
nvironments may pose uncertainty issues. These issues arise
rom a variety of sources, including training data, evolving
hreat landscapes, and uncertainties in system behavior and
nteractions. Uncertainty modeling in AI encompasses two
rimary dimensions: data uncertainty and model uncertainty.
ata uncertainty arises from limitations in the quality, quan-

ity, and representativeness of available data, such as noise,
ias, missing values, outliers, incompleteness, and variability
n real-world phenomena. Model uncertainty, on the other
and, refers to the assumptions and limitations inherent in
he algorithms resulting from architectural complexity, param-
ter estimation, and generalization capability. Data uncertainty
an often be addressed through robust preprocessing, data
ugmentation, or statistical methods, but model uncertainty
ften requires more sophisticated approaches. A variety of
echniques are employed to address these different types of
ncertainty, including probabilistic graphical models, fuzzy
ogic, belief functions, Bayesian inference, or Monte Carlo

ethods [87,88]. Models using probabilistic graphical repre-
entations, such as Bayesian Networks, provide a structured
ramework to represent and reason about uncertainties, while
uzzy logic allows for flexibility in working with imprecise
r qualitative data. Conversely, model uncertainty can be mit-
gated through techniques like ensemble learning, dropout
egularization, model calibration, Bayesian model averaging,
nd sensitivity analysis [89], which assess how robust the
redictions of an AI model are under various assumptions
nd parameters. To ensure robustness and trustworthiness in
I systems, it is crucial to balance these two aspects of
ncertainty modeling.

.1.7. Others
In addition to the above key categories of AI methods,

everal other techniques are also useful in the context of cy-
ersecurity modeling. For instance, information fusion, which
s ‘the study of efficient methods for automatically or semi-
utomatically transforming information from different sources
nd points in time into a representation that provides effective
upport for human or automated decision-making’ [90]. Data
an be generated from a variety of sources, such as machines,
hysical environments, virtual spaces, and historical databases,
n digital twin systems [38]. By combining this data, analysts
an identify potential threats more effectively, such as fusion-
ased malware detection [91], intrusion detection [92], etc.
ata generation, modeling, cleaning, clustering, dimension-

lity reduction as well as advanced mining techniques can
946
be included in this process [38,93]. The use of feature en-
gineering to select or create relevant features from raw data
could improve the performance of AI models. For optimizing
security parameters, inventing intrusion detection rules, and
analyzing malware, genetic algorithms could be useful. In
addition, hybrid intelligence, which combines different AI
techniques and methodologies, can be used to solve a range
of problems. The combination of machine learning algorithms
with expert systems or rule-based systems is one example of
hybrid intelligence in cybersecurity modeling [31]. Machine
learning algorithms can identify patterns and anomalies that
may not be immediately apparent to human analysts, while
expert systems or rule-based systems can incorporate domain-
specific knowledge and rules to identify potential threats that
might not be identified by machine learning algorithms alone.
Another example could be the combination of supervised
and unsupervised learning techniques [66]. Similarly, different
methods such as LLM, semantic knowledge, visual analytics,
and machine or deep learning can be integrated to produce
an output depending on available data and target solution. For
instance, Garrido et al. [84] present machine learning-based
knowledge graphs for security monitoring. Piplai et al. [85]
use fusion, NLP (named entity recognition, word2vec, TF-IDF
score, etc.), and neural networks to create their knowledge
graph for malware analysis utilizing action reports. Qaisar
et al. [91] present a multimodal information fusion for An-
droid malware detection using lazy learning. Overall, hybrid
intelligence could be a valuable approach that can enhance
the effectiveness of cybersecurity modeling by leveraging the
strengths of different AI techniques and methodologies.

In summary, these AI methods, discussed above are often
used in combination to tackle real-world problems, and the
choice of technique depends on the specific task and the nature
of the available data. The incorporation of these AI methods
with their explainability analysis into cybersecurity modeling
can enhance the effectiveness of organizations in detecting,
mitigating, and responding to cyber threats.

4.2. XAI methods for cybersecurity modeling

In this section, we discuss XAI methods from different
perspectives highlighting the explainable capabilities of AI
methods discussed earlier. To comprehend XAI methods for
cybersecurity modeling, we classify them into five categories,
discussed in the following subsections.

4.2.1. Explainability based on model transparency
This category of interpretability is based on how the model

is transparent in terms of its architecture such as glass or
white-box and black-box modeling, depending on the specific
needs of the application. White-box models are typically trans-
parent models, such as decision trees or rule-based systems
explored by Sarker et al. [11], i.e., the internal structure and
decision-making process of the models are transparent and
interpretable. These models can be particularly useful in cyber-
security for explaining how specific security policies or rules
are being enforced. For instance, Sarker et al. [50] present
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tree-based machine learning model for intrusion detection,
here the anomaly detection rules are generated by traversing

rom root node to leaf which is human-understandable. The
ransparency of white-box models makes them ideal for use
ases where the ability to understand and explain decision-
aking is essential. However, the problem with white-box
odeling is that it may not be employed to work with complex

ependencies that have a lot of parameters. Thus, black-
ox models, such as deep neural networks [35] may include
illions of parameters, and can be used to detect patterns
nd anomalies in large datasets, such as network traffic or
ser behavior logs. For instance, Luo et al. [73] presented a
urvey of deep neural network learning-based anomaly detec-
ion in cyber–physical systems. However, these models can
e difficult to interpret and understand, making it challenging
o determine why a particular decision was made. Decisions

