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A B S T R A C T

A theoretical method is presented, called the energy-balance method, for maximising the energy extracted from
a renewable energy converter in terms of determination of an optimal control. The method applies to control
systems specified by linear graphs, and graph-theoretic techniques are employed. The method simplifies a
number of optimal control problems by essentially expressing the performance objective — maximising energy
extraction — in terms of an equivalent objective involving fewer variables, thereby reducing the complexity of
the optimisation. As illustrated, in certain cases the optimal control problem may be reduced to one solvable by
elementary calculus techniques. The theory is illustrated with examples from solar, wave and wind applications.
1. Introduction

The pressing requirement to decarbonise global electrical energy
generation to reduce emissions and tackle the climate crisis is clear. In-
creased renewable energy conversion is one key mechanism to achieve
this aim [1, p. 40]. Increasing renewable energy uptake over time has
many facets, from political and regulatory, through to economic and
technical. One economic consideration is reducing the Levelised Cost of
Energy of a given renewable energy technology to attract commercial
investment. This can be achieved by, for example, reducing the instal-
lation, operational and decommissioning costs of a given renewable
energy device, or by increasing the energy converted over the lifetime
of the device.

Here, we present a general theoretical method, which we call the
energy-balance method, to solve the optimal control problem of maxi-
mal energy extraction by a renewable energy converter over a finite
prediction interval. The method rewrites the original control prob-
lem, essentially by using Tellegen’s theorem [2], in terms of a new
performance objective which contains only a subset of the variables
which appear in the original problem. Consequently, the resulting
optimal control problem is no harder to solve than the original and
is, in fact, often much simpler. Since optimal control problems can
be challenging to solve analytically and numerically, methods which
reduce the complexity of the problem are desirable. An important
feature of our approach, and as shall become apparent, is to take a
flexible view of the roles of variables, in the sense that (roughly) it is
often more convenient to optimise a performance objective in terms of,
say, a state variable in the original problem, and then use algebraic
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and/or differential equations — ‘‘the control system’’ — to define the
remaining variables.

There are, of course, numerous mathematical and graphical de-
scriptions of control systems. Presently, we employ a graph-theoretic
representation of a control system, often called a linear graph in the
engineering jargon; see, for example [3, Section 4.1] or [4, Chapter 5].
The graph determines the structure of the control system, where edges
correspond to (lumped, one-port, two-terminal) elements in a given
energy domain, and two variables are associated to each edge of the
graph, called an across variable and a through variable. These variables
are power conjugate and are also termed effort and flow variables in
the literature. In electrical contexts, they correspond to voltages and
currents, respectively. However, the linear graph framework permits
treatment of control systems from other energy domains (mechani-
cal translational, mechanical rotational, acoustic etc.), and the across
and through variables satisfy certain algebraic relationships which are
natural generalisations of Kirchoff’s current law and Kirchoff’s voltage
law, respectively, as well as constitutive relationships on each edge,
dependent on the element type.

As is well known, there is a choice of which variables in a given
domain to assign as the across or through variables, often called system
analogies (see, for example [5, Section 2]), and our treatment is inde-
pendent of the chosen analogy. In all settings, the product of through
and across variables is power. As we describe, the control systems
we consider are assumed to comprise of a number of components,
generalising resistors, capacitors, inductors and transformers/gyrators
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as well as external sources and control terms, to the abstract setting.
The inclusion of transducers facilitates modelling control systems which
span multiple energy domains, such as mechatronic systems and so
on [6,7]. We comment that a number of these components are per-
mitted to be dynamic or nonlinear, and so are not necessarily ideal. As
we illustrate in the examples considered, models for renewable energy
generation via solar, wind and wave energy all fall within the scope
of the control systems presented considered, and the energy-balance
method is applicable.

The motivation for the present study is to simplify the procedure
of determination of optimal controls in renewable energy applications.
This aim resonates with a current direction in the control of wave
energy converters, a timely and ongoing area of research, to reduce
omplexity [8, Section 3.3]. Furthermore, even if optimal controls are
ot implemented in the field, say because of robustness considerations
r the real-time computational complexity, the energy generation of
n optimal control provides a theoretical maximum against which
ther putative control schemes may be compared. Two strengths of
ur results are the following. First, the energy-balance method rewrites
n optimal control problem as a simpler one, but is then agnostic to
hich optimisation or optimal control method is subsequently used,

o this may be tailored to user preference or the bespoke setting.
lassical optimal control techniques include so-called indirect methods
uch as the Pontryagin Principle (see, for example [9–11]) or Dynamic
rogramming (see, for example [12]), as well as so-called direct meth-
ds [13]. As we shall describe, in certain cases the energy-balance
ethod reduces a dynamic- (or trajectory-) optimisation problem, that

s, one subject to dynamic state constraints, to a static optimisation
roblem where no dynamic constraints apply. Here standard optimisa-
ion tools are applicable [14,15], such as gradient descent or nonlinear
rogramming. Second, since the energy-balance method essentially
orks with the variables of energy, it applies to systems which span
ultiple energy domains, and so enables optimisation at a system-wide

evel.
The paper is organised as follows. Section 2 illustrates the main

deas behind the energy-balance method in a simple example. Sec-
ions 3 and 4 are the technical heart of the manuscript, and contain
he graph theoretic ingredients required to specify control systems as
o-called linear graphs and describe the energy-balance method, respec-
ively. Sections Section 5, 6 and 7 contain applications of the method
o renewable energy converters from solar, wind and wave energy
ontexts, respectively. Certain extensions to the energy-balance method
nd summarising remarks appear in Sections 8 and 9, respectively.

We comment that no single paper can thoroughly cover the three
enewable energy application areas (solar, wave, wind) simultane-
usly, each of which is mature with its own academic and indus-
rial/commercial communities. Rather, the main contribution of the
resent work is theoretical and is to present the energy-balance method
n a focussed manner. The examples considered currently are primarily
esigned to illustrate how the energy-balance method applies, and
ence how it is widely applicable. That written, in each case we
emonstrate how known energy-maximising controls (such as maxi-
um power point tracking — MPPT — for PV solar energy) naturally

nd straightforwardly arise from the energy-balance method, at least
n simple settings. In depth studies in each particular application area
hall constitute the focus of future works. Whilst there are numerous
apers on the optimal control of renewable energy devices, such as
hose cited in Sections 5–7, we are not aware of a framework as general
s that presented currently, at least for control systems specified by
inear graphs.

. The basic idea illustrated on a damped mass

We illustrate the basic ideas underpinning the energy-balance
ethod through a simple example. Consider a damped mass 𝑚 moving

long a line with velocity 𝑦 = 𝑦(𝑡) at time 𝑡 and damping coefficient 𝑑
2

on which an external force 𝑒 acts and where power is taken off through
a control force 𝑢:

𝑚𝑦̇ + 𝑑𝑦 = 𝑒 − 𝑢 . (2.1)

The energy extracted over the time interval [𝑡0, 𝑡1] equals

∫

𝑡1

𝑡0
𝑦(𝑡)𝑢(𝑡) d𝑡 , (2.2)

hereas the energy 𝐸 = 𝐸(𝑡) in the system as time 𝑡 is:

(𝑡) = 𝑚
2
𝑦(𝑡)2 . (2.3)

n practice the time interval [𝑡0, 𝑡1] is determined by our ability to
redict the external force 𝑒; the length of this interval might be a few
econds. Maximising the energy extracted over this prediction interval
s a natural optimal control problem, namely, how to design 𝑢. How-
ver, this optimal control problem tends to cause unwanted boundary
ffects since, as far as the optimal control is concerned, there is no time
eyond 𝑡1. We argue that a more sensible quantity to maximise over the
rediction interval is:

(𝑡1) − 𝐸(𝑡0) + ∫

𝑡1

𝑡0
𝑦(𝑡)𝑢(𝑡) d𝑡 . (2.4)

he integral term is as before and is the energy extracted over the
rediction interval, whilst the term 𝐸(𝑡1)−𝐸(𝑡0) is the increase of energy
tored in the system over the prediction interval. This stored energy is
vailable for extraction at a later time. Indeed, since maximising the
xtracted energy over longer times requires piecing together multiple,
uccessive prediction intervals (which is somewhat similar to model
redictive control), the cost functional (2.4) seems appropriate.

Maximising (2.4) under the constraint (2.1) is another optimal
ontrol problem. Although traditional optimal control methods, such as
he Pontryagin Principle can be used to determine an optimal control,
hese methods become extremely cumbersome for the more compli-
ated problems studied later. In fact, since both the dynamics (2.1)
nd the cost function (2.4) are linear in the control 𝑢, this is (paradoxi-
ally) a hard problem because of the possibility of singular control, and
raditional optimal control numerical methods have difficulties with
onlinear problems that are linear in the control; see, for example [13,
hapter 4]. Singular control, and the related situation of bang-singular-
ang control (when constraints are present) are known to occur in the
ptimal control of wave energy devices [16].

Here, we utilise the additional structure of the problem which natu-
ally comes from the renewable energy generation context to avoid the
roblem of singular control. In this section, we illustrate the method on
he simple example (2.1) and (2.4), but its utility only really becomes
lear in the more complicated examples considered later.

For our damped mass system, the following power balance:

̇ = 𝑚𝑦𝑦̇ = −𝑑𝑦2 + 𝑦𝑒 − 𝑦𝑢,

olds. Mathematically, we first differentiated (2.3) with respect to
ime and then utilised the differential equation (2.1). Integrating this
ver the time interval [𝑡0, 𝑡1] and re-arranging gives the following
nergy-balance:

(𝑡1) − 𝐸(𝑡0) + ∫

𝑡1

𝑡0
𝑦(𝑡)𝑢(𝑡) d𝑡 = ∫

𝑡1

𝑡0
𝑦(𝑡)𝑒(𝑡) d𝑡 − ∫

𝑡1

𝑡0
𝑑𝑦(𝑡)2 d𝑡 . (2.5)

n interpretation of the left-hand side of (2.5), which equals (2.3), has
een given above. The right-hand side of (2.5) comprises two terms:
he first

𝑡1

𝑡0
𝑦(𝑡)𝑒(𝑡) d𝑡,

quals the energy supplied over the interval [𝑡0, 𝑡1] by the external
orce 𝑒 and the second

𝑡1
𝑑𝑦(𝑡)2 d𝑡,
∫𝑡0
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is the energy dissipated over the interval [𝑡0, 𝑡1]. Importantly, observe
that maximising the left-hand side of (2.5) is equivalent to maximising
the right-hand side of (2.5). We note that the right-hand side of (2.5)
does not involve the control 𝑢. Consequently, the optimal control
problem is trivially solved as follows. We maximise the integrand of
the right-hand side of (2.5), that is, we maximise 𝑦 ↦ 𝑦𝑒 − 𝑑𝑦2, which
gives 𝑦 = 𝑒∕(2𝑑). Therefore, the optimality condition we obtain is:

𝑦(𝑡) = 1
2𝑑

𝑒(𝑡) . (2.6)

The above formula is well known; see, for example [17, equation
(6.44), p. 206] for a frequency domain expression, or [18, equation
(2.12)]. The resulting optimal control goes by a number of terms, as
discussed in [17, p. 206], such as phase and amplitude control, namely,
the velocity of the mass being in phase with the excitation force with
an appropriate amplitude, or complex-conjugate control (also known as
impedance matching in electrical engineering).

To see which control achieves (2.6), we substitute this optimality
condition into the differential equation (2.1) and obtain

𝑢(𝑡) = 𝑒(𝑡) − 𝑚𝑦̇(𝑡) − 𝑑𝑦(𝑡) = 1
2
𝑒(𝑡) − 𝑚

2𝑑
𝑒̇(𝑡).

Therefore, the optimal control and optimal state are given in terms of
the external force by:

𝑢(𝑡) = 1
2
𝑒(𝑡) − 𝑚

2𝑑
𝑒̇(𝑡) and 𝑦(𝑡) = 1

2𝑑
𝑒(𝑡) . (2.7)

Some remarks are in order. The crucial aspect of solution method is that
the differential equation (2.1) is no longer viewed as a constraint, but
as a defining equation for the optimal control 𝑢, in terms of the optimal
state 𝑦 and external force 𝑒. This is made possible by maximising the
right-hand side of the energy-balance (2.5), which does not involve
the control 𝑢, instead of maximising the left-hand side, which does
involve 𝑢.

We also note that in this simple example, solving the optimal control
problem was trivial. As we shall see, this will not always be the case but,
when applicable, the energy-balance method we present reduces the
complexity of the optimal control problem to be solved. We have not
included input- or state-constraints here, which of course will feature
in real-world applications, and we comment on how constraints may
be included in Section 8.

