Mathematics of Control, Signals, and Systems (2024) 36:729-773
https://doi.org/10.1007/s00498-024-00387-4

ORIGINAL ARTICLE

®

Check for
updates

Operator-valued multiplier theorems for causal
translation-invariant operators with applications to control
theoretic input-output stability

Chris Guiver' - Hartmut Logemann? - Mark R. Opmeer?

Received: 11 January 2024 / Accepted: 6 May 2024 / Published online: 30 May 2024
© The Author(s) 2024

Abstract

We prove an operator-valued Laplace multiplier theorem for causal translation-
invariant linear operators which provides a characterization of continuity from
H*@R,U) to H#(R, U) (fractional U-valued Sobolev spaces, U a complex Hilbert
space) in terms of a certain boundedness property of the transfer function (or sym-
bol), an operator-valued holomorphic function on the right-half of the complex plane.
We identify sufficient conditions under which this boundedness property is equiva-
lent to a similar property of the boundary function of the transfer function. Under the
assumption that U is separable, the Laplace multiplier theorem is used to derive a
Fourier multiplier theorem. We provide an application to mathematical control the-
ory, by developing a novel input-output stability framework for a large class of causal
translation-invariant linear operators which refines existing input-output stability the-
ories. Furthermore, we show how our work is linked to the theory of well-posed
linear systems and to results on polynomial stability of operator semigroups. Several
examples are discussed in some detail.
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1 Introduction

It is well-known (see [36, Theorem 10.3.5], [38, Theorem 9.1 | or [41]) that a linear
operator G : L*(R,U) — L?*(R, U) is causal, translation-invariant and continuous
if, and only if, there exists a bounded B(U)-valued holomorphic function G on the
open right-half complex plane such that

Gu = L7Y(GLu) forall u € L*(R, U)with support in [0, 00), (1.1)
in which case,

”G“B(U(R,U)) = RZ?EO G

Here, U is a complex Hilbert space, B(U) denotes the space of bounded linear oper-
ators U — U, L is the Laplace transform, and causality of G means that if u and v
coincide on an interval of the form (—o0, 7), then so do Gu and Gv.

We remark that representations of causal translation-invariant (or right-shift invari-
ant) operators by holomorphic functions play an important role in mathematical
systems and control theory in general (see [28]) and in the theory of well-posed
linear systems in particular (see [36]). In a control-theoretic context, the holomorphic
function G representing the operator G — the so-called symbol of G — is referred
to as the transfer function of G. The multiplier theorem [36, Theorem 10.3.5] (or [38,
Theorem 9.1]) mentioned above (see representation formula (1.1)) rests on the Paley-
Wiener theorem (see, for example, [4, Theorem 1.8.3] or [36, Theorem 10.3.4]), and
the Hilbert space structure of LZ(R, U) is crucial. Indeed, it is well-known that not
all causal translation-invariant operators on Banach spaces admit such a multiplier
representation [29, 41].

In Sect. 3 of this paper, we prove the following generalization of the above result.

Laplace multiplier theorem. Let «, 8 € R. A linear operator G : H*(R, U) —
HPR, U) is bounded, translation-invariant and causal if. and only if, there exists
a B(U)-valued holomorphic function G on the open right-half complex plane such
that

Gu =LY (GLu) forallu € H*(R, U) with support bounded on the left
and

y = sup [|(1+5)P9G(s)| < oo, 1.2)
Res>0

where H*(R, U) is the fractional Sobolev space of U-valued tempered distributions
(sometimes also referred to as a Bessel potential space). Furthermore, |G || gge. psy =
y.

The above multiplier theorem appears as Theorem 3.1 in the paper. Its proof is
based on the representation result for operators L2(R, U) — L?*(R, U) and a natural
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scale of causal translation-invariant isometric isomorphisms L*(R,U) - H*R, U).
We use the Laplace multiplier theorem to derive the following corollary.

Fourier multiplier corollary. Assume that U is separable and let «, B € R. A
linear operator G : H*(R, U) — HP (R, U) is bounded, translation-invariant and
causal if, and only if, there exists a B(U)-valued holomorphic function G on the open
right-half complex plane such that

Gu =F "GoFu) forall ue H*(R,U) and y < oo, (1.3)
in which case

G Bt ey = v = esssupyer (1 +iy) " “Go(»)| < oo,

where F denotes the Fourier transform and Go(y) = limy o G(x + iy) for almost
everyy € R.

We remark that the separability of U is crucial for the existence of the pointwise
boundary limit Gg. The above Fourier multiplier corollary generalizes the L?-result
in [38, Theorems 5.2 and 6.5].

Whilst a non-causal translation-invariant bounded linear operator G on LR, U)
also admits a multiplier representation of the form (1.3) (see [5, Theorems 71-73]
and [38, Theorem 5.2]), there does not exist a bounded holomorphic function G on
the open right-half plane such that Gg is the boundary function of G. In a more
general setting (where, for example, the functions in the domain and codomain of
the operator may depend on several variables), the relationship between causality and
holomorphicity has been explored in [17]. We remark that Fourier multiplier theorems
play an important role in the abstract theory of linear and quasilinear parabolic systems
[2, 3] and in the stability theory of operator semigroups (see, for example, [32, 33]).
We emphasize that our work focuses on causal operators and note that causality does
not play a role in much of the Fourier multiplier literature.

Returning to the above Laplace multiplier theorem, given a holomorphic B(U)-
valued function G on the open right-half plane, it may be difficult to check directly if
the quantity y defined in (1.2) is finite. Usually, if the boundary function G exists,
the imaginary axis condition

Yo := esssup,pll(1+ i)/~ Go(y)| < oo

is easier to deal with. If y < oo, then ¥y = yp; however, if 3y < oo, then it does
in general not follow that y = yy < oo. For applications of the above theorems
(in a control theoretic context, for example), it is important, therefore, to identify
conditions which ensure that the finiteness of y implies that of y, in which case y =
yo0. In Sect. 4 of this paper, inspired by certain results on distributional boundary
values of holomorphic functions from [8-10, 26], we derive several such conditions.
In particular, it is shown that if G is polynomially bounded and yp < oo, then y = yp.
We remark that the relevant theorems in [8—10, 26] are not in a suitable form to be
directly applicable in the current context and, hence, we develop and prove bespoke
versions of these results.
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There is a rich history of analysing control systems from a functional analytic per-
spective, see, for instance, [13, 27, 28, 36, 43]. In the so-called input-output approach
to systems and control, a system is considered as an operator, usually referred to as
the input-output operator, mapping inputs (control functions) to outputs (observation
functions), both of which are defined on R or [0, co) (interpreted as the bi-lateral or uni-
lateral time axis, respectively) and take values in a Hilbert space U . As causality is akey
feature of physical control systems, input-output operators are assumed to be causal.
Certain continuity or boundedness properties of the input-output operator are referred
to as input-output stability, a theory which dates back to the 1960s (see [15]), with L2
stability (finite-energy-input finite-energy-output) and L°-stability (bounded-input
bounded-output) being the most prominent examples.! For various classes of systems,
input-output stability properties have been (i) characterized in terms of transfer func-
tions and (ii) linked to stability concepts in the sense of Lyapunov, see, for example,
[34, Chapter 12], [36, Chapter 8], [39, Section 3.7] and [42].

