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Abstract—The field of autonomous driving research has made
significant strides towards achieving full automation, endow-
ing vehicles with self-awareness and independent decision-
making. However, integrating automation into vehicular opera-
tions presents formidable challenges, especially as these vehicles
must seamlessly navigate public roads alongside other cars and
pedestrians. An intriguing yet relatively underexplored domain
within autonomous driving is overtaking. Overtaking involves a
dynamic interplay of complex tasks, including precise steering
and speed control, rendering it one of the most intricate op-
erations for implementing augmented intelligence driving tech-
nologies. Surprisingly, the overtaking of autonomous vehicles
remains largely uncharted territory in the context of augmented
intelligence for autonomous systems. This void in knowledge
beckons researchers to embark on explorations and investigations
in this nascent field. Our review paper systematically synthesises
overtaking methodologies hinging on computer vision techniques
tailored for augmented intelligence autonomous driving scenarios
in response to this pressing need. Our analysis encompasses an
array of domains central to overtaking in augmented intelligence
autonomous vehicles, encompassing Object Detection, Lane/Line
Detection, Depth Estimation, Obstacle Detection, Segmentation,
and Pedestrian Detection. We meticulously analyze each domain
using well-established Multimodal datasets. We assess different
models’ performance across various parameters by employing
graphical structures, enabling visual comparative analyses. In
object detection, YOLOv4 achieves a top performance with 0.90
mAP on the BDD100K dataset. For lane detection, CLRNET
excels with the highest F1 score of around 0.96 on the LLAMAS
dataset. ViT-Adapter-L leads in segmentation tasks, boasting an
impressive mIoU score of 83 on Cityscapes. The Hierarchical
Model achieves a superior mAP of 0.90 in road sign detection on
the Tsinghua-Tencent Dataset. Steering angle computation sees
InterFuser as the standout, achieving the highest driving score of
approximately 74.0. This paper’s primary contributions include a
comprehensive assessment of diverse models for each Multimodal
dataset, aiding future research in this evolving domain.
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Computer vision, Augmented Intelligence.
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I. INTRODUCTION

The automotive industry has undergone a remarkable evo-
lution over the years, driven by advancements in technology
and changing consumer demands. From the early days of
steam-powered vehicles to the mass production of internal
combustion engine cars and now the emergence of electric
and augmented intelligence-based vehicles, the industry has
constantly adapted and innovated. The integration of electron-
ics, connectivity, and augmented intelligence has transformed
automobiles into sophisticated and intelligent machines, of-
fering enhanced safety features, improved fuel efficiency, and
personalized driving experiences. This ongoing evolution is
paving the way for a future of sustainable and intelligent
mobility solutions, revolutionizing the way we travel and
interact with vehicles.

As the automobile industry evolved, human driver behaviour
also changed with each transition [2]. The evolution of cars
from public transportation modes such as buses to personal
human cars has significantly impacted the relationship between
individuals and their vehicles. With the advent of personal
cars, individuals gained the freedom to travel at their conve-
nience, allowing for greater autonomy and flexibility in daily
commuting. This shift from shared transportation to personal
vehicles transformed the way people perceive and interact with
their mode of transportation, providing a sense of ownership,
privacy, and control over their journeys. As cars continue
to advance with technological innovations like electric and
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augmented intelligence, the relationship between humans and
their vehicles is evolving further, emphasizing convenience,
sustainability, and a more personalized driving experience
[3, 4]. Augmented intelligence seamlessly intertwines with
the foundation of self-driving cars, enhancing the prowess
of artificial intelligence (AI) through symbiotic collabora-
tions with human expertise. In the realm of sensor fusion
and perception, engineers leverage augmented intelligence
to amalgamate data from diverse sensors, such as cameras,
LiDAR, radar, and GPS, crafting a holistic understanding of
the vehicle’s environment [5, 6]. Human involvement is pivotal
in designing algorithms that interpret sensor data, making
nuanced decisions in complex scenarios. Data annotation and
machine learning benefit from human experts who meticu-
lously label datasets, enhancing the system’s ability to rec-
ognize and respond to various situations. In the development
of user interfaces and human-machine interaction, augmented
intelligence aids in creating intuitive systems, while during
the testing phase, human safety drivers or operators provide
critical oversight, ensuring the system’s safety and reliabil-
ity. Moreover, human experts contribute to defining ethical
guidelines, regulatory compliance, and standards, guiding the
ethical decision-making processes of self-driving systems.
This Augmented intelligence approach harnesses the strengths
of both artificial and human intelligence, propelling the ad-
vancement of safe and effective autonomous driving technolo-
gies. When augmented intelligence is integrated into vehicles,
humans benefit from enhanced safety through advanced driver
assistance systems, reduced human error, improved traffic
management, and a more comfortable and convenient driving
experience [7, 8]. This technology empowers vehicles to assist
and collaborate with drivers, making transportation safer, more
efficient, and enjoyable. Also, the Driving experience also
changed, including various activities, such as high-speed driv-
ing, comfortable driving, power steering, and overtaking. The
act of overtaking during driving enhances the overall driving
experience for human beings. It provides a sense of control
and excitement as drivers navigate and surpass slower-moving
vehicles, allowing them to engage in the dynamics of the
road actively. Overtaking manoeuvres requires skill, judgment,
and situational awareness, highlighting the connection between
human decision-making and the art of driving. The successful
execution of overtaking manoeuvres contributes to a satisfying
driving experience, adding an element of challenge and skill to
the journey. In the case of autonomous driving, Due to various
complexities and implementation challenges, the concept of
overtaking in autonomous vehicles has been a topic that has
yet to be worked on in-depth, which will strengthen the future
of self-driving car technology [9, 10].
The overtaking mechanisms in traditional cars and self-driving
cars share certain commonalities, yet diverge significantly in
their technological underpinnings and decision-making pro-
cesses. In the realm of traditional cars, the onus falls entirely
on the human driver during overtaking maneuvers. This in-
volves a multifaceted analysis of on-road activities, encom-
passing the detection of front vehicles, objects, estimation of
free space for overtaking, path determination, maintenance of
safe distances with other cars, acceleration or deceleration,

and potential lane changes [11, 12]. Human drivers rely
on visual cues and mirrors for perception during overtaking
in traditional cars [13]. In stark contrast, self-driving cars
leverage an array of technologies, including sensors, cameras,
Lidar, and artificial intelligence systems, to execute overtaking
maneuvers [14, 15]. The decision-making process is shifted
from the human driver to the autonomous system. Percep-
tion in self-driving cars is facilitated through cameras and
Lidar sensors [16]. Vehicle-to-vehicle (V2V) communication
becomes instrumental in the overtaking process for self-driving
cars [17, 18], allowing them to inform surrounding vehicles
of their intentions without the need for manual signals or
hand gestures. Figure 1 represents some of the overtaking
cases. The present autonomous driving research has become
closer to level 5 automated driving, but overtaking is still
an uninvestigated research area. This realm of autonomous
driving has not been explored yet, and research in this area is in
its infancy. Overtaking is a crucial aspect of driving in general
and autonomous driving in particular [19]. Since steering and
speed control is dynamic and challenging, overtaking is one of
the most daunting and complex operations for implementing
automated driving technologies. Automating the overtaking
manoeuvre necessitates high-precision environment perception
technologies that track the state of the surrounding traffic
and anticipate probable time-sensitive decision-making and
action implementation [20, 21]. Lane-keeping, lane-changing,
and overtaking are complicated driving actions necessary for
everyday driving conditions and can improve road efficiency,
particularly on one- and two-lane highways. According to
NHTSA statistics, motor vehicle crashes claimed the lives of
28,190 people in the first nine months of 2020. The most
common causes of accidents were lane changes or overtaking
attempts by the driver. The outcome of an overtaking operation
is affected by several factors, such as the skills, roadway ca-
pacities, and information processing abilities of those involved
[22, 23]. Overtaking requires skill and judgment from the
driver. They have to gauge the speed and distance of other
vehicles, verify the space available for passing, and complete
the maneuver safely and efficiently. A driver who does not
possess these skills may encounter difficulties in overtaking
successfully, leading to potential hazards and dangers on the
road. Overtaking maneuvers also require sufficient roadway
capacities for safety purposes. If the road is narrow, has
bad visibility, or does not have appropriate passing zones, it
becomes harder to overtake other vehicles. Insufficient road-
way capacities can heighten the risks of overtaking, making
it harder for drivers to assess the situation and accomplish
the maneuver safely. Additionally, overtaking requires the
ability to quickly and accurately process and interpret relevant
information. This includes factors such as the speed of the
vehicles involved, the actions of other drivers, road conditions,
traffic signs, and signals [24, 25]. If a driver finds it hard to
process this information effectively, it can affect their decision-
making abilities and make it harder to judge the feasibility
and safety of an overtaking maneuver. The driver’s failure to
identify hazards causes almost 75% of road traffic accidents
[26, 27]. There have been many unfortunate instances of
accidents in the past that are linked to overtaking [28]. Hence,
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Fig. 2: Overtaking mechanism

developing and applying automated overtaking systems can
reduce human error, which can help prevent accidents and
injuries.

