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ABSTRACT

We analyse �tness landscapes of evolutionary feature selection to
obtain information about feature importance in supervised machine
learning. Local optima networks (LONs) are a compact represen-
tation of a landscape, and can potentially be adapted for use in
explainable arti�cial intelligence (XAI). This work examines their
applicability for discerning feature importance in supervised ma-
chine learning datasets. We visualise aspects of feature selection
LONs for a breast cancer prediction dataset as case study, and this
process reveals information about the composition of feature sets
for the underlying ML models. The estimations of feature impor-
tance obtained from LONs are compared with the coe�cients ex-
tracted from logistic regression models (interpretable AI), and also
against feature importances obtained through an established XAI
technique: SHAP (explainable AI). We �nd that the features present
in the LON are not strongly correlated with the model coe�cients
and SHAP values derived from a model trained prior to feature
selection, nor are they strongly correlated within similar groups of
local optima after feature selection, calling into question the e�ects
of constraining the feature space for wrapper-based techniques
based on such ranking metrics.
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1 INTRODUCTION

Local Optima Networks (LONs) [33] are a compact representation
of �tness landscapes, and are well-established as a way of under-
standing the relationship between a metaheuristic algorithm and a
problem. LONs allow us to make insights such as understanding
the relative performance of algorithms that use di�erent sets of
operators. LONs also reveal the common paths taken by algorithms
as they search the space on the way to high-quality solutions. It has
been suggested [2] that the information represented by a LON can
also be exploited for eXplainable AI (XAI): explaining the quality
of the solutions that have been identi�ed by the search. The fea-
tures present in the local optima, and the order in which they were
included or excluded by the search, reveal what the algorithm has
learned about the problem at hand. Thus analysis of the LON itself
provides one way to explain solutions for the target problem. In
this paper, we propose two approaches towards mining explanatory
information from LONs: statistical analysis of LON characteristics
and clustering of the local optima. Many applications necessitate
the use of multiple runs, which enables the construction of a LON.
Thus in such a situation much of the explanatory information is
generated as a byproduct of the search process itself, rather than
requiring an additional search or probing of the model after it is
�tted.

We test the proposed approaches by applying them to feature
selection in machine learning. Metaheuristics have often been ap-
plied to feature selection [7]. Typically a ‘wrapper’ approach is
employed, whereby the metaheuristic selects a subset of features
for the ML model and the �tness of solutions is the cross-validation
accuracy (or similar) of the resulting model using those features.
This provides an ideal context in which to explore the potential of
LONs for explainability: explanations of feature importance derived
from a LON can be tested against feature importance measures al-
ready in use among the XAI community. The key novelty of our
approach is that the explanations are derived from the search; there
is nothing preventing the approach being applied for parametric
optimisation problems other than feature selection. In the present
paper we focus on mining feature importance (of the trained ML
model, rather than �tness landscape features) from LONs assuming
that the features are independent; consideration of linkage between
features (e.g., [1, 31]) is also important and a future consideration.

The contributions of this work are as follows:

(1) the proposal of two approaches for mining LONs for expla-
nations: summary statistics and clustering
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(2) experimental comparison of these approaches with estab-
lished XAI techniques: logistic regression coe�cients and
SHAP

(3) the selection of suitable visualisation techniques to make the
explanations accessible

2 BACKGROUND

2.1 Fitness Landscapes

A �tness landscape [26] is composed of three parts: ((, # , 5 ) : S is
the full set of possible solutions; # : ( −→ 2

( is the neighbour-
hood function, which assigns a set of adjacent solutions # (B) to
every B ∈ ( ; and f is a �tness function 5 : ( −→ R that pro-
vides a mapping from solution to associated �tness. That �tness
can be conceptualised as the solution height within the landscape
metaphor.

2.2 Local Optima Networks

Local Optima Networks (LONs) [18] are a means to study the global
structure of a �tness landscape. We will describe their constituent
components before introducing the LON as a whole.

Neighbourhood. The neighbourhood of a solution, B8 , are the so-
lutions which are adjacent to B8 according to a neighbourhood
function: # (B). In this work, the notion of adjacency is de�ned as
single bit-�ip in the binary solution.