3. Graph-theoretic modelling of control systems

In order to generalise the method outlined in Section 2, we shall
view control systems from a graph-theoretic perspective and the current
section gathers the requisite material. These objects are often called
linear graphs in engineering contexts; see, for example [3, Section 2.1].
Treatments of control systems as linear graphs appear across older
works, such as [19–21], with [4] a recent text. We refer the reader to
these texts for further background on writing control systems as linear
graphs.

3.1. Planar and dual graphs

We collect the requisite graph-theoretic notation and terminology.
We consider a finite directed graph without self-loops, and with pos-
sibly multiple edges between the same pair of vertices. This can be
formally described by a triple ( ,  , 𝛼) where  is the finite set of
vertices (also called nodes),  is the finite set of edges (also called
branches in some texts) and

𝛼 ∶  →
{

(𝑥, 𝑦) ∈  ×  ∶ 𝑥 ≠ 𝑦
}

,

is the incidence function. The calligraphic notation for the vertices  and
edges  is to distinguish these objects from voltages 𝑉 and energies 𝐸
which commonly occur elsewhere.

When we draw a graph in the plane, we draw vertices as circles,
3

edges as line segments and we draw an arrow on the edge 𝑒 from 𝑥 to 𝑦 b
if 𝛼(𝑒) = (𝑥, 𝑦). In what follows, the directions on the edges are simply
o fix signs and otherwise have no physical meaning. Two examples of
raphs are shown in Fig. 3.1.

The graphs we consider can always be drawn in the plane, meaning
hey can be drawn without edges crossing, and such graphs are called
lanar. We specify a particular embedding in the plane by drawing
figure; this makes our graph into a plane graph. That we consider

lane graphs is really only of importance when we consider duality.
ur graphs will always be connected (here ignoring directions, meaning

hat the underlying graph of our directed graph is connected). We will
enote the number of vertices by 𝑛 and the number of edges by 𝑚. From
uler’s formula for plane graphs (see, for example [22, Theorem 15, p.
2]), such a graph then has 𝑚 − 𝑛 + 2 faces, including the unbounded
ace.

We will relate matrices and vectors to our graphs. For this, we order
he edges and vertex sets by writing  = {1,… , 𝑚} and  = {1,… , 𝑛}.

The incidence matrix  of a graph is the 𝑛 × 𝑚 matrix which has

𝑖𝑗 = 1 if edge 𝑗 starts at vertex 𝑖

𝑖𝑗 = −1 if edge 𝑗 ends at vertex 𝑖, and

𝑖𝑗 = 0 if edge 𝑗 is not incident to vertex 𝑖.

he face matrix  of a plane graph is a (𝑚−𝑛+2)×𝑚 matrix which has

𝑖𝑗 = 1 if edge 𝑗 bounds face 𝑖 and is oriented counter-clockwise
with respect to the face

𝑖𝑗 = −1 if edge 𝑗 bounds face 𝑖 and is oriented clockwise, and

𝑖𝑗 = 0 if edge 𝑗 does not bound face 𝑖.

ere oriented counter-clockwise means that the face is on the left of
he edge as it is traversed along the direction of the arrow, and oriented
lockwise means the face is on the right of the edge.

We note that the face matrix is a special cycle matrix and, apart
rom when used for duality, could in what comes below be replaced
y a general cycle matrix. Since each edge bounds exactly two faces,
nd with opposite orientation, the face matrix  is itself the incidence
atrix of a graph, called the dual graph. From a drawing of the graph,
e can obtain a drawing of the dual graph as follows: in each face
raw a dual vertex and connect dual vertices by a dual edge if the
orresponding (primal) faces share a (primal) edge.

We consider an example.

xample 3.1. Consider the graph drawn in Fig. 3.1(a) with edges and
ertices labelled. The incidence matrix for this graph is

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0 0 0 0 −1 0 0
0 0 0 0 −1 1 0 0
−1 −1 0 0 0 0 0 −1
0 0 0 0 0 0 −1 1
0 0 0 1 1 0 1 0
0 1 −1 0 0 0 0 0
0 0 1 −1 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

ixing the following ordering of faces: upper bounded face, lower
ounded face, unbounded face; the face matrix of the graph in Fig. 3.1(a
s

=
⎛

⎜

⎜

⎝

1 0 0 0 1 1 −1 −1
0 −1 −1 −1 0 0 1 1
−1 1 1 1 −1 −1 0 0

⎞

⎟

⎟

⎠

.

his is the incidence matrix of the graph in Fig. 3.1(b) which is,
herefore, the dual graph of the graph in Fig. 3.1(a). □

Presently, duality is introduced and used as follows. When mod-
lling control systems as linear graphs, a so-called systems analogy [5,
ection 2.1] must be chosen which, mathematically, prescribes alge-

raic conditions, determined by a graph, on pairs of power-conjugate
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3

a
f
l
a
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variables associated with each edge of the graph. The algebraic con-
ditions on the pairs of variables in each analogy are dual, in the
sense that the primal graph in one analogy is the dual graph in the
other. Therefore, duality permits straightforward conversion between
analogies. Being able to convert between analogies becomes essential
when seeking to merge linear graphs from different domains (electri-
cal, translational/rotational mechanical, acoustic etc.) where different
analogies may be preferentially used.

3.2. Functions on graphs

Given a planar graph as in the previous subsection, we will identify
a function 𝑓 ∶  → R defined on the edges of a graph with a vector
in R𝑚 and will identify a function 𝜙 ∶  → R defined on the vertices of
a graph with a vector in R𝑛.

An edge function 𝑓 is called across if 𝑓 = 0. This is equivalent to
the existence of a potential vertex function 𝜙 such that 𝑓 = ⊤𝜙. The
otential 𝜙 is unique if at a specified vertex 𝑖 the condition 𝜙(𝑖) = 0 is
mposed (in electrical engineering terms, the vertex 𝑖 can be considered
round). We call the components of an across edge function across
ariables, although the terminology generalised across variables also
ppears in the literature. Intuitively, across variables are those which
re measured ‘‘across’’ the two terminals of a one-port element. In
ords, the condition 𝑓 = 0 states that the across variables sum to

ero around faces, or directed loops, and is called the compatibility law
n [3, Section 4.3] and the loop rule in [6, Section 4.3].

An edge function 𝑓 is called through if 𝑓 = 0 and the components
f a through edge function are called through variables. As before, the
erminology generalised through variables is also used in the literature.
ntuitively, through variables are those which act ‘‘through’’ the ele-
ent. In words, the condition 𝑓 = 0 states that the directed sum of

hrough variables at every vertex equals zero. The condition 𝑓 = 0
s called the continuity law in [3, Section 4.3] and the nodal rule in [6,
ection 4.3].

We note that a function which is across for a (primal) graph is
hrough for the dual graph, and vice versa.

Since  and  are both rank deficient by one, the across and
hrough conditions give

+ (𝑚 − 𝑛 + 2) − 2 = 𝑚,

ndependent equations for the 2𝑚 scalar unknowns contained in two
generally distinct) edge functions. Hence, by additionally specifying
or each edge a single equation relating the two functions, we obtain in
otal 2𝑚 equations, which generically gives existence and uniqueness of
n across edge function and a through edge function on a planar graph.

The edge functions we consider presently will typically depend
n time as well, meaning that the components of the corresponding
ectors in R𝑚 or R𝑛 are themselves functions of a real variable, and
he across/through equations are assumed to hold pointwise in time.
onsequently, across/through variables are functions of time in this
4

ase.
.3. Control systems as graphs

On our graphs, we consider a pair of edge functions, one being
cross and one being through. The canonical example of an across
unction is voltage, and the across condition is Kirchhoff’s voltage
aw. Similarly, the canonical example of a through function is current,
nd the through condition is Kirchhoff’s current law. Intuitively, the
roduct of a through variable and an across variable is power, the time

derivative of energy. As such, we model control systems in terms of
power conjugate variables, as in [5, Section 2.1].

For each of the edges we will have one (and only one) of the
following possibilities:

• A through-accumulator. Here the energy 𝐸 stored on the edge is
a function of an auxiliary variable 𝑥, and the through variable 𝑇
and across variable 𝐴 satisfy

𝑇 = 𝜕𝐸
𝜕𝑥

, 𝑥̇ = 𝐴.

The typical situation is where 𝐸 is quadratic: 𝐸(𝑥) = 𝑥2∕(2𝐿) for 𝐿
a positive constant, so that

𝑇 = 𝑥
𝐿
, 𝑥̇ = 𝐴,

and the auxiliary function 𝑥 can be eliminated to obtain

𝐿𝑇̇ = 𝐴.

The energy is then given by 𝐸 = 𝐿𝑇 2∕2, hence the terminol-
ogy through-accumulator — the energy is stored in the through
variable. A through accumulator is called a T-type energy storage
element in [3, Section 3.3].

• An across-accumulator. Here the energy 𝐸 stored on the edge is a
function of an auxiliary function 𝑥, and the through variable 𝑇
and across variable 𝐴 satisfy

𝐴 = 𝜕𝐸
𝜕𝑥

, 𝑥̇ = 𝑇 .

The typical situation is where 𝐸 is quadratic: 𝐸(𝑥) = 𝑥2∕(2𝐶) for 𝐶
a positive constant, so that

𝐴 = 𝑥
𝐶
, 𝑥̇ = 𝑇 ,

and the auxiliary function 𝑥 can be eliminated to obtain

𝐶𝐴̇ = 𝑇 .

Correspondingly, the energy is then given by 𝐸 = 𝐶𝐴2∕2, hence
the terminology across-accumulator — the energy is stored in the
across variable. An across accumulator is called an A-type energy
storage element in [3, Section 3.3].

• A dissipator. We consider three different types. Let {𝑋, 𝑌 } =
{𝐴, 𝑇 }, so that 𝑋 and 𝑌 are placeholders for 𝐴 and 𝑇 , in some
combination.
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– A linear dissipator: 𝑋 = 𝑅𝑌 , where 𝑅 > 0 is a constant.
– A nonlinear dissipator 𝑋 = 𝑟(𝑌 ), where 𝑟 ∶ R → R

and 𝑟(𝑌 )𝑌 ≥ 0.
– A dynamic dissipator. Here there is an auxiliary (vector-

valued) variable 𝑧 which satisfies

𝑧̇ = 𝐹𝑧 + 𝐺𝑋, 𝑌 = 𝐻𝑧 + 𝐽𝑋 ,

where the transfer function of the above linear control
system is assumed to be positive real, that is, with

𝐆(𝑠) = 𝐻(𝑠𝐼 − 𝐹 )−1𝐺 + 𝐽 ,

we have that 𝐆 is holomorphic on {𝑠 ∶ Re(𝑠) > 0}
and 𝐆(𝑠)∗ + 𝐆(𝑠) ≥ 0 for all 𝑠 with Re(𝑠) > 0; see, for
example [23].

We comment that since we have not fixed an analogy, we do not
prescribe the roles of 𝑋 and 𝑌 here. A dissipator is called a D-
type dissipative element in [3, Section 3.3], although only static
dissipators are considered there.

• A through-source. Here the through variable 𝑇 on the edge is
externally prescribed.

• An across-source. Here the across variable 𝐴 on the edge is exter-
nally prescribed.

• A mixed-source. Here two auxiliary variables 𝑣, 𝜆 are prescribed,
and 𝐴 and 𝑇 are of the form 𝐴 = 𝑎(𝑣, 𝜆) and 𝑇 = 𝑡(𝑣, 𝜆) for
functions 𝑡, 𝑎 ∶ R → R.

The equations relating the across and through variables in the accu-
mulator and dissipator elements are called constitutive relationships. The
source terms shall play the role of either control terms or external
signals. Observe that there are no constitutive relations for the source
edges. It is this property that makes them somewhat different to the
other edges.

Further, note that in both accumulator cases we have

𝐸̇ = 𝜕𝐸
𝜕𝑥

𝑥̇ = 𝐴𝑇 , (3.1)

so that the product of the across and through variable indeed has the
interpretation of power.

In the electrical context we have the following identifications: volt-
age is the across variable and current is the through variable. Moreover:

• A through-accumulator is an inductor with inductance 𝐿 and the
auxiliary variable 𝑥 is flux.

• A across-accumulator is a capacitor with capacitance 𝐶 and the
auxiliary variable 𝑥 is charge.

• A linear dissipator is a resistor with resistance 𝑅.
• A through-source is a current source.
• An across-source is a voltage source.

n the mechanical context we can either view velocity difference as
he across variable and force as the through variable (this is called
he mobility analogy and dates back to the work of Firestone [24] and
rent [25]) or the other way around (which is called the impedance
nalogy). Although each analogy has its own advantages and disad-
antages, we prefer the former. One reason is that the graphs then
ook similar to the usual mechanical system diagrams typically drawn.
nother reason is that the potential for the through variable then
as the natural interpretation of velocity. Thus, in the translational
echanical context under the mobility analogy:

• A through-accumulator is a spring with spring constant 1∕𝐿 and
we have that 𝑥 is displacement.