In Sect. 5, we apply the above Laplace multiplier theorem and the results of Sect. 4
to develop a novel control-theoretic input-output stability framework, referred to as
Sobolev stability, for a large class of causal translation-invariant operators (equiva-
lently, causal convolution operators with B(U )-valued distributional kernels). Our new
concept of Sobolev (o, B)-stability relates to the boundedness of a causal translation-
invariant input-output operator G as a map from dom G C H*(R, U) to H*(R, U),
where «, 8 € R. It is particularly relevant in the analysis of systems which are not L?-
stable, but exhibit certain weaker stability properties and, as we demonstrate, can
be viewed as considerable refinement of the concept of P-stability [23, 30]. In Theo-
rem 5.4, we provide several characterizations of Sobolev («, 8)-stability of G in terms
of its transfer function G, and use these to link Sobolev stability to results on polyno-
mial decay of operator semigroups [1, 6, 30] in Proposition 5.9. We also make contact
with the theory of well-posed linear systems [36] by providing, in Corollary 5.7, cri-
teria for Sobolev (¢, B)-stability of the input-output operators of well-posed linear
systems.

In Sect. 6, we discuss several examples in detail, including a neutral functional
differential equation and a heat equation on a square with boundary control along the
top edge. Using the results on Sobolev stability from Sect. 5, we determine for which
values of « and B the systems under consideration are Sobolev («, 8)-stable. Finally,
in Sect. 7, we derive a half-line version of the above Laplace multiplier theorem which
provides a characterization of right-shift invariant bounded linear operators defined
on the subspace of all u € H*(R, U) with support in [0, 00).

Apart from Sect. 3, 4, 5, 6 and 7 which we have described in some detail, the paper
contains Section 2 and an Appendix (Section 8). The former is devoted to notation,
terminology, background material and preliminaries, whilst the latter contains remarks
on the convolution of vector-valued distributions (Appendix 1), the proofs of two
results from Sect. 2 (Appendix 2) and the proof of Theorem 4.1 (Appendix 3).

Finally, throughout the paper, to simplify the presentation, we consider the sce-
nario of causal translation-invariant linear operators, the domains and codomains of
which consist of vector-valued distributions with values in the same Hilbert space U.

! We remark that input-output stability theory is not restricted to linear systems, see, for example, [11, 15].
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The case of operators mapping a space of U-valued distributions to a space of Y-
valued distributions (Y another Hilbert space) can be reduced to said scenario by an
augmentation trick: if G is a causal translation-invariant linear operator mapping U -
valued to Y-valued distributions with a B(U, Y)-valued transfer function G, then,

setting U:=U x Y,
~ 0 0 ~ 0 0
G = (G 0> and G := <G O) ,

the operator G is causal, linear and translation invariant, maps U-valued distri-
butions to U-valued distributions, and G, the transfer function of é, has values
in B(U) = B(U, U). The results of the paper facilitate the analysis of G and G,
and any conclusions can be used to draw corresponding conclusions relating to G
and G, the original operator and its transfer function, respectively.

2 Preliminaries

Most mathematical notation used is standard. As usual, let N, Z, R and C denote
the positive integers (natural numbers), integers, real numbers and complex numbers,
respectively. Furthermore, we set

No:=NU{0}, Ri:=[0,00) and C, := {se(C : Re(s) > u} YueR.

Let X and Z be complex Banach spaces. The space of all linear bounded operators
X — Z is denoted by B(X, Z). Endowed with the usual induced operator norm,
B(X, Z) becomes a Banach space. We set B(X) := B(X, X). The space of continu-
ous functions from R — X is denoted by C(R, X), and C*°(R, X) and C°(R, X)
denote the subspaces of smooth functions and smooth functions with compact support,
respectively.

For more details on the following material on spaces of vector-valued functions
and distributions, we refer to

e [13, Appendix A.5] and [22, Chapter III] for vector-valued measurability and
integration;

e [31, Chapter 4] and [38] for operator-valued H°°-functions;

e [2, Chapter III: Sections 4.1 and 4.2], [3, Chapter VII], [14, Chapter XVI: Section
2], [16, Chapter 8] and [43, Chapters 3, 5 and 6] for vector-valued distributions.

Let L? (R, X) denote the usual Bochner-Lebesgue space of functions R — X, where
1 < p < oo. As usual, Lf;c (R, X) stands for the localized version of L?(R, X).
The subspace of functions in L? (R, X) with support bounded on the left is denoted

by Lf (R, X), and we set
LY R, X) :={u € LY(R, X) : suppu C [0, 00)} C L} (R, X).

Let S be the Schwartz space of rapidly decreasing smooth functions R — C and
let D C S be the space of compactly supported smooth test functions R — C,
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endowed with their usual topologies. The spaces of all continuous linear maps D — X
and S — X are denoted by D’(X) and S’ (X), respectively. We have that S'(X) C
D’(X) and the elements in D’(X) are called X-valued distributions. A distribution
in §’(X) is said to be tempered (or, slowly growing). The subspace of distributions
in D’(X) with support bounded on the left is denoted by D, (X), and similarly, S;(X)
stands for the space of tempered distributions having support bounded on the left.
Let f € Ll (R, X). Themap D — X, ¢ > [ o o(t)f(t)dt is well defined
and continuous, and we denote the corresponding regular distribution by [ f]. If f €
LP(R, X), 1 < p < oo, or if there exists r > 0 such that the function ¢ — || f(¢)]| is
polynomially bounded on the set R\[—r, r], then [ f] extends to S and [ f] € S'(X).
Moreover, set