Keeping all this in mind, we are compelled to consider the
question: How do various present autonomous driving cars,
such as Tesla and Waymo, perform overtaking maneuvers?
When Tesla originally introduced Autopilot, like most other
automakers today, the vehicle could maintain its lane and
a reasonable distance from the car in front of it [29, 30].
It could not overtake, change lanes, prevent collisions, etc.
Similarly, with the new peripheral vision system, Waymo can
lessen blind spots from parked big vehicles. With the help of
these side cameras, we can glimpse the truck in front of us to
determine whether it can be safely overtaken or whether we
need to wait. The ultimate goal of an autonomous vehicle is to
be as safe as or even more secure than human driving. Having
discussed all these aspects, overtaking in autonomous vehicles
has to be dealt with in greater depth to take autonomous
driving to the next level [4, 31]. This paper deals with
the overtaking aspect of autonomous driving using computer
vision technology. Figure 2 illustrates the mechanism and
various tasks involved before and during overtaking.
Before overtaking, the self-driving car must assess the nearby

surroundings. The vehicle must conduct scene understanding
for this. The self-driving car first does object detection to deter-
mine what objects are in front of it, such as on-road front cars
and other obstacles. The autonomous driving vehicle performs
depth estimation based on detected objects and evaluates the
space between the autonomous vehicle and the front vehicles
and objects. This estimated distance helps it overtake and
maintain a safe distance from objects in front of the vehicle.
At the same time, the self-driving car needs to identify the

road lanes. When the route is narrow, autonomous vehicles can
not perform overtaking due to safety considerations. This lane
detection operation is also used when performing lane changes.
Another important activity is the detection of road signs. The
road sign indicates upcoming road activities. A model for
detecting road signs can identify such signs, interpret their
significance, and execute the necessary actions. Some factors,
such as narrow roads, bridges, or speed limitations, prohibit
cars from safely overtaking [32]. It is also critical that while
overtaking, the pedestrian detection algorithm is employed
to avoid on-road pedestrian collisions. Augmented Intelligent,
self-driving cars must be able to move while remaining inside
the drivable area of the road, which is a crucial task [33].
Steering angle computation is vital for meeting safety-critical
requirements during the overtaking maneuver and improving
the safety and interpretability of end-to-end driving. It keeps
the car in the center of the road or inside the lane boundaries.
Segmentation aids self-driving cars in detecting which areas of
an image are driveable. The image can be accurately evaluated
for semantic and instance content using segmentation. The
segmentation data from the perception system can be used
by the planning and control modules to inform autonomous
driving decisions better. To overtake the front vehicle, the
self-driving car must first change lanes and maintain a safe
distance from the front cars and surrounding cars. The self-
driving car must also accelerate faster than the front car in
order to pass it. Additionally, the vehicle should recognize
road signs, pedestrians, and front cars while performing these
operations to avoid a collision. The main contributions of this
review are as follows:

• We systematically identified and curated diverse datasets
pertinent to computer vision, specifically tailored for the



4

Fig. 3: Structure of our Survey

nuanced task of overtaking manoeuvres in autonomous
driving scenarios.

• Employing the identified datasets, we conducted an ex-
haustive comparative analysis of various models. Our
evaluation encompassed performance metrics, and the
results were graphically presented for enhanced clarity
and visual comprehension.

• Delving into the intricacies of overtaking challenges
within autonomous vehicles, we initiated a comprehen-
sive discussion on existing limitations. Our exploration
highlights current challenges and serves as a foundation
for delineating promising avenues for future research in
this dynamic field.

II. STRUCTURE OF SURVEY

We begin by discussing existing surveys in overtaking
manoeuvres of autonomous driving and comparing them to
the current study. Table I shows a collection of significant
survey and review works on autonomous driving done in the
previous few years.

Section I introduces the notion of autonomous driving and
the significance of the overtaking mechanisms in self-driving
cars. Section II provides an overview of this paper, which
includes a list of various sections that are included in the paper.
Additionally, this section explores the existing surveys related
to overtaking manoeuvres for autonomous driving. Section III
dives deep into the object and pedestrian detection domain,
demonstrating the significance of detection capabilities for
performing overtaking and illustrating various datasets and
models. Section IV provides insights into lane detection func-
tionality and how it aids in steering control and in various
decisions. Section V gives insights into segmentation and
depth estimation along with its various available datasets and
models. Section VI illustrates obstacle and road sign detection,
which enables the self-driving car to interpret the meaning of
road symbols and perform required actions. Section VII gives
various datasets, models, and steering angle computation task
functionality. Section VIII summarizes future directions and
open challenges in autonomous driving. Section IX concludes
the study with a brief review of our contribution. Figure 3
shows the structure of our survey.

III. OBJECT AND PEDESTRIAN DETECTION

Overtaking is one of the most challenging tasks for a self-
driving car, and it requires its ability to detect and track
objects. It is used to detect and track vehicles, pedestrians,
cyclists, and other objects on the road. The object detection
model uses visual details to analyze, detect and localize objects
in an image. There are many potential benefits of using object
detection in car overtaking scenarios. For example, object
detection could be used to automatically identify and track
vehicles in the overtaking lane, allowing the driver to focus
their attention on other tasks. Object detection could also help
to determine when a vehicle in front of another vehicle has
begun to change lanes so that the second vehicle can take
evasive action if necessary. Another example is using object
detection to identify obstacles in the path of a vehicle so
that the car can avoid them. Additionally, object detection
could be used to warn the driver of potential hazards, such as
oncoming traffic [40], obstacles in the road, or animals cross-
ing the street. While object detection and pedestrian detection
share similarities, they diverge significantly in various aspects.
The object detection mechanism is designed to identify a
multitude of diverse objects within a frame, encompassing
vehicles, bicycles, animals, and environmental elements like
trees, barricades, and potholes. This broader scope necessitates
the recognition of a diverse range of objects. In contrast,
the pedestrian detection mechanism is specifically tailored to
focus solely on human beings and their activities. Unlike the
object detection system, the pedestrian detection system is
characterized by a singular class, exclusively addressing the
identification and tracking of individuals within the scene.
Therefore, using the object and pedestrian detection, self-

driving cars can make various decisions while performing
overtaking. If the AV detects a pedestrian or an approaching
car, or if there is insufficient free space to perform overtaking,
the vehicle can slow down or change lanes and postpone the
overtaking process for some time.

In the realm of object and pedestrian detection in au-
tonomous vehicles (AVs), the distinction between 3D object
detection and 2D object detection is crucial, as they serve
different purposes and provide varying levels of informa-
tion. 2D object detection primarily focuses on identifying
objects within a 2D image plane, which provides essential
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Year Author Contribution

2018 Dixit, Shilp, et al. [34] Review on trajectory planning and tracking for autonomous overtaking

2019 Ritchie, Owain T., et al.
[35]

Review on overtaking strategies of autonomous vehicles in relation to other
drivers

2020 Hegedűs et al. [36] Survey on overtaking strategies for autonomous vehicles

2021 Perumal, P. Shunmuga, et
al. [37]

Overview of crash avoidance and overtaking advice systems for Autonomous
Vehicles

2021 Sourelli et al. [38] Review on objective and perceived risk in overtaking

2023 Lodh et al. [39] Review on autonomous vehicular overtaking maneuver

2023 This Survey Reviews the Overtaking mechanism based on computer vision for autonomous
vehicle

TABLE I: Related Surveys on Autonomous Driving

information such as bounding box coordinates (x, y, width,
height) and class labels for objects present on the road.
Typically relying on data from 2D sensors like RGB cameras,
2D object detection constructs a representation of the scene
without considering the depth or distance of objects from
the camera. It assumes a flat, two-dimensional perspective
of the environment, offering a basic understanding of the
objects present. On the other hand, 3D object detection goes
beyond mere identification by estimating the three-dimensional
properties of detected objects. This includes determining their
position in 3D space, dimensions (length, width, height), and
orientation (yaw, pitch, roll). Unlike 2D object detection, 3D
object detection provides depth information, offering a more
accurate spatial understanding of the arrangement of objects in
the scene. This depth of information is crucial for tasks like
navigation and collision avoidance [41]. Furthermore, while
2D object detection is often limited to data from RGB cameras,
3D object detection leverages information from both RGB
cameras and 3D sensors such as LiDAR (Light Detection
and Ranging). The integration of LiDAR data enhances the
ability to capture not only the appearance of objects but also
their precise depth information. The popularity of YOLO (You
Only Look Once) in the field of object detection can be at-
tributed to its superior Frames Per Second (FPS) performance,
particularly suitable for tracking moving objects [42, 43].
Additionally, YOLO boasts better detection accuracy, mea-
sured by Intersection over Union (IoU), making it a favored
choice among researchers in detection-related domains [43].
Recent research endeavors have extensively utilized YOLO
and its variants for object detection, showcasing its efficacy
in various applications [44, 45]. Moreover, YOLO has been
employed for pedestrian detection, exemplified by studies such
as [46, 47]. The efficiency of CNN-based models for both
object and pedestrian detection is also notable in the literature
[48]. The integration of novel computer vision techniques,
such as transformers, has further advanced object detection
models. Despite the initial prominence of transformers in
recurrent neural network (RNN) applications, they have found
adaptability in object detection as well [49, 50].

This section examines the most recent state-of-the-art com-

puter vision-based object detection datasets and models and
provides a brief performance analysis. They are reviewed,
categorized, and compared with each other. Table II represents
available well-known datasets for object detection. To evaluate
the object detection performance of the model, most of the
models used datasets such as KITTI-3D Object detection [51],
BDD100K [52], and Waymo [53]. Therefore, we solely used
these datasets to compare models.

Dataset Year Images
KITTI-3D

Object detection
[51]

2012 15,000

BDD100K [52] 2018 100,000

Waymo Dataset
[53] 2020 250,000

UA-DETRAC
[54] 2020 140,000

TABLE II: Available Datasets for Object detection tasks

Andreas Geiger et al. [51] introduced the KITTI dataset,
which is suitable for 3D object detection applications. The
dataset consists of around 15,000 images that include point
clouds. There are 80,256 labeled objects in the collection. The
dataset was created by using 22 stereo sequences totaling 39.2
kilometers of on-road driving. Figure 4 shows sample images
of the KITTI [51] 3D Object detection dataset in different
scenarios.