• An across-accumulator is a mass with mass 𝐶 and we have that 𝑥
is momentum. Here it would need to be assumed that all across
accumulators in the system are connected to the same vertex
(ground); otherwise the across-accumulator is an inerter [26].
5

• A linear dissipator is a dash-pot damper with damping coeffi-
cient 𝑅 (as 𝑇 = 𝑅𝐴, that is, force is proportional to velocity
difference with constant 𝑅).

• A through-source is a force source.
• An across-source is a velocity source.

As is well known, rotational mechanical, fluid and thermal systems
may also be modelled by the control systems described in this section;
see, for example, [6, Section 3] or [3, Section 3]. Finally, and as
mentioned in Section 3.1, the mobility and impedance analogies are
dual concepts, and so can be mapped between as necessary. This is
particularly important when seeking to combine graphs from different
energy domains.

3.4. Merging graphs

Many engineering systems, including renewable energy devices, are
comprised of subsystems from distinct energy domains. To connect such
subsystems requires energy converting elements, called transducers.
When modelling control systems as linear graphs, transducers are two-
port elements which map across/through variables in one domain (at
one port) to either across/through variables or through/across variables
in another (at the second port). A transducer is conventionally called
a transformer when the analogy between variables is preserved, and
a gyrator otherwise. Of course, a given transducer acts as either a
transformer or gyrator depending on the analogies chosen in each
energy domain.

Transducers are covered in depth in [3, Section 6] and [6, Chapters
5, 8 and 9], as well as throughout the text [5] for the coupling
of electrical and mechanical systems. For brevity, we simply recall
from [3, Section 6.2] that an ideal transducer is a lossless (or energy
routing), linear, static two-port element, so has constitutive equation of
the form
(

𝐴2
𝑇2

)

= 𝐺
(

𝐴1
𝑇1

)

, (3.2)

for across/through variable pairs (𝐴𝑖, 𝑇𝑖), and where the 2 × 2 matrix
𝐺 is of the form

𝐺 =
(

−𝜅−1 0
0 𝜅

)

or
(

0 −𝜅−1

𝜅 0

)

𝜅 > 0 ,

for transformers and gyrators, respectively.
We give an example, based on [3, Figure 6.3(b), p. 172].

Example 3.2. A gear train (two connected cogwheels) is a trans-
former/gyrator which connects one rotational mechanical system to
another. Let 𝜔𝑘 and 𝑇𝑘 denote the angular velocity and torque of the 𝑘th
cogwheel, respectively, for 𝑘 = 1, 2. Suppose that the first and second
cogwheel have 𝑛1 and 𝑛2 teeth, respectively, so that 𝛾 ∶= 𝑛1∕𝑛2 > 0
denotes the gear ratio. Then the ideal gear equations are

𝜔2 = −𝜔1∕𝛾 and 𝑇2 = 𝛾𝑇1 , (3.3)

(note minus sign as cogwheels rotate in opposite directions) which may
also expressed as a transformer/gyrator equation
(

𝜔2
𝑇2

)

=
(

−𝛾−1 0
0 𝛾

)(

𝜔1
𝑇1

)

or
(

0 −𝛾−1

𝛾 0

)(

𝑇1
𝜔1

)

,

depending on the choice of across and through variables.

Presently, our aim is to use transducers to merge multiple subgraphs
into a single graph, so that the energy-balance method is applicable.
We do this as follows. We add an external edge to each graph to be
merged, representing the through and across variables which enter the
two ports of the transducer. The transducer equation (3.2) gives an
algebraic relationship between the variables on the transducer edges.
By appropriately rescaling the variables in one of the graphs, the

variables on the two transformer edges become equal. The two graphs
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Fig. 3.2. Two rotating shafts connected by gear-train under mobility analogy. Dashed node is ground. (a) Separate graphs with dashed transformer edges (b) Merged graphs.
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ay then simply be connected at the nodes of the transformer edges,
nd these edges omitted. Importantly, when a transducer is a gyrator
so that an across variable is proportional to a through variable in a
iven energy domain), then the dual analogies need to be used between
he two subgraphs, so as to obtain a consistent set of across/through
dge functions for the whole graph.

xample 3.3. Consider two rotating shafts, labelled one and two,
oth with damping and inertia. The first and second shafts are subject
o an external and control torque, respectively. The shafts are con-
ected by an ideal gear train. Fig. 3.2(a) shows the graphs of both
hafts (separately, before connection) under the mobility analogy, so
hat angular velocity differences are across variables and torques are
hrough variables. The 𝑑 and 𝑎 edges denote dissipator (damping)
nd accumulator (inertia) elements. The dashed edges marked 𝑦𝑖 are
ransformer edges.

Before merging the graphs, the through and across variables are
enoted

̃1 =
⎛

⎜

⎜

⎝

𝐴𝑒
𝐴𝑑1
𝐴a1

⎞

⎟

⎟

⎠

, 𝑇̃1 =
⎛

⎜

⎜

⎝

𝑇𝑒
𝑇𝑑1
𝑇a1

⎞

⎟

⎟

⎠

, 𝐴̃2 =
⎛

⎜

⎜

⎝

𝐴𝑑2
𝐴a2
𝐴𝑢

⎞

⎟

⎟

⎠

, 𝑇̃2 =
⎛

⎜

⎜

⎝

𝑇𝑑1
𝑇a1
𝑇𝑢

⎞

⎟

⎟

⎠

.

e let (𝐴𝑦𝑖 , 𝑇𝑦𝑖 ) denote the across and through variables of the trans-
ormer edges. Observe that from the across equations we obtain

𝑦𝑖 = 𝐴𝑑𝑖 = 𝐴a𝑖 =∶ 𝜔𝑖, 𝑖 = 1, 2,

he angular velocity of the 𝑖th shaft, and the through equations give

𝑥 + 𝑇𝑑𝑖 + 𝑇a𝑖 + 𝑇𝑦𝑖 = 0, 𝑖 = 𝑒, 𝑢,

he sum of the torques on the 𝑖th shaft.
In light of the gear Eqs. (3.3), by defining new across and through

ariables (𝐴2, 𝑇2) as

𝐴2 ∶= −𝛾𝐴̃2 and 𝑇2 ∶= 𝑇̃2∕𝛾,

it follows that 𝐴𝑦2 = 𝐴𝑦1 and 𝑇𝑦2 = 𝑇𝑦1 . Therefore, the subgraphs may
be merged by removing the transformer edges and connecting the two
subgraphs at the transformer nodes. The merged graph is shown in
Fig. 3.2(b). For simplicity, we have not changed the edge labels in the
merged graph, but we comment that the constants in the elements of
rescaled subgraphs also need to be rescaled.

We comment that transducers may be modelled to include energy
storage or energy dissipation (such as a gear train having stiffness and
damping) by including edges in the corresponding linear graph with
accumulator or dissipator elements.
6

. The energy-balance method for a two-source optimal control
roblem

Here we describe the energy-balance method for a two-source op-
imal control problem, which includes numerous renewable energy
pplications. In essence, we generalise the basic idea from Section 2 to
ontrol systems specified in terms of graphs and across/through edge
unctions from Section 3. The method is illustrated in a number of
enewable energy settings across Sections 5–7.

We make the following assumptions:

• A control system (CS) is specified by a planar graph, with across
edge function 𝐴 and through edge function 𝑇 , as in Section 3.

• There are precisely two sources in our graph. One of these is
external, and we denote those edge variables by 𝐴e and 𝑇e. The
other is the control, and we denote those edge variables by 𝐴𝑢
and 𝑇𝑢. We assume that the sources have a vertex in common,
chosen to be the ground vertex.

• There is a graph energy function 𝐸, which is equal to the sum of
the energy functions 𝐸𝑘 corresponding to each accumulator edge.

• An optimisation time interval [𝑡0, 𝑡1] is given, and the objective is
to maximise

𝐸(𝑡1) − 𝐸(𝑡0) + ∫

𝑡1

𝑡0
𝐴𝑢𝑇𝑢 d𝑡 , (4.1)

subject to the control system (CS). Here 𝐸(𝑡0) and 𝐸(𝑡1) denote
the energy in the system at the initial and final time, respec-
tively; and ∫ 𝑡1

𝑡0
𝐴𝑢𝑇𝑢 d𝑡 equals the energy extracted from the system

during the optimisation interval.

The energy-balance equation is

𝐸(𝑡1) −𝐸(𝑡0) + ∫

𝑡1

𝑡0
𝐴𝑢𝑇𝑢 d𝑡 = −∫

𝑡1

𝑡0
𝐴e𝑇e d𝑡 −

∑

dissipator
∫

𝑡1

𝑡0
𝐴𝑘𝑇𝑘 d𝑡 . (4.2)

Eq. (4.2) generalises equality (2.5) from Section 2 to the general
control system (CS). From a physical perspective the above equality
corresponds to conservation of energy, taking into account sources and
dissipation. A derivation of the energy-balance equation is given in
Section 4.1. As with the problem studied in Section 2, maximising the
left-hand side of (4.2), which equals the desired quantity to be max-
imised (4.1), is equivalent to maximising the right-hand side of (4.2)
— our new performance objective.

In order to maximise the new performance objective we require a
closed system of sufficiently many equations, and potentially additional
variables which do not appear in the new performance objective, to
determine all the variables which do appear. Equations may come from
across/through equations from the graph, or constitutive relationships
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on the edges. However, the fewer the variables and equations the
better, as this leads to a simpler optimisation problem to solve. Indeed,
the advantage of the method is that when enough equations are present,
the variables which do not appear can be neglected from the new
ptimal control problem, reducing its size. Once the new optimisation
roblem is solved, the remaining variables are determined from the
riginal constitutive relationships and the across/through equations.

Since the original problem corresponds to a control system specified
y a graph — we employ a graph-theoretic approach to maximise the
ew performance objective. The problem is as follows. We are given a
onnected graph without self-loops, but probably with multiple edges.
he new performance objective only includes the dissipator edges and
he external source edge and, therefore, we seek a connected subgraph
hich includes these edges.

For which purpose, we give the original graph an initial colouring,
in that we mark:

• the external edge and all dissipator edges green ;
• the control edge red, and ;
• the accumulator edges black.

(The choice of colours is of course arbitrary, what matters is that we
partition these edges into three distinct groups.) By hypothesis, the
control (red) and external (green) edges have a shared vertex; the
ground. The objective is to partition the graph into two connected
subgraphs which share the ground vertex and one other vertex (only)
by marking each accumulator (black) edge as either red or green in
such a way that the set of green edges is as small as possible. The
smallest possible set of green edges comprises precisely the external
edge and all the dissipator edges. However, in practice, some initially
black edges may need to be marked green so that the resulting subgraph
is connected. Therefore, an algorithm is required to colour each black
(accumulator) edge in the initial colouring either green or red to meet
the above objective.

We then view the green subgraph as a new control system, and
maximise the new performance objective subject to this smaller control
system. We call the process of using the energy-balance equation and
graph-splitting procedure as outlined above to solve the original opti-
mal control problem, the energy-balance method. Importantly, observe
that the energy-balance method does not specify which optimisation
technique is ultimately used for solving the subgraph optimisation
problem. We view this as a strength as it means that the method is
somewhat flexible and widely applicable. In certain cases, the new
performance criterion is subject to no dynamic (state) constraints, and
so becomes a classical optimisation problem, which may be solved
by calculus methods such as gradient descent and its variations, or
nonlinear programming, (see, for example [14,15]). When dynamic
constraints are present, then a so-called trajectory optimisation problem
remains. Our preference for solving such problems is the Pontryagin
Principle (see, for instance [9–11]), but other methods are applicable
here, as well as shooting or collocation direct methods.

The mathematical derivation in Section 4.1 shows that the above
problem may always be solved — although with no a priori guarantee
s to how many variables from the original problem may be omit-
ed in the new performance objective. It is beyond the scope, and
ot the purpose, of the present work to exhaustively explore how to
umerically compute such a partition of the original graph into two
ubgraphs, particularly for ‘‘large’’ graphs. For control systems specified
y ‘‘small’’ graphs, it is possible simply to identify the desired subgraphs
y inspection, as we do for the examples presented across Sections 5–7.

.1. Mathematical derivations

Here we derive the energy-balance equation (4.2) and the graph-
plitting procedure from the previous section.