LON nodes. A local optimum has superior or equal �tness to
its neighbours according to a �tness function f. In this work, we
do not exhaustively search the neighbourhood as this would be
computationally infeasible. Instead, we consider that a solution ;>8
is a local optimum if it has superior or equal �tness to its sampled

neighbourhood (# . Formally: ∀= ∈ (# (;>8 ) : 5 (;>8 ) >= 5 (=) (as-
suming maximisation, as is the case for this study) where (# (;>8 ) is
the sampled neighbourhood, = is a particular neighbour. The nodes
in a LON, !$ , are the local optima as just de�ned.

LON edges. There is an edge from local optimum ;>8 to local
optimum ;> 9 , if ;> 9 can be obtained after applying a random per-
turbation to ;>8 followed by local search, and 5 (;> 9 ) ≥ 5 (;>8 ). In
LON terminology, these are called escape edges [33]. The edges
are determined to be monotonic because they record only non-
deteriorating, directed connections between local optima. Edges
are weighted with the frequency of transition: the number of times
during searches that ;> 9 was reached by applying perturbation then
local search to ;>8 . The set of edges is denoted by �.

Local optima network (LON). A local optima network, LON =
(!$, �), consists of nodes ;>8 ∈ !$ which are the local optima, and
edges 48 9 ∈ � between pairs of nodes ;>8 and ;> 9 with weightF8 9 if
F8 9 > 0.

2.3 Related Work

Fitness Landscapes and XAI. Fitness landscapes are used as a
vehicle for understanding or explaining metaheuristic algorithms;
it follows that they are an intuitive bridge between evolutionary
computation and explainable arti�cial intelligence [4, 30]. Indeed,
authors have proposed using XAI to gain insight into algorithm
performance prediction models by using SHAP (an XAI method for

feature importance) [32]. Local optima networks have been used in
the past to analyse neural architecture search spaces [19, 22]; we
argue that this endeavour was at least XAI-adjacent, given that the
analysis led to information regarding construction of a good model.
In the studies, the landscapes were found to be straightforward
and well-suited to iterated local search. Machine learning pipelines
have also been subject to LON construction [28, 29]. The most
closely-related work to the present study, however, captures LONs
for evolutionary feature selection [16]; they found that there were
local optima plateaus, indicating the presence of irrelevant/non-
informative features in some models. Our study takes inspiration
from that work, but di�ers in the following ways: we explore and
propose ways of mining the LON data for the purpose of XAI and
we consider a larger search space than those considered in the
aforementioned study. Although not strictly �tness landscape anal-
ysis, the work of Tinós, Przewozniczek et al. [23, 24] is strongly
related: in one recent study [31], the authors use a linkage-based
genetic algorithm which learns a variable interaction graph during
optimisation; one of the contexts they applied this was to evolu-
tionary feature selection, which allowed them to discover feature
interactions in machine learning datasets.

Shapley Additive Explanations (usually referred to as SHAP) [12]
are a prevalent XAI method [3, 8, 36] which estimate the contribu-
tion of features to a prediction. SHAP trains models for di�erent
sets of features. The marginal contribution of a feature — for a par-
ticular observation — is obtained by subtracting the prediction of a
model which excludes that feature from the prediction of the same
model which includes the feature. Marginal contributions of the
feature across all models which contain it are added together —
resulting in a SHAP value for the feature-observation pair. While
SHAP values constitute local explanations, these can be aggregated
for a set of observations to provide a global model explanation.
SHAP has been used for XAI relating to neural networks previously
[10, 37, 38]; in this work we compute SHAP values and compare
them with insights gained from the LON analysis.

3 METHODOLOGY

3.1 Dataset

We consider tabular classi�cation only and select a well-known
real-world dataset which did not require pre-processing: Wisconsin
Diagnostic Breast Cancer. This is a binary classi�cation task; the
features characterise di�erent aspects of a breast mass, with the
classes being benign and malignant. We import the dataset through
Scikit-learn [21]. There are 569 observations, 30 independent
features, and no missing values.

3.2 Learning Algorithm

Logistic regression (LR) [35] formulates a logistic equation to cap-
ture a dependent variable based upon supplied data. Instead of the
straight line which is �t during linear regression, in logistic regres-
sion an S-shaped logistic function is mapped. Although the model
produces a numeric value during prediction — the probability of
belonging to a particular class — logistic regression is typically used
for classi�cation tasks.