Fig. 4: Sample images of KITTI [51] 3D object detection
Dataset

Fig. 5 shows various models’ performances on the KITTI
3D object detection dataset using the mAP (mean Average
Precision) as the evaluation parameter, whereas the higher the
mAP, the better the model performance. The range for mAP
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Fig. 5: Performance of models on KITTI [51] 3D object
detection Dataset

is from 0 to 1. mAP is calculated as,

mAP =
1

NC

NC∑
i=1

APi (1)

Where:

NC is the total number of classes,
AP is Average Precision.

Various models like VoxelNet [55], Frustum PointNets
[56], AVOD + Feature Pyramid [57], PC-CNN-v2 [58], Point
RCNN [59], F-ConvNet [60], STD [61], PR-RCNN [62],
SE-SSD [63], BtcDet [64] and GLENet [65] show their 3D
object detection performance on the KITTI [51] dataset. Out
of all these models, GLENet [65] has excellent performance
on the KITTI [51] dataset. GLENet [65] is a generative
framework based on conditional variational autoencoders that
use latent variables to simulate the one-to-many connection
between a specific 3D object and its associated ground-truth
bounding boxes. GLENet [65] employs a novel uncertainty-
aware quality estimator (UAQE) to facilitate (Intersection over
Union) IoU-branch training, influenced by the high correla-
tion between localization quality and predicted uncertainty in
probabilistic detectors. Fisher Yu et al. [52] built BDD100K,
a driving video dataset, including 100K pictures and ten tasks
to assess the performance of object detection algorithms on
autonomous driving. The dataset has geographic, environmen-
tal, and climatic diversity, which is helpful for training models
that will be less affected by unexpected situations. The dataset
is collected by driving a car on-road, which covers New
York, San Francisco Bay Area, and other regions. Figure 6
shows sample images of the BDD100k [52] dataset. Similarly,
Fig. 7 shows various models’ performances on the BDD100K
[52] dataset using the mAP (mean Average Precision) as the
evaluation parameter, whereas the higher the mAP, the better
the model performance.

Fig. 6: Sample images of the BDD100k [52] Dataset

Fig. 7: Performance of models on BDD100k [52] Dataset

Several models like R-FCN [66], Mask R-CNN [67], SDD
[68], RetinaNet [69] and YOLOv4 [70] show performance on
the BDD100K [52] dataset in terms of object detection capa-
bilities. Out of all these models, YOLOv4 [70] has outstanding
performance on the BDD100K [52] dataset. It utilizes Bag-
of-Freebies (BoF) and Bag-of-Specials (BoS) methods for the
detector, which improve the training performance. Google’s
Waymo [53] Dataset is a large-scale dataset for self-driving
vehicles. The Waymo Open Dataset is a massive collection of
LiDAR point clouds, images, and bounding boxes that have
been annotated with 3D tracking information. The dataset
is intended to train computer vision and machine learning
algorithms to recognize and track vehicles in a self-driving
vehicle. The collection will also aid researchers in developing
new 3D object detection and tracking technologies. It contains
250,000 images from 1150 scenes. Figure 8 shows sample
images of the Waymo [53] dataset in different scenarios.

Fig. 9 shows various models’ performances on the Waymo
[53] dataset using the mAP (mean Average Precision) as the
evaluation parameter, whereas the higher the mAP, the better
the model performance.
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Fig. 8: Samples of the Waymo [53] Dataset

Various models like Lenovo LR PCIE [71],
dereyly alex 2 [72], YOLOR P6 TRT [73], DIDI MapVision
[72], SPNAS-Noah [72], HorizonDet [72], LeapMotor Det
[73, 74], Noah CV Lab [72], RW-TSDet [75] and Noah
Octopus [76]. Out of all these models, Noah Octopus
[76] achieves the superior results over other models when
evaluated on the Waymo dataset [53].

Fig. 9: Performance of models on Waymo [53] Dataset

Recent car safety research has discovered various features for
autonomous vehicles that make them more secure and safer
for passengers. However, another significant factor that must
be considered is on-road pedestrian safety. As self-driving
vehicles are driven by machine learning and computer vision
algorithms, all decisions and planning are made solely by
these algorithms and models. Any errors or incorrect decisions
made by these models have significant repercussions, such as
accidents and deaths. One of the crucial duties of self-driving
cars is on-road vehicle and pedestrian detection, which is
inextricably linked to public safety. Pedestrian detection
entails recognizing pedestrians in pictures or videos and
determining their on-road position. This technology enhances
the safety of self-driving cars by preventing collisions
with pedestrians. The system learns to recognize the shape
and movement of a pedestrian. Self-driving cars identify
pedestrians on the road and avoid crashes by slowing down
or switching lanes. Using camera data [77], a color histogram
[78], skin tone histogram [79], or a face detection method
[80] they may classify an object as a pedestrian. In the case
of overtaking mechanisms, if a car detects any person on the
road before or while overtaking the self-driving car should
take appropriate action, such as changing lanes, slowing

down, or canceling the overtaking operation, and ensuring
that on-road public safety is prioritized. This section provides
a comprehensive overview of the most recent datasets
and models for autonomous driving for on-road pedestrian
detection. Several models are also examined and compared
in terms of detection efficiency and performance. Table III
shows available datasets for Pedestrian Detection.

Dataset Year Images
Caltech [81] 2011 250,000

CityPersons [82] 2017 5000

TJU-DHD [83] 2020 115,354

LLVIP [84] 2021 30,976

TABLE III: Available Datasets for Pedestrian Detection

Piotr Dollar et al. [81] provided a large real monocular
dataset for pedestrian detection. The dataset contains 350,000
pedestrians who were annotated using bounding boxes in
250,000 frames of the collection. The data was acquired by
utilizing 10 hours of 30 Hz video with a resolution of 640 x
480 from a vehicle traveling in an urban environment. Various
models used the Caltech dataset for performing pedestrian
detection tasks. Figure 10 illustrates sample images of the
Caltech [81] dataset.

Fig. 10: Samples of the Caltech [81] Dataset

Figure 11 depicts the performance of various models using
the evaluation metric Reasonable Miss Rate (RMR). The lower
the Reasonable Miss Rate, the better the model performance in
terms of model performance ranking. While AP concentrates
on the precision-recall trade-off and measures how well the
model detects objects at different confidence levels, RMR
provides insights into the performance of the model with
respect to missing objects that are considered ”reasonable”
to detect. The RMR is calculated using,

RMR =

{
Number of missed objects

with confidence below threshold

}
{

Total number of objects

with confidence below threshold

} (2)

It includes models such as F2DNet [85], Pedestron [86],
FRCNN-FPN-Crowdhuman [87], RepLoss [88], Zhang et al.
[89], RPN + BF [90], SA-FastRCNN [91], CompACT-Deep
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[92], Checkerboards+ [93], TA-CNN [94], AlexNet [95] and
LDCF [96]. Out of these models, F2DNet [85] shows the
lowest Reasonable Miss Rate, which represents excellent per-
formance. F2DNet [85] proposed a novel two-stage detection
architecture that replaces the region proposal network with a
focal detection network along with a bounding box head with a
fast suppression head, which handles false positives. Addition-
ally, it proposed a focal detection network as a classification
and bounding box regression head, which improves the results.

Fig. 11: Performance of models on Caltech [81] Dataset

Shanshan Zhang et al. [82] introduced the CityPersons
dataset for pedestrian detection. It is comprised of a di-
verse group of stereo video sequences shot in several cities
throughout Germany and adjacent countries. There are 5000
photos divided into 30 classes representing 35k individuals
and 19,654 unique individuals. Figure 12 demonstrates sample
images of the CityPersons [82] dataset.

Fig. 12: Samples of the CityPersons [82] Dataset

Many models, notably Pedestron [86], F2DNet [85], ACSP
[97], CrowdHuman [87], NOH-NMS [98], CSP (with offset)
+ ResNet-50 [99], ALFNet [100], OR-CNN [101], RepLoss
[88], TL+MRF [102] and FRCNN-FPN-POS [103] used the
CityPersons dataset for human recognition. These models per-
formed pedestrian detection, and their performance is shown
in figure 13. The performance is evaluated using Reasonable
MR−2 as an evaluation parameter. Reasonable MR−2 is
considered as an evaluation parameter, where the lower the
Reasonable MR−2 value, the better the model performance.
Pedestron [86] outperforms all other models in terms of
pedestrian detection tasks. It employs a progressive training
pipeline to enhance pedestrian detection capability.

Fig. 14: Samples of the TJU-DHD [83] Dataset. 1st Row:
illumination variance(day,night,front light and backlight) 2nd
Row: scene variance (urban road, rural road and highway) 3rd
Row: weather variance (sunny, cloudy, and rain) 4th Row:
season variance (spring, summer, autumn, and winter)

Fig. 13: Performance of models on CityPersons [82] Dataset

Existing well-known public datasets such as MS COCO
do not concentrate on distinctive scenarios as well as other
datasets like CityPersons [82], and KITTI [51] are limited
in the number of images, instances, the resolution, and the
diversity. Due to these aspects, Yanwei Pang et al. [83]
introduced the TJU-DHD dataset, an extensive collection of
rich and diverse High-Resolution pedestrian datasets. The
dataset contains 115,354 high-resolution images, which con-
tain 709,330 labeled objects. Figure 14 demonstrate sample
images of the TJU-DHD [83] dataset. Furthermore, the dataset
images cover a variety of circumstances, such as lighting and
climate. Due to this rich diversity, various models, such as
EGCL [104], CrowdDet [105], FPN [106], FCOS [107] and
RetinaNet [69] utilized TJU-DHD dataset for pedestrian iden-
tification. Figure 15 shows the model performance comparison
in respective with R (Miss rate) [83] as evaluation parameter.
While considering the models’ performance ranking, the lower
the R (Miss rate), the better the model performance. Among all
modes, EGCL (Exemplar-Guided Contrastive Learning) [104]
outperforms all other models in terms of performance. De-
tection of pedestrians with significant appearance differences,
such as various pedestrian shapes, various angles, or diverse
attire, remains a critical difficulty. EGCL (Exemplar-Guided
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Fig. 15: Performance of models on TJU-DHD [82] Dataset

Fig. 16: Samples of the LLVIP [84] Dataset. 1st Column:
Pedestrian detection on infrared images 2nd Column: Pedes-
trian detection on visible images

Contrastive Learning) [104] envisioned contrastive learning to
assist feature learning so that the semantic distance between
pedestrians with distinct attire in the learned feature space is
minimized to reduce appearance diversities.