In order to derive (4.2), we require Tellegen’s Theorem [2]. In the
7

resent context, Tellegen’s Theorem states that the across and through o
edge functions 𝐴, 𝑇 ∶ R → R𝑚 are orthogonal (pointwise in time),
meaning:

𝐴⊤𝑇 = 0 or, in components,
∑

𝑘
𝐴𝑘𝑇𝑘 = 0 . (4.3)

ntegrating both sides of (4.3) from 𝑡 = 𝑡0 to 𝑡 = 𝑡1 yields that
∑

𝑘
∫

𝑡1

𝑡0
𝐴𝑘𝑇𝑘 d𝑡 = 0 . (4.4)

plitting the sum in Eq. (4.4) into different edge types, (4.4) may be
ewritten as

=
∑

𝑘
∫

𝑡1

𝑡0
𝐴𝑘𝑇𝑘 d𝑡

=
∑

accumulator
∫

𝑡1

𝑡0
𝐴𝑘𝑇𝑘 d𝑡 + ∫

𝑡1

𝑡0
𝐴𝑢𝑇𝑢 d𝑡 + ∫

𝑡1

𝑡0
𝐴e𝑇e d𝑡 +

∑

dissipator
∫

𝑡1

𝑡0
𝐴𝑘𝑇𝑘 d𝑡 ,

hich we may rearrange to give

∑

accumulator
∫

𝑡1

𝑡0
𝐴𝑘𝑇𝑘 d𝑡 + ∫

𝑡1

𝑡0
𝐴𝑢𝑇𝑢 d𝑡 = −∫

𝑡1

𝑡0
𝐴e𝑇e d𝑡 −

∑

dissipator
∫

𝑡1

𝑡0
𝐴𝑘𝑇𝑘 d𝑡 .

(4.5)

or each accumulator edge we have 𝐸̇𝑘 = 𝐴𝑘𝑇𝑘 from (3.1), which we
ntegrate between 𝑡 = 𝑡0 and 𝑡 = 𝑡1 to give

𝑘(𝑡1) − 𝐸𝑘(𝑡0) = ∫

𝑡1

𝑡0
𝐴𝑘𝑇𝑘 d𝑡.

umming over all accumulator edges yields that

(𝑡1) − 𝐸(𝑡0) =
∑

accumulator
∫

𝑡1

𝑡0
𝐴𝑘𝑇𝑘 d𝑡 . (4.6)

ubstituting (4.6) into (4.5) gives (4.2), as required.
We now derive the graph-splitting procedure. Suppose that we have

connected (green) subgraph comprising, at least, the external edge
nd the dissipator edges. The control edge is not included in this
ubgraph and, recall, the external edge and control edge share a vertex
y hypothesis.

Assume that the subgraph has 𝑛s vertices and 𝑚s edges. We partition
he across edge function 𝐴 and through edge function 𝑇 into

=
(

𝐴S
𝐴C

)

and 𝑇 =
(

𝑇S
𝑇C

)

,

here 𝐴S and 𝑇S both have 𝑚s components. Then we have 𝑚s edge
quations inherited from the original graph. To obtain across equations,
e partition the face matrix  as follows

=
(

11 12
21 22

)

,

here the rows of 11 and 12 correspond to the green faces, and the
olumns correspond to the green and red edges, respectively. Since
he green subgraph is connected by hypothesis, it follows that 11 is
compatibly-sized cycle submatrix1 and there are no green faces with

ed edges, so that 12 = 0. Therefore, we obtain the decomposition of
he across equations

𝐴 = 0 =
(

11 12
21 22

)(

𝐴S
𝐴C

)

=
(

11 0
21 22

)(

𝐴S
𝐴C

)

, (4.7)

nd, consequently,

11𝐴S = 0.

1 In terms of the graph colouring described in Section 4, 11 corresponds to
he ‘‘green faces’’, that is, the faces with green edges only. However, strictly,
11 is not a face matrix as it does not include a row for the unbounded face
f the green subgraph.
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Fig. 4.1. Mechanical system diagram of the damped mass.

y Euler’s formula, we obtain 𝑚s − 𝑛s + 2 − 1 = 𝑚s − 𝑛s + 1 independent
across equations, as we have not included the unbounded face in the
green subgraph.

Similarly, the through equations are

𝑇 = 0 =
(

11 12
21 22

)(

𝑇S
𝑇C

)

,

ut now 12 ≠ 0 in general and, in fact, we do not obtain through
equations involving only through variables in 𝑇S at vertices which are
shared with the complement. Rather, if there are 𝑝 shared vertices, then
there are 𝑛s−𝑝 through equations for the green subgraph which involve
only the through variables in 𝑇S — these are inherited from the original
graph.

Hence, the across/through equations yield so far

(𝑚s − 𝑛s + 1) + (𝑛s − 𝑝) = 𝑚s + 1 − 𝑝,

independent equations for the green subgraph. We need 𝑚s−1 through
equations for 𝑇S (involving only 𝑇S) in addition to the edge equations,
since we treat one edge variable as the independent variable for the
new performance objective. This leads to 𝑝 = 2. Note that since
ground is one of the shared vertices by hypothesis, the graph-splitting
procedure must identify exactly one additional shared vertex — doing
so will generically give existence and uniqueness of solutions for the
across function 𝐴S and through function 𝑇S.

.2. The energy-balance method for a damped mass

We revisit the motivating damped mass example from Section 2,
nd now apply the energy-balance method presented in Section 4. To
o so requires expressing the damped mass example as a linear graph,
rom Section 3. Whilst this level of abstraction may seem excessive for
uch a simple example, it becomes very useful for the more complicated
ituations considered later.

We present the mobility analogy, from which the impedance anal-
gy may be treated by duality. In the mobility analogy, across variables
re velocity differences and the through variables are forces. The
amped mass as a mechanical system diagram is shown in Fig. 4.1.
here are four ‘‘components’’, which will lead to a graph with four
dges, corresponding to the mass, the damper, the external signal and
he control signal.

Denote the across- and through-edge functions by 𝐴 and 𝑇 , respec-
ively. In accordance with the splitting in Section 4.1, we order these
s follows:

∶=

⎛

⎜

⎜

⎜

⎜

⎝

𝐴e
𝐴d
𝐴𝑢
𝐴a

⎞

⎟

⎟

⎟

⎟

⎠

and 𝑇 ∶=

⎛

⎜

⎜

⎜

⎜

⎝

𝑇e
𝑇d
𝑇𝑢
𝑇a

⎞

⎟

⎟

⎟

⎟

⎠

.

he corresponding graph is given in Fig. 4.2(a), with its initial colour-
ng. The nodes are labelled in the graph. By symmetry, which vertex is
hosen as the ground is unimportant here. We label the external force,
amper (dissipator), mass (accumulator) and control force edges as one
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o four, respectively. Therefore, the incidence matrix and face matrix
re respectively given by

∶=
(

1 1 1 1
−1 −1 −1 −1

)

and  ∶=

⎛

⎜

⎜

⎜

⎜

⎝

1 −1 0 0
0 1 −1 0
0 0 1 −1
−1 0 0 1

⎞

⎟

⎟

⎟

⎟

⎠

.

(4.8)

The faces are enumerated according to: left bounded face, middle
bounded face, right bounded face, and unbounded face. The solid lines
in  have been inserted to illustrate the decomposition of  as in (4.7).

The across equation 𝐴 = 0 gives

𝐴e = 𝐴d = 𝐴a = 𝐴u , (4.9)

ssentially stating that all the velocity differences act on the same single
bject (the mass).

The through equation 𝑇 = 0 gives that

e + 𝑇𝑢 + 𝑇a + 𝑇d = 0 , (4.10)

hich, physically, is simply Newton’s third law.
The constitutive relationships for the across-accumulator and dissi-

ator are, respectively,

𝐴̇a = 𝑇a and 𝐴d =
1
𝑑
𝑇d . (4.11)

Therefore, with 𝑇e = −𝑒, 𝑇u = 𝑢, and 𝐴a = 𝑦, invoking (4.9), (4.10),
and (4.11) gives that

𝑚𝑦̇ = 𝑚𝐴̇a = 𝑇a = −(𝑇e + 𝑇𝑢 + 𝑇d) = −𝑒 − 𝑢 − 𝑑𝑦,

which recovers (2.1).
At first sight, the six equations across (4.9), (4.10), and (4.11)

may seem a cumbersome way of expressing the simple equation (2.1).
However, the structured nature of those six equations, encoded by the
graph in Fig. 4.2(a), has advantages which become more apparent in
more complex situations. The right-hand side of the energy balance
equation (4.2) is given by

− ∫

𝑡1

𝑡0
𝐴e𝑇e + 𝐴d𝑇d d𝑡 , (4.12)

which is also equal to the right-hand side of (2.5).
Here the graph-splitting procedure is trivial. To partition the initial

graph into two connected subgraphs (green edges and red edges)
which share exactly two nodes, and where the green subgraph has
as few edges as possible, it suffices to colour the black accumulator
edge red, shown in Fig. 4.2(b). Both the subgraph (green edges) and
its complement (red edges) have two edges, and share the only two
vertices. For completeness, we record that the across edge function,
through edge function, and the cycle matrix associated with green the
subgraph are

𝐴S =
(

𝐴e
𝐴d

)

, 𝑇S =
(

𝑇e
𝑇d

)

and S =
(

1 −1
)

, (4.13)

respectively. Therefore, the across equation S𝐴S = 0 yields

𝐴e = 𝐴d.

We also retain the second constitutive equation from (4.11). However,
as described in Section 4.1, the green subgraph inherits no through
relationships from the original graph because the two (and so all the)
vertices of the subgraph are shared with its complement. Finally, the
external edge variable 𝑇e = −𝑒 is externally specified.

Thus, the energy-balance method reduces the current optimal con-
trol problem to maximising (4.12), in terms of the four unknowns, 𝐴e,
𝐴d, 𝑇e and 𝑇d. One of these variables is specified, and one shall play
the role of the independent variable for the optimisation. This leaves
two equations and two unknowns, which generically gives existence
and uniqueness of solutions.
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Fig. 4.2. Damped mass graph under mobility analogy. Yellow nodes are shared and the dashed node is ground. (a) Initial graph (b) Graph-splitting decomposition.
Fig. 5.1. Schematic of grid-connected PV system.
From here, the maximisation procedure is bespoke to the example
nder consideration. Presently, it is convenient to view 𝐴e as the

independent variable. In light of the across equation and constitutive
relationship in (4.11), we seek to minimise

∫

𝑡1

𝑡0
−𝐴e𝑒 + 𝑑𝐴2

e d𝑡 .

As before, this is achieving by pointwise minimising the integrand, to
give 𝐴e = 𝑒∕(2𝑑) = −𝑇e∕(2𝑑), which determines the other variables 𝐴d
and 𝑇d in the green subgraph. The remaining variables, those in the red
subgraph, are now determined from (4.9), (4.10), and (4.11).

Of course, the above argumentation gives us the same as we ob-
tained, in a seemingly easier way, in (2.7). However, as mentioned,
the above graph-theoretic perspective provides a structured approach
which generalises to much more complex situations.

5. Renewable energy application — solar

The remainder of the paper outlines the energy-balance method
in the context of three different renewable energy technologies: solar,
wind and wave. We begin with photovoltaic solar energy.

5.1. Background and existing works

A solar photovoltaic (PV) system essentially converts variable in
time sunlight into electric power of a fixed frequency. The treatment
of solar energy systems is now common in engineering textbooks, such
as [27, Chapter 6], and recent reviews of PV systems include [28,29].
The basic component of a PV system is a PV cell, underpinned by the
photovoltaic effect. PV cells are connected in series or parallel to form
a PV module (also called a panel), collections of which are called a PV
array or farm. PV modules or arrays generate a DC current which is
transformed, via a PV inverter, and then may be connected to a utility
grid. The generic structure of a grid-connected PV system is shown
in [28, Figure 1] or [29, Fig. 14], from which Fig. 5.1 below is inspired.

We note that the input filter and DC/DC converter are marked as
optional in Fig. 5.1. However, it is advantageous to individually control
9

each solar module making up the array, and then this option is needed
as highlighted in [29, p. 3128]. The objective is to maximise the total
energy at the DC/AC interface. The subsystem comprising the DC link
and the DC/AC converter is then left to deal with converting this to the
desired frequency. We will concentrate on the subsystem comprising
the PV module and the input filter. The DC/DC converter is typically
modelled as an ideal transformer (see, for example [30, equation (31)]),
and could easily be included in what follows.