Om:={ne C®R,0C): n(k)is polynomially bounded for every k € Ny},
(91‘\",I ={ne C®R,C): nWis polynomially bounded on [0, co)for every k € N}

and, fort € R,

U, =neCPR,C):3n <tg <ts.t.n(t)=1 VYt € (1, 00) and n(z)
=0Vt e (—oo, 1)}

We note that if ¥ € OF;, then, for every T € R, ¥ and its derivatives are polynomially
bounded on [z, 00). Conversely, if ¥ € C*°(R, C) is such that v and its derivatives
are polynomially bounded on [z, oo) for some 7 € R, theny € (’);r,[. For our purposes,
the most important functions ¢ € OKF,I which are not polynomially bounded on the
whole real line are of the form ¥ (¢) = e~“, where ¢ > 0. If / € Oy, then g € S
for all ¢ € S. Consequently, the product Yru, where ¢ € Oy and u € §'(X), defined
by

(u)(@) :==u(yg) Vo €S,

is a tempered X-valued distribution. For u € §'(X) c D'(X) and ¢ € C®(R, O©),
the product Yu is in D'(X), but in general not in S'(X). However, if ¢ € O}
and u € S'(X) with suppu C [z, o0) for some t € R, then it is straightforward to
show that the product Yru defined by

Wu)(p) :=unpe) Ve €S, wheren € Uis arbitrary,

does not depend on 1 € Uy, and Yu € S'(X).
For a function f € L 1 (R, X), we define the Fourier transform by

o0

FH) = / e F@ydr Yy € R,

—00
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As F is an automorphism on S, the definition of the Fourier transform extends to S’ (X)
via

(Fu)(p) :=u(Fp) YoeS, where ucS(X).

It is well-known that the Fourier transform F is an automorphism on &'(X) with F
and F~! being sequentially continuous. If f € L'(R, X), then F[f] = [Ff].If X =
U is a complex Hilbert space, then the restriction of F to LY R, U) N L3R, U)
extends to an automorphism on L?(R, U), in fact, (1/+/27)F is a unitary operator
on L2(R, U), and so || Full 2y = V27 [|u]l 2, for every u € L*(R, U).

For 6 € R and U a complex Hilbert space, we define the Sobolev space (sometimes
also called Bessel potential space)

HYR,U) :i={ueS'U): (y (1+ )2 (Fu)(y) € L* R, U)},

with inner product and associated norm given by

1 o0
(u,v) == E/ (1+ yH(Fu) (), (Fo)()dy, Yu,ve H R, U),

and
1 *© 2 2 12
lullge := <2—/ 1+ ) F ) dy) , Yue H R,U),
T J-c0

respectively. The space H?(R, U) is complete and hence a Hilbert space. We note
that HY(R, U) = L*(R, U) and ||u||yo = |lul|;2 forall u € L>(R,U). If 6 > 0,
then H'(R, U) c L*(R,U), whilst H?(R, U) contains non-regular distributions
when 0 < 0. We also note that if u € H? (R, U), then Fu € L]ZOC(]R, U) whatever the

value of 6. We will also make use of the space Hee R,U):= H°R,U) N Sé R, U)
and the half-line Sobolev space

H{R,U) :={u e H* R, U) : suppu C [0, 00)} C H{ (R, V).

The following lemma is well-known for scalar-valued H?-spaces. As we could not
find a suitable reference for the vector-valued case, a proof is included in Appendix
2.

Lemma 2.1 Let U be a complex Hilbert space and 0 € R. The following statements
hold.

(1) CX(R,U) is dense in HY (R, U).
(2) The space {u € C(R, U) : suppu C (0, 00)} is dense in Hi(R, U).

For the rest of this section, let X be a complex Banach space. The Laplace transform Lu
of a distribution u € D’(X) such that suppu C [r,00) and e * u € S'(X) for
some 7, i € R is defined by

(Lu)(s) := (e_“'u)(ne_(‘v_“)‘) Vs e C,,
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where 1 € U, is arbitrary. It is straightforward to show that the definition does not
depend on 5. The classical Laplace transform is a special case in the sense that if f :
R — X is such that f(r) = 0 for a.e. t € (—o0o,7) and e * f € L'(R, X) for
some 7, it € R, then (L[ f1)(s) = (Lf)(s) foralls € C,,. Foru € D'(X) with supp u
bounded on the left, we define the abscissa of convergence o (u) as the infimum of
all u € R such that e u € S’(X). If no such u exists, then we set o (1) = oo.
If o (u) < oo, then the Laplace transform of u exists and is holomorphic on Cy ),
and u is said to be Laplace transformable.

For later purposes, we state the following lemma on the vector-valued Laplace
transform, the proof of which can be found in Appendix 2.

Lemma2.2 Leth : C, — X be holomorphic, where 1 € R. If

sup ||s*h(s)|| < oo,
seCy

thenthereexistsh € C(R, X) suchthath(t) = Oforallt <0, sup,. le v~ h(r)| <
ocoande™" h € L'(R, X) for every v > p and (Lh)(s) = h(s) forall s € C..

For each t € R, the shift or translation operator S; : Ll (R, X)—> LlloC (R, X) is

loc

defined by (S; f)(¢) := f(r — 7). Letting u € D’'(X), the definition
(Szu)(g) :=u(S—rp) Yo eD

extends the translation operator to D’ (X). Alinearmap T : dom T C D'(X) — D'(X)
is said to be translation invariantif S;u € dom T and S; Tu = T S;u forallu € dom T
and all T € R. Furthermore, we say that 7 is causal if, forallt € Randallu € dom T,
we have

suppu C [tr,00) = supp(Tu) C [1,00).

It is a routine exercise to show that if 7" is translation invariant, then 7 is causal if, for
allu edomT,

suppu C [0,00) = supp(Tu) C [0, 00).

For n € R, we let Hﬁo (X) denote the Hardy space of all bounded holomorphic
functions C,, — B(X). Equipped with the norm

H[[ 30 := sup [[H(s)],

seCy

H7Y(X) is a Banach space. We set H*(X) := H§°(X).

The following result on H*(B(U)) (known as Fatou’s theorem), U a separable
complex Hilbert space, will be frequently used in this paper. For the proof we refer to
[31, Theorem B, Section 4.6] and [31, Theorem C, Section 4.8] or [38, Theorem 6.4].
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Theorem 2.3 Let U be a separable complex Hilbert space and let H € H* (B(U)).
Then H has a non-tangential limit Ho(y) = lims_,;, H(s) in the strong operator
topology for almost all y € R and

esssupyeg [Ho(Wl = [Hl| 3.