ade in cyberspace without clear justifications are generally
uite impractical due to the trustworthiness issues [9]. To
ake black-box models more transparent, XAI techniques

uch as sensitivity analysis, feature importance, and model
isualization can be used to reveal how the model is making
ts decisions. For example, feature importance [36] can show
hich network traffic features are having the most influence
n the model’s output, while model visualization can provide

graphical representation of the decision-making process.
t might be worthwhile to trade off white-box and black-
ox modeling according to the requirements [9]. Overall, the
hoice between black box and white box models depends
n the application’s specific requirements, including trans-
arency, interpretability, accuracy, and regulatory compliance,
ay differ application to application.

.2.2. Explainability based on model specificity
Depending on how the model is specific or agnostic, this

nterpretability strategy is taken into account. Model-specific
echniques such as decision trees, SVM, XGBoost, linear
egression, etc. [66] are designed to provide explanations for a
pecific machine-learning model. A model-specific XAI tech-
ique is useful for understanding and explaining the decisions
ade by a specific model. Transparency and trust can be

ncreased in the decision-making process of models using
hese techniques. The model-agnostic approach, on the other
and, provides explanations that apply to any machine learning
odel, regardless of its architecture or algorithm. Examples

f model-agnostic XAI techniques include LIME and SHAP
hich are employed for fraud detection [52] and Botnet traffic
etection [61] respectively. A wide range of machine learning
odels can benefit from these techniques, which can help

dentify which features of the input data are most significant
or a given decision. XAI with model-agnostic techniques is
seful when the goal is to understand and explain decisions
ade by any machine learning model, rather than a specific
odel. Model specific approaches depend on a certain model

tructure, e.g., a specific architecture of CNN, whereas model
gnostic techniques function with any type of ML model [94].
lexibility is a key advantage of model-agnostic interpretation

echniques over model-specific ones. However, these methods
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are typically less accurate as they simply use the input and
output to explain the behavior of the models while model-
specific approaches rely on the characteristics of the particular
methods or models.

4.2.3. Explainability based on information type
This category of interpretability techniques is dependent on

the form in which explanation data is presented. It might in-
volve visual explanation techniques, such as heatmaps, charts,
graphs, etc., that generate images or plots to illustrate the
model’s decisions. In particular, dimensionality reduction, clus-
tering, classification, and regression analysis play a significant
role in the interpretation of the machine learning algorithm.
For instance, Wickramasinghe et al. [63] use visualization
methods like Histograms, Heat Maps, and U-Matrix (Unified
Distance Matrix) to visualize how the feature values change
across clusters for their ML-based cyber–physical systems.
Szafron et al. [95] visualized the classifier decisions and the
supporting data for these decisions using a straightforward
graphical explanation to explain the naı̈ve Bayesian, linear
support vector machine, and logistic regression classification
process. Textual explanation techniques generate natural lan-
guage text to interpret the decisions [96]. For instance, Wu
et al. [57] present a method that generates an understandable
natural language description to interpret the malicious behav-
iors of Android apps. Mathematical explanations or numerical
scores could be another format for providing more detailed
explanations for the overall findings [97]. For instance, a linear
classifier is fitted to the intermediate layers to track the features
and assess how well-suited they are for classification.

4.2.4. Explainability based on usage realm
This category of interpretability is dependent on the usage

realm such as global, cohort, and local model explainability
depending on the characteristics of the model. Global model
explainability aims to provide an overall understanding of
how an AI model works such as Permutation Importance and
SHAP [61,94]. It involves analyzing the model’s architecture,
training data, and parameters to identify the most relevant
features that contribute to the model’s outcome. This can help
identify the most critical attack vectors and the most important
indicators of compromise in the context of cybersecurity. On
the other hand, local model explainability focuses on under-
standing how an AI model makes specific outcomes such as
LIME [52,94]. It involves analyzing the model’s decision-
making process for a particular input, such as a network packet
or a log file. This can help identify the specific features that
triggered the model’s decision, which can be useful for investi-
gating suspicious activities or validating the model’s output. A
study by Wang et al. [51] demonstrated in their experimental
analysis that local explanations explain why models make
certain decisions based on inputs, while global explanations
present the relationships between feature values and types of
attacks extracted from IDSs. Another one is cohort model
explainability involves comparing the behavior of an AI model
with that of similar models trained on different datasets or with
different parameters. By analyzing the differences in behavior,
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AI can identify the specific factors that contribute to the
odel’s performance. For cybersecurity applications, cohort
odel explainability can help detect anomalies and outliers

hat may indicate a potential attack or data breach. Overall,
hese explainable capabilities can provide valuable insights
nto the behavior of AI models in cybersecurity applications,
hich can help analysts detect and respond to potential threats
ore effectively.