PV systems are well-studied objects with a vast literature. The
prevailing optimisation method is so-called Maximum Power Point
Tracking (MPPT) with reviews including [31–35]. Roughly speaking,
the Maximum Power Point is the voltage (load) point at which the
power output of a PV module (described by the P–V characteristic)
is maximised. MPPT then seeks to vary the voltage temporally so
that the MPP is maintained. There are a range of MPPT algorithms,
each with its advantages and disadvantages, such as those described
in [33, Section 3], and we refer the reader to the references listed for
more information. In Section 5.3 below we demonstrate how the MPPT
problem naturally arises from the energy-balance method. By way of
other recent related literature, the papers [36,37] explore, in different
ways, the role of the DC–DC converter in optimal energy conversion.

5.2. A mathematical model

Details of the mathematical modelling of PV modules may be found
in [38]. Here we make the further simplifying assumption that the PV
module comprises a single PV cell — more complicated arrangements
will be considered in later work. Furthermore, we do not consider the
effects of temperature or partial shading, the latter of which is a current
avenue of PV research; see, for example [39,40]. A simple equivalent
circuit model for an ideal PV cell comprises an ideal current source
in parallel with an ideal (or Shockley) diode. However, more realistic
models for PV cells include losses within the cell are typically modelled
by including shunt and series resistances; see, for example [38, Figure
4] or [27, Figure 5.14, p. 151]. Fig. 5.2 contains an electrical circuit
model for a PV solar cell connected to a RLC filter, and the ideal PV

cell is also outlined.
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Fig. 5.2. Electrical circuit model for PV solar cell (blue box) and RLC filter (red box).
The components inside the black box comprise the ideal PV cell.

With reference to Fig. 5.2, the current source is an external source,
the diode is modelled as a nonlinear dissipator given by 𝑉 = 𝑅1(𝐼)
where

𝑅1(𝐼) ∶= 𝑉0 ln
(

1 + 𝐼
𝐼0

)

or, equivalently, 𝐼 = 𝐼0 exp
( 𝑉
𝑉0

− 1
)

,

for positive constants 𝑉0, 𝐼0. Further, the shunt resistance 𝑅2, series
resistance 𝑅3, and filter resistance 𝑅4 are all modelled as linear dissi-
pators. The control is the voltage across the capacitor; this is modelled
as a voltage source, though for our purposes it does not really matter
which of the three possible sources it is.

The corresponding linear graph is given in Fig. 5.3(a) with its initial
colouring. Figs. 5.3(b) and 5.3(c) show the graph-splitting decompo-
sition (with colourings) for the setting of an LC filter and RLC filter,
respectively. As an electrical circuit example, the across and through
variables in this example are voltage and current, respectively and,
therefore, we use the notation 𝐴𝑥 = 𝑉𝑥 and 𝑇𝑦 = 𝐼𝑦 throughout.

In the following subsections we apply the energy-balance method
to the PV solar cell (and RLC filter) models considered.

5.3. Maximum power point tracking for an ideal PV solar cell

For the ideal PV cell depicted in Fig. 5.2, elementary circuit mod-
elling leads to the following relationship

𝐼𝑢 = 𝐼e − 𝐼0 exp
(𝑉𝑢
𝑉0

− 1
)

, (5.1)

so that the power output of the ideal solar PV cell is

𝑃 = 𝐼𝑢𝑉𝑢 =
(

𝐼e − 𝐼0 exp
(𝑉𝑢
𝑉0

− 1
))

𝑉𝑢.

Here 𝐼 = 𝐼𝑢 and 𝑉 = 𝑉𝑢 are the load current and voltage, respectively.
or fixed 𝐼e, the graphs of these two equations are called the 𝐼–

𝑉 characteristic and 𝑃–𝑉 characteristic of the ideal PV solar cell,
respectively, and illustrative graphs are plotted in Fig. 5.4(a). It is
readily seen that 𝑃 = 𝑃 (𝑉𝑢) has a unique maximum, and this point
is called the Maximum Power Point (MPP) and denoted 𝑉𝑀𝑃𝑃 . Since
the 𝑃 –𝑉 characteristic varies with time as the current source 𝐼𝑒 varies,
the MPP changes over time, that is, 𝑉𝑀𝑃𝑃 = 𝑉𝑀𝑃𝑃 (𝑡). MPPT methods
essentially specify how to determine 𝑉𝑀𝑃𝑃 (𝑡) temporally.

We show how the MPPT problem arises from the energy-balance
method. Arguably, as with the damped mass considered in Sections 2
and 4.2, this level of abstraction may seem excessive for such a simple
example, but we argue is extremely useful once more involved models
are considered. The linear graph of the ideal PV cell is shown in
Fig. 5.4(b), with the directions of the edges chosen to be consistent
with the signs used in (5.1). In this problem there are six variables

𝐼e, 𝑉e, 𝐼𝑅1
, 𝑉𝑅1

, 𝑉𝑢, 𝐼𝑢 , (5.2)

(where 𝐼𝑅1
, 𝑉𝑅1

are the current voltage pair for the diode), a single
through equation

𝐼𝑢 = 𝐼e − 𝐼𝑅1
(from either node),

two across equations
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𝑉𝑅1
= −𝑉e and 𝑉𝑅1

= 𝑉𝑢 , (from the e–𝑅1 and 𝑅1–𝑢 faces) , (5.3)
and the constitutive relationship

𝑉𝑅1
= 𝑅1(𝐼𝑅1

) = 𝑉0 ln
(

1 +
𝐼𝑅1

𝐼0

)

or, equivalently, 𝐼𝑅1
= 𝐼0

(

exp
(𝑉𝑅1

𝑉0

)

− 1
)

.

(5.4)

Presently, the energy-balance equation (4.2) reads

∫

𝑡1

𝑡0
𝐼𝑢𝑉𝑢 d𝑡 = −∫

𝑡1

𝑡0
𝐼e𝑉e + 𝐼𝑅1

𝑉𝑅1
d𝑡 , (5.5)

as there are no energy storage elements (accumulators) here. The
desired aim of maximising the left-hand side of (5.5) is equivalent to
maximising the right-hand side, which depends on four variables and
is subject to no dynamic constraints. Hence, maximisation is achieved
by pointwise maximisation (in time) of the integrand. Of the four
variables, one is externally specified and one shall play the role of
the independent variable used for the optimisation. Therefore, we
require two equations relating these four variables. Whilst it is clear
in this simple example which equations these are, with reference to
the graph-splitting procedure, observe that the green subgraph inherits
no through relationships from the original graph because the two (and
so all the) nodes of the subgraph are shared with its complement.
However, the first across equation in (5.3) and the constitutive rela-
tionship (5.4) are inherited by the green subgraph, yielding the two
required equations. To maximise the integrand on the right-hand side
of (5.5), we first rewrite it in terms of the variable 𝑉𝑅1

and external
source 𝐼e as

𝑉𝑅1

(

𝐼e − 𝐼0
(

exp
(𝑉𝑅1

𝑉0

)

− 1
))

.

Maximising the above function gives the MPP, as expected.

5.4. Solar cell with a LC filter

Here we consider the arrangement in Fig. 5.3(b). The right-hand
side of the energy-balance equation (4.2) equals

−∫

𝑡1

𝑡0
𝑉e𝐼e d𝑡 −

∑

dissipator
∫

𝑡1

𝑡0
𝑉𝑘𝐼𝑘 d𝑡 = −∫

𝑡1

𝑡0
𝑉e𝐼e + 𝑉𝑅1

𝐼𝑅1
+ 𝑉𝑅2

𝐼𝑅2
+ 𝑉𝑅3

𝐼𝑅3
d𝑡.

ence, the objective is to minimise
𝑡1

𝑡0
𝑉e𝐼e + 𝑉𝑅1

𝐼𝑅1
+ 𝑉𝑅2

𝐼𝑅2
+ 𝑉𝑅3

𝐼𝑅3
d𝑡,

ubject to the algebraic constitutive relationships

𝑉𝑅1
= 𝑉0 ln

(

1 +
𝐼𝑅1
𝐼0

)

, 𝑉𝑅2
= 𝑅2𝐼𝑅2 ,

𝑉𝑅3
= 𝑅3𝐼𝑅3 ,

⎫

⎪

⎬

⎪

⎭

(from the green dissipator edges),

the through equation

𝐼𝑅1
+ 𝐼𝑅2

+ 𝐼e = 𝐼𝑅3
(from the green node (III)) ,

the across equations

𝑉e = 𝑉𝑅1
= 𝑉𝑅2

(from the 𝑅1–e and 𝑅2–e faces),

and we recall that 𝐼e (from the green edge 𝑒) is externally given.
The optimisation involves eight variables, one of which is externally
specified and one of which shall play the role of the independent
variable in the optimisation. This leaves six unknowns and six equations
above, which generically gives existence and uniqueness of solutions.

Since the optimal control problem associated with the energy-
balance method only involves algebraic equations, it can be solved by
pointwise minimisation of the integrand. It is convenient to choose 𝐼𝑅1
as the independent variable. We use the algebraic equations to write
the integrand in terms of 𝐼𝑅1

and the given 𝐼e as
(

𝑅2 + 𝑅3 𝑉0 ln

(

1 +
𝐼𝑅1

)

+ 𝑅3𝐼e + 𝑅3𝐼𝑅1

)(

1 𝑉0 ln

(

1 +
𝐼𝑅1

)

+ 𝐼e + 𝐼𝑅1

)

.

𝑅2 𝐼0 𝑅2 𝐼0
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Fig. 5.3. PV RLC circuit model as graph. Yellow nodes are shared and the dashed node is ground. (a) Initial colouring of graph with RLC filter (b) Subgraph and its complement
or the LC filter (c) Subgraph and its complement for the RLC filter.
Fig. 5.4. (a) 𝐼–𝑉 characteristic (solid) and 𝑃 –𝑉 characteristic (dashed) of the ideal PV solar cell. The maximum power point (MPP) is shown. (b) Linear graph for the ideal PV
solar cell. The subgraph and its complement are shown. Yellow nodes are shared and the dashed node is ground.
From setting the derivative of the integrand with respect to 𝐼𝑅1
equal

o zero, we obtain
𝑅2 + 𝑅3

𝑅2
𝑉0 ln

(

1 +
𝐼𝑅1
𝐼0

)

+ 𝑅3𝐼e + 𝑅3𝐼𝑅1
)( 𝑉0

𝑅2(𝐼0 + 𝐼𝑅1 )
+ 1

)

( (𝑅2 + 𝑅3)𝑉0

𝑅2(𝐼0 + 𝐼𝑅1 )
+ 𝑅3

)( 1
𝑅2

𝑉0 ln
(

1 +
𝐼𝑅1
𝐼0

)

+ 𝐼e + 𝐼𝑅1
)

= 0 , (5.6)

as a necessary condition for an optimum. Developing equation (5.6)
further analytically seems intractable, and numerical solutions will be
required. Note that, including (5.6) we now have seven equations in
seven variables.

Once the optimal control problem for the green subgraph is solved,
we use the remaining equations to determine the remaining variables.
These equations are

𝐿𝑇̇𝐿 = 𝑉𝐿, 𝐶𝐴̇𝐶 = 𝐼𝐶 , 𝑉𝑅4
= 𝑅4𝐼𝑅4

, 𝐼𝑅3
= 𝐼𝐿, 𝑉𝑢 = 𝑉𝑅4

= 𝑉𝐶 ,

and

𝑉𝑢 + 𝑉e + 𝑉𝑅3
+ 𝑉𝐿 = 0, 𝐼𝐿 = 𝐼𝑅4

+ 𝐼𝐶 + 𝐼𝑢.

5.5. Solar cell with a RLC filter

Here we consider the arrangement in Fig. 5.3(c). The right-hand side
of the energy-balance equation (4.2) equals

− ∫

𝑡1

𝑡0
𝑉e𝐼e d𝑡 −

∑

dissipator
∫

𝑡1

𝑡0
𝑉𝑘𝐼𝑘 d𝑡

= −∫

𝑡1

𝑡0
𝑉e𝐼e + 𝑉𝑅1

𝐼𝑅1
+ 𝑉𝑅2

𝐼𝑅2
+ 𝑉𝑅3

𝐼𝑅3
+ 𝑉𝑅4

𝐼𝑅4
d𝑡.
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Hence, we seek to minimise

∫

𝑡1

𝑡0
𝑉e𝐼e + 𝑉𝑅1

𝐼𝑅1
+ 𝑉𝑅2

𝐼𝑅2
+ 𝑉𝑅3

𝐼𝑅3
+ 𝑉𝑅4

𝐼𝑅4
d𝑡,

subject to the algebraic and differential constitutive relationships

𝑉𝑅1
= 𝑉0 ln

(

1 +
𝐼𝑅1

𝐼0

)

, 𝑉𝑅2
= 𝑅2𝐼𝑅2

𝑉𝑅3
= 𝑅3𝐼𝑅3

𝑉𝑅4
= 𝑅4𝐼𝑅4

𝐿𝑇̇𝐿 = 𝑉𝐿,

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(from the green edges),

the through equations

𝐼𝑅1
+𝐼𝑅2

+𝐼e = 𝐼𝑅3
, 𝐼𝑅3

= 𝐼𝐿 (from the green vertices (III) and (IV)),

and the across equations

𝑉e = 𝑉𝑅1
= 𝑉𝑅2

, 𝑉𝑅4
+𝑉e +𝑉𝑅3

+𝑉𝐿 = 0 (from the three green faces).

