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ABSTRACT

We report on a case study application of metaheuristics with Ar-
gyll and Bute Health and Social Care Partnership in the West of
Scotland. The Partnership maintains a �eet of pool vehicles that are
available to service visits of sta� to locations across a largely rural
area. Maintaining such a �eet is important but costly: we show
how the allocation of �eet vehicles can be formulated as a bilevel
optimisation problem. At the upper level, vehicles are allocated to
‘base’ locations such as hospitals. At the lower level, vehicles are
allocated to speci�c jobs. We explore local-search approaches to
solving this problem. We show that some blurring of the distinction
between upper and lower levels can be helpful for this problem. We
also demonstrate, for our case study, a 7.1% reduction in the vehicle
�eet while still being able to meet all demand.
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1 INTRODUCTION

As the UK seeks to switch to zero emission electric vehicles [12]
to bene�t from reduced emissions [13], public sector bodies are
increasingly prioritising such a switch for their own �eet trans-
portation. One large scale user of �eet transportation is the National
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Health Service (NHS), which maintains a large �eet of leased vehi-
cles to facilitate home visits and connectivity between many small
health facilities. The �eet is particularly important in rural locations,
and reducing the leasing costs of the �eet is of high importance,
as money spent on vehicles is not spent directly on care. This will
also ease the switch to electric: although the reduced fuel costs rep-
resent long-term savings, initial leasing costs for electric vehicles
are higher than for petrol and diesel. Therefore, it is required to
reduce the scale of the �eet by removing any excess capacity, while
still being able to complete all required operations. Yet there are
many complex requirements for the �eet that make optimisation
of vehicle numbers and types challenging.

We focus on a case study with Argyll and Bute NHS in the West
of Scotland. Argyll and Bute is a largely rural area with a small
number of moderately sized towns, with �eet vehicles required to
cover a very large area. Statistical analysis of the �eet’s operations
revealed that vehicles were in use (driving on the road) around 25%
of the time. While much of this ‘idle’ time is necessary (e.g., while a
vehicle, having transported sta� to a remote location, waits for the
return journey), this data suggested that there was potential scope
for reducing the �eet size by careful placement of the vehicles.

In this paper, we formulate the reduction of a vehicle �eet as a
bilevel optimisation problem [6, 10]. The upper level attempts to
optimise the overall goal, with the lower level acting as a constraint
on the upper level solutions.

• The upper level allocates vehicles to base locations and is sim-
ilar to a facility location problemwith discrete locations. This
is an optimisation problem with the objective of reducing
the number of vehicles.
• The lower level determines whether the given allocation of
vehicles can serve the job requirements of that location. It is
the decision version of the optimal job scheduling problem,
and is solely concerned with determining whether a feasible
solution exists. That is, one in which all jobs are successfully
completed.

We develop a stochastic local search for the upper level and
a constructive heuristic search for the lower level problem, and
demonstrate their combined performance on our case study when
compared to random search baselines. We show that some blurring
of the distinction between levels is useful, whereby the lower level
algorithm is able to re�ne the allocations of vehicles while allo-
cating them to jobs. For the real-world application, we are able to
determine that a potential reduction to the �eet of 7.1% is possible.

https://doi.org/10.1145/nnnn.nnn
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2 RELATED WORK

Many problems can be formulated as bilevel andmany successful ap-
proaches have been developed in recent years [10]. Metaheuristics
have proven to be a popular solution approach for these typically
very di�cult problems [6]. Research in this area has also extended
to other matters such as handling uncertainty [3] and multiple
objectives [15].

Our upper level is similar to a Facility Location Problem, which
has frequently been formulated as a bilevel problem [1, 4, 7, 9],
including [11] which includes freight transport routing. Typically
the levels are determining which facilities to open, and which cus-
tomers to assign to each facility. Our upper level is similar, in that
vehicles (facilities) are allocated to one of a �xed number of loca-
tions. A key di�erence with our target problem is that the low level
is a time-series problem of allocating the vehicles to jobs, rather
more like optimal job scheduling than allocating customers to a
particular location. We also allow for vehicles to change bases (i.e.
facilities change location) from time to time.

Related to optimal job scheduling, �ow shop scheduling has itself
been formulated as a bilevel problem, whereby the upper level is
the allocation of jobs to machines and the lower level is scheduling
on each machine [2, 14]. In our case, the problem at each base can
still be solved in a single algorithm run, so this further division of
the problem is unnecessary.