It is challenging to detect pedestrians when environmental
circumstances are like low light image conditions. Xinyu
Jia et al. [84] presented a low-light visible-infrared paired
(LLVIP) dataset for pedestrian detection. This dataset provides
an extensive collection of infrared and visible images that can
be used jointly to provide rich, precise details and effective
target areas. This dataset contains 30,976 images or 15,488
paired images captured in shady surroundings. Figure 16
exhibits sample images from LLVIP [84] dataset. Various
models used the LLVIP dataset to perform pedestrian detection
in low-light occurrences, which includes YoloV3-RGB [108],
YoloV5-RGB and CFT [109]. All these models’ performances
are compared with each other, and their results are shown
in figure 17, where Average precision (AP) is considered the
evaluation parameter. The Average Precision (AP) is calculated
as:

AP =
∑
r

precision(r) ·∆recall(r) (3)

For model performance ranking, the higher the Average
precision (AP) value, the better the model performance. Out
of these all models, CFT [109] shows excellent performance
over all other models. The Cross-Modality Fusion Trans-
former (CFT) employs a straightforward but efficacious cross-
modality feature fusion method in the feature extraction stage
that understands long-range dependencies and combines global
contextual information guided by the Transformer architecture.
The model can intuitively perform intra-modality and inter-

Fig. 17: Performance of models on LLVIP [84] Dataset

modality fusion concurrently and reliably incorporates the
hidden connections between RGB and thermal sectors by
utilizing the Transformer’s self-attention, which enhances the
accuracy of multispectral pedestrian identification.

IV. LANE DETECTION

Modern vehicles are equipped with a variety of Advanced
Driver Assistance Systems (ADAS), one of which is lane
detection and tracking (LDaT) [110]. It is used in the process
of autonomous driving and driver assistance. The goal of
LDaT is to identify lanes on the roads and assist the driver in
following them or entirely taking over the steering. Although
most of the contemporary LDaT solutions are effective, there
remains scope for development. They frequently have a variety
of problems due to other objects, poor vision, and strange road
shapes.
Since LDaT is such a hot issue, several papers [111, 112]
outlining various solutions are produced every year. Depending
on their solution types, these are generally classified into two
groups: traditional computer vision-based [113] and Deep
Learning based [110]. Both have advantages as well as cons.
Denis Vajak et al. [114] conducted a survey that demonstrated
that most earlier research approaches were based on traditional
computer vision. Even deep neural network-based ones must
rely on traditional computer vision to make the picture or data
used for the deep neural network (DNN). Despite tremendous
advances in the use of DNNs for many tasks, including LDaT,
traditional computer vision-based lane identification remains
the most often employed technique in most of the reviewed
solutions. This is mainly because computer vision does not
take a significant amount of resources, can be effectively
implemented even on lower-spec hardware, and has long been
used in sectors other than the automotive. Because of this, we
have concentrated on computer vision-based solutions rather
than Deep Learning-based approaches in this section. This
section examines the most recent state-of-the-art computer
vision-based LDaT datasets and models and provides a brief
performance review. They are analyzed, categorized, and com-
pared with each other. Table IV represents available datasets
for lane detection.

The allocation of lanes on roads is contingent upon the road
type, with variations reflecting distinct transportation needs



10

Dataset Year Images
CULane [115] 2018 133,235

TuSimple 2017 6,408

LLAMAS [116] 2019 100,042

CurveLanes
[117] 2020 150,000

TABLE IV: Available Datasets for Lane detection tasks

[118]. Highways, characterized by their function of facilitating
swift and high-volume traffic, typically boast four or more
lanes per direction to optimize transportation efficiency [119].
This abundance of lanes in highway configurations caters to
the imperative of managing heavy traffic volumes. Conversely,
urban areas exhibit a nuanced lane distribution influenced by
factors such as traffic density and urban development. The
lanes in these settings may vary from two to single lanes
per direction. In rural areas, a more streamlined infrastructure
prevails, typically featuring single lanes. Many countries pre-
scribe on-road driving guidelines that prescribe specific lane
usage based on vehicle speed. These guidelines stipulate that
as a vehicle accelerates beyond a designated speed threshold, a
lane change becomes advisable. Similarly, when decelerating,
vehicles are prompted to transition to an appropriate lane.

Xingang Pan et al. suggested the CULane [115] dataset to
interpret traffic scenes and recognize traffic lanes. The dataset
was created by driving six vehicles throughout Beijing by
different drivers. The dataset contains 55 hours of footage,
from which 133,235 on-road images were collected. Figure
18 demonstrate sample images of the CULane [115] dataset
at different scenarios.

Fig. 18: Samples of the CULane [115] Dataset

Fig. 19 shows various models’ performances on the CULane
dataset using the F1 score as the evaluation parameter, wherein
the higher the F1 score, the better the model performance. The
F1 score is calculated as,

F1 =
2 · Precision ·Recall

Precision+Recall
(4)

Various models like UFAST [120], ENet-SAD [121],
SCNN [122], PINet [123], CurveLane-L [124], RESA [125],
LaneATT [126], SGNet [127], CondLaneNet-L [128] and
CLRNet [129] utilized the CULane dataset for lane detection.
Cross-Layer Refinement Network - CLRNet [129], which
is based on DLA34 [130] delivers the most promising re-
sults with evaluation parameter as F1 score on the CULane
dataset. Due to its model architecture which extracts high-
level semantic features and then distills them using low-
level features, it gives better results as compared to other
models. Additionally, it provides more contextual details to

detect lanes while maximizing detailed local road attributes
to enhance localization accuracy. TuSimple is another popular

Fig. 19: Performance of models on CULane [115] Dataset

dataset for lane detection. It consists of 1280*720 resolution
road photos taken on US roads. Dataset accomplishes various
conditions, including weather conditions, different daytime,
and various traffic conditions along with 2-lane, 3-lane, 4-lane,
and highway road footage. Figure 20 illustrate sample images
of the TuSimple dataset.

Fig. 20: Sample images of the TuSimple Dataset

The performance of several models on the TuSimple dataset
is shown in Fig. 21 using accuracy as the evaluation param-
eter, whereas the higher the accuracy, the better the model
performance. On TuSimple, several models, including Poly-
LaneNet [131], End-to-end ERFNet [132], ENet-SAD [121],
RESA [125], FOLOLane [133] and SCNN-UNet-ConvLSTM2
[134] showcase their performances. Due to unique hybrid
spatial-temporal (ST) sequence-to-one architecture, SCNN-
UNet-ConvLSTM2 [134] outperforms all other models. The
design takes full advantage of the spatial-temporal features in
multiple continuous picture frames to identify lanes.
Karsten Behrendt and Ryan Soussan suggested the LLAMAS
[116] dataset of large and diversified unsupervised labeled
lane markers. The LLAMAS dataset contains 100,042 an-
notated lane marker images collected while driving across
14 highways of 25 km each, totaling 350 kilometers. Figure
22 show sample images of the LLAMAS [116] dataset. On
the LLAMAS dataset, Fig. 23 illustrates the performance of
various models using the F1 score as the evaluation param-
eter, whereas the higher the F1 score, the better the model
performance. Using the LLAMAS dataset, different models
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Fig. 21: Performance of models on TuSimple Dataset

Fig. 22: Samples of the LLAMAS [116] Dataset

such as PolyLaneNet [131], LaneATT [126], BezierLaneNet
[135], LaneAF [136] and CLRNet [129] demonstrates their
lane-detecting abilities. CLRNet [129] surpasses the other
models when the evaluation parameter is chosen as an F1
score. CLRNet uses DLA34 [130] as a backbone. The author
also suggested ROIGather and Line Intersection over Union
(LIoU), which enhances the effectiveness of lane identifica-
tion.

Fig. 23: Performance of models on LLAMAS[116] Dataset

Hang Xu et al. proposed CurveLanes [117] dataset, which
consists of 150K images with 680K labels. Figure 24 demon-
strate sample images of the CurveLanes [117] dataset. On
the CurveLanes dataset, Fig. 25 presents the lane detection
results of several models using the F1 score as the evaluation
parameter, whereas the higher the F1 score, the better the
model performance.

Fig. 24: Samples of the CurveLanes [117] Dataset

Several models, including Enet-SAD [121], SCNN
[115, 122], PointLaneNet [137], CurveLane-L [117] and
CondLaneNet-L [128] demonstrate their lane-detecting
abilities using the CurveLane dataset and the F1 score as
assessment criteria. The CondLaneNet-L [128] has the best
performance of all of these models. It is a top-to-down lane
detection framework that first recognizes the instances of
lanes before dynamically predicting the shape of the lines for
each occurrence using conditional convolution and row-wise
formulation. Recurrent Instance Module (RIM) is also used
to solve the issue of recognizing lane lines with complicated
topologies, such as thick lines and fork lines.