We recall that 𝐼e is externally given, and one variable shall play the
role of an independent variable for the optimisation. Consequently, we
are left with ten unknowns and ten equations, which generically gives
existence and uniqueness of solutions. By way of commentary, observe
from Fig. 5.3(c) that in order to construct a connected subgraph which
contains all the dissipator edges, particularly 𝑅4, the accumulator edge
with across variable 𝑉𝐿 and through variable 𝐼𝐿 has been included.
These variables do not appear in the right-hand side of (4.2), but are
required to ensure that enough equations are specified to (uniquely)
determine the variables which do appear.

In contrast to the situation of the LC filter, the current optimal
control problem is subject to a single dynamic equation, 𝐿𝐼̇ = 𝑉 .
𝐿 𝐿
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Fig. 6.1. Wind turbine figures (a) Schematic graph of regions of operation. Dashed line is wind power and solid line is turbine power. Figure is based on [44, Figure 3]. (b)
Diagram of horizontal axis wind turbine. Figure is in the public domain and is courtesy of U.S. Department of Energy.
Therefore, solving this optimal control problem requires the Pontryagin
Principle, or some other optimal control method. We note that the
natural choice for control variable is 𝐼𝑅1

and that the Hamiltonian is
non-affine in this new control variable, which is advantageous from a
numerical perspective.

Once the optimal control problem for the subgraph is solved, we
use the remaining equations to determine the remaining variables,
namely, 𝑉𝐶 , 𝐼𝐶 , 𝑉𝑢 and 𝐼𝑢. These equations are

𝐶𝐴̇𝐶 = 𝐼𝐶 , 𝑉𝑢 = 𝑉𝑅4
= 𝑉𝐶 , 𝐼𝐿 = 𝐼𝑅4

+ 𝐼𝐶 + 𝐼𝑢.

6. Renewable energy application — wind

6.1. Background and existing works

A wind turbine system essentially converts variable in time aero-
dynamic power into electric power of a fixed frequency. Nowadays
wind energy is commonly used globally. It is both a growing source of
renewable energy and, in 2021, generated more energy than all other
non-hydro renewable sources combined [41]. The mathematical mod-
elling of wind turbines is addressed in the works [42,43], and reviews
of wind energy technology and control include [44–47]. We refer the
reader to these papers and, for example, the texts [48] or [27, Chapter
2] for thorough treatments. Research into wind energy technology is
multi-faceted, with two current lines of enquiry including improving
the monitoring and maintenance of wind turbine blades [49,50], and
vibration reduction control of wind turbine towers [51].

The operation of a wind turbine is as in Fig. 6.1(a): both at low wind
speed and at very high wind speed the blades do not move; in ‘‘region
3’’ the power is held constant; it is ‘‘region 2’’ which is of interest to us
— this is where the turbine operates in an energy capture maximising
fashion.

The main mechanical components of a horizontal-axis wind turbine
are illustrated in Fig. 6.1(b). Attached to the rotor is the low-speed shaft
which is connected via a gear to the high-speed shaft. The high-speed
shaft is connected to a generator. The control variable is the torque
applied to the high-speed shaft. For simplicity, we assume that the
pitch is constant throughout, so that we ignore controlling the pitch via
the yaw motor. A wind turbine also contains an electrical subsystem
(see, for instance [52, Figure 4]), the role of which is to convert
the mechanical energy into electrical energy of a desired frequency.
Presently, the objective is to maximise the energy at the mechanical–
electrical interface. We assume that the low-speed shaft, high-speed
shaft and gear all have damping and inertia, and, further, that we can
control the electromechanical torque directly. In the model in [52] this
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is indirectly controlled through the electrical subsystem; this can be
incorporated easily enough into the present framework.

6.2. A mathematical model

For a graph-theoretic model of the mechanical subsystem of a wind
turbine, we choose (scaled) angular velocity differences as the across
variables and (scaled) torques as the through variables. Specifically,
we scale the across/through variables for the high-speed shaft as in
Example 3.3 to obtain a single linear graph. Recall that the coefficients
in the edge equations related to the high-speed shaft are then scaled
by the square of the gear ratio compared to what they would have
been had we taken velocity and torque as the variables. Since all the
elements are linear, we simply relabel the relevant coefficients.

The external source is a mixed source which, recall, must be speci-
fied in terms of two auxiliary/external variables. The across variable 𝐴e
is the angular velocity of the blades and the through variable 𝑇e is the
aerodynamic torque acting on the blades which are related by

𝑇e = −𝐶𝑞(𝜆)
𝜌𝑎𝑟
2

𝑣2, 𝜆 =
𝐴e𝑟
𝑣

, 𝐶𝑞(𝜆) ∶=
𝐶𝑝(𝜆)
𝜆

, (6.1)

where 𝑣 is the wind speed, 𝜆 is the tip-speed ratio, 𝜌 is the air density,
𝑟 is the radius of the rotor blades, and 𝑎 = 𝜋𝑟2 is the area swept by the
turbine blades. The function 𝐶𝑝 is referred to as the power coefficient,
it takes positive values and has a unique maximum. It is determined
experimentally — a sample curve is contained in [44, Figure 3]. The
variables 𝐴e and 𝑇e are uniquely determined by 𝑣 and 𝜆 via (6.1), and
we view these latter two as the two independent variables in the mixed
source.

The three energy-dissipating elements are all modelled as linear
resistors. The control variable is the torque applied to the high-speed
shaft, which is a through source. This gives the graph in Figs. 6.2(c)
and a description of the edges appears in Table 6.1.

If, in fact, it is assumed that there is no stiffness and damping in the
gear (so that 𝐿 = 0 and 𝑅3 = 0), then the above is what is referred to as
a one-inertia model of a gear; see, for example [44, Equation (7)]. This
is the situation considered in Example 3.3. When there is stiffness in
the gear, and possibly damping, then the above model is referred to as
a two-inertia model of a gear; see, for example [53] and [30, Equation
(16)] for multiple-inertia models.

From a linear graph modelling perspective, the difference between
the one- and two-inertia models is that the 𝐿 and 𝑅3 edges are absent
in the former. The initial graphs and graph-splitting decompositions of
the one- and two-inertia models described are shown in Fig. 6.2. In
the two-inertia model the accumulator edges 𝐿 and 𝐶 are required to
3
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(

Fig. 6.2. Wind turbine models as linear graphs. Yellow nodes are shared and the dashed node is ground. (a) and (c) Initial graphs for one- and two-inertia models, respectively.
b) and (d) Graph-splitting decompositions for one- and two-inertia models, respectively.
Table 6.1
Edges for linear graph of wind turbine in Fig. 6.2(c).

Edge label Description Element type

𝑒 Angular velocity/torque of rotor blades Mixed source
𝑅1 Low-speed shaft damping Linear dissipator
𝑅2 High-speed shaft damping Linear dissipator
𝑅3 Gear damping Linear dissipator
𝐶1 Low-speed shaft inertia Across accumulator
𝐶2 High-speed shaft inertia Across accumulator
𝐿 Gear stiffness Through accumulator
𝑢 Control torque applied to high-speed shaft Through source

belong to the green subgraph rather than the red subgraph, as otherwise
the green and red subgraphs would share three nodes.

In the following subsections we apply the energy-balance method
for the two wind turbine models considered.

6.3. One-inertia wind turbine model

Here we consider the arrangement in Fig. 6.2(a). At face value, we
have an optimal control problem in the 12 variables

𝐴e, 𝑇e, 𝐴𝑢, 𝑇𝑢, 𝐴𝑅1
, 𝑇𝑅1

, 𝐴𝑅2
, 𝑇𝑅2

, 𝐴𝐶1
, 𝑇𝐶1

, 𝐴𝐶2
, 𝑇𝐶2

. (6.2)

However, here the right-hand side of the energy-balance equation (4.2)
equals

−∫

𝑡1

𝑡0
𝐴e𝑇e d𝑡−

∑

dissipator
∫

𝑡1

𝑡0
𝐴𝑘𝑇𝑘 d𝑡 = −∫

𝑡1

𝑡0
𝐴e𝑇e +𝐴𝑅1

𝑇𝑅1
+𝐴𝑅2

𝑇𝑅2
d𝑡.

Therefore, the objective is to minimise

∫

𝑡1

𝑡0
𝐴e𝑇e + 𝐴𝑅1

𝑇𝑅1
+ 𝐴𝑅2

𝑇𝑅2
d𝑡 , (6.3)

subject to the algebraic constitutive relationships
13

𝐴𝑅1
= 𝑅1𝑇𝑅1

, 𝐴𝑅2
= 𝑅2𝑇𝑅2

(from the two green dissipator edges),
the across equations

𝐴𝑅1
= 𝐴e = 𝐴𝑅2

, (from two green faces),

and we recall that the external edge variables 𝐴e and 𝑇e are determined
in (6.1) by the external variable, the wind speed 𝑣, and the auxiliary
variable, the tip-speed ratio 𝜆. The green subgraph inherits no through
relationships from the original graph because the two (and so all the)
nodes of the subgraph are shared with its complement. As usual, one
variable in the integrand (6.3) will play the role of the independent
variable for the optimisation.

Thus, the energy-balance method reduces the original optimal con-
trol problem to another in terms of six variables

𝑣, 𝜆, 𝐴𝑅1
, 𝑇𝑅1

, 𝐴𝑅2
, 𝑇𝑅2

related by four equations, and of which the first is externally given
and one variable is chosen to be independent. Thus, existence and
uniqueness of solutions is generically guaranteed.

Since the optimal control problem obtained by the energy-balance
method only involves algebraic equations, it can be solved by pointwise
minimisation of the integrand. For which purpose, we first rewrite the
integrand in terms of 𝐴e. We use the algebraic equations to write the
integrand in terms of 𝐴e as

𝐴e𝑇e + 𝐴𝑅1
𝑇𝑅1

+ 𝐴𝑅2
𝑇𝑅2

= 𝐴e𝑇e + 𝐴2
e

( 1
𝑅1

+ 1
𝑅2

)

.

It is now convenient to switch to the tip-speed ratio 𝜆 as independent
variable. Invoking (6.1), the integrand is then equal to

− 𝐶𝑝(𝜆)
𝜌𝑎
2
𝑣3 + 𝜆2𝑣2

𝑟2
( 1
𝑅1

+ 1
𝑅2

)

, (6.4)

which we seek to minimise as a function of 𝜆. In the absence of an
analytic expression for 𝐶𝑝, this needs to be done numerically, and gives
rise to some 𝜆† > 0 such that

𝐴†
e (𝑡) =

𝜆†
𝑟
𝑣(𝑡),

that is, the optimal speed of the low-speed shaft is proportional to the
wind speed with proportionality constant 𝜆 ∕𝑟.
†
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However, if the dissipators are absent, then (6.4) simplifies to
−𝐶𝑝(𝜆)𝜌𝑎𝑣3∕2, and minimising this is equivalent to maximising the
power coefficient 𝐶𝑝. In particular, we recover the same energy max-
mising control as the Standard Variable-Speed Control Law in [44,
p.73–74], although here from the energy-balance method. Let 𝜆∗
enote the unique point where 𝐶𝑝 is maximised. Then, still in the
bsence of dissipators,

∗
e (𝑡) =

𝜆∗
𝑟
𝑣(𝑡),

t follows from the shape of 𝐶𝑝 that 𝜆† < 𝜆∗, and so the optimal speed
f the low-speed shaft is still proportional to the wind speed, but with
larger proportionality constant than in the presence of dissipators.

Once the optimal control problem for the green subgraph is solved,
e use the remaining six equations to determine the remaining six
ariables. These equations are

𝐶1𝐴̇𝐶1
= 𝑇𝐶1

, 𝐶2𝐴̇𝐶2
= 𝑇𝐶2

,

𝐶1
= 𝐴𝐶2

= 𝐴𝑢 = 𝐴e, 𝑇e + 𝑇𝐶1
+ 𝑇𝑅1

= −(𝑇𝑢 + 𝑇𝐶2
+ 𝑇𝑅2

) .