.2.5. Explainability based on working stages
Explainability can be used at every stage of the AI devel-

pment process and can be divided into three different ways
s Pre-Modeling, In-modeling, and Post-modeling stage [9].
remodel explainability focuses on the data used to train the
achine learning model, which aims to ensure that the training

ata is representative, unbiased, and reliable. By examining
he data used to train the model, analysts can identify po-
ential biases, inconsistencies, or errors that may affect the

odel’s performance and robustness. In-model explainability
pproach involves examining the internal workings of the ma-
hine learning model to understand how it makes predictions
uch as rule-based modeling [98]. In-model explainability
echniques can be used to identify the most important fea-
ures or variables that contribute to the model’s output. This
an help analysts identify potential vulnerabilities, biases, or
rrors in the model’s decision-making process. Thus this can
elp identify potential threats or anomalies in network traffic,
ser behavior, or system logs in the context of cybersecu-
ity. Postmodel explainability involves analyzing the output of
he machine learning model to understand how it performs
n real-world scenarios. For instance, Langone et al. [99]
se a posthoc approach for analyzing anomaly detection and
ehdiyev et al. [100] for predictive analytics. This can be used

o validate the model’s performance, identify potential errors,
r generate insights into the model’s behavior, which can help
nalysts respond more effectively.

.3. Performance analysis and discussion

Depending on the nature of the problem and the data
haracteristics, different methods can potentially be used to
uild AI-based cybersecurity models. Table 3 summarizes
ethods used in various cyber applications, highlighting their

xplainability and contributions. While accuracy on unseen
est cases is an important metric, other metrics can also be used
o assess a model’s effectiveness, such as detection rate, false
ositive rate, false negative rate, error calculation, etc. [11].

For instance, Wang et al. [51] demonstrated their experi-
ental results with accuracy, precision, recall, f1-score, etc.
hile building their explainable machine learning framework

or intrusion detection systems. They achieved ‘accuracy =

0.806’, ‘precision = 0.828’, ‘recall = 0.806’, and ‘f1-score
0.807’ for the one-vs-all classifier, and ‘accuracy = 0.803’,

precision = 0.828’, ‘recall = 0.803’, and ‘f1-score = 0.792’
for the multi-class classifier, utilizing NSL-KDD test dataset.
For explainability analysis, they use SHAP and combine local
and global explanations to improve the interpretation of IDSs.
948
Pan et al. [55] demonstrated their experimental results while
hardware-assisted malware detection and localization using
explainable machine learning. They achieved their highest
results with ‘accuracy = 88.9’, ‘false positive = 5.2’, ‘false
negative = 5.9’, and ‘f1-score = 0.88’ for Decision Tree
modeling, and with ‘accuracy = 97.7’, ‘false positive = 0.9’,
‘false negative = 1.4’, and ‘f1-score = 0.97’ for RNN-LSTM
modeling. Ullah et al. [59] demonstrated their experimental
results while building their cyber security threats detection
model in IoT using a deep learning approach. They achieved
results with ‘accuracy = 97.46%’, and ‘f1-score = 97.44%’
or their deep convolutional neural network (DCNN) model
o detect malicious infections in IoT networks through color
mage visualization. Chai et al. [49] demonstrated their ex-
erimental results while building an explainable multi-modal
ierarchical attention model for developing phishing threat
ntelligence. They achieved results with ‘accuracy = 0.97’,

‘precision = 0.97’, ‘recall = 0.96’, and ‘f1-score = 0.97’ for
their multi-modal hierarchical attention model consisting of
URL, webpage text and images.

In general, the performance of the resulting AI model
depends on the data characteristics, preprocessing, and in-
tended solution. When analyzing the KDD Cup dataset, Sindhu
et al. [101] show that the detection rate is influenced by
the features selected. The accuracy of a system can vary
depending on the features selected and the categorization, such
as binary or multiclass, as described by Sarker et al. [36]. In
certain scenarios, multiple methods can be integrated into one
approach; therefore, the outcome depends on the integration.
Overall, several factors, such as the nature of the problem,
the available data characteristics, the computational resources,
the interpretability requirements, and eventually the specific
project goals, are needed to consider to choose and design an
effective AI model.

5. Real-world usage scopes

In this section, we summarize and discuss the potential
real-world usage scopes of AI/XAI-based cybersecurity mod-
eling in the digital twin, as shown in Fig. 7, from different
perspectives as below.

5.1. Predictive maintenance and proactive solutions

AI-based predictive maintenance can significantly enhance
cybersecurity in a digital twin environment by proactively
identifying and mitigating potential threats. This typically
involves using machine learning and analytics techniques [66,
102] to analyze data from the digital twin and make predic-
tions about potential security threats, vulnerabilities, or risks
that may arise in the future, and eventually recommend preven-
tive measures. For example, a DT may recommend software
updates, network configuration changes, or other security mea-
sures to mitigate the risk of a cyber attack. Thus businesses can
proactively uncover security issues before causing any harm
with predictive analytics, where machine learning algorithms
can be employed. Baryannis et al. [103] present an approach
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Fig. 7. AI/XAI based potential usage scope in the context of cybersecurity.

to predicting supply chain risks using machine learning algo-
rithms (SVM, Decision Trees). Okutan et al. [104] presented
an approach to predicting cyber attacks with Bayesian net-
works using signals drawn from global events and social
media. Fang et al. [105] present a deep learning framework
utilizing the bi-directional RNN with LSTM for predicting
cyber attack rates, which gives better accuracy than statistical
approaches like ARIMA (Autoregressive integrated moving
average). Overall, AI-based predictive maintenance can be a
valuable tool in the context of cybersecurity within a digital
twin, helping organizations to predict and assist in providing
proactive solutions to protect critical systems and data from
being compromised.