3 PROBLEM DEFINITION

The overall problem is to determine the allocation of vehicles to
bases that minimises the total �eet size while still being able to
complete the same set of jobs. The overall problem is treated as a
bilevel optimisation problem:

• The upper level (outer) problem is an allocation of vehicles
to each base. (number of vehicles of each of the three types;
these can change over time). Objective: minimise the total
number of vehicles.
• The lower level (inner) problem determines whether a spe-
ci�c allocation of vehicles made at the upper level will be
able to service all the jobs (i.e., is the allocation feasible).
Job start and end times are �xed. The search operators are
designed to keep changes from the existing allocation of
vehicles to a minimum in order to minimise disruption as
far as possible.

We now de�ne the notation used in the rest of the paper, the
assumptions underpinning the problem, and set out the lower and
upper level problems.

3.1 De�nitions

We begin with some de�nitions:

• Base: a location at which vehicles are parked. These include
hospitals and local health centres, generally near to a cluster
of sta� using the vehicles.
• Job: a journey that starts and ends at a base, such as a series
of home visits performed by a single member of sta�, or the
transport of equipment.
• Vehicle: a car or van represented by a registration number.
Vehicles are grouped into three types: smallcar, estate, van,

Symbol Description
� = {11, 12, . . . , 1<} all bases
+ = {E1, E2, . . . , E=} all vehicles
� = { 91, 92, . . . , 9? } all jobs
+1 = {E11 , E

1
2 , . . .} vehicles allocated to base 1

�1 = { 911 , 9
1
2 , . . .} jobs at base 1

Table 1: Notation

each being best suited to particular types of jobs. Each vehicle
is assigned to a speci�c base for a period of time.
• Swap: reallocating a vehicle from one base to another.

Table 1 lists the major elements of notation related to these
de�nitions used later in the paper.

3.2 Assumptions

Building on the de�nitions above, there are also some rules / as-
sumptions that constrain the problem:

• Vehicles are only allowed to swap between certain bases.
Swaps between bases on di�erent islands or the mainland
are too costly and impractical to be implemented routinely.
• It is preferred for a vehicle of the same type to do a job, but
occasionally a di�erent type of vehicle can be used. Jobs
performed by a smallcar can be performed by any other
vehicle; estates can be replaced by vans and vice-versa.
• A new swap cannot be introduced if it involves a ferry jour-
ney; however existing swaps that involve a ferry can be
retained.

3.3 Low level: allocating vehicles to jobs

Despite the use of vehicles and jobs, the lower level problem is not
quite an instance of Vehicle Allocation Problem [8], which involves
allocating a �eet of vehicles to attend to the expected demand for
freight transportation between terminals along a �nite multiperiod
planning horizon. Rather, it is closer to an instance of optimal job
or machine scheduling [5, 16]. Here, we have a list of jobs (trips to
visit a list of patients) that need allocated to vehicles (machines).
The goal is to successfully allocate all jobs to a machine. There are
several constraints:

(1) All jobs have a speci�c category (the vehicle type), and ma-
chines can service speci�c categories (van and estate can
service any job, smallcar can only service smallcar jobs).

(2) Start and end times are �xed per job.
(3) Machines are independent of each other and can only service

one job at a time.

Let �1 = { 911 , 9
1
2 , . . . , 9

1
? } be the set of jobs for a given base 1

and +1 = {E11 , E
1
2 , . . . , E

1
=} be the set of vehicles allocated to 1 (the

vehicles can be viewed as the ‘machines’). Each vehicle can only
service one job at a time. Each job has �xed start and end times.
Furthermore, we introduce the possibility of adding vehicles to +1

by taking one not in use from the vehicles of another base +>Cℎ4A .
The lower-level problem’s goal is to determine whether there exists
an assignment G of all jobs in �1 to a member of+1 without any of
the �1 that share a common +1 also overlapping in time.
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3.4 Upper level: allocating vehicles to bases

The upper level problem is the high level allocation of vehicles
to each base. More formally, let � = {11, 12, . . . , 1<} be the set of
bases and+ = {E1, E2, . . . , E=} be the set of vehicles in the �eet. Our
objective is to minimise the number of vehicles in the �eet = while
allocating a subset of+ to each+1 such that the low level problems
can all be satis�ed. The original allocation is actually treated as a
starting point, because the low level algorithm is then also able to
swap vehicles between bases at later points in time.