Furthermore, |[Ho(y) || = limg_;y [|H(s)|| non-tangentially for almost all y € R.

For notational simplicity, in the scalar-valued case (thatis, when X = CorU = C), we
shall drop X or U from the notation of function and distribution spaces: for example,
C(R),D',8', H(R) and H,, stand for C(R, C), D'(C), S'(C), H’ (R, C) and H,,(C),
respectively.

3 Operator-valued multiplier theorems

The main objective of the current section is to prove the following Laplace multiplier
theorem for a class of causal and translation-invariant operators. Throughout this
section, let U be a complex Hilbert space.

Theorem 3.1 Lera, B € R.

(1) If G € B(H“ (R, U), HF (R, U)) is causal and translation invariant, then there
exists a unique holomorphic function G : Cy — B(U) such that

Gu=(L"oMgoL)u) Yue H'(R,U) 3.1
and
sug 11+ 5)P2G(s)| = 1GliHe, HE) (3.2)
selp

where M denotes multiplication by G.
(2) If G : Cy — B(U) is holomorphic and such that

sup [[(1+5)P~*G(s)| < oo, (3.3)

seCyp

then there exists a unique causal translation-invariant operator G € B (H YR, U),
HP (R, U)) such that (3.1) and (3.2) hold.

Condition (3.3) means that the function s +— (I 4+ s)#~*G(s) is in the Hardy
space H*®°(B(U)). The norm on the right-hand side of (3.2) is the operator norm
induced by the norms of H*(R, U) and H#(R, U).

As for the expression (1 + s)P—e appearing in (3.2) and (3.3), the following con-
vention applies throughout the paper: We identify the complex power function with
exponent # € R with its principal branch on the domain C\(—oo0, 0], and thus,
(145~ € (0, 00) if 5 € (—1, 00).
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Theorem 3.1 is a generalization of the following well-known result, see [36, The-
orem 10.3.5], [38] or [41].

Theorem 3.2 A linear operator G : L*(R, U) — L*(R, U) is bounded, translation-
invariant and causal if, and only if, there exists G € H*(B(U)) such that G is of the
Sform (3.1) (with H} (R, U) replaced by L%L(R, U)). Moreover, G and G determine
each other uniquely, and

1G] s2.0y) = I1Glnee-

The proof of Theorem 3.1 is based on Theorem 3.2 and a scale of causal translation-
invariant isometric isomorphisms L2(R, U) — H o R, U), 6 € R, which we shall
now introduce. For which purpose, let 6 € R, set

ro(s) := (1 + s)*e Vs e C_y and pg(y) :=r19(iy) VyeR, 3.4
and define a linear map Ry : S'(U) — S'(U) by Ry := F~! 0 M, o F. Note that
Rou := F Y (ppFu) = (F ' pg)su Yu € S'(U). (3.5)

Here we have used that py € Oy (equivalently, 7! pg is a distribution of rapid decay)
from which it follows that, for every u € S’(U), the products pg Fu and (F 1 pp)*u
are well-defined tempered distributions, so that the convolution theorem (exchange
formula) can be invoked to obtain the second equality in (3.5), see Appendix 1.

The next result gathers properties of the scale of operators Ry.

Proposition 3.3 For every 6 € R, the operator Ry defined by (3.5) has the following
properties.

(1) Ry : S8'(U) — S'(U) is a sequentially continuous isomorphism and Ra_l = R_y.

(2) Rg is translation invariant.

(3) Rg is causal.

(4) Foreverya € R, Ry(H*(R, U)) = H* (R, U) and || Rou|| yya+o = ||u|| g, that
is, the restriction of Ry to H* (R, U) is an isometric isomorphism H* (R, U) —
H* (R, U).

Proposition 3.3 has some overlap with [40, Proposition 31.8] in the sense that, for
the scalar-valued case, it is shown that there exists an isometric isomorphism map-
ping H*(R) onto HP(R). However, the isometric isomorphism is not causal, and
therefore [40, Proposition 31.8] is not suitable as a tool in the proof of Theorem 3.1.

Before we provide a proof of Proposition 3.3, it is convenient to state and prove the
following technical lemma.

Lemma3.4 Let6 € R and let vy and pg be defined as in (3.4). Then supp(]-"_lpg) C
[0, 00), e Flpg € S forallv € (—1,0) and (L(F " pg))(s) = ro(s) forall s €
C_i.

Proof Let® € R, v € (—1,0) and k € Ny such that k > 2 — 0. Setting hy(s) :=
1+ S)_kl‘g (s) =1+ s)_(k+0) for all s € C_;, we have that szhg(s) is bounded
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on C,, for fixed but arbitrary . € (=1, v). It follows from Lemma 2.2 that there
exists a function g € C(R) such that hg(z) = O forallt < 0,e "V hy € Ll(R)
and (Lhg)(s) = hg(s) for all s € C,,. In particular,

(Fho)(y) = (Lhg)(iy) =hg(iy) Vy€eR.

Defining rg := (1+ D)k hg € 8’, where D denotes differentiation (in the distributional
sense), it follows that supp ry C [0, 00),e™" rg € S', (Lry)(s) =ry(s) foralls € C,
and Frg = pg. Consequently, rg = F~!pg and (L(F ' pg))(s) = ro(s) forall s €
C,.. The latter identity holds for every i € (—1, v), and hence it holds forall s € C_y,
completing the proof. O

It follows from (3.5), Lemma 3.4 and the convolution theorem for Laplace trans-
forms (see Appendix 1) that, for every 0 € R,

L(Rou) =rgLu Yu e S,(U),
and, consequently,
Rou = (L' o My, 0 L)) Vu e S)U). (3.6)

We proceed to prove Proposition 3.3.

Proof of Proposition 3.3. (1) It is immediate that RyR_g = R_gRg = I. Hence, Ry is

an isomorphism and R, "= R_y. Moreover, as F, F~! and multiplication by py are

sequentially continuous on §’(U), it follows that Ry is sequentially continuous.
(2)Lett e Randu € S'(U). Then Ry S;u = F~(pge " Fu), and thus,

FRoSzu = pge " Fu=e """ (pgFu) = F(S: F (0o Fu)) = F(Sc Rou).

Consequently, RgS;u = S; Ryu, establishing the translation invariance of Rg.