5.2. Intrusions or anomaly detection and classification

Identifying patterns and anomalies in logs and traffic can
be accomplished within a digital twin environment by moni-
toring the behavior of the virtual network. Machine learning
algorithms can be used to detect and classify potential threats
and anomalies within a digital twin based on observed patterns
and behaviors. A machine and deep learning algorithm can
be trained on large historical datasets to identify patterns and
relationships in the data [36,50]. Data generated from the
digital twin can then be analyzed in real time and deviations
from the learned patterns detected. Castellani et al. [106]
demonstrate real-world anomaly detection using digital twin
systems and ML techniques (SVM, Isolation Forest, KNN,
PCA, Clustering, CNN-SAE). Balta et al. [107] presented a
digital twin-based framework to detect attacks and anoma-
lies for cyber–physical manufacturing systems, where they
utilize one-class support vector machines (OSVM) to model
normal behavior. Xu et al. [108] present a digital twin-based
949
anomaly detection in cyber–physical systems taking advantage
of unlabeled data and continuously learning at runtime, where
Generative Adversarial Network is used as the backbone of
the framework. Sahingoz et al. [109] demonstrate a phish-
ing detection system using machine learning techniques (DT,
Adaboost, RF, SMO, KNN, NB) as well as various features
such as NLP-based features, word vectors, and hybrid features.
Qiu et al. [110] summarized various uses of deep learning
models (FCN, CNN, RNN, DBN, AE, and hybrid) to detect
Android malware. Kocher et al. [111] summarized various
uses of ML and DL methods for intrusion detection systems.
Shafiq et al. [112] present a malicious Bot-IoT traffic detection
method in IoT networks using machine learning techniques
(DT, NB, RF, SVM). A classification system within the digital
twin can also be used to understand the nature of the threats
and to prioritize their response accordingly. For example,
a classification system might categorize an intrusion as a
brute-force attack, a denial-of-service attack, or a malware
infection [36,43].

5.3. Suspicious activities and behavior analytics

In a digital twin, users interact with the virtual system in
a similar way to how they would interact with the physical
system, which makes behavior analytics important in this
context. Behavior analytics involves using machine learning
algorithms to analyze user behavior and identify patterns or
anomalies that could indicate suspicious activity. For instance,
Vallathan et al. [113] present a suspicious activity detection
approach using deep learning in secure assisted living IoT
environments. Similarly, a hybrid deep-learning-based scheme
for suspicious flow detection has been presented in [114]. The
AI and machine learning algorithms can monitor user activity,
including access to systems and data, network traffic, and other
behaviors that may indicate a potential threat [43]. This can
help organizations detect when a user is attempting to access
resources or data that they do not have permission to access,
or when a user is accessing resources outside of their normal
usage patterns through the power of AI modeling. For exam-
ple, machine learning can be used to analyze employee activity
within a digital twin of an organization’s IT infrastructure and
detect unusual behavior, such as unauthorized access attempts
or data exfiltration. By monitoring user activity, the system can
identify potential insider threats and take appropriate actions
to prevent data theft or other malicious activities. Overall, by
leveraging AI and machine learning algorithms to analyze user
behavior, organizations can identify potential security risks and
take appropriate action in the digital twin.

5.4. Risk assessment and prioritizing threats

Risk assessment and prioritization using AI in the digital
twin has the potential to revolutionize the way organizations
manage risks in their systems, processes, and products. Tra-
ditional risk assessment and prioritization methods can be
time-consuming, and error-prone, and may not take into ac-
count all the variables that could affect the likelihood and
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mpact of a risk. By leveraging machine learning with other
I techniques in the digital twin, organizations can automate

he process of risk assessment and prioritization, enabling
hem to identify potential risks and threats more quickly and
ccurately [37,115]. This can involve using techniques such
s classification, regression, clustering, and natural language
rocessing (NLP) [31,66]. AI algorithms can analyze vast
mounts of data generated by the digital twin to identify
otential attack vectors and generate new attack scenarios, that
ight be missed by human analysts. This can help organi-

ations to better understand the potential risks and prioritize
heir security efforts. For example, several generative AI meth-
ds such as Generative Adversarial Networks (GANs) [116],
ariational Autoencoders (VAEs) [117], Recurrent Neural Net-
orks (RNNs) [118], Transformer models [119] etc. have the

apabilities to process and generate new data and can be used
o create new attack scenarios based on the existing vulnera-
ilities. For instance, Yan et al. [116] presented an architecture
hat automatically synthesizes DoS attack traces using GANs.
dditionally, AI can learn from historical data, enabling it

o make more accurate predictions about future risks and
heir potential impact. Once potential risks are identified, they
an be prioritized based on their severity and likelihood of
ccurrence, which is a crucial factor for decision-making
nd formulation of mitigation plans [120]. Prioritization can
elp organizations focus their resources on the most critical
isks, enabling them to take proactive measures to prevent or
itigate them.