4 SOLUTION METHODOLOGY

A telematics system was installed in all vehicles of the NHS �eet
targeted by our optimisation approach. The telematics device tracks
the activities of the vehicles and drivers’ performances, by collat-
ing and collecting data such as the vehicle mileage, safety score,
location, idle time, and drive time, fuel consumption and drivers’
performance, etc. This provides us with a rich historical data set of
vehicle movements, specifying where and when each vehicle was
used over a long period of time. Further details of this data set are
given in Section 5.

We begin all searches from the historical �eet and its actual sched-
ule. Vehicles are placed at the bases where they were located at the
start of our historical data set, and allocated to the jobs they origi-
nally performed. A stochastic local search algorithm was applied
at the upper level, allocating vehicles to bases, with a constructive
heuristic at the lower level allocating vehicles to jobs. The top level
algorithm calls the low level algorithm to determine whether par-
ticular vehicle allocations are feasible. The algorithm starts with
the current allocations of vehicles and then tries to improve on that
allocation, to minimise the changes from the current setup.

As this is a novel applied problem, to provide a baseline for com-
parison at both levels we also compare with a random search. The
remainder of this section details our algorithm implementations.

4.1 Lower level: constructive heuristic search

The lower-level problem is the assignment of vehicles to jobs (trips)
to determinewhether the upper level solution is feasible (i.e., enough
vehicles have been allocated to service all jobs). This is a decision
version of the optimal job scheduling problem. Before all searches,
we initialise the starting solution as the historical version of the
schedule: that is, we assign vehicles to the jobs that they actually
were assigned to in the data. After that, we apply constructive
heuristic search. These lower-level searches happen within the
scope of one base (although other bases can become involved if ve-
hicle swaps occur). This is because the upper-level search proposes
to remove a single vehicle from a speci�ed base at every iteration.
The lower-level search then checks if this removal can still result
in a valid assignment of vehicles to jobs for that base.

This is the process shown in Algorithm 1. A list of eligible vehi-
cles for the base is built. Those are — in order — the vehicles already
at that base, and also vehicles at other bases which have historically
done jobs for that base at least once. For each job, we �rst consider
vehicles already at the base. If the vehicle is not in use, it is assigned
to the job. If it is in use, but there is time between the end time of
its current job and the new proposed job, it is assigned. If there
are no available vehicles at the current base, then vehicles from

other bases are considered. In these cases, a satcheck takes place:
a check for whether the other base can still handle all its jobs with
the loss of the proposed vehicle. If it can, the vehicle is assigned to
the job and swaps to the base. We de�ne the process of considering
any vehicle for assignment to a job as a �tcheck.

For the random search baseline variant of this algorithm, there
is only one di�erence: there is a random shu�ing of the order in
which vehicles are considered for assignment. We also considered
a variant where swaps between bases were disallowed at the lower
level.

4.2 Upper level: stochastic local search

The upper search is a stochastic local search, where the operator is
removing vehicles from the �eet.We begin from the actual historical
�eet and try to reduce from there. Removals are only allowed when
there is a feasible job allocation on the lower level possible with the
new reduced �eet (Algorithm 1). Only if that constraint is satis�ed
is the new �eet accepted as the incumbent solution on the upper
level; the neighbourhood is explored looking for an improvement.
The process for our upper search is captured in Algorithm 2. The
operation which removes vehicles from the �eet is a semi-guided
mutation: it is subject to a parameter<. This is used in the following
way: a group of vehicles of type C at a given base are only considered
for removal if the group has a size of at least<. Our experiments
considered two values for<: 1 (i.e., vehicles may be removed from
any base) and, based on our observations of typical vehicle counts
at each base, 4.

We also implement a random search baseline variant of this
level: the process is similar to Algorithm 2, except at each iteration
a random number A between 1 and 10 is generated. After that, A
vehicles are chosen uniformly at random and removed from the
�eet; thereafter, checks are carried out to see if this is still a valid
�eet (that is, for each individual vehicle removal, we check with the
lower level search in Algorithm 1 whether a valid job assignment is
still possible for the a�ected base). After all iterations are complete,
the �eet with the largest reduction which is also valid is the output
of the search.