.4. Two-inertia wind turbine model

Here we consider the arrangement in Fig. 6.2(c). We have an
ptimal control problem in 16 variables — 12 from (6.2), and

𝑅3
, 𝑇𝑅3

, 𝐴𝐿, 𝑇𝐿 . (6.5)

Here, the right-hand side of the energy-balance equation (4.2) equals

−∫

𝑡1

𝑡0
𝐴e𝑇e d𝑡−

∑

dissipator
∫

𝑡1

𝑡0
𝐴𝑘𝑇𝑘 d𝑡 = −∫

𝑡1

𝑡0
𝐴e𝑇e +𝐴𝑅1

𝑇𝑅1 +𝐴𝑅2
𝑇𝑅2 +𝐴𝑅3

𝑇𝑅3 d𝑡.

Therefore, the objective is to minimise

∫

𝑡1

𝑡0
𝐴e𝑇e + 𝐴𝑅1

𝑇𝑅1
+ 𝐴𝑅2

𝑇𝑅2
+ 𝐴𝑅3

𝑇𝑅3
d𝑡,

subject to the constitutive relationships

𝐴𝑅1
= 𝑅1𝑇𝑅1

, 𝐴𝑅2
= 𝑅2𝑇𝑅2

, 𝐴𝑅3
= 𝑅3𝑇𝑅3

,

𝐶1𝐴̇𝐶1
= 𝑇𝐶1

, 𝐿𝑇̇𝐿 = 𝐴𝐿,

}

(from the green dissipator/accumulator edges),

the through equation

𝑇𝑅1
+ 𝑇𝐶1

+ 𝑇e = 𝑇𝑅3
+ 𝑇𝐿 (from the single green vertex),

and the across equations

𝐴e = 𝐴𝑅1
= 𝐴𝐶1

, 𝐴𝑅3
= 𝐴𝐿,

𝐴𝑅1
+ 𝐴𝑅2

+ 𝐴𝑅3
= 0 ,

}

(from the four green faces),

and we recall that 𝑇e and 𝐴e are determined by 𝑣 and 𝜆 via (6.1).
The optimal control problem obtained by the energy-balance method

has two state variables, 𝐴𝐶1
and 𝑇𝐿, and can be solved using the

Pontryagin Principle, or some other optimal control method. We note
that the natural choice for the control variable is 𝐴𝐿. We can write the
integrand in terms of this new control and the state as

−𝐶𝑝

(𝐴𝐶1
𝑟

𝑣

)

𝜌𝑎𝑣3

2
+

𝐴2
𝐶1

𝑅1
+

(𝐴𝐶1
+ 𝐴𝐿)2

𝑅2
+

𝐴2
𝐿

𝑅3
.

he differential equation constraints are

1𝐴̇𝐶1
=

𝐴𝐿
𝑅3

+ 𝑇𝐿 −
𝐴𝐶1

𝑅1
+ 𝐶𝑞

(𝐴𝐶1
𝑟

𝑣

)

𝜌𝑎𝑟𝑣2

2
, 𝐿𝑇̇𝐿 = 𝐴𝐿.

Once the optimal control problem for the green subgraph is solved,
we use the remaining four equations to determine the remaining four
variables (𝐴𝐶2

, 𝑇𝐶2
, 𝐴𝑢 and 𝑇𝑢). These equations are

𝐶 𝐴̇ = 𝑇 , 𝐴 = 𝐴 = 𝐴 , 𝑇 + 𝑇 + 𝑇 = 𝑇 + 𝑇 + 𝑇 .
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2 𝐶2 𝐶2 𝑢 𝑅2 𝐶2 e 𝐶1 𝑅1 𝑢 𝐶2 𝑅2
. Renewable energy application — wave

.1. Background and existing works

There are a multitude of wave energy converter (WEC) technologies,
ncluding point absorber, attenuator, terminator and overtopping (off-
hore) devices, as well as oscillating wave surge converters (typically
earshore) and oscillating water column (typically shoreline). These
echnologies are reviewed across [8,54–56], with the works [57–59]
ocussing on oscillating water columns, point absorbers, and power
ake-off systems, respectively. The control of WECs has garnered much
nterest, and reviews specifically of the control of WECs include [60–
2]. Recent perspectives and a nice summary of the research ‘land-
cape’, appear in [8]. Arguably, the established text in the field is that
f Falnes [17], with more recent text [63]. There is broad consensus
rom researchers in the field that there is vast, as yet mostly untapped,
otential for wave energy globally yet, despite now considerable re-
earch over the past three decades, ‘‘wave energy has not yet reached
ommercial viability’’ [8, Abstract] and ‘‘In comparison to other sources of
enewable energy, wave energy is still too expensive’’. [56, Section 4]. To
llustrate the range of ideas being considered, the paper [64] reported
early 150 WECs in development in 2013.

Roughly speaking, the hydrodynamic modelling and subsequent
ontrol of wave energy converters under linear dynamics is well under-
tood [65] (even if still not straightforward to implement practically),
ut wave energy particularly is an area where consideration of nonlin-
ar effects is important, as discussed in [66]. We reemphasise that the
nergy-balance method is applicable in a variety of nonlinear settings.
n addition to the above researches, other current lines of enquiry
nclude: real time prediction of incoming wave forces [67]; the explo-
ation of hybrid wave-wind renewable energy technologies [68], seek-
ng to leverage existing infrastructure of offshore wind, and; the grid
ntegration challenges associated with renewable wave energy [69].

.2. A mathematical model

The energy-balance method has already been illustrated in the
ontext of wave energy, as the damped mass considered in Section 2
s a highly simplistic model of a point absorber moving in the heave
irection only. As mentioned there, the known formulae in (2.7) from
he WEC literature are almost trivially obtained by the energy-balance
ethod, and do not make assumptions on the nature of the excitation

orce 𝑒.
As a different example, here we apply the energy-balance method

o a simplified WEC model comprising a hull and a gyroscope. The hull
scillates owing to a force exerted by waves. The hull is also affected by
radiation system — the force on the hull caused by the radiated waves

rom the hull. The resulting energy is transferred to a gyroscope from
here it is converted into electrical energy. For simplicity, the parts of

he system downstream from the gyroscope are ignored, but those could
e easily incorporated into the present framework. This device is called
n Inertial Sea Wave Energy Converter (ISWEC). We refer the reader
o [70], and the references therein, for information on the history and
cademic research on ISWECs. We comment that the same model has
een studied for gyrostabilisation of ships; see, for example [71].

We first write down the equations of motion before considering a
inear graph.

Denote the angular velocity of the hull by 𝜔h and its moment of
nertia by 𝐽h. The hull experiences a stiffness torque 𝐹𝑘h and nonlinear
amping torque 𝐹𝑑h which satisfy

̇𝑘h = 𝑘h𝜔h and 𝐹𝑑h = 𝑑h|𝜔h|𝜔h.

ere 𝑘h and 𝑑h are positive constants.
There is a torque arising from the radiation system given by 𝐶𝑅𝑧,

where 𝑧 is the state of the radiation system which is modelled by a
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Table 7.1
Edges for linear graph of hull system in Fig. 7.1(a).

Edge label Description Element type

𝑒 Torque from the incoming waves Through source
𝑅1 Hull damping Nonlinear dissipator
𝑅2 Damping from radiation system Dynamic dissipator
𝐶1 Hull inertia Across accumulator
𝐿1 Hull stiffness Though accumulator
Gyro Torque imposed on the hull by the gyroscope One-port of transducer

linear, finite-dimensional state space control system

̇ = 𝐴𝑅𝑧 + 𝐵𝑅𝜔h,

whose transfer function (from 𝜔h to 𝐶𝑅𝑧) is assumed to be positive real.
Denoting the angular position of the gyroscope by 𝑦g and its angular
velocity by 𝜔g, which are related by the differential equation 𝑦̇g = 𝜔g,
there is a torque imposed on the hull given by 𝜂𝜔g cos(𝑦g) for some
positive constant 𝜂. Finally, the incoming waves impose a torque 𝐹e on
the hull. Therefore, the dynamics of the hull are given by

𝐽h𝜔̇h+𝑑h|𝜔h|𝜔h+𝐹𝑘h −𝜂𝜔g cos(𝑦g)+𝐶𝑅𝑧+𝐹e = 0, 𝐹̇𝑘h = 𝑘h𝜔h . (7.1)

The gyroscope has moment of inertia 𝐽g, stiffness satisfying 𝐹̇𝑘g =
𝑘g𝜔g cos(𝑦g) (consistent with 𝐹𝑘g = 𝑘g sin(𝑦g)), damping 𝑑g𝜔g, a torque
imposed by the hull of −𝜂𝜔h cos(𝑦g) and a control torque 𝐹𝑢. Therefore,
the dynamics of the gyroscope are given by

𝐽g𝜔̇g + 𝑑g𝜔g + 𝐹𝑘g + 𝜂𝜔h cos(𝑦g) + 𝐹𝑢 = 0, 𝐹̇𝑘g = 𝑘g𝜔g cos(𝑦g), 𝑦̇g = 𝜔g .

(7.2)

Our aim is to express the coupled hull and gyroscope control system as
a linear graph and illustrate how the energy-balance method applies.
As we shall see, for a graph-theoretic treatment it is important to
distinguish between whether coupling between hull and gyroscope is
linearised for small 𝑦g, meaning that cos(𝑦g) is replaced by one, or not.
Unsurprisingly, the linearised coupling case is more straightforward,
and we consider it first.

7.3. Linearised coupling

If the variable 𝑦g is assumed small, so that cos(𝑦g) is replaced by
one, then the variable 𝑦g may be omitted from 7.2 and the coupling
between the hull and gyroscope is via a transducer, as
(

𝐹hull→gyro
𝐹gyro→hull

)

=
(

0 −𝜂
𝜂 0

)(

𝜔h
𝜔g

)

= 𝐺
(

𝜔h
𝜔g

)

.

We initially give separate graphs for the hull and the gyroscope. Since
the transducer is a gyrator, we need to choose dual analogies in order
to merge the graphs, as discussed in Section 3.4. For the hull system, we
choose angular velocity differences as the across variables and torques
as the through variables — the mobility analogy. This gives the graph
in Figs. 7.1(a) and a description of the edges appears in Table 7.1.
Consequently, we use the impedance analogy for the gyroscope, so
that angular velocity differences are through variables and torques are
across variables. This gives the linear graph for the gyroscope system
shown in Fig. 7.1(b) with a description of edges given in Table 7.2. By
scaling the variables of one of the graphs by 𝜂, we can combine the
two graphs into one, as depicted in Fig. 7.1(c). For simplicity for the
remainder of the example, we set 𝜂 = 1.

In the following subsections we apply the energy-balance method
for versions of the wave energy converter model considered.

7.3.1. Only the hull damped
Assume first that the radiation system is absent and the gyroscope

is undamped. Consequently, the 𝑅2 and 𝑅3 edges are absent from the
15

graph in Fig. 7.1(c) and instead we obtain the subgraph appearing in b
Table 7.2
Edges for linear graph of gyroscope system in Fig. 7.1(b).

Edge label Description Element type

𝑢 Control torque Across source
𝑅3 Gyroscope damping Linear dissipator
𝐿2 Gyroscope inertia Through accumulator
𝐶2 Gyroscope stiffness Across accumulator
Hull Torque imposed on the gyroscope by the hull One-port of transducer

Fig. 7.1(d). The energy-balance method gives that the objective is to
minimise

∫

𝑡1

𝑡0
𝐴e𝑇e + 𝐴𝑅1

𝑇𝑅1
d𝑡,

subject to the constitutive relationship (representing the nonlinear
damping of the hull)

𝑇𝑅1
= 𝑑h|𝐴𝑅1

|𝐴𝑅1
=∶ 𝑞1(𝐴𝑅1

) (from the green dissipator edge) , (7.3)

he across equation

e = 𝐴𝑅1
(from the single green face),

nd we recall that 𝑇e is externally given.
As with some of the earlier examples considered, since the optimal

ontrol problem obtained by the energy-balance method only involves
lgebraic equations, it can be solved by pointwise minimisation of
he integrand. For which purpose, a convenient choice for the new
ndependent variable is 𝐴𝑅1

, the angular velocity of the hull. We can
rite the integrand in terms of this variable and the given 𝑇e, the torque

mposed by the incoming waves, as

e𝑇e + 𝐴𝑅1
𝑇𝑅1

= 𝐴𝑅1

(

𝑇e + 𝑞1(𝐴𝑅1
)
)

.