(3) By Lemma 3.4, supp(]—"]pg) C [0, 00). Using that Rpu = (F~ pg)xu for
all u € §'(U), causality follows from [43, Theorem 5.11-1].
(4) Foru € H*(R, U), we compute

o0
27| Roul|30r0 = / (14 ¥ o M PIIFu) () | *dy
—0o0

=f (1 + )N Fuwy WPy = 27 lulle,

—00

where we have used that |ps(y)|> = |1 +iy|™? = (1 + y*)~?, showing that Ry

restricted to H*(R, U) maps isometrically into H**?(R, U). For v € H*t9(R, U),

we have that R_pv € H*(R, U), and, by statement (1), Rg(R_pv) = v, showing

that Ry restricted to H* (R, U) maps onto H a+o (R, U). Hence, the restriction of Ry

to H*(R, U) is an isometric isomorphism H*(R, U) — H**?(R, U). O
We are now in a position to prove Theorem 3.1.
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Proof of Theorem 3.1. (1) Assume that G € B(H" (R, U), HP (R, U)) is causal and
translation invariant. An application of Proposition 3.3 yields that

R_gGRy : L*(R,U) — L*(R,U)

is a causal translation-invariant bounded linear operator. Therefore, invoking Theo-
rem 3.2, there exists a function H € H*°(B(U)) such that

R_gGRyv =L~ YHLv) Vvel? TR, U).
Appealing to (3.6) and Proposition 3.3, we conclude that
Gu = RgL™ " (HL(R_qu)) = L™H(GLu) = (L™ o Mg o L)) Yu € HY(R, V),
where G(s) := (1 + 5)* PH(s). As G and L~ o Mg o £ are translation invariant,

it follows that (3.1) holds. To establish uniqueness of G, let G : Cy — B(U) be
holomorphic and assume that Gu = (£~ o Mg oL)(u) forallu € Hf (R, U). Then,

for fixed ¢ € D, ¢(t) £ 0, it follows from (3.1) that GL(¢ ® v) = GL(¢ ® v) for
allv € U, where (¢ ® v)(1) := ¢(t)v for all 1 € R. Consequently, (L¢)(s)G(s)v =
(,C<p)(s)G(s)v forall s € Cq and all v € U, showing that G=0G.

To establish the equality of norms (3.2), we invoke Theorem 3.2 again to obtain

IR-$G Rall (12 .1y = IHll3 = sup |1+ )P G (s)]]. 3.7

seCo

Using Proposition 3.3 once again, the restriction of R_g to H B(R, U) is an isometric
isomorphism H# (R, U) — L?*(R, U), and so

IR_gGRoull ;> = |GRuutll ys Yu € LA(R,U).

Furthermore, R, maps L2 7 (R, U) isometrically onto Hf (R, U), and so,

sup IGRaullys = sup IGvllgs-
lull,2=1, uel? (R,U) vl ge=1, veHE(R,U)
Therefore,
”RfﬂGROt”B(Li(R’U)) = sup IR-gGRyull 2 = sup 1Gvllgs-
lull 2=1,uel? R.U) vl ge=1,ve HE(R,U)

Hence, ”G”B(Hj:,Hf) = ||R,;;GRQ||B(L1(R’U)), and so, by (3.7),

160512 = 90 11 + P46 ). (3.8)
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Finally,letu € H*(R, U),u # 0. By Lemma 2.1, there existu; € C°(R, U), j € N,
such thatu; — win H*(R, U) as j — o0. Choosing 7; € R such that supp(Sz;u;) C
[0, c0), we have that S,J.u j € HY(R, U) forall j € N and, by translation invariance
and (3.8),

Gu;j IS, Gujllge  1G(Sc;uj)llpgs
Vot ay _ oo OsRn QOGN (1 4+ 5/~ G o)l
llu 1l e Sz;ujll me I Sz;ujll me seCo

Consequently,

G Gu;
1Gullgs = lim l j||Hﬂ < sup ||(1 +S),3_QG(S)”’
lullge  j=oo |lujllme ™~ secy

which, together with (3.8) shows that (3.2) holds.

(2) Conversely, let G : Co — B(U) be holomorphic and assume that (3.3) holds.
Obviously, H defined by H(s) := (1 + 5)/7%G = ryg(8)G(s) is in H*(B(U)),
and so, by Theorem 3.2 there exists a causal and translation-invariant operator H €
B(L*(R, U)) such that Hu = (L~' o My o £)(u) for all u € L% (R, U). As H and
L7 o My o £ are translation invariant, it follows that

Hu=(L'oMyoL)(u) YueLiR,U). (3.9)
Using Proposition 3.3, it is clear that the linear operator
G:=RgoHoR_4:H*R,U) - HPR,U)
is causal, translation-invariant and bounded. Furthermore, by (3.6) and (3.9),

G=/L"" oMrﬁoMHoMr_aoAC:E*] oMy oL
=L"oMgoL on H(R,U),

showing that (3.1) holds. Finally, as H* (R, U) is dense in H*(R, U), itis clear that G
is the unique operator in B(H"‘(R, U), HP (R, U)) satisfying (3.1). O
The following corollary is an immediate consequence of Theorem 3.1.

Corollary3.5 If G € B(Lz(R, U)) is causal and translation-invariant, then, for
alla > 0 (a < 0), G restricts (extends) to a causal translation-invariant bounded
linear operator H*(R, U) — H*(R, U).

Next we want to apply Theorem 3.1 to derive a Fourier multiplier theorem. To facilitate
such an application of Theorem 3.1, it is convenient to state and prove an auxiliary
result first.

Let H2(U) be the Hardy space of all holomorphic functions Cy — U such that

00 1/2
I £ i3 = sup (/ I f(x + iy)||2dy> < o0.

x>0 —00
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By the Paley-Wiener theorem (see [4, Theorem 1.8.3], [31, Section 4.8] or [36, The-
orem 10.3.4]), the Laplace transform maps Li(R, U) isomorphically onto H2(U),
and

ILullye = V2 \ull2 Yu e LA(R, U).

For each f € H2(U), the boundary limit fo(y) := limy o f(x +iy) exists for almost
every y € R, the boundary function fy is in L?(R, U), the map

B:H*(U) —» L*R,U), fr fo (3.10)
is an isometry,

(BoL)u)=Fu VYueLi(R,U), (3.11)
and B(H*(U)) = F(LA(R, U)) = {g € L>(R, U) : supp(F~'g) C [0, 00)}, see [4,
Theorem 1.8.3], [31, Section 4.8] or [36, Section 10.3] for details.

The following lemma relates certain Fourier multipliers to the corresponding
Laplace multipliers.