Fig. 25: Performance of models on CurveLanes[117] Dataset

V. SEGMENTATION AND DEPTH ESTIMATION

To navigate correctly, self-driving cars must be able to
recognize diverse objects on the road [138]. The world’s
perspective from a self-driving vehicle frequently comprises
bounding boxes – cars, humans, and road signs neatly con-
tained in rectangles. In reality, however, not everything fits into
a box. It’s advantageous for the vehicle’s perception system to
provide a more profound understanding of its surroundings in
extremely complicated driving conditions, such as a construc-
tion zone marked by traffic cones or a pedestrian unloading
a moving van with cargo sticking out the back. Segmentation
helps autonomous driving cars identify the driveable regions
of an image by dividing the visual information into pixels
and assigning them labels. Using segmentation, the image
may be accurately analyzed for semantic content and instance



12

content. The perception system’s segmentation data can be
used by planning and control modules to inform autonomous
driving decisions better. For example, complex object shape
and silhouette information aid in object tracking, resulting in
more accurate steering and acceleration input. It can also be
used in conjunction with dense (pixel-level) distance-to-object
estimate algorithms to estimate a scene’s 3D depth. The more
accurately and quickly we accomplish segmentation, the more
the vehicle knows the surrounding environment and makes the
proper decision every time.

The segmentation task in the realm of autonomous vehicles
is intricately stratified into distinct categories, each tailored
to specific requisites and scenarios [139, 140]. Semantic
segmentation, a fundamental classification paradigm, assigns
each pixel to predefined categories such as road, car, or
pedestrian [141]. This facilitates a high-level comprehension
of the scene, transcending the need to distinguish between
individual instances within a class. In autonomous vehicles,
semantic segmentation proves instrumental for image classifi-
cation, enriching scene understanding [139]. Instance segmen-
tation, an evolutionary stride beyond semantic segmentation,
not only categorizes pixels but also individuates between
specific instances within the same category. For instance, when
confronted with a scenario featuring a group of pedestrians,
instance segmentation delineates each person separately, fur-
nishing a nuanced understanding imperative for navigating
intricate interactions [140]. This granularity is particularly vital
in scenarios involving complex interactions with pedestrians
and other objects, augmenting the autonomous vehicle’s capac-
ity for detailed environmental comprehension [140]. Panoptic
segmentation amalgamates the virtues of both semantic and
instance segmentation, affording a comprehensive perceptual
lens. For on-road driving scenarios, in panoptic segmentation,
every pixel undergoes dual characterization, receiving a class
label denoting its semantic category (e.g., road, sidewalk)
and a distinctive identifier for individual instances (e.g., cars,
pedestrians). This dual annotation methodology equips the
system with the capacity to extend its discernment beyond
the mere recognition of specific objects, facilitating a nuanced
understanding of the broader scene [141].

However, segmentation is difficult because of the complex
interaction among pixels in each image frame and between
succeeding frames. Despite the rapid development of new
technologies such as deep learning, which have made seg-
mentation more efficient, conducting accurate segmentation in
real-time remains a hot topic in current research. This section
briefly overviews the most recent datasets and models available
for autonomous driving on-road segmentation. Furthermore,
several models have been tested and compared based on seg-
mentation efficacy and capacity. Table V represents available
datasets for segmentation. Out of Cityscapes [142, 143], Map-
illary [144], COCO [145], KITTI [51], ApolloScape [146] and
BDD100K [52] datasets, several models utilized Cityscapes
[142, 143], Mapillary [144], COCO [145] and KITTI [51]
datasets only for segmentation tasks. Therefore, we solely
used these datasets to compare models. Marius Cordts et
al. proposed a cityscapes dataset for visual understanding of
complex urban street scenes. The cityscapes dataset [142, 143]

Dataset Year Images
Cityscapes
[142, 143] 2016 25,000

Mapillary [144] 2017 25,000

COCO [145] 2017 328,000

KITTI [51] 2012 15,000

ApolloScape
Dataset [146] 2019 140,000

BDD100K [52] 2018 100,000

TABLE V: Available Datasets for Segmentation tasks

contains diverse stereo video sequences recorded in streets
from 50 different cities in Germany and neighboring countries.
It includes 5000 images that have high-quality pixel-level an-
notations and 20,000 images with coarse annotations promote
techniques that leverage large volumes of weakly-labeled data.
Figure 26 shows sample images of the cityscapes [142, 143]
dataset.

Fig. 26: Samples Images of the cityscapes [142, 143] Dataset.
1st Row: Stuttgart, Zurich, Ulm 2nd Row: Munster, Cologne,
Bonn 3rd Row: Jena, Dusseldorf, Lindau

Many models have utilized cityscapes dataset [142, 143]
to perform segmentation tasks. This includes models such
as DeepLab [147, 148], Context [149], LRR-4x [150], Re-
fineNet [151], PSPNet++ [152], DeepLabv3 [153], SSMA
[154], MRFM [155], GALDNet [156] and ViT-Adapter-L
[157], which utilizes Mean IoU (Intersection over Union) as
an evaluation parameter. The Mean Intersection over Union
(IoU) is calculated as:

Mean IoU =
1

NC

NC∑
i=1

TPi

TPi + FPi + FNi
(5)

where:

NC is the number of classes.
TPi is the number of true positives for class i,

FPi is the number of false positives for class i,

FNi is the number of false negatives for class i.

Figure 27 represents the segmentation performance of these
models. Among these models, the ViT-Adapter-L [157] out-
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performs all others. ViT-Adapter-L achieves the greatest Mean
IoU (Intersection over Union) value (85.2) for segmentation
on cityscapes test dataset [142, 143]. ViT-Adapter-L uses a
spatial prior module and two feature interaction operators,
which adopt the required local continuity characteristics of
ViT and rearrange fine-grained multi-scale features.

Fig. 27: Performance of models on Cityscapes [142, 143]
Dataset

Another popular and diverse segmentation dataset is the
Mapillary Vistas Dataset [144]. This is a substantial street-
level image dataset featuring 25,000 high-resolution pho-
tographs of urban, rural, and off-road situations that are anno-
tated in 66 different categories and 37 classes. Compared to the
cityscapes dataset, the Mapillary Vistas Dataset has more fine-
grained annotations. The mapillary dataset was collected from
portions of Europe, North and South America, Asia, Africa,
and Oceania. Many researchers have used the Maplillary
dataset for their research because of the enormous volume
of annotations and the high-quality on-road images. Figure 28
exhibit sample images of the Maplillary [144] dataset.

Fig. 28: Sample images of the Maplillary [144] Dataset

Several models, like JSIS-Net [158], AdaptIS [159],
Panoptic-DeepLab (X71) [160], EfficientPS [161], Axial-
DeepLab-L [162] and SWideRNets [163] have employed
Maplillary datasets to conduct segmentation. Figure 29 depicts
the performance of various models using panoptic quality (PQ)
as an evaluation criterion, wherein higher panoptic quality
(PQ) is considered as better the model performance. The

Panoptic Quality (PQ) is calculated as:

PQ = PQsemantic × PQinstance (6)

where:

PQsemantic=

∑
i IoUsemantic(i) · TPsemantic(i)

(
∑

i TPsemantic(i) + FPsemantic(i) + FNsemantic(i))
,

PQinstance=

∑
i IoUinstance(i) · TPinstance(i){

(
∑

i (TPinstance(i) + 0.5 · FPinstance(i))

+0.5 · FNinstance(i))

}
Out of these all models, the SWideRNets [163] model pro-

vides excellent results on the Maplillary dataset as compared to
other models. Scaling Wide Residual Networks, aka SWideR-
Nets utilizes Wide Residual Networks (WR-41) [164, 165]
as a base model on top, it integrates the simplified Squeeze-
and-Excitation (SE) module [166, 167] and Switchable Atrous
Convolution (SAC) [168].

Fig. 29: Performance of models on Maplillary [144] Dataset

Another popular dataset in the segmentation domain is MS
COCO (Microsoft Common Objects in Context) dataset [145].
It includes 328,000 highly annotated images containing 91
labels. Figure 30 demonstrate sample images of the MS COCO
[145] dataset.

Fig. 30: Sample images of the MS COCO [145] Dataset

Figure 31 demonstrates the performance of models such
as MultiPath Network [169], FCIS++ +OHEM [170], Mask
R-CNN [67], MaskLab+ [171], PANet [172], CBNet [173],
SpineNet [174], DetectoRS [168], Swin-L [175], Soft Teacher
+ Swin-L [176], SwinV2-G [177] and FD-SwinV2-G [178]



14

that used the MS COCO dataset. These models used Mask
AP (Average precision) as an evaluation measure. For model
performance ranking for segmentation, the model which shows
higher Mask AP, is considered as better performance as
compared to all others. Out of these all models, FD-SwinV2-
G [178] shows the best results over MS COCO dataset. Its
unique architecture, feature distillation (FD) methods, and
masked image modeling (MIM) algorithm improve fine-tuning
performance.

Fig. 31: Performance of models on MS COCO [145] Dataset

Andreas Geiger et al. [51] proposed the KITTI dataset,
which is widely used in segmentation. It is formed up of hours
of transport scenarios acquired using a range of sensor modal-
ities, such as high-resolution RGB cameras, grayscale stereo
cameras, and a 3D laser scanner. Despite its prominence,
the dataset lacks in ground truth for semantic segmentation.
However, other researchers have manually annotated portions
of the dataset to meet their needs. Alvarez et al. [179, 180]
created ground truth for 323 photos from the road detection
challenge, categorizing them as road, vertical, and sky. Zhang
et al. [181] annotated 252 RGB and Velodyne scans (140 for
training and 112 for testing) from the tracking challenge for
10 object categories: building, sky, road, vegetation, sidewalk,
car, pedestrian, bicycle, sign/pole, and fence. Ros et al. [182]
assigned 11 classes to 170 training photos and 46 testing
images from the visual odometry challenge: building, tree, sky,
car, sign, road, pedestrian, fence, pole, sidewalk, and biker.
Figure 32 illustrates sample images of the KITTI dataset.