.5. Threat simulation, modeling and optimization of security
trategies

By simulating attacks or threats and examining the impact
n the virtual equivalent of physical twins, digital twins can
ssist enterprise security [121]. AI-based threat simulation
nd modeling can be a valuable cybersecurity application in

digital twin environment. Threat simulation involves us-
ng AI algorithms to simulate various cyber attack scenarios,
hile modeling involves creating virtual representations of the
igital twin and its components to assess vulnerabilities, eval-
ate the effectiveness of cybersecurity defenses, and optimize
ecurity strategies. For example, AI can simulate different
ypes of cyber attacks, such as ransomware attacks, DDoS
ttacks, phishing attacks, or insider threats, in the digital twin
nvironment. These simulations can be based on known attack
atterns, historical attack data, or even generated using AI-
enerated adversarial attacks. Generative AI can be used to
reate realistic simulations of cyber attacks, such as phishing
ttacks or malware infections, and model the behavior of
ttackers in response to different security measures. These
imulations can provide insights into the potential impact
f different attack scenarios, including the propagation of
ttacks, the exploitation of vulnerabilities, and the poten-
ial consequences for the digital twin and its components.
enerative AI is particularly useful when real-world data is

carce or difficult to obtain to simulate different scenarios and
est the effectiveness of different security measures. This can
950
help organizations assess the vulnerabilities of their digital
twin identify potential weaknesses that could be exploited by
real-world attacks and develop more effective cybersecurity
strategies accordingly. Thus AI can optimize security strategies
in the digital twin environment based on the results of threat
simulations and vulnerability models.

5.6. Intelligent access control

The digital twin itself, or a secure entity in direct com-
munication with the digital twin, must ensure that access
control is implemented to all incoming requests [122]. It
includes requests for and exchange of information with third
parties as well as exchange of information with other digital
twins. AI-based access control systems can dynamically adjust
privileges based on risk factors and user behavior. When a
user exhibits behavior that is unusual or potentially dangerous,
access privileges can be automatically restricted or revoked
until the situation is investigated. Heaps et al. [123] pre-
sented a dynamic access control policy generation method
from user stories information using machine learning (Trans-
formers, CNN, and SVM). Nobi et al. [124] conduct a survey
of access control systems using machine learning. AI can
be used to analyze user behavior and determine appropriate
access permissions based on user roles and access policies.
AI can also play a key role in automatically assigning roles
and permissions to users based on their job roles, access
history, and other factors. In addition, AI can assist in dynam-
ically adjusting access permissions based on the context of a
user’s request, such as their location, device type, and time
of day. Overall, AI-based access control in digital twin can
help organizations improve their security posture by providing
automated access management processes and reducing the risk
of unauthorized access.

5.7. Real-time monitoring, incident response and alert
generation

By continuously analyzing operations and network traffic,
an AI-based security system can detect unusual behavior that
leads to penitential attacks and alert system administrators to
mitigate them. This can be done by training the AI system
on a dataset of known threats and attacks and then using
it to classify new network activity based on these patterns,
where machine learning algorithms can play a key role [43].
For instance, Liu et al. [125] propose an intelligent rein-
forcement learning-based approach that can intelligently learn
mitigation policies under various attack scenarios and miti-
gate DDoS flooding attacks instantly. Alturkistani et al. [126]
presented an approach for optimizing cybersecurity incident
response decisions in SIEM systems using deep reinforcement
learning (deep Q-learning). Hughes et al. [127] presented
a deep reinforcement learning-based approach to facilitate
the creation of different incident response policies. Bashendy
et al. [128] conducted a survey on intrusion response systems
for cyber–physical systems focusing on various architectures
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nd decision-making processes highlighting the recent ad-
ances using reinforcement learning algorithms (Q-learning,
QN, SARSA, DDPG, etc.). Overall, AI algorithms have

he potential to monitor network traffic, system logs, and
ther data sources to identify cyber incidents and trigger an
ppropriate response, e.g., automatically block the attack and
otify security personnel.

.8. Creating cyber awareness to users

To create cyber awareness among users, understanding why
t happened is crucial. For this, identifying the root cause
f incidents, i.e., diagnostic analytics is needed to discover
n a digital twin environment. Diagnostic analytics typically
nswers the question “Why did it happen” through analyzing
ast data, to gain insights into why things happened in the past
nd what actions can be taken to prevent similar issues from
ccurring in the future. Thus identifying patterns, trends, and
orrelations in data to determine the root cause of an incident
ight be helpful. Several data analytics and machine learning

echniques such as association analysis, correlation analysis,
ule-based analysis, as well as statistical approaches to exam-
ne data sets and identify factors [43] could play a key role in
his purpose. For instance, Steenwinckel et al. [129] present a

ethod for adaptive anomaly detection and root cause analysis
n sensor data streams. This method combines expert knowl-
dge with machine learning techniques. Eckhart [130] et al.
resented a method for improving cyber situational awareness
n cyber–physical systems through the use of digital twins.
arker et al. [50] present a machine learning-based intrusion
etection model that generates rules from decision trees ca-
able of explaining the cause of anomalies. Thus, creating a
yber-aware culture among users accordingly could be one of
he best practices to minimize the risk of cyber-attacks in the
igital twin environment.