Lemma 3.6 Assume that U is separable. Let G : Co — B(U) be holomorphic and
such that supsec, [|(1 + $)KG(s)| < oo for some k € Ny. Then the limit Go(y) :=
limy o G(x + iy) exists in the strong operator topology for almost every y € R and

(F'oMgyoF)u) = (L o MgoL)u) Yue L2(R,U).

Proof. Since F~! o Mg, o F and £L~! 0 Mg o L are translation-invariant, it is sufficient
to show that

(F T oMgy o F)w) = (L o Mgo L)) Yue LR, U). (3.12)
SetH(s) := (145)"KG(s) foralls € Co.Then,H € H>(B(U)) and, by Theorem 2.3,

there exists aboundary function Hy such that H(x+iy) converges to Hy (y) in the strong
operator topology foralmostevery y € Rasx | Oandesssup,cr[[Ho(y)|| = [|Hl|#.

Letu € L2 (R, U) and set H := L~ o My o L. As H is causal, Hu € L% (R, U),
and, invoking (3.11), we have that
F(Hu) = (B o L)(Hu) = Mu,B(Lu) = Myu,(Fu) = (Mn, o F)(u).
Consequently, Hu = (F1o Mg, o F)(u), and thus,
(FloMpy o F)w) = (L™ o Mu o L)) Yu e LL(R,U).

An application of (I + D)* (recall that D denotes differentiation in the distributional
sense) to both sides of the above equation leads to

I+ DM F oMo F)u) =T +D)X(L "o MuoL)u) Yue LR, U).
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Using standard properties of the Fourier and Laplace transforms, it follows that
F oMy 0o F)w) = (L7 oMy mo L)) VYue L2(R,U),

wherer_j and p_j are givenby (3.4). Asr_H = G and p_;Hy = Gy, equation (3.12)
follows from the above identity. |
We are now in the position to prove the following Fourier multiplier result.

Corollary 3.7 Assume that U is separable and let a, § € R.

(1) IfG: H*R,U) — HPR, U) is a bounded linear causal translation-invariant
operator, then there exists a unique holomorphic function G : Co — B(U) such
that

Gu=(F'oMg,oF)u) Yue H*R,U) (3.13)
and

sup [(1+ )P *G(s) | = Gl g(a. ey = esssup,cgll (1 + iy)P " *Go()Il.

SE(C()

(3.14)

where Go(y) := limy o G(x + iy), with the limit existing in the strong operator
topology for almost every y € R, and Mg, denotes the operator of multiplication
by Go.

(2) Conversely, if G : Cy — B(U) is holomorphic and such that

sup ||(1 4 5)P7*G(s)|| < oo, (3.15)

seCo

then Go(y) := limy 0 G(x 4 iy) exists in the strong operator topology for almost
every y € R, G given by (3.13) is a bounded linear causal translation-invariant
operator H*(R, U) — HP (R, U) and (3.14) holds.

Proof (1) Assume that G € B(H®(R,U), H?(R,U)) is causal and translation
invariant. By statement (1) of Theorem 3.1 there exists a unique holomorphic func-
tion G : Co — B(U) such that Gu = (L™ o Mg o L) (u) for all u € H} (R, U) and
the first equality in (3.14) holds. Hence, the function ry—gG is in H**(B(U)), and so,
Theorem 2.3 yields that the boundary limit Go(y) := lim, o G(x + iy) exists in the
strong operator topology for almost every y € R (here separability of U is used) and

esssup g | Pa—pGoW | = lIra—pGllI3o~. (3.16)

Consequently, the second equality in (3.14) also holds. Furthermore, it follows from
Lemma 3.6 that

(FloMgy o F)u) = (L7 o Mg o L)) Yue CPR,U).
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Therefore,
Gu=(F'oMg,oF)u) YueCPR,U). 3.17)
Next, we note that
FloMgoF =RgoF oMy, 46y0F o Rg. (3.18)

By (3.16), the function y > || p—g(y)Go(y)|| is essentially bounded. Combining this
with Proposition 3.3, it follows that the right-hand side of (3.18) is a bounded operator
from H*(R, U) to H# (R, U), and thus, F~! oMg,oF € B(H“(]R, U), HP (R, U)).
Therefore, since C°(R, U) is dense in H*(R, U) by Lemma 2.1, equation (3.17)
yields that Gu = (F~' o Mg, o F)(u) forall u € H*(R, U), establishing (3.13).

(2) Conversely, let G : Cy — B(U) be holomorphic and assume that (3.15)
holds. By Theorem 3.1, there exists a unique causal translation-invariant opera-
tor G € B(H*(R, U), H?(R, U)) such that

Gu= (L o MgoL)u) YueHIR,U)

and (3.14) holds. By (3.15), G is polynomially bounded, and thus it follows from
Lemma 3.6 that Go(y) := lim, o G(x 4 iy) exists in the strong operator topology for
almost every y € R (here separability of U is used) and

Gu=L"oMgoL=F 'oMg,oF VYueCPR,U).

Moreover, since ry_gG € H*(B(U)), it follows that (3.16) holds. Therefore, as in
the proof of statement (1), we have that 7~ o MgyoF € B(H“ (R, U), H (R, U)),
and, invoking the denseness of C°(R, U) in H*(R, U) (see Lemma 2.1), the above
identity yields that Gu = (F'o Mg, o F)(u) for all u € H*(R, U), completing
the proof. (]

We close this section by showing how Proposition 3.3 can be used to derive a
generalization of the Paley-Wiener theorem which provides a natural isomorphism
between H?r (R, U) and a suitably weighted #>-space. To this end, we introduce the
space

H> (U) :=ryH*U) ={u:Co— U : u holomorphic and r_gu € HXU)}, 6eR
of holomorphic functions, where ry is defined in (3.4). Endowed with the norm ||u|| 32,6

:= |Ir_pul|442, the space H>%(U) is complete.
The following result contains the classical Paley-Wiener theorem as a special case.

Proposition 3.8 Ler 6 € R. The Laplace transform maps Hf(R, U) isomorphically
onto H>%(U) and

I Lullpo = 27 ullygo Vu € HE (R, U). (3.19)
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Proof Letd € R and u € S’ (U). It follows from (3.5) and Lemma 3.4 that
L(Ryu) =roLu Yuce Sé(U), YVa € R. (3.20)

Letu € Hﬁ(R, U). Proposition 3.3 ensures that R_pu € Li(R, U) and |lullge =
|R—pu||;2, and thus,

V2 |lullge = V2 ||R-pull2 = | L(R—gu)|I342, (3.21)

where, in the last equality, we have used the classical Paley-Wiener theorem. Appealing
to (3.20), we see that L(R_gu) = r_g Lu, which combined with (3.21) gives

V2 llullyo = llr—gLullze = I Lullp2eo,

showing that £ maps HY (R, U) isomorphically into %>¢ (U) and (3.19) holds.