Fig. 32: Sample images of the KITTI Dataset

Various models utilized KITTI dataset for segmentation
purposes which includes APMoE-seg [183], SegStereo [184],
AHiSS [185], MapillaryAI [186] and DeepLabV3Plus + SD-
CNetAug [187]. These models used mean IOU (intersection

over union) as an evaluation parameter. Figure 33 shows all
model performance comparisons with respect to each other.
Out of these all models, DeepLabV3Plus + SDCNetAug [187]
shows excellent segmentation results over the KITTI dataset.
The authors of model [187] established a unique framework
for a video prediction-based approach to scale training datasets
by synthesizing fresh training samples to increase the accuracy
of semantic segmentation networks.

Fig. 33: Performance of models on KITTI [51] Dataset

One of the essential tasks in the autonomous driving over-
taking process is estimating an accurate depth map from a
camera RGB picture. It is crucial in scene understanding.
It is possible to predict the depth of front objects such as
cars, barriers, or pedestrians using computer vision algorithms.
Using depth prediction, an autonomous vehicle can measure
the distance from the front car and maintain a safe distance
while executing overtaking with regard to the front vehicle.
In depth estimation domain, a significant amount of research
has been done, but there are still many challenges, and
issues are open because of its inherent ambiguity [188].
When compared to traditional feature-based approaches [189],
supervised [190] and stereo self-supervised [191] learning
have been shown to outperform them. However, these solutions
need either a significant quantity of high-quality annotated
ground truth that is hard to obtain or sophisticated stereo
calibration. As a result, this section covers the most recent
cutting-edge computer vision-based depth estimation datasets
and models and provides a brief performance evaluation. They
are evaluated, classified, and compared to one another also.
Table VI represents available datasets for depth estimation. Out
of KITTI Dataset [192], Cityscapes [142, 143], DIML/CVL
[193], DrivingStereo [194] and DDAD [195] dataset most
models utilized KITTI [192] dataset for depth estimation
tasks. Therefore, we solely used KITTI Dataset [192] dataset
to compare models. One of the most used depth estimation
datasets for autonomous driving is KITTI (Karlsruhe Institute
of Technology and Toyota Technological Institute) [192]. It
comprises hours’ worth of driving conditions captured using
a range of sensor modalities, such as high-resolution RGB,
grayscale stereo, and 3D laser scanner cameras. It has about
94 thousand depth maps aligned with the raw data of the
KITTI dataset and includes accompanying raw LiDAR scans
and RGB pictures. This dataset will enable the construction



15

Dataset Year Images
KITTI Dataset [192] 2017 94,000

Cityscapes [142, 143] 2016 25,000

DIML/CVL Dataset [193] 2021 55,577

DrivingStereo [194] 2019 180,000

DDAD [195] 2020 99600

TABLE VI: Available Datasets for Depth estimation tasks

of sophisticated deep-learning algorithms for depth comple-
tion and single-picture depth prediction objectives. Figure 34
exhibits sample images from KITTI [192] dataset.

Fig. 34: Samples of the KITTI [192] Dataset

The performance of several models, such as Bins-
Former [196], Depthformer [197], MonoDELSNet [198], SfM-
Revisited [199], AdaBins [200], DORN [201], DPT-Hybrid
[202], GCNDepth [203] SC-Depth [204] and DNET [205] that
employed the KITTI dataset for depth estimation is shown
in figure 35. The RMSE (Root Mean Square Error) measure
is used to assess the model’s performance. In performance
evaluation, the lower the RMSE value, the better the model
performance. As a result, BinsFormer [196], a classification-
regression-based depth estimation model, beats all other mod-
els. It mainly concentrates on appropriate adaptive bin gener-
ation and adequate relationships between probability distribu-
tion and predictions of adaptive bins. It utilizes a transformer
decoder to produce bins. In order to fully comprehend spatial
geometry details and generate depth maps in a coarse-to-fine
way, it also incorporates a multi-scale decoder structure.

Fig. 35: Performance of models on KITTI dataset [192]

VI. OBSTACLE AND ROAD SIGN DETECTION

The detection and identification of road indicators are signif-
icant in overtaking procedures. While performing overtaking,
the autonomous driving car must recognize the road signboard
and determine if it is appropriate to execute overtaking or not.
For example, overtaking on a straight road is usually safer

than on any curve/turn road or bridge. So, whenever there is
a turn ahead, the road sign board indicates it so self-driving
cars can avoid overtaking on curved roads.

In the realm of autonomous driving, obstacle detection and
road sign detection are fundamental components, each serving
distinct roles despite their shared objective of enhancing the
safety and efficiency of the overtaking process [206, 207].
The key differentiators lie in their viewpoints, functionalities,
and the information they provide to the autonomous vehicle
(AV) [208, 209]. Obstacle detection primarily focuses on on-
road activities, ensuring the AV’s ability to navigate safely and
avoid collisions with obstacles in its path [206]. This system
is crucial for maintaining a safe distance from vehicles in
the front, thereby preventing potential collisions. Additionally,
obstacle detection plays a pivotal role in free path following
planning, enabling the AV to plan overtaking maneuvers by
identifying clear paths and ensuring collision-free navigation
[207, 208]. Conversely, road sign detection operates with a
broader perspective, scanning the sides and tops of roads
to identify various traffic signs. Its primary function is to
recognize and interpret the meaning or indication of these
signs, providing essential information about upcoming on-
road activities [209]. This includes identifying signs indi-
cating narrow roads, pedestrian crossings, or speed limits.
The information gleaned from road sign detection is integral
in the decision-making process for overtaking maneuvers.
For instance, when road signs indicate a narrow road or a
specific speed limit, the AV adjusts its strategy, refraining from
overtaking even if a clear path is available. This aligns with the
vehicle’s adherence to on-road driving guidelines and ensures
a judicious approach to overtaking based on the prevailing road
conditions. Currently, there exist an approximate repertoire of
200 distinct traffic signs [210]. These signs are broadly catego-
rized into three classes based on their priority and the degree of
adherence required from the driver, encompassing mandatory
signs, cautionary signs, and informatory signs [211, 212].
Mandatory signs mandate specific instructions or prohibitions
and include indications such as Straight Prohibitor, Pedestrian
Prohibited, No Parking, Speed Limit, among others. Cau-
tionary signs, conversely, forewarn road users about potential
hazards or dangers, incorporating symbols like Right-Hand
Curve, Left-Hand Curve, Steep Ascent, Steep Descent, Narrow
Road Ahead, Pedestrian Crossing, School Ahead, and oth-
ers. Simultaneously, informatory signs fulfill an informative
role, offering details about locations, distances, and directions
to specific destinations, featuring representations like Petrol
Pump, Hospital, First Aid Place, Park This Side, and additional
variants.

Many real-world services rely on traffic sign recognition
systems (TSRS), including autonomous driving, traffic mon-
itoring, safe driving and assist, and traffic scene analysis.
A TSRS typically addresses two related topics: traffic sign
detection (TSD) [213] and traffic sign recognition (TSR)
[214, 215]. Traffic sign detection concentrates on the position-
ing of objects in images, whereas the traffic sign identification
algorithm classifies in order to determine the type of targets
discovered. However, due to real-world unpredictability, such
as scale variations, poor visibility, motion blur, fading colors,
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occlusions, and lightning circumstances, developing a solid
real-time TSRS remains a difficult challenge [216, 217]. Sev-
eral algorithms have been presented, and sophisticated driver
assistance systems that detect and recognize traffic signals
have hit the market. However, despite the numerous competing
techniques, no clear consensus exists on the state-of-the-art
in this sector [216]. This can be attributed to a lack of
resources and datasets. Consequently, this section gives a brief
performance review and covers the most significant computer
vision-based traffic sign datasets and models [214]. They are
also assessed, ranked, and compared to one another.

Table VII represents available datasets for Obstacle and
Road Signs Detection. Out of Tsinghua-Tencent [218], GT-
SRB [219], Bosch Small Traffic Lights [220], Swedish traffic-
sign dataset (STSD) [221], and European Dataset [222] several
models utilized Tsinghua-Tencent [218] and GTSRB [219]
datasets only for obstacle and road signs detection tasks.
Therefore, we solely used these datasets to compare models.
Zhe Zhu et al. [218] suggested a Tsinghua-Tencent dataset

Dataset Year Images
Tsinghua-Tencent [218] 2021 100,000

GTSRB [219] 2013 50,000

Bosch Small Traffic
Lights Dataset [220] 2017 13,427

Swedish traffic-sign
dataset (STSD) [221] 2011 20,000

The European Dataset
[222] 2018 80,000

TABLE VII: Available Datasets for Obstacle and Road Signs
Detection tasks

for traffic-sign detection and classification. It collects 100000
panoramas comprising 30000 traffic-sign instances from the
Tencent Data Center and covers ten areas from 5 distinct cities
in China (covering both downtown regions and suburbs for
each city). These images cover a wide range of lighting and
weather situations. Figure 36 exhibits sample images of the
Tsinghua-Tencent [218] dataset.