. Challenges and future prospects with potential
esearch directions

Based on our extensive study, we identify several chal-
enges and research issues still open in the context of AI/XAI-
ased cybersecurity modeling in DT environments. In this
ection, we summarize these challenges that need attention
y the researchers and industry experts in this emerging area
f study as well as highlight the prospects with potential
irections. These are:

• Data Heterogeneity and Privacy-Aware Self-Learning:
Digital twin environments can be heterogeneous and
complex in the real world [131]. Data from multiple
sources such as network logs, system logs, user behavior
data, or other historical or real-time data, may need to
be integrated and analyzed. Both software and hardware-
based data collection processes can be used [20]. How-
ever, there may be concerns about sharing sensitive data,
which makes it difficult to solve using traditional cen-
tralized learning techniques. One possible solution could

be federated learning [24,132], a decentralized approach
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that allows organizations to collaborate and share infor-
mation while keeping the data decentralized and private.
For example, federated deep learning can be used for
malware detection, where the goal is to identify and
block malicious software on multiple devices without
compromising the privacy of the users. However, feder-
ated learning assumes that data from different parties is
similar in distribution and format, which might not be
true always in the context of cybersecurity modeling due
to network topology, types of attacks, and security poli-
cies. Thus cyber researchers need to focus on effectively
modeling federated learning or developing privacy-aware
efficient techniques with their explainable capabilities to
handle heterogeneous data collected from diverse sources
in DT.

• Data Generation and Annotation Issue: In a digital twin
environment, it is essential to have enough data to test
and validate the security of the system, which is chal-
lenging. Generative AI can be used to generate new data
that mimics the characteristics of real-world data [35].
In terms of attacks, Generative AI can be used to create
new attack scenarios based on the existing vulnerabil-
ities in the digital twin environment, which can help
organizations to better understand the potential risks and
prioritize their security efforts. In addition, the lack of
labeled data is a significant challenge due to annotation
cost, human efforts, and time-consuming issues faced
by researchers and practitioners in the field. Therefore,
an automated approach with good generalization and
decision-making capability is expected to solve this pri-
mary issue. Traditional semi-supervised solutions with a
certain amount of labeled data might not be effective due
to imbalance issues in cyber incident data. Thus the con-
cept of active learning [133] dynamically selecting the
most informative samples for labeling or self-supervised
learning [134] predicting a target variable from input data
to create a supervisory signal could be a possible solution
in this context. Another promising research direction
in cybersecurity modeling for digital twins could be
transfer learning [119]. This involves using pre-trained
models on related tasks to improve the model perfor-
mance with limited data to transfer cyber knowledge
from other closely related domains such as network
intrusion detection or malware classification. Researchers
can investigate the effectiveness of unsupervised learning
techniques [43] to cluster data and identify patterns and
anomalies without the need for labeled samples as well as
data augmentation techniques through generative AI such
as generative adversarial networks (GANs) or variational
autoencoders (VAEs) [35,135] depending on the nature
of target application.

• Developing Smart Algorithms and Models: In many cases
some traditional algorithms, mentioned in Section 4
might not be effective due to the constantly evolving
cyber threats, and new attack vectors are emerging all
the time. This dynamic nature can lead to uncertainty

in the model’s outcome. Scalable and smart algorithms
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with their explainability analysis can help effectively
and efficiently analyze security logs and events with
real-time monitoring and decision-making. Thus cyberse-
curity researchers need to focus on designing innovative
algorithms and models to handle these issues, which
could be a promising research area and direction in
the context of today’s cybersecurity. Another direction
could be model optimization and trustworthiness anal-
ysis in machine learning [43], deep learning [35], rule
mining [11], generative AI [9], LLM [82] or other AI
methods based cybersecurity modeling, discussed briefly
in Section 4, as it determines the performance and accu-
racy of the resultant cyber model in DT. Although several
techniques such as trail error, grid search, and Bayesian
optimization exist, it is important to consider the trade-
offs between accuracy and false positives/negatives in
the context of cybersecurity modeling. For example, a
model that has high accuracy but generates several false
positives, might not be practical for real-world cyber
usage in a DT environment.

• Automatic Rule Generation and Security Policies: This
involves data-driven approaches to generate rules and
policies that trigger alerts or response actions when devi-
ations from normal behavior are detected. The discovered
patterns from the data collected from the DT environment
and relevant features can be used to generate rules and
policies to detect any deviations from the normal system
behavior that could indicate a potential cyber threat.
The major advantages of data-driven approaches are cre-
ating evidence-based rules according to data patterns,
adapting to new updates as well as reducing manual
efforts, discussed briefly in Sarker et al. [11], which is
very difficult to create and manage rules manually for
a large scale DT system. Existing techniques such as
association learning [76,98] may not be effective due to
producing redundant rules which may lead to inefficient
decision-making and computationally expensive. There-
fore, developing scalable rule discovery algorithms and
eventually making dynamic decisions accordingly could
be a significant direction in the context of DT research.

• Handling Malicious Behavior Changes and Adapting
Concept Drift in Cyberspace: In the real-world sce-
nario in the DT context, concept drift may occur due to
changing behavioral patterns over time. Traditional AI
algorithms may not be able to adapt to concept drift
in cyberspace in DT in real time, which can lead to
inaccurate predictions and false alarms. Thus develop-
ing adaptive algorithms that can continually learn and
adapt to the new types of attacks, could be a promising
research direction in this context. Moreover, algorithms
that can automatically identify the most relevant fea-
tures for detecting different types of attacks, could play
a key role [136]. In addition, developing incremental
learning [137], dynamic updated ensemble learning [138,
139], recent pattern-based mining [140] as well as their
hybridization could be a major direction in this con-
text. Investigating how transfer learning [119] can be
952
used, e.g., transferring knowledge from related domains
like network traffic analysis, could be another possible
domain depending on data availability.