To show surjectivity, let v e H2>?(U). By the classical Paley-Wiener theorem there
exists u € L%_(R, U) such that v = rgLu. Setting v := Rpu, we have that v €
Hi(R, U) by Proposition 3.3. By (3.20), Lv = L(Rpu) = ryLu = v, showing that £
maps H{ (R, U) onto H>?(U). O

4 Boundary values of vector-valued holomorphic functions defined
on the right-half plane

In this section, we explore the key hypothesis (3.3) on the holomorphic function G in
Theorem 3.1 in greater detail: In particular, under the assumption that the limit Go(y) =
limy o G(x + iy) exists in the strong operator topology for almost every y € R, we
shall consider the imaginary axis condition

esssup, (1 +iy)P"*Go(»)| < oo. (4.1)

The motivation for our interest in (4.1) is that the verification of the imaginary axis
condition (4.1) is usually considerably easier than establishing the uniform bound-
edness of (1 + s)?~*G(s) on the open right-half plane. We shall identify conditions
under which the existence of the strong limit Go(y) = lim, o G(x +iy) together with
the imaginary axis condition (4.1) is sufficient for the function s — (1 + $)P2G(s)
to be in H*(B(U)). This will involve the consideration of the boundary behaviour
of G(x + iy) in the sense of distributions as x | 0.
For a holomorphic function G : Cy — X, X a complex Banach space, set

G;(y):=Gkx+iy) YVyeR, where x > 0.

The following result addresses the existence and properties of boundary distributions
for X-valued holomorphic functions defined on Cy.
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Theorem 4.1 Let X be a complex Banach space, G : Co — X be holomorphic, and
assume that there exist M > 0 and m, k € Nq such that

IG) I < M(1+1s)" (1 + Res) ™) Vs e Co. 4.2)

Then there exists a tempered distribution T € S'(X) (the so-called boundary dis-
tribution of G) such that [G,] — T in S'(X) as x | 0, supp(F~'T") c [0, 00)
and L(F~'T) = G.

An alternative to the growth bound (4.2) is given by
IG&)Il < N(1+Is])"(Re s)fk Vs e Co, 4.3)

where N > 0 and n € Ny, see, for example, [8, equation (6.60)] and [10, equation
(4.7)]. Trivially, if (4.3) holds, then so does (4.2) with M = N and m = n. Conversely,
if (4.2) is satisfied, then it is straightforward to show that (4.3) holds with N = 2M
and n = m + k. Consequently, Theorem 4.1 remains valid when (4.2) is replaced
by (4.3).

In the scalar-valued case, Theorem 4.1 is a special case of [8, Theorem 4.7.4]. For
vector-valued functions, the existence of tempered boundary distributions is stated,
without proof, in [9, Theorem 4.1]. We refer the reader to Appendix 3 for a proof of
Theorem 4.1.

Next, we investigate under what conditions boundary distributions and point-
wise boundary limits coincide. In this paper, our focus will be on the situation
wherein X = B(U), where U is a complex Hilbert space. It is well-known that
if U is separable, then pointwise boundary limits of functions in H*°(B(U)) exist in
the strong operator topology, but not necessarily in the norm topology of B(U), and
the strong limit need not be Bochner measurable (as a B(U )-valued function), but will
be weakly measurable. Therefore, it would be too restrictive to assume that the point-
wise boundary limit of a holomorphic function G : Co — B(U) is in LIIOC(R, BU))
(locally Bochner integrable).

Therefore, it is useful to consider the weak integral (also called Pettis integral)
for B(U)-valued functions, where U is a complex Hilbert space. Let 2 C R be a set
of positive Lebesgue measure. A function F : Q — B(U) is said to be weakly
measurable if the scalar-valued function 2 — C, t — (F(f)u,v) is Lebesgue
measurable for all u, v € U. Furthermore, if F is weakly measurable, then the func-
tion  — C, t — ||F()] is Lebesgue measurable (see, for example, [22, Proof
of Theorem 3.5.5]). For I < p < oo, let LE(Q, B(U)) denote the space of func-
tions F : Q — B(U) such that F is weakly measurable and

1/p
IFllp = (/ ||F(t)||pdt) <oo if p<oo and
Q

| FllLee := esssuppl| F (1) < oo if p=oo0.

@ Springer



Mathematics of Control, Signals, and Systems (2024) 36:729-773 747

It is well-known that L% (2, B(U)) is complete, and, for F € L}V(Q, B(U)), there
exists a unique integral fQ F(¢)dt € B(U) such that

<</ F(t)dt)u,v>=/(F(t)u,v)dt Yu,veU,
Q Q
H/ F(t)dt
Q

see, for example, [13, Appendix A.5]. Under the assumption that U is separable, weak
measurability of F : @ — B(U) implies that F is also strongly measurable, that is,
the function 2 — U, t +— F(t)u is Bochner measurable for every u € U, see [22,
Theorem 3.5.5]. Therefore, if U is separable, then the function # — F(¢)u is Bochner
integrable for every F € LE(Q, B(U)) and every u € U, and a routine argument

shows that
(f F(t)dt)u:/ F({tudt YueU,
Q Q

where the integral on the left-hand side is the weak B(U)-valued integral of F, whilst
the integral on the right-hand side is the U-valued Bochner integral of Fu. Conse-
quently, when U is separable, the weak B(U)-valued integral can also be considered
as a strong B(U)-valued integral.

Finally, we introduce the space L’ . (R, B(U)) of all functions F : R — B(U)

w,loc
such that F|gq € LE (2, B(U)) for every bounded measurable set Q2 C R. It follows
from the properties listed above that, for every F € Liv’loc (R, B(U)), the func-
tional [ F] given by

and

S/QIIF(t)II di =1 Fl,

[Fl(p) = / e)F(t)dt YoeD (4.4)

—00

is well-defined and continuous on D, whence [F] € D'(B(U)). Similarly, if F €
Liv’loc (R, B(U)) is such that || F (¢)]| is polynomially bounded on a set of the form {r €
R : |t] = t} for some t > 0, then the right-hand side of (4.4) is well-defined for
allp € S,and [F] € S'(BU)).