Fig. 36: Sample images of the Tsinghua-Tencent [218] Dataset

Figure 37 depicts the performance of several models, such
as Hierarchical Model [223], Hierarchical + Background
Threshold Model [223], Background Threshold Model [223],
TSR-SA (without receptive field block-cross (RFB-C)) [224]
and TSR-SA (with receptive field block-cross (RFB-C)) [224].

The mAP (mean Average Precision) measure is used to
assess the model’s performance. In performance evaluation,
the higher the mAP value, the better the model performance.
In all these models, Hierarchical Model [223] shows better
performance over all other models.

Fig. 37: Performance of models on Tsinghua-Tencent Dataset
[218]

Another most popular dataset for depth estimation is GT-
SRB [219]. Sebastian Houben et al. [219] proposed a German
Traffic Sign Detection Benchmark (GTSRB) dataset con-
taining various traffic signs. The dataset was captured near
Bochum, Germany. The author captured urban and rural sur-
roundings as well as roads during daytime and dusk featuring
weather conditions. The images in the dataset have a resolution
of 1360 x 1024 pixels, and the traffic sign sizes range from 16
to 128 pixels. Figure 38 exhibit sample images of the GTSRB
[219] dataset.

Fig. 38: Sample images of the GTSRB [219] Dataset

Figure 39 displays the models’ individual performance on
the GTSRB dataset. Besides that, it demonstrates the eval-
uation results of all the models by considering accuracy as
the evaluation criteria. The model’s performance is deemed
to be superior when it displays a higher level of accuracy.
Out of SEER [225], MicronNet [226], MCDNN [227], Sill-
Net [228], CNN with 3 Spatial Transformers [229] which are
models that utilized GTSRB dataset for depth estimation, CNN
with 3 Spatial Transformers [229] shows the best performance.
It is based on a spatial transformer network (STN) equipped
convolutional neural network (CNN).

VII. STEERING ANGLE COMPUTATION

Intelligent, self-driving cars must be able to move without
leaving the drivable portion of the road, which is a vital
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Fig. 39: Performance of models on GTSRB Dataset [219]

necessity. Steering angle computation is crucial to meet
safety-critical requirements while conducting the overtaking
maneuver and improve the safety and interpretability of
end-to-end driving. It keeps the car in the middle of the road
or within the boundary lanes. Computer vision-based steering
angle calculation approaches [230, 231] are incredibly
productive and affordable in these circumstances. The scope
of this review is limited to the more recent and relevant
techniques, models, and datasets based on the computer vision
approach. This section briefly overviews the different datasets,
models, and computer vision-based steering angle calculation
approaches. Furthermore, many models are evaluated and
contrasted against one another depending on the effectiveness
and capacity of steering angle computation. Table VIII
represents available datasets for steering angle computation.
Out of CARLA [232], Steering angle computation dataset
[233] and Steering angle dataset [234], numerous models
utilized CARLA [232] dataset only for steering angle
computation tasks. Therefore, we solely used CARLA [232]
dataset to compare models.

Dataset Year
CARLA Dataset [232] 2017

Steering angle
computation dataset [233] 2016

Steering angle dataset
[234] 2021

TABLE VIII: Available Datasets for steering angle computa-
tion tasks

Alexey Dosovitskiy et al. [232] proposed a simulator for
autonomous driving research. CARLA is an open-source sim-
ulator that can simulate various use cases of self-driving.
It also provides urban layouts, buildings, and vehicles that
create a completely realistic environment for autonomous
driving. Using CARLA, the [232] generated steering angle
computation. Using this dataset many models, such as LBC
[235], MaRLn [236], World on Rails [237], GRIAD [238],
Latent TransFuser [239], TransFuser [239], LAV [240], TCP
[241] and InterFuser [242] calculated steering angle com-
putation. The performance of all these models is shown in

Fig. 40. The driving score is taken into consideration as an
evaluation factor when determining how well each of these
models performs. While ranking the model performance, the
higher the driving score, the better the model ranking. Out
of the mentioned models, InterFuser [242] shows excellent
results among all these models. InterFuser, an interpretable
sensor fusion transformer, promotes reasoning and global
contextual perception across various modalities. Additionally,
by exposing intermediate aspects of the model and limiting
actions to safe sets, the InterFuser framework also improves
the safety and interpretability of end-to-end driving.

Fig. 40: Performance of models on CARLA [232] Dataset

VIII. FUTURE RESEARCH DIRECTIONS AND OPEN
CHALLENGES

Although autonomous driving has seen humongous
progress, there is always scope for improvement that can only
be taken through research.

• The first area that can be improved involves sensors. To
help the vehicle’s control system decide where to steer
or when to brake, sensors in autonomous vehicles map
the environment [243]. Accurate sensors are necessary
while overtaking manoeuvres to detect objects, distances,
speeds, and other factors in any situation [244, 245]. The
camera’s detecting capacity can be significantly impacted
by bad weather, heavy traffic, and confusing road signs
[246, 247].

• The potential and efficacy of machine learning algorithms
play a crucial role in the overtaking process [248, 249].
Many self-driving cars rely on machine learning (ML)
and computer vision techniques to analyze sensor data,
enhance object classification, detect distances and move-
ments, and make informed decisions. These aspects are
vital for executing successful overtaking manoeuvres.
However, it is essential to note that the evaluation of
machine learning algorithms in real-world scenarios is
currently limited. While machine learning models demon-
strate outstanding performance on synthetic datasets or
in simulation environments, their effectiveness tends to
falter when deployed in real-world conditions. Conse-
quently, there is a pressing need to enhance the efficiency
and accuracy of machine learning algorithms in real-
world settings. By addressing these limitations, we can
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ensure that overtaking manoeuvres are executed reliably,
without failures, and with higher levels of accuracy.

• There is need for developing laws for specific operations
of autonomous vehicles, like automated lane-keeping
systems. Allowing autonomous vehicles to operate on
public roads without established rules and guidelines is
dangerous. There should be ethics and regulations for
self-driving cars [250, 251].

Hence, there are areas that need attention and stand as open
challenges for future research on overtaking manoeuvres.

IX. CONCLUSION

Augmented intelligence seamlessly intertwines with the
foundation of self-driving cars, enhancing the prowess of arti-
ficial intelligence (AI) through symbiotic collaborations with
human expertise. In the realm of sensor fusion and perception,
engineers leverage augmented intelligence to amalgamate data
from diverse sensors, such as cameras, LiDAR crafting a
holistic understanding of the vehicle’s environment. This aug-
mented intelligence approach harnesses the strengths of both
artificial and human intelligence, propelling the advancement
of safe and effective autonomous driving technologies. The
autonomous driving field has attracted a lot of research,
with various successful efforts to turn the idea into reality.
However, there have been various unfortunate events concern-
ing autonomous vehicle accidents. When traced back, it is
revealed that a lack of accuracy in overtaking mechanisms has
contributed to a more significant proportion of such cases. It
makes sense to initiate and facilitate research into overtaking in
autonomous vehicles. For this very purpose, this review paper
touches upon the various domains of autonomous driving
in general and overtaking in particular. In this survey, we
thoroughly analyzed several crucial computer vision domains
while performing overtaking. We have analyzed the different
datasets and state-of-the-art models available for computer
vision-based overtaking tasks for autonomous vehicles. We
provided model comparisons using the dataset and standard
evaluation parameters to get a clear insight into each model’s
performance over other models. Finally, based on the survey,
we list the significant challenges and future research directions
in this domain. This survey will guide the researchers and
professionals venturing into the research and development of
overtaking solutions based on computer vision for autonomous
driving.

REFERENCES
[1] Unsplash. Accessed: May 13, 2024. [Online]. Available: https:

//unsplash.com/
[2] N. Merat, A. H. Jamson, F. C. Lai, M. Daly, and O. M. Carsten,

“Transition to manual: Driver behaviour when resuming control from
a highly automated vehicle,” Transportation research part F: traffic
psychology and behaviour, vol. 27, pp. 274–282, 2014.

[3] O. Carsten and M. H. Martens, “How can humans understand their
automated cars? hmi principles, problems and solutions,” Cognition,
Technology & Work, vol. 21, no. 1, pp. 3–20, 2019.

[4] C. Ding, C. Li, Z. Xiong, Z. Li, and Q. Liang, “Intelligent identification
of moving trajectory of autonomous vehicle based on friction nano-
generator,” IEEE Transactions on Intelligent Transportation Systems,
2023.

[5] X. Zhao, Y. Fang, H. Min, X. Wu, W. Wang, and R. Teixeira,
“Potential sources of sensor data anomalies for autonomous vehicles:
An overview from road vehicle safety perspective,” Expert Systems
with Applications, p. 121358, 2023.

[6] Y. Fu, C. Li, F. R. Yu, T. H. Luan, and P. Zhao, “An incentive
mechanism of incorporating supervision game for federated learning in
autonomous driving,” IEEE Transactions on Intelligent Transportation
Systems, 2023.

[7] H. Yang, Z. Li, and Y. Qi, “Predicting traffic propagation flow in urban
road network with multi-graph convolutional network,” Complex &
Intelligent Systems, pp. 1–13, 2023.

[8] Y. Shi, J. Xi, D. Hu, Z. Cai, and K. Xu, “Raymvsnet++: learning
ray-based 1d implicit fields for accurate multi-view stereo,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2023.

[9] B. Cao, Z. Li, X. Liu, Z. Lv, and H. He, “Mobility-aware multiobjective
task offloading for vehicular edge computing in digital twin environ-
ment,” IEEE Journal on Selected Areas in Communications, 2023.

[10] Y. Chen, “Research on collaborative innovation of key common
technologies in new energy vehicle industry based on digital twin
technology,” Energy Reports, vol. 8, pp. 15 399–15 407, 2022.

[11] Z. Lin, H. Wang, and S. Li, “Pavement anomaly detection based on
transformer and self-supervised learning,” Automation in Construction,
vol. 143, p. 104544, 2022.