• Context-Awareness for Adaptive Cybersecurity: In cy-
bersecurity, context-aware decision-making involves an-
alyzing the context of a potential threat or attack and
making a decision based on that analysis. Thus it can be
considered a crucial aspect of AI-based cybersecurity as
it enables systems to make informed decisions based on
the relevant contextual information such as the spatio-
temporal, environment, the user, the device, and other
factors to decide on how to respond to a security event.
Context-aware decision-making is also highly human-
interpretable and can help security experts understand
and trust the decisions made by the models. For instance,
it can allow a system to make a decision based on the
current state of the network or the behavior of the user
that may vary over time. For instance, context aware-
ness can play a significant role in classifying software
vulnerabilities [141], user behavior modeling [98], and
so on. Thus developing context-awareness cybersecurity
models that can behave according to the current contexts,
could be a significant research direction in this domain.
Researchers also need to explore new approaches to
human–AI collaboration, where AI systems can work
together with human experts to make context-aware de-
cisions that are more effective than either system could
achieve alone.

• Enhancing Semantic Knowledge with Extracted Cyber
Insights: The knowledge-driven system such as cyber-
security knowledge graph or ontology-based knowledge
representation can represent the complex knowledge of
heterogeneous systems with the semantic capabilities
[142]. However, it would not be able to detect anomalies
since it fails to handle large amounts of raw data and
human experts lack the knowledge to manually con-
firm which patterns in the raw data might indicate po-
tential threats [129]. Thus a hybridization of seman-
tic knowledge representation techniques with machine-
learning and knowledge or rule mining methods [11]
could be useful in terms of automation, scalability, per-
formance and interpretability in the context of large scale
cybersecurity systems. By analyzing data from security
logs, incident reports, threat intelligence feeds, and other
sources, AI and machine learning algorithms [66] can au-
tomatically identify patterns, correlations, and anomalies
that can be used to construct a comprehensive and dy-
namic knowledge graph. For instance, NLP can be used
to extract information from unstructured data sources
such as text-based logs and reports, and RL can be used
to optimize the graph structure based on feedback from
SOC analysts. Thus designing ML-enhanced dynamic
knowledge graphs that can help security teams better un-
derstand their network and quickly respond to potential
threats of an organization, could be a significant research
direction.
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• AI Model Interpretability and Trustworthiness: Ensur-
ing the interpretability and trustworthiness of AI mod-
els is paramount for effective cybersecurity modeling
within digital twin systems. As digital twin systems be-
come increasingly complex, understanding the decisions
that AI algorithms make becomes increasingly important
for cyber defense strategies. As an example, LLM has
strong computing capabilities, but its black-box nature
makes it hard to explain the outcome [82]. Interpretabil-
ity thus plays an important role in allowing stakeholders
to validate and trust AI-driven decisions. Achieving trust-
worthiness involves not only verifying the accuracy of
AI predictions but also assessing their resilience to po-
tential threats and vulnerabilities. In addition, ethical
and regulatory considerations must be addressed to en-
sure a responsible deployment of AI in digital twins.
Developing techniques to explain AI outputs, quanti-
fying uncertainties, and integrating human feedback is
essential for accomplishing these goals. By prioritizing
research efforts towards enhancing interpretability and
trustworthiness, cybersecurity modeling can leverage AI
capabilities while maintaining transparency, reliability,
and adherence to ethical standards, thus strengthening the
resilience of digital twin systems against evolving cyber
threats.

• Adversarial Attacks: In the context of digital twin en-
vironments, adversarial attacks pose a significant threat
to the integrity and reliability of interconnected sys-
tems. By carefully crafted perturbations into input data,
these attacks exploit vulnerabilities in AI-driven models,
which leads to incorrect or compromised decisions [45,
46]. As digital twins become more interconnected and
data exchange occurs more frequently, adversarial at-
tacks are more likely to disrupt critical operations and
compromise sensitive data. To address this issue, robust
defense mechanisms are needed, including adversarial
training, anomaly detection, and model verification tech-
niques adapted to the unique characteristics of digital
twin ecosystems. Furthermore, cybersecurity profession-
als and stakeholders need to foster awareness and un-
derstanding of adversarial threats to mitigate risks and
maintain the resilience of digital twin infrastructures.

• Potential Framework Design: The most crucial task for
creating an AI-based cybersecurity system is to establish
a solid foundation that supports automation, intelligence,
and trustworthy decision-making. A well-designed AI
framework for security modeling and experimental eval-
uation with DT data is both a very significant direction
and a challenging problem. To do this, sophisticated
algorithms need to be developed that can detect and
mitigate cyber threats autonomously, taking advantage
of machine learning techniques and natural language
processing to analyze huge amounts of data generated
by digital twins. A rigorous experimental evaluation,
including diverse datasets, simulated attack scenarios,
and real-world testing, is needed to ensure the reliability
and effectiveness of such systems. To overcome these
953
challenges, interdisciplinary collaboration and continu-
ous innovation are required to advance the state-of-the-
art in AI-driven cybersecurity, enhancing the resilience
and security of digital infrastructures.