LR is chosen as the machine learning model which serves as the
foundation for the optimisation problem. There are a few reasons
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for this: it is non-stochastic, which will lower the amount of noise in
the �tness landscape; the number of hyperparameters to consider is
comparatively low; and, principally, it is "inherently interpretable"
[14] through the extraction of feature coe�cients. The use of a
machine learning method with this quality allows contrast of the
insights from the coe�cients with those gained from the XAI and
LON explanations.

3.3 LON Construction

Iterated Local Search (ILS) is a metaheuristic which is well-suited to
constructing sampled LONs owing to its two-level search strategy.
Indeed, LONs have been constructed from the traces of ILS runs in
the literature [17, 20]. ILS combines random perturbations applied
to local optima with hill climbing. To construct a LON sample, A
independent ILS runs from random starting solutions are executed.
For each run, local optima are logged. Additionally, transitions
between local optima (using perturbation and then hill climbing)
are noted. Nodes and edges from the A runs are amalgamated into
a single LON for the associated problem.

3.4 Explainable Arti�cial Intelligence

Broadly, explainable AI methods can be delineated into ‘global’
(the model as a whole) or ‘local’ (a particular observation) [6]. The
LON approach to explainability proposed in this paper is global
in nature: each local optimum encodes the features comprising a
machine learning model, without a focus on any speci�c prediction.
Additionally, we study the LON as a whole object — this provides
explanations about groups of models, which means that LONs are
perhaps better characterised as an "aggregate" global XAI method.

Shapley Additive Explanations (usually referred to as SHAP or
SHAP values) [12] are a highly prominent XAI method [3, 8, 9, 25,
36] which estimate the contribution of features to a prediction;
SHAP has also been used as a means for feature selection [13].
SHAP trains models for di�erent sets of features. The marginal

contribution of a feature — for a particular observation — is ob-
tained by subtracting the prediction of a model which excludes that
feature from the prediction of the same model which includes the
feature. Marginal contributions of the feature across all models
which contain it are added together — resulting in a SHAP value for
the feature-observation pair. While SHAP values constitute local
explanations, these can be aggregated for a set of observations to
provide a global model explanation. We compute SHAP values in
this work and compare them with insights gained from the LON
analysis.

4 EXPERIMENTAL SETUP

The Python library Scikit-learn [21] is used for modelling.

4.1 Data Splitting and Preprocessing

In this work, we do not consider an independent test set — only
training and validation sets. The reason for this is that feature se-
lection, which is the optimisation problem under study, is typically
carried out on the training set during model selection (without
knowledge of a test set). We conduct no preprocessing on the ma-
chine learning datasets in this study and use k-fold cross-validation

where : = 5. For a given dataset, the same data split is used for
every model built, and strati�ed folds are employed.

4.2 LON Construction

Iterated Local Search. The ILS which serves as the foundation
for LON extraction is designed as follows: the perturbation con-
sists of #

10
random bit �ips, where N is the number of features (a

large perturbation magnitude is chosen to ensure diversi�cation,
in particular because a low number of runs are conducted due to
computational expense). A �rst-improvement pivot rule is used,
and the local search uses single bit-�ip mutation. New local op-
tima are accepted if their �tness is better than the current local
optimum. If both have equivalent �tness then the solution with
less features is chosen (if they have the same number then the
new one is rejected to prevent stagnation on plateaus). This mech-
anism was implemented to try and steer the search away from
solutions containing irrelevant features. Thirty independent ILS
runs from random starting solutions are conducted. For random
samples like this, it has been argued that 30-50 are su�cient [15].
This aligns with the Central Limit Theorem, which stipulates that
from around 30 observations, sample means begin to resemble a
normal distribution [11]. Individual LON sampling runs terminate
after 100 iterations with no improvement in local optimum quality;
this termination condition has been used in a previous study on
LONs [19].

Fitness. Recall that the solution representation is binary, and
denotes whether features are included in the model or not. The
�tness function is the mean �ve-fold cross-validation accuracy
of the model con�guration which uses the solution’s feature set,
rounded to six decimal places. The same cross-validation splits are
used for all �tness evaluations associated with a particular dataset -
this is to minimise noise in the �tness landscape.

All models use Logistic Regression (LR) with default values as
imported from the Scikit-learn library. This is with the exception
of the maximum number of iterations - this required an increase to
4000 as the default value of 100 often resulted in non-convergence.
All other hyperparameters were left as the default values: solver=L-
BFGS; C=1.0; penalty=l2; multiclass=auto; tol=1e-4.