[12] H. Zhang, G. Luo, J. Li, and F.-Y. Wang, “C2fda: Coarse-to-fine domain
adaptation for traffic object detection,” IEEE Transactions on Intelligent
Transportation Systems, vol. 23, no. 8, pp. 12 633–12 647, 2021.

[13] J. Chen, Q. Wang, W. Peng, H. Xu, X. Li, and W. Xu, “Disparity-
based multiscale fusion network for transportation detection,” IEEE
Transactions on Intelligent Transportation Systems, vol. 23, no. 10,
pp. 18 855–18 863, 2022.

[14] J. Xu, X. Zhang, S. H. Park, and K. Guo, “The alleviation of perceptual
blindness during driving in urban areas guided by saccades recom-
mendation,” IEEE Transactions on Intelligent Transportation Systems,
vol. 23, no. 9, pp. 16 386–16 396, 2022.

[15] J. Xu, S. H. Park, X. Zhang, and J. Hu, “The improvement of
road driving safety guided by visual inattentional blindness,” IEEE
transactions on intelligent transportation systems, vol. 23, no. 6, pp.
4972–4981, 2021.

[16] Z. Xiao, J. Shu, H. Jiang, G. Min, H. Chen, and Z. Han, “Perception
task offloading with collaborative computation for autonomous driv-
ing,” IEEE Journal on Selected Areas in Communications, vol. 41,
no. 2, pp. 457–473, 2022.

[17] R. Fukatsu and K. Sakaguchi, “Automated driving with cooperative
perception using millimeter-wave v2v communications for safe over-
taking,” Sensors, vol. 21, no. 8, p. 2659, 2021.

[18] Y. Fang, H. Min, X. Wu, W. Wang, X. Zhao, and G. Mao, “On-ramp
merging strategies of connected and automated vehicles considering
communication delay,” IEEE Transactions on Intelligent Transporta-
tion Systems, vol. 23, no. 9, pp. 15 298–15 312, 2022.

[19] Y. Yao, F. Shu, Z. Li, X. Cheng, and L. Wu, “Secure transmission
scheme based on joint radar and communication in mobile vehicular
networks,” IEEE Transactions on Intelligent Transportation Systems,
2023.

[20] X. Zhang, S. Wen, L. Yan, J. Feng, and Y. Xia, “A hybrid-convolution
spatial–temporal recurrent network for traffic flow prediction,” The
Computer Journal, p. bxac171, 2022.

[21] H. Yang, X. Zhang, Z. Li, and J. Cui, “Region-level traffic predic-
tion based on temporal multi-spatial dependence graph convolutional
network from gps data,” Remote Sensing, vol. 14, no. 2, p. 303, 2022.

[22] H. Tehrani, Q. H. Do, M. Egawa, K. Muto, K. Yoneda, and S. Mita,
“General behavior and motion model for automated lane change,” in
2015 IEEE Intelligent Vehicles Symposium (IV). IEEE, 2015, pp.
1154–1159.

[23] H. Min, Y. Li, X. Wu, W. Wang, L. Chen, and X. Zhao, “A mea-
surement scheduling method for multi-vehicle cooperative localization
considering state correlation,” Vehicular Communications, vol. 44, p.
100682, 2023.

[24] J. Chen, M. Xu, W. Xu, D. Li, W. Peng, and H. Xu, “A flow
feedback traffic prediction based on visual quantified features,” IEEE
Transactions on Intelligent Transportation Systems, 2023.

[25] J. Chen, Q. Wang, H. H. Cheng, W. Peng, and W. Xu, “A review of
vision-based traffic semantic understanding in itss,” IEEE Transactions
on Intelligent Transportation Systems, 2022.

[26] X. Ma, Z. Dong, W. Quan, Y. Dong, and Y. Tan, “Real-time assessment
of asphalt pavement moduli and traffic loads using monitoring data
from built-in sensors: Optimal sensor placement and identification
algorithm,” Mechanical Systems and Signal Processing, vol. 187, p.

https://unsplash.com/
https://unsplash.com/


19

109930, 2023.
[27] J. Xu, K. Guo, and P. Z. Sun, “Driving performance under violations

of traffic rules: Novice vs. experienced drivers,” IEEE Transactions on
Intelligent Vehicles, vol. 7, no. 4, pp. 908–917, 2022.

[28] Y.-C. Lin, C.-L. Lin, S.-T. Huang, and C.-H. Kuo, “Implementation
of an autonomous overtaking system based on time to lane crossing
estimation and model predictive control,” Electronics, vol. 10, no. 18,
p. 2293, 2021.

[29] S. Jiang, C. Zhao, Y. Zhu, C. Wang, Y. Du et al., “A practical and
economical ultra-wideband base station placement approach for indoor
autonomous driving systems,” Journal of Advanced Transportation, vol.
2022, 2022.

[30] H. Min, Y. Fang, X. Wu, X. Lei, S. Chen, R. Teixeira, B. Zhu, X. Zhao,
and Z. Xu, “A fault diagnosis framework for autonomous vehicles with
sensor self-diagnosis,” Expert Systems with Applications, vol. 224, p.
120002, 2023.

[31] Z. Xiao, J. Shu, H. Jiang, G. Min, J. Liang, and A. Iyengar, “Toward
collaborative occlusion-free perception in connected autonomous vehi-
cles,” IEEE Transactions on Mobile Computing, 2023.

[32] X. Zhang, S. Fang, Y. Shen, X. Yuan, and Z. Lu, “Hierarchical velocity
optimization for connected automated vehicles with cellular vehicle-
to-everything communication at continuous signalized intersections,”
IEEE Transactions on Intelligent Transportation Systems, 2023.

[33] J. Xu, S. Pan, P. Z. Sun, S. H. Park, and K. Guo, “Human-factors-in-
driving-loop: Driver identification and verification via a deep learning
approach using psychological behavioral data,” IEEE Transactions on
Intelligent Transportation Systems, vol. 24, no. 3, pp. 3383–3394, 2022.

[34] S. Dixit, S. Fallah, U. Montanaro, M. Dianati, A. Stevens, F. Mc-
cullough, and A. Mouzakitis, “Trajectory planning and tracking for
autonomous overtaking: State-of-the-art and future prospects,” Annual
Reviews in Control, vol. 45, pp. 76–86, 2018.

[35] O. T. Ritchie, D. G. Watson, N. Griffiths, J. Misyak, N. Chater,
Z. Xu, and A. Mouzakitis, “How should autonomous vehicles overtake
other drivers?” Transportation research part F: traffic psychology and
behaviour, vol. 66, pp. 406–418, 2019.

[36] T. Hegedűs, B. Németh, and P. Gáspár, “Challenges and possibilities of
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“Monocular depth estimation through virtual-world supervision and
real-world sfm self-supervision,” IEEE Transactions on Intelligent
Transportation Systems, 2021.

[199] J. Wang, Y. Zhong, Y. Dai, S. Birchfield, K. Zhang, N. Smolyanskiy,
and H. Li, “Deep two-view structure-from-motion revisited,” in Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2021, pp. 8953–8962.

[200] S. F. Bhat, I. Alhashim, and P. Wonka, “Adabins: Depth estimation
using adaptive bins,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2021, pp. 4009–4018.

[201] H. Fu, M. Gong, C. Wang, K. Batmanghelich, and D. Tao, “Deep ordi-
nal regression network for monocular depth estimation,” in Proceedings
of the IEEE conference on computer vision and pattern recognition,
2018, pp. 2002–2011.

[202] R. Ranftl, A. Bochkovskiy, and V. Koltun, “Vision transformers for
dense prediction,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2021, pp. 12 179–12 188.

[203] A. Masoumian, H. A. Rashwan, S. Abdulwahab, J. Cristiano, and
D. Puig, “Gcndepth: Self-supervised monocular depth estimation based
on graph convolutional network,” arXiv preprint arXiv:2112.06782,
2021.

[204] J.-W. Bian, H. Zhan, N. Wang, Z. Li, L. Zhang, C. Shen, M.-M. Cheng,
and I. Reid, “Unsupervised scale-consistent depth learning from video,”
International Journal of Computer Vision, vol. 129, no. 9, pp. 2548–
2564, 2021.

[205] F. Xue, G. Zhuo, Z. Huang, W. Fu, Z. Wu, and M. H. Ang, “Toward
hierarchical self-supervised monocular absolute depth estimation for
autonomous driving applications,” in 2020 IEEE/RSJ International



23

Conference on Intelligent Robots and Systems (IROS). IEEE, 2020,
pp. 2330–2337.

[206] N. B. Romdhane, M. Hammami, and H. Ben-Abdallah, “A generic
obstacle detection method for collision avoidance,” in 2011 IEEE
Intelligent Vehicles Symposium (IV). IEEE, 2011, pp. 491–496.

[207] K. Chu, M. Lee, and M. Sunwoo, “Local path planning for off-
road autonomous driving with avoidance of static obstacles,” IEEE
transactions on intelligent transportation systems, vol. 13, no. 4, pp.
1599–1616, 2012.

[208] H. Laghmara, M.-T. Boudali, T. Laurain, J. Ledy, R. Orjuela, J.-P.
Lauffenburger, and M. Basset, “Obstacle avoidance, path planning and
control for autonomous vehicles,” in 2019 IEEE intelligent vehicles
symposium (IV). IEEE, 2019, pp. 529–534.

[209] A. De La Escalera, L. E. Moreno, M. A. Salichs, and J. M. Armingol,
“Road traffic sign detection and classification,” IEEE transactions on
industrial electronics, vol. 44, no. 6, pp. 848–859, 1997.
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