In summary, our study has revealed several potential future
venues for the study of cybersecurity in digital twins. First,
ore research needs to be done on the characteristics of
T data, including related features, data distributions, and
ertinent contexts. Second, real-world evaluation of the scal-
bility and effectiveness of current analytics methodologies
pplied to DT data is required. Thirdly, innovative methods
nd algorithms handling the underlying issues are needed to
evelop. Fourth, a range of empirical evaluations are necessary
o quantify the performance of these AI techniques and to
ompare their efficacy and efficiency to those of currently used
echniques. Fifth, additional effort is required to effectively de-
loy the ultimate models in a way that will achieve automation,
ntelligence, and trustworthiness in the relevant application
omains. Overall, the concerns with research and prospective
ethods outlined above could help the community realize

he full potential of AI/XAI-based cyber modeling in the
igital twin environment. It will require continual research and
evelopment, as well as collaboration between cybersecurity
rofessionals, AI specialists, and DT experts, to address the
ssues and capitalize on the potential provided by AI/XAI for
ext-generation cybersecurity in a digital twin environment.

. Discussion

The above study and literature review assessed that meth-
ds based on AI/XAI have the potential to make significant
dvancements in a variety of application areas in the context
f cybersecurity in the digital twin environment. The growing
omplexity of cybersecurity threats in DT and the increasing
se of AI and data-driven technologies for security tasks
ave made it essential to develop transparent and interpretable
odels that can help analysts better understand the security

andscape and make more informed decisions [9]. Leveraging
achine learning algorithms and other AI technologies dis-

ussed in Section 4, offers several benefits, including proactive
hreat detection, improved resilience as well as interpretability
nalysis in the context of cybersecurity in the digital twin.
urthermore, XAI methods can support analysts and security
rofessionals in comprehending how the system functions,
dentifying potential vulnerabilities, and ultimately leading to
he development of trustworthy cyber systems with intelligent
ecision-making.

The integration of XAI into cybersecurity modeling in a
igital twin environment can provide a better understanding of
he behavior of the system and the potential threats it may face.
ne of the key advantages of using digital twin-based XAI
odels for cybersecurity is that they can provide a comprehen-

ive view of the security landscape answering the questions -
How does DT enhance cybersecurity resilience using AI?”
nd “How AI can help to mitigate the possible threats and
nomalies in DT”, discussed in Section 3. By simulating
ifferent scenarios and analyzing the behavior of the system
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nder different conditions, it becomes possible to identify
otential vulnerabilities and threats that might be missed by
uman analysts or other approaches. This can help analysts
evelop more effective security strategies and prioritize their
esources more efficiently. While there have been significant
dvances in AI research in recent years [18], AI/XAI-based
yber modeling still faces many issues including available
ata and modeling algorithms, summarized and discussed in
ection 6. Furthermore, making the AI-based cyber model
xplainable and obtaining the human-level accuracy of such
ystems is challenging and demanding for both researchers and
ractitioners. As XAI can build alternative systems, models,
nd algorithms with human-understandable capabilities, it is
lso challenging to decide which XAI methods could be useful
o tackle a certain problem in DT. Typically, AI models depend
n several factors, such as the nature of the problem, the
vailable data, the computational resources, the interpretability
equirements, and the specific project goals. Thus our AI/XAI
axonomy analysis discussed in Section 4 could be a potential
ource and guidelines to support the researchers and practi-
ioners in this emerging area of study. There is still much
ork to be done to develop techniques that can provide reliable

nd understandable explanations of complex AI, ML, LLM or
ther black-box models for their effective and trustable use in
eal-world application areas.

Overall, AI and XAI have become major cyber industry
oncerns in DT. The future of almost all contexts and hu-
anity including future social context, safety and security,

nd eventually the quality of human life will be impacted by
hese emerging technologies as they continue to grow. Thus,
I/XAI-based modeling can substantially progress and open
p new horizons to advance the cyberspace in DT, and even-
ually can lead to the next-generation cybersecurity systems in
digital twin environment.

. Conclusion

Motivated by the need for cybersecurity automation, intel-
igence, and trustworthiness, this article provided an extensive
tudy and synthesis on AI/XAI-based modeling in DT. The
tudy began with formulating key questions accordingly and
ow these methods can be employed to resolve various real-
orld cyber issues in digital twin environments. Next how

t can enhance cyber resilience as well as security in dif-
erent layers of digital twin are highlighted to go forward
ith AI-based modeling. We then provided a taxonomy with
thorough study of recent advances in AI and XAI-based
ethods with their potential usability in the context of cy-

ersecurity. Several use cases such as predictive maintenance,
ntrusion detection, access control, cyber awareness gener-
tion, etc. were highlighted to inspire and provide a clear
icture and understanding of the potentiality of AI/XAI-based
ybersecurity modeling in DT. Hence, AI is the key element
f cybersecurity enhancement that enables systems to carry
ut activities automatically and intelligently, whereas XAI pro-
ides a collection of processes that can produce explanations
rom different perspectives that are understandable by human
954
analysts. Finally, several key challenges and prospects have
been identified and discussed based on our study that may aid
the community in understanding and realizing the full potential
of AI-based cyber modeling in this emerging area of study. We
believe our study and in-depth analysis from the perspective of
automation, intelligence, and trustworthiness might serve as a
reference guide and foundation for researchers and industry
professionals, as well as policy makers, and provide a roadmap
for the next-generation cybersecurity applications.
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