5 CASE STUDY DETAILS

Our experiments focus on optimisation of the vehicle �eet operated
by NHS Argyll and Bute, which covers an area of approximately
70 000km2 around the West coast of Scotland and serves around
85 000 people. Within the region are 18 bases from which the �eet
vehicles operate. Figure 1 shows the area, with each base highlighted
by a marker.

Our case study focuses on the 84 active vehicles with telematics
�tted. This excludes several �eet vehicles that were undergoing
scheduled maintenance or could certainly not be removed for opera-
tional reasons. The telematics devices are able to track the activities
of the vehicles, allowing us to model the current usage patterns of
the �eet and identify any opportunities for e�ciencies. We were
provided with data spanning a period of approximately 4 months,
from 14/07/2022 00:58:33 to 16/11/2022 21:46:59. Some basic data
cleaning was required to remove errors (e.g., zero-length trips due
to an engine being turned on then o� again, or where the telematics



Conference, July 2021, Alexander E.I. Brownlee, Sarah L. Thomson, and Rachael Oladapo

device failed to log vehicle coordinates correctly). The data actu-
ally contains point-to-point trips (engine-on to engine-o�). This
cleaning reduced the number of point-to-point trips from 57 850 to
52 999. These trips were then grouped. 43 659 trips were grouped
into 13 208 jobs (i.e., journeys starting and ending at a known base),
and 9340 trips were grouped into 3797 swaps (i.e. journeys start-
ing and ending at di�erent bases). Each job also has an associated
vehicle type (the vehicle which originally performed the job).

Thus our case study problem has 84 vehicles of 3 types, 18 bases,
13 208 jobs, and 3797 swaps between bases. The existing swaps
in the historical data were retained in all solutions to ensure that
equipment and sta� movements were accounted for. As the jobs
were constructed from known movements to always start and end

at the same base (i.e., being round trips), we ensured that idle time
caused by waiting for sta� to complete work at a remote location
was never eliminated. Repairs to vehicles also took place at remote
locations and were accounted for in the sameway (a repair counting
as any other job). Thus, any slack removed by our approach was
genuinely idle time that could be removed.

6 EXPERIMENTAL SETUP

We combined the di�erent con�gurations described in Section 4 to
form 9 variants.We have adopted a coding system for these in the re-
sults, detailed in Table 2. Following this pattern, e.g., u1l2m4 means
an algorithm having random search at the upper level, heuristic
search at the lower level, and removals limited to cases where there

Algorithm 1 Lower level constructive heuristic search for one vehicle base

1: Output: x ⊲ assignment of vehicles to jobs for 1
2: Initialisation:
3: �1 = {�11 , �

1
2 , . . . , �

1
? } ⊲ jobs for this base

4: + 21 = + 21
1 ,+ 21

2 , . . . ⊲ vehicles at current base

5: +>1 = +>1
1 ,+>1

2 , . . . ⊲ vehicles at other bases eligible for swap

6: +0 = + 21 ∪+>1
⊲ all eligible vehicles in + ; sorted with those at current base �rst

7: ⊲ Note: mX variant has +0 = + 21 , excluding vehicles from other bases
8: for 918 in �1 do

9: for E: in +0 do ⊲ �tcheck: checking a vehicle for assignment to a particular job
10: if E: ∈ +

21 then

11: if E: is not in use then
12: assign E: to 98 in G

13: else

14: if E: .currentjob.endTime < 98 .startTime then ⊲ i.e., E: is in use, but clear in time for current job
15: assign E: to 98 in G

16: end if

17: end if

18: end if

19: if E: ∈ +
>1 then

20: B0C = satcheck(E: .2DAA4=C�0B4) ⊲ satcheck: whether the base can satisfy its jobs without E
21: if B0C then

22: if E: is not in use then
23: assign E: to 98 in G

24: swapvehicle(E: , E: .2DAA4=C�0B4, 21) ⊲ swap the vehicle to the present base
25: end if

26: end if

27: end if

28: end for

29: end for

Algorithm 2 Upper level stochastic local search

1: Input: CF ⊲ historical �eet encoded as counts for vehicle types at each base
2: Output: CF ⊲ �eet, potentially reduced in size
3: for 8 in 1..8C4A0C8>=B do

4: "� = removevehicle(CF, m) ⊲ remove vehicle subject to<;"� is mutated �eet
5: B0C = lowersearch(MF, re) ⊲ check whether the base can satisfy its jobs without the vehicle proposed for removal with Alg. 1
6: if B0C = CAD4 then ⊲ this solution is an improvement: fewer vehicles while completing all jobs
7: �� ← "�

8: end if

9: end for
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Figure 1: The geographic region covered by the case study.