Threshold parameter. When presenting the results, a parameter is
sometimes used to threshold the �tness of considered local optima.
Where this parameter is in place, it means that the group of local
optima included have �tness greater than or equal to a speci�ed
threshold: V .

4.3 SHAP and Logistic Regression Coe�cients

The modelling setup for computing SHAP values and extracting
logistic regression coe�cients is exactly the same as the models
evaluated during LON construction: �ve-fold cross-validation (with
the same data splits which were used in LON sampling); Logistic
Regression with the parameters speci�ed in Section 4.2.

SHAP. SHAP analysis is conducted using the Python package
shap [12] and using its PermutationExplainer. This explainer
[27] produces values obtained from sampling of a permutation
variant of the SHAP equations, and it was chosen for this work
because it does not need parameter tuning. We compute SHAP
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values for every node (i.e., feature con�guration) found in the LON
sample. Output from running SHAP includes SHAP values for each
observation-and-feature pair; the observations are from the vali-
dation set. The �ve-fold cross-validation yields �ve observation-
feature SHAP matrices, and we take the mean of these to obtain
a single SHAP value matrix for a model. In this matrix, there is a
row for each observation and a column for each feature. Although
the values in this matrix are local model explanations (they are for
a single observation), we obtain global explanations for a feature
by computing the mean of the absolute values for the SHAP en-
tries which comprise a column. The resultant values capture the
magnitude of a feature’s importance.

Logistic Regression Coe�cients. Logistic regression coe�cients
are extracted from every model built for SHAP analysis just de-
scribed. For each coe�cient, the absolute mean value across the
�ve folds of cross-validation is computed — resulting in a value
which represents the magnitude of importance for the feature.

4.4 Comparing Ranks of Features

The feature importances, as estimated/ranked by (a) logistic regres-
sion coe�cients, (b) SHAP, and (c) feature presence in the LON, are
compared. For this, we are interested in whether the rankings are
aligned between the di�erent approaches. By ranking, we mean the
ordered list of features where the most-important feature (accord-
ing to the method) is �rst and the least-important is last. Rankings
can be compared using Kendall’s Tau [5], which is de�ned between
-1 and 1. A value of 1 would indicate a perfect match. The measure,
g , is computed as:

g =

|�% | − |�% |

|)% |
(1)

where |�% | is the number of concordant pairs (a pair is concordant
if the ranks match), |�% | is the discordant pairs, and |)% | is the
total number of pairs. We use the SCIPY [34] implementation of
Kendall’s g .

5 RESULTS

5.1 Feature proportions

Figure 1 shows a beeswarm plot indicating the distribution for
�tness of the sampled local optima. Notice that several separate
feature sets (solutions) have the equivalent �tness, and that there
are distinct ‘levels’ to the �tness distribution. We also note that
there is a group of low-quality local optima and a group of higher-
quality local optima. In Figure 2 we consider how the composition of
feature sets (local optima) in the sampled LON change with respect
to the validation accuracy (�tness). The ~-axis is the percentage of
LON nodes which contain a feature; the G-axis is V (recalling its
de�nition in Section 4.2, this means that at 0.96 the local optima
included have a �tness greater than, or equal to, 0.96); and each line
represents a feature, as indicated in the legend. The x axis begins
at 95%, excluding the lower �tness optima group, as seen in Figure
1 and Table 1, as there are no local optima discovered in the �tness
range of 89.3% and 95%. Notice from Figure 2 that the proportion
of nodes containing the features remains relatively constant from
the lowest value for V up to ∼ 95.6%. This implies that most local

Figure 1: Fitness of discovered local optima

cluster node count mean �tness

low-�tness optima 30 0.892874
high �tness optima 428 0.960728

Table 1: Description for clusters of nodes from the breast

cancer LON

optima �tness levels contain similar feature sets. For higher values
of V , the proportions begin to shift, sometimes dramatically. This is
exempli�ed by Feature 7: ‘Mean concavity’ is present in almost 90%
of all local optima until the �tness threshold of 96.1% where it drops
to less than 20% - a trend shared by a number of other features.
This can be contrasted with Feature 4 ‘mean area’ which was only
present in 42% of the 428 identi�ed local optima, but present in
all of the highest �tness local optima. Considering the placement
of the lines on the ~-axis, it becomes clear that some features are
in very few sampled local optima regardless of �tness — such as
feature 13 (which is ‘perimeter error’) and feature 14 (‘area error’).
Other features are present in most local optima — such as feature 1
(‘mean radius’) and feature 3 (‘mean perimeter’). There is a dramatic
recon�guring of feature proportions among local optima when V is
between 96.1% and 96.4%. We argue that this shows that changes
of a signi�cant magnitude to good feature sets may be needed in
order to obtain feature sets which are of an even higher quality.
This may convey that a very particular set of features are needed
together in order to obtain a validation accuracy of higher than
approximately 96.1%.