Differentiating the above and setting equal to zero, a necessary condi-
tion for a minimiser is that 𝐴𝑅1

and 𝑇e satisfy:

0 = 𝑇e + 𝑞1(𝐴𝑅1
) + 𝐴𝑅1

𝑞′1(𝐴𝑅1
) =∶ 𝑇e + 𝑟1(𝐴𝑅1

).

nverting the function 𝑟1 leads to the angular velocity of the hull
s a function of the torque of the incoming wave. A straightforward
alculation shows that 𝑟1(𝑥) = 3𝑞1(𝑥), so that

e = −3𝑞1(𝐴𝑅1
) = −3𝑑h|𝐴𝑅1

|𝐴𝑅1
,

hich inverts to give

𝑅1
= −sign(𝑇e)

√

|𝑇e|
3𝑑h

.

As usual, once the optimal control problem for the green subgraph is
solved, we use the remaining equations to determine the remaining
variables.

7.3.2. Including the radiation system
Including the radiation system corresponds to incorporating the 𝑅2

edge in Figs. 7.1(c) and 7.1(d). The energy-balance method now gives
that the objective is to minimise

∫

𝑡1

𝑡0
𝐴e𝑇e + 𝑇𝑅1

𝐴𝑅1
+ 𝑇𝑅2

𝐴𝑅2
d𝑡.

We have the across equations

𝐴e = 𝐴𝑅1
= 𝐴𝑅2

(from the two green faces),

and the nonlinear damping of the hull (7.3), as before. The term 𝑇𝑅2
is

iven in terms of 𝐴𝑅1
by the radiation system

̇ = 𝐴𝑅𝑧 + 𝐵𝑅𝐴𝑅1
, 𝑇𝑅2

= 𝐶𝑅𝑧.

herefore, we have an optimal control problem with input 𝐴𝑅1
and

ynamic state variable 𝑧. Once this is solved, the other variables can
e determined from the remaining equations.
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Fig. 7.1. Linear graphs for wave energy converter with linearised coupling. Dashed green edges are absent when corresponding damping term is omitted, and present otherwise.
ellow nodes are shared and the dashed node is ground. (a) Hull graph (with mobility analogy) (b) Gyroscope graph (with impedance analogy) (c) Merged wave energy converter
raph. (d) and (e) Subgraph and complement for undamped and damped gyroscope, respectively.
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.3.3. Including all damping
When we assume that both the hull and the gyroscope are damped,

hen we obtain the subgraph in Fig. 7.1(e). Observe that the 𝐶1 and 𝐿1
dges, corresponding to the stiffness and inertia of the hull, respec-
ively, must be included in the green subgraph in order that the green
nd red subgraphs share only two vertices. The energy balance method
roceeds as before. In light of the green subgraph in Fig. 7.1(e), the new
ptimal control problem is subject to one through equation and four
cross equations (corresponding to the one green vertex and four green
aces, respectively), as well as two algebraic constitutive relationships
rom the dissipator edges 𝑅1 and 𝑅3, the dynamic dissipator equation
rom the radiation system, edge 𝑅2, and two dynamic constitutive
elationships from the accumulator edges 𝐿1 and 𝐶1.

.4. Nonlinear coupling

If the coupling is nonlinear, then the term cos(𝑦g) appears in 7.2,
particularly in the coupling terms between hull and gyroscope, where 𝑦g
s the position of the gyroscope. Therefore, to merge the hull and
yroscope graphs a nonlinear, dynamic gyrator is required, of the form

𝐹hull→gyro

𝐹gyro→hull

)

=

(

0 −𝜂 cos(𝑦g)
𝜂 cos(𝑦g) 0

)(

𝜔h

𝜔g

)

= 𝐺(𝑦g)

(

𝜔h

𝜔g

)

, 𝑦̇g = 𝜔g .

Such a component falls outside of the scope of the graph-theoretic treat-
ment of control systems considered currently, and is beyond the scope
of the present contribution. Some heuristics are available, however. To
incorporate the nonlinear coupling requires including the variable 𝑦g
and solving the differential equation 𝑦̇g = 𝜔g. For the gyroscope, 𝜔g is
a through variable, so this equation is essentially an across accumulator
16

s

Fig. 7.2. The wave energy subgraph with nonlinear coupling when both the hull and
gyroscope are damped.

equation. Thus, even with the nonlinear coupling, we can view the
merged graphs as those in Figs. 7.1(c), 7.1(d) and 7.1(e) only where the
edge 𝐶2 is replaced by an edge corresponding to the gyroscope stiffness
nd this additional across accumulator equation.

Since the 𝐶2 edge is not included when the gyroscope is assumed
ndamped, as considered in Sections 7.3.1 and 7.3.2, the energy-
alance method described there still applies. When the gyroscope is
ssumed damped then we can include the across accumulator edge,
abelled 𝐶2, into the green subgraph, as in Fig. 7.2. Although the graph-
heoretic approach presented earlier formally does not apply, the graph
s still useful in determining a smaller optimal control problem to be
olved.
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8. Extensions and including constraints

Here we briefly comment on extensions to the energy-balance
method.

First, we have focussed so far on control systems expressed as linear
graphs which contain a single external edge and a single control edge.
The energy-balance equation (4.2) generalises to multiple external
edges, and multiple controls, and becomes

𝐸(𝑡1) − 𝐸(𝑡0) +
∑

PTO
control

∫

𝑡1

𝑡0
𝐴𝑢𝑇𝑢 d𝑡 = −

∑

other
control

∫

𝑡1

𝑡0
𝐴𝑢𝑇𝑢 −

∑

external
∫

𝑡1

𝑡0
𝐴e𝑇e d𝑡

−
∑

dissipator
∫

𝑡1

𝑡0
𝐴𝑘𝑇𝑘 d𝑡 , (8.1)

here PTO denotes power take-off. The derivation of (8.1) is analogous
o that of (4.2), starting from the integrated version of Tellegen’s
heorem (4.4). In principle, the same ideas underpinning the energy-
alance method apply here — maximising the left-hand side of (8.1) is
quivalent to maximising the right-hand side of (8.1), which becomes
he new performance objective. The problem remains of extracting an
ppropriate, as small as possible, subgraph to

(a) permit the optimisation of, and;
(b) uniquely determine all the (remaining) variables of

he right-hand side of (8.1). It is beyond the scope of the present
ontribution to investigate when such a graph-splitting procedure is
racticable. Observe that the additional generality afforded by (8.1)
s compared to (4.2) was not required in the examples presented in
ections 5–7.

Second, the optimal control problems considered presently are not
ubject to any input- or state-constraints. Such constraints are likely
o be present in all real-world renewable energy generation contexts,
lthough again we reiterate that the energy-balance method provides a
heoretical maximum against which other control strategies, including
hose with constraints, may be compared.

The energy-balance method may be adjusted to incorporate state-
onstraints as follows. Essentially, any constrained edge variable in
he original optimal control problem must be included in the green
ubgraph — as these are the variables which appear in, and hence are
etermined by, the new optimisation problem. Constraints may then
e treated by classical optimal control tools, such as versions of the
ontryagin Principle. Since it is often convenient to take a flexible
nterpretation of the roles of variables in the new optimal control
roblem, whether an original variable receives a state or input (inde-
endent variable) constraint will vary between applications. Currently,
he (PTO) control edge variable is never placed in the green subgraph,
nd so traditional input constraints cannot be accommodated by this
djustment. It is worth commenting that it may be the case that the
ontrol edge variables determined by the (possibly constrained) energy-
alance method may satisfy its constraints and, in this case, is optimal
ven for the constrained problem. However, this may not happen and,
n which case, the underpinning ideas of using (4.2) or (8.1) to obtain

new optimal control problem may still be applicable for ‘‘large’’
roblems with certain constraints.

Third, we reiterate that we have not explored in depth how to
erform the graph-splitting procedure, an essential ingredient of the
nergy-balance method. For small graphs, a visual inspection and
olouring suffices, but this will prove intractable for ‘‘large’’ examples.
e note here that seeking a decomposition of edges of the original

inear graph corresponds to seeking a decomposition of vertices of the
orresponding ‘‘graph’’ with vertices and nodes interchanged. Mathe-
atically, this corresponds to viewing 𝑀⊤ as an incidence matrix which
ill lead to a hypergraph in general — where a single (hyper)edge
ay connect to more than two vertices. Separating a graph into two
istinct sets of vertices is called a cut, and graph cutting problems are
17

ery well studied. Extensions to the setting of cuts for hypergraphs b
ave been considered (see, for example [72]) and it may be possible
o reformulate the current graph-splitting problem as a minimum cut
roblem for the associated hypergraph.

Fourth, and finally, we conjecture that the solution of the optimal
ontrol problem considered here, namely to maximise

(𝑡1) − 𝐸(𝑡0) + ∫

𝑡1

𝑡0
𝐴𝑢𝑇𝑢 d𝑡 ,

ubject to the control system (CS) — which is the focus of the energy-
alance method — is in fact the singular control related to the following
onstrained optimal problem: namely, to maximise purely the extracted
nergy, that is,
𝑡1

𝑡0
𝐴𝑢𝑇𝑢 d𝑡 ,

note no boundary energy terms) subject to the control system (CS) and
he control constraint 𝑋min ≤ 𝑋𝑢(𝑡) ≤ 𝑋max, where 𝑋𝑢 = 𝐴𝑢 or 𝑇𝑢 is the
ontrol variable. In general, this latter problem will have bang-singular
also known as bang-singular-bang) solutions, where the optimal con-
rol either rides the constraints (bang), or equals the singular solution.
stablishing the validity of this conjecture shall also be the subject of
uture work.

. Summary

The energy-balance method for simplifying optimal control prob-
ems associated with renewable energy conversion has been presented.
he method applies to control systems specified by linear graphs in
erms of across and through edge variables, with a number of fixed
dge types (denoting lumped, one-port two-terminal element types)
nd essentially uses Tellegen’s theorem to rewrite the extracted energy
n terms of the supplied energy and dissipated energy, Eq. (4.2). We
alled this expression the energy-balance equation. A graph-splitting
rocedure has been proposed for solving the original optimal control
roblem by identifying fewer, but sufficiently many, variables to op-
imise the new performance criterion — the right-hand side of the
nergy-balance equation. One strength of the energy-balance method
s that elements do not need to be ideal — they may be nonlinear or,
n certain cases, dynamic. The energy-balance method does not specify
he optimisation method to be used to the solve resulting simpler
ptimal control problem, and this choice may be made situationally
r according to user preference.

By specifying control systems in terms of linear graphs and using
ransducers (transformers and gyroscopes), the energy-balance method
ay be applied to control systems spanning multiple energy domains,

uch as mechatronic systems. For instance, in the context of wave
nergy, oscillating water column devices span fluid (via water and
ir), mechanical (via turbines), and electrical (via generators) domains.
onsequently, the method facilitates optimisation at the level of the
hole control system. The method has been illustrated via examples

rom solar, wind and wave energy across Sections 5–7. From a practical
ngineering perspective, we recommend that the method is considered
henever an optimal control of a renewable energy converter is imple-
ented, as it may well simplify the computational complexity of the

verall problem.
One feature which emerges from the study is the importance of the

tructure of the control system in determining the variables which are
ey to maximising the extracted energy. This structure is seemingly
ost easily visualised and understood graphically rather than, say,

y a traditional state–space representation. For example, on the one
and, when no energy storage (accumulator) elements are present in
he subgraph obtained by the graph-splitting procedure (recall, termed
he green subgraph), then the resulting performance criterion is static,
hat is, subject only to algebraic constraints. Therefore, it may be
aximised by pointwise maximisation of the integrand — essentially
y elementary calculus methods. In other words, here the need for
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classical optimal control techniques is obviated. On the other hand,
including additional accumulator edges in the red subgraph (recall, the
complementary subgraph) does not change the performance objective
associated with the energy-balance method or its solution. Of course,
the variables associated with the red subgraph, which includes the
original control variable, do depend on the red subgraph, and so change
as the structure and/or composition of this subgraph changes.

The energy-balance method determines an optimal control over
a finite (possibly short) prediction interval, here denoted [𝑡0, 𝑡1]. In
ractice, to use this method continuously in time requires piecing
ogether multiple, successive prediction intervals. We comment that a
ey feature of optimal control problems in renewable energy contexts
s accurately forecasting the external variables over the prediction in-
erval, such as the incoming wave profile in wave energy applications;
ee, for example [67]. This challenge (or opportunity, depending on
utlook) is still present in the energy-balance method.

Some extensions and current limitations of the method have been
iscussed in Section 8, notably on how the method may generalise to
ptimal control problems with multiple control and external sources,
nd the extent to which constraints may be included. Exploring these
irections further shall be the subject of future studies. Furthermore,
ond graph modelling, originating in the work of Paynter [73], with
ecent texts including [74], is recommended by its proponents as a pow-
rful and widely applicable framework for control systems spanning
ultiple energy domains. Formulating the energy-balance method in

erms of bond graphs rather than linear graphs may well be possible,
nd shall also be subject of future work.
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