Red markers show the locations of bases, with labels giving

base name and lat/lon. Approximate width of this �gure is

200km.Maps data ©Google, Data SIO, NOAA, U.S. Navy, NGA,

GEBCO. Imagery: Landsat / Copernicus.

are four or more vehicles of the same type at a base. We use a * to
denote all variants matching a con�guration at particular levels.
u1l2* means all variants with random search at the upper level and
heuristic search at the lower level.

We conduct 100 independent runs of each algorithm variant and
report the aggregate results of these in the following section.

7 RESULTS

The current best reduction we have found is as follows: All 13208
jobs have vehicles allocated to them. The �eet of 84 was reduced
by 6 vehicles, all smallcars, representing a reduction of 7.1% and an
annual saving of £19 662, assuming a typical annual leasing charge
for an electric vehicle of £3277.

Table 2: Algorithm variant codes

Code Description
u1 Upper level random search
u2 Upper level stochastic local search
l1 Lower level random search
l2 Lower level constructive heuristic search

m1 Upper level can remove any available vehicle
m4 Upper level can only remove vehicles where at

least 4 of same type are present
mX Upper level as for m4, lower level no swaps

allowed
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Figure 2: Vehicle reductions over outer loop iterations. The

lineas for u1l1m1, u1l1m4, u2l1m1, and u2l1m4 are overlaid

on each other at zero.

7.1 Reductions to vehicle count

Table 3 reports the headline results for each algorithm in terms
of the number of vehicles removed and the increase in distance
travelled due to vehicles swapping bases. ‘Median reduction’ is the
median number of vehicles removed over all 100 repeat runs of the
algorithm. The only algorithms where this was non-zero (meaning
that at least half the runs removed at least one vehicle) were those
without random search at either level; algorithm IDs u2l2*.

‘% removing at least’ are the percentages of the repeat runs where
at least 1...6 vehicles where removed. Only the u2l2* variants were
able to �nd solutions removing 4 or more vehicles, and of those,
u2l2m4 most frequently found solutions removing each number of
vehicles. u2l2m4 was the only approach able to �nd any solutions
removing 6 vehicles.

‘Median swap distance’ is the median extra distance travelled
due to new swaps being added, over the runs removing 1...6 vehicles.
u2l2m4 was able to �nd greater reductions in vehicles by being
more free to make swaps between bases; this then comes at the cost
of some additional distance travelled. However, the total distance
covered by the jobs to be completed and the existing swaps in the
historical data is 93 723 miles, so this additional distance covered is,
in practice, negligible.

Strictly speaking, allowing swaps between bases in the low level
problem is a blurring of the distinction between upper and lower
levels. The upper level algorithm is primarily responsible for allocat-
ing vehicles to bases. However, for the application at hand, allowing
the lower algorithm some capacity to move vehicles between bases
(i.e., lower level problems) when it becomes apparent that this is
necessary means that it is able to �nd better solutions overall. Thus
u2l2m4 is able to �nd better solutions than u2l2mX.

7.2 Upper search convergence

The upper level search was limited to 15 iterations per run. The
reason for this is that, if a reduction was going to be made, it would
happen quickly, and more iterations did not lead to further �eet
reductions. Figure 2 reports the mean reduction at each iteration
over all repeat runs of each algorithm con�guration. In all cases,
the upper level search had converged by 6 iterations.
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Table 3: Main results for vehicle reductions, and extra distance travelled by vehicles swapping bases, for each algorithm. ‘Median

reduction’ is the median number of vehicles removed over all 100 repeat runs of the algorithm. ‘% removing at least’ are the

percentages of the repeat runs where at least 1...6 vehicles where removed (so, 41% of u2l2m4 runs removed one or more

vehicles). ‘Median swap distance’ is the median extra distance travelled due to swaps, over the runs removing 1...6 vehicles.