5.2 Clustering

We would like to explore the potential of clustering on the LON for
explainability. To this end, hierarchical clustering is applied to the
nodes of the LON.

The clustering considers the distance between solutions in the
binary space, thereby associating solutions which have similar
feature composition. Clusters from this analysis will be used in
subsequent comparisons of feature presence in LON nodes with
SHAP values and logistic regression (LR) coe�cients. A dendrogram
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Figure 2: Change in proportion of nodes (local optima of the breast cancer dataset) which contain a feature with increasing V

presenting the groups can be found in Figure 3. Notice from the
Figure that the sampled LON nodes can be organised into �ve
large groups (threshold determined using the elbow method). This
shows that there are �ve distinct "types" of feature set which have
high validation accuracy (observe the �ve colours present). Simple
statistics for the clusters are provided in Table 2: the number of
local optima (node count), pseudo global optima (the number of
solutions with the highest �tness which was sampled; global count),
and the mean �tness.

Considering Table 2, we can see that Cluster 1 contains all of the
pseudo-global optima (see third column). The closest clusters to
Cluster 1 are Clusters 2 and 3 (as seen in Figure 3); despite being the
nearest groups of solutions, their mean �tnesses are lower than that
of the more distant Clusters 4 and 5. In terms of explaining these
groups of models, we argue that, according to the LON sample
constructed, there are �ve groups of feature sets which contain
similar feature combinations. In terms of the solution space, the
pseudo-global optima have a large number of surrounding sub-
optimal solutions that perform worse than that of the substantially
di�erent sets of features (Clusters 4 and 5). The implications of this
are better stated in terms of a hypothetical problem: suppose we
are tasked with designing a battery of tests for predicting heart
disease. Heart disease is a complex multi-factor illness and selecting
to record only the most relevant contributing factors reduces the
practical and �nancial burdens; therefore feature selection o�ers
a viable solution. This experiment potentially highlights pseudo-
global optima that contain counter-dependencies between speci�c
tests — if re�ningmedical tests to their minimal contributing factors
for machine learning, we should use caution when substituting tests
for similar measurements.

5.3 Comparison with established techniques

In this Section we compare explanations from LON analysis with
SHAP values and LR coe�cients, which are better-established ex-
plainability and interpretability techniques (respectively). Experi-
mental details for the SHAP value and LR coe�cient calculation

Cluster Node Count Global Count Mean Fitness (Range)

1 (orange) 74 7 0.9623 (0.956-0.9649)
2 (green) 44 0 0.9594 (0.9526-0.9631)
3 (red) 101 0 0.9594 (0.9526-0.9631)

4 (purple) 69 0 0.9613 (0.9596-0.96137)
5 (brown) 140 0 0.9610 (0.9596-0.96137)

Table 2: Description for clusters of nodes from the breast

cancer LON s

Figure 3: Dendogram showing the local optima can be split

into �ve clusters according to their locality (hamming dis-

tances)

process were provided in Section 4.3. We consider three scenarios:
(a) the metrics applied to the high performing optima discussed
in Section 5.1, (b) the metrics applied to the cluster identi�ed to
contain the pseudo-global optima (Cluster 1), and (c) the metrics
applied to a LR model trained using the full dataset (no feature
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(a) Occurrence of features in clusters of LON in high �tness optima
(b) Correlations between rankings of features according to each tech-

nique in clusters of high �tness optima

Figure 4: Describing the distribution of features in the identi�ed clusters and their correlations with existing metrics

selection). First, we begin by considering (a) the metrics when ap-
plied to the high performing optima. Speci�cally, we compare the
presence of features that are most commonly selected in high per-
forming solutions, their mean coe�cients and their SHAP values.
As seen in Figure 5, the distribution of commonly selected features
(5a) was much wider than what we may have expected through
consideration of the SHAP values (5c) and the model coe�cients
(5b) alone. This indicates that regions of the search landscape that
are of higher �tness are not particularly well explained by the inter-
pretability or explainability aspects of the models generated from
solutions found within them. This is further exempli�ed by the cor-
relations between the feature rankings. Figure 5d demonstrates the
rankings of features according to their SHAP values in comparison
to those most commonly found within the LON, while Figure 5e
demonstrates the rankings of the features according to mean model
coe�cients of solutions within the LON. The relationship between
feature presence and model coe�cients is moderately correlated
(Kendall Tau correlation of 0.5661) while the relationship between
the explanability technique, SHAP, was only weakly correlated with
a Kendall Tau correlation of 0.3038. This indicates that there may
factors that determine the LON that are not captured by common
model interprability and explainability techniques.