Algorithm Median % removing at least: Median swap distance (miles)
Reduction 1 2 3 4 5 6 1 2 3 4 5 6

u1l1m1 0 0 0 0 0 0 0 0 0 0 0 0 0
u1l1m4 0 0 0 0 0 0 0 0 0 0 0 0 0
u1l2m1 0 13 5 3 0 0 0 0 0 0 0 0 0
u1l2m4 0 18 12 4 0 0 0 0 0 0 0 0 0
u2l1m1 0 0 0 0 0 0 0 0 0 0 0 0 0
u2l1m4 0 0 0 0 0 0 0 0 0 0 0 0 0
u2l2m1 1 54 29 18 9 2 0 0 0 0 0 22.5 0
u2l2m4 1 61 41 25 13 5 3 0 0 45 45 45 45
u2l2mX 1 59 25 11 6 2 0 0 0 0 0 0 0

0
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Figure 3: Distribution of run times over all repeat runs of all

algorithms. The times are the wall-clock time, in millisec-

onds, to complete one run of the lower level algorithm. Note

that the times are presented on a log scale due to the long

tail.

7.3 Computational overhead

The previous section notes that the upper level algorithms were
limited to 15 iterations. The lower level algorithms account for
most of the computational overhead of our approach. Figure 3
shows the distribution of run times on our experimental platform,
a machine with 20x 12th Gen Intel i9-12900HK cores and 32GB of
memory, running Ubuntu 22.04. As is often the case with run time
measurements, there is a long tail. Most of the run time is due to
the checks to determine whether a vehicle can be swapped with
another (�tcheck) and whether a base can lose a proposed vehicle
(satcheck), which are called many times. Table 4 and Figures 4 and 5
compare the approaches in terms of the number of calls to these
functions, broken down by algorithm. In general, the approaches
using random search at the low level (*l1*) are longer running that
the guided approaches (*l2*), with l2 approaches using fewer calls
to both �tcheck and satcheck. u2l2mX uses fewer calls than any
other approach because it disallows swaps between bases. However,
this comes at the cost of being unable to reduce the vehicle count
by as much as u2l2m4.
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Figure 4: Number of calls to �tcheck by each algorithm across

all repeat runs.
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Figure 5: Number of calls to satcheck by each algorithm

across all repeat runs.

8 CONCLUSIONS

In this paper we have formulated a bilevel optimisation problem for
reducing the vehicle �eet of a rural health and social care service. In
our practical case study, we have shown that it is possible to reduce
an existing �eet of 84 by 6 cars (7.1%), potentially saving £19 662
annually. In achieving this, negligible extra distance travelled was
added in the form of additional swaps of vehicles between bases.
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Table 4: Number of calls to �tcheck and sat check by each iteration of each algorithm. Figures are the minimum, 1st quartile,

median, 3rd quartile, and maximum, across all iterations of all repeat runs.

satcheck �tcheck
min q1 med q3 max min q1 med q3 max

u1l1m1 1 5 6 13.25 153 91 25 817 33 858 83 513 1 072 472

u1l1m4 1 6 11 14 176 78 30 649 71 669 92 124 1 231 012

u1l2m1 1 1 1 3 4457 38 2620 8904 9659 51 076 752

u1l2m4 1 1 1 3 4136 386 5670 8904 12 307 47 397 191

u2l1m1 1 5 10 18 286 16 28 096 56 281 125 777 2 030 720

u2l1m4 1 6 12 20 282 18 36 362 81 498 149 324 2 576 057

u2l2m1 1 1 1 2 419 140 397 6261 8904 12 480 305

u2l2m4 1 1 1 2 1356 145 2599 8904 9496 11 747 683

u2l2mX 1 1 1 2 2 145 5669 8904 8967 44 817

We demonstrated that, for this problem, some blurring of the
distinction between upper and lower levels is helpful. The upper
level algorithm is primarily responsible for allocating vehicles to
bases, but our results (Section 7.1) show that allowing the lower
level algorithm to occasionally request a vehicle from another base
(i.e. the di�erence between algorithms u2l2m4 and u2l2mX) o�ers
an overall improvement in performance for the full bilevel problem.

There is far more to be done with this problem. The modelling
makes some assumptions: in particular, we have assumed all jobs to
be �xed, whereas each could be treated as a routing problem (simi-
lar to travelling thief considering distance, timing and emissions),
adding a third level to the overall problem. We also ignored the
practicality of swaps in terms of personnel being available to move
the vehicles (beyond checking that there is enough time for each
swap to happen). In the long term the goal over moving towards
an electric vehicle �eet will also require consideration of times and
locations to recharge, adding further complexity but potentially
greater gains.
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