In order to more accurately describe regions of the solution
space, let us consider the clusters derived from section 5.2. As seen
in Figure 4a, the mean feature presence in each cluster di�ers but
correspond to what we might expect to observe from the dendro-
gram (Figure 3) — Clusters 2 and 3 are most similar, followed by
Cluster 1, but each remaining quite distinct. As in the previous
analysis, we compare the model coe�cients and SHAP values with
the feature presence in the LON, but in this case we will compare it
to more homogeneous clusters of nodes. Speci�cally, we present (b)
the metrics applied to the cluster identi�ed to contain the pseudo-
global optima (Cluster 1), and provide the results for Clusters 2, 3,
4, and 5 as supplementary material. Even in this more restrained
region of the space, we can still see that the feature presence (Fig-
ure 6a) is not adequately re�ected in the rankings according to
the SHAP values (6b) or model coe�cients (6c). In fact, when we
consider the correlations between the rankings as described by
the metrics, we see almost identical relationship strengths as in

the larger subset (correlations with feature presence of 0.3898 and
0.5161 between SHAP and model coe�cients, respectively).

In order to describe this phenomenon across each of the clus-
ters, Kendall Tau correlation was calculated, for each cluster, for
each of the following rankings: SHAP values and Feature Presence
(Shaps vs feat_pres), LR model coe�cients and Feature Presence
(Coe� vs feat_pres), LR model coe�cients and SHAP values (Coe�
vs Shaps). In addition, we seek to explore whether the features
that would prove dominant in the LONs could be ascertained from
the model coe�cients and SHAP values before feature selection; in
other words, (c) application of the metrics to a LR model trained
using the full dataset (no feature selection). As seen in Figure 4b, the
correlation between the feature rankings according to the SHAP
values is typically strong — indicating that, even though the feature
subsets change, the feature contributions to the predictions remain
relatively stable. This can be contrasted with the correlations be-
tween the model coe�cients across di�erent clusters and that of
the full model which vary from weak to strong, indicating that the
model parameters are changing considerably during feature selec-
tion (a caveat to this is that model coe�cients may also be unstable
due to multicollinearity). In terms of feature presence however, the
correlations between the full model’s coe�cients and SHAP scores
remained weak (with a maximum of 0.45 between feature presence
and coe�cients in Cluster 4), suggesting that removal of features in
advance of performing wrapper-based feature selection may limit
valuable regions of the solution space.

6 CONCLUSIONS

In this work, the use of �tness landscapes associated with evolu-
tionary feature selection towards the aim of explainable arti�cial
intelligence (XAI) has been explored. To this end, we constructed
local optima networks (LONs) for feature selection of a well-known
machine learning (ML) dataset: the Wisconsin breast cancer dataset.
We explored and proposed new ways of mining information from
LONs with the purpose of explaining ML Models. Through utili-
sation of LONs, we demonstrate that high �tness regions of the
landscape are not adequately explained using popular interpretabil-
ity (model coe�cients) and explainability (SHAP values) techniques,
calling into question the e�cacy of reducing the feature set using
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(a) Occurrence of features in high �tness optima in LON

(b) SHAP values for LON nodes in high �tness optima in LON (c) Logistic coe�cients for LON nodes in high �tness optima in LON

(d) SHAP values for LON nodes in high �tness optima (e) Occurrence of features in LON in high �tness optima

Figure 5: Comparison of feature rankings according to mean model coe�cients, SHAP values, and feature presence in high

�tness local optima discovered by the ILS sampling technique

these techniques in advance of deploying wrapper-based meth-
ods. It is hoped that this work will inspire consideration of �tness
landscape analysis for inclusion in the XAI toolbox.

Data Publishing. The data from this work will be made publicly
available upon acceptance.
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