Throughout the rest of this section, let U be a complex Hilbert space. The next
result provides a sufficient condition which guarantees that the boundary distribution
of a holomorphic function is equal to the regular distribution induced by the pointwise
boundary limit.

Lemma4.2 Let G : Cy — B(U) be holomorphic. Assume that there exists I' €
S'(B(U)) suchthat[Gy] — T'inS' (BWU))asx | 0, the limit Go(y) := limy o G ()
exists in the strong operator topology for almost every y € R, and there exists xo > 0
such that, for each a > 0, there exists g, € L'(—a, a) satisfying
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IGGx + il = 1G: Il = ga(y) V(x,y) € (0, x0) x [—a,a]. 4.5

Under these conditions, Go € LY , (R, B(U)) and I'(p) = [Gol(p) forall ¢ € D.

w,loc

We remark that condition (4.5) is equivalent to the existence of xo > Oand g € LllOC (R)
such that

G +inll =[Gl = g(y) V(x,y) € (0,x0) x R.

Note that if condition (4.5) is satisfied for some xg > 0, then it holds for all xo > 0.
Furthermore, if G is bounded on every bounded strip of the form {x + iy : x €
0, x0), |y| < a},a > 0, then (4.5) is satisfied.

We illustrate Lemma 4.2 with a class of examples, and demonstrate that, in the
absence of condition (4.5), the conclusions of Lemma 4.2 may fail to hold.

Example4.3 (1) Let y; € R, j = 1,...,n, be such that y; # y if j # k, and let
H : Cy — B(U) be holomorphic and polynomially bounded, where U is assumed to
separable. Consider the holomorphic function G : Co — B(U) given by

n

G(s) := (H(s - iyj)_9f>H(s) Vs € Cp, where 0; € (0,1),j=1,...,n.
j=1

It follows from Theorem 4.1 that there exists I' € S’ (B(U)) such that [G,] — T
in S'(B(U)) as x | 0. As H is polynomially bounded there exists m € N such
that (14s)~"H(s) is bounded on Cy and it follows from Theorem 2.3 that there exists
aboundary function Hyp € L3, (R, B(U)) such that H(x +iy) converges to Hyp(y) in
the strong operator topology for almostevery y € Rasx | 0. Consequently, G(x+iy)
converges to Go(y) := ]—[’;= 1 (i (y—y j))fgj Hj (y) in the strong operator topology for
almostevery y € Ras x | 0. Furthermore, G satisfies (4.5), and therefore Lemma 4.2
ensures that I'(¢) = [Go](p) for all ¢ € D.

(2) For 6 € (0, 1), the scalar function G(s) = s~ is an instance of the above
example. Let us now consider the case wherein 6 = 1, that is, G(s) = 1/s. It is
clear that condition (4.5) is not satisfied. The existence of a distribution I' € &’ such
that [Gy] — T in & as x | 0 follows from Theorem 4.1. Whilst the pointwise
boundary limit Go(y) = 1/(iy) exists for every y # 0, it is not in LIIOC(R, O,
and hence does not induce a regular distribution, showing that the conclusions of
Lemma 4.2 do not hold. Finally, using calculations similar to those in [18, p. 19/20],

it is not difficult to show that I' = pv Go + 7, where

—&

(pv Go)(p) = LTS ( Go(y)e(y)dy +/ Go(y)cp(y)dy> Voes,

—00
the principal-value distribution induced by Gy. O

For T € D'(B(U)) and u,v € U, it is convenient to define a scalar-valued
distribution 7%V € D’ by T"V(p) := (T(p)u,v) for all ¢ € D. We note that
ifFelLl (R,B()),then[F]*' = [f], where f(¢) := (F(t)u, v) forall t € R.

w,loc
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Proof of Lemma 4.2. Trivially, G, is weakly measurable for every x > 0, and thus G
is also weakly measurable. Moreover, we have that |G, || € Llloc (R) for every x > 0,
and so, for arbitrary @ > 0, the restriction of |G| to [—a, a] is in Li(=a,a). By
hypothesis, G, (y) converges to Go(y) in the strong operator topology for almost
every y € Rasx | 0, thatis, there exists anull set N C R such that lim, o G (y)u =
Go(y)uforallu € U andally € R\N.Lety € R\N and ¢ > 0. There exists u € U

such that |u|| = 1 and [|Go(»)|| < |Go(y)u|| + €. Hence,

IGoWI < lim inf |G (Y)ull + & < lim inf |G, (V)] + &.
10 x10

This holds for every y € R\N and ¢ > 0, and thus, we obtain that, for every a > 0,
GoWIl = lir;fliionf [GxWIl < ga(y) forae. y€[—a,al

1

w.loc (R, B(U)), and therefore, G¢ induces a regular distribution

Consequently, Gg € L
[Gol € D'(B(U)).
Let ¢ € D, let a > 0 be such that suppp C [—a,a] and let u,v € U. It
is clear that the function y — (Gy(y)u, v)e(y) is in L'(R) for every x > 0
and (G (Vu, v)e(y) = (Go(y)u, v)e(y) for almost every y € R as x | 0. Fur-

thermore, there exists g, € L'(—a, a) such that (4.5) holds, and so

HGx(Mu, v)e(N] = gaMle(M] V¥ (x,y) € (0, x0) xR,

where g,(y) := |ullllvllga(y) for y € [—a,a] and g,(y) := O for |y| > a. Triv-
ially, the function g,|¢| is in L'(R), and an application of Lebesgue’s dominated
convergence theorem shows that (G, u, v)¢ — (Gou, v)e in L' (R) as x | 0, and so,

[ee}

[G:1“" () =/ eM{(Gx(y)u, v)dy

—>/ eM{(Go(Yu, v)dy = [Go]“"(p) asx | 0.

On the other hand, [G,]*"(p) — TI'*V(p) as x | 0, and thus, ([Gol(¢)u, v) =
(' (¢)u, v). This holds for all u,v € U, showing that [Go](¢) = I'(¢). The claim
now follows as ¢ € D was arbitrary. (|

Corollary 4.4 Assume that U is separable and let G : Cy — B(U) be holomorphic
and polynomially bounded on Cy. Then the limit Go(y) := limy o G, (y) exists in the
strong operator topology for almost every y € R, G is weakly measurable, Gg is
polynomially bounded, [Gg] € S'(B(U)) and [G,] — [Gol in S'(BU)) as x | 0.

Proof The function G is polynomially bounded on Cy, and so, there exist M > 0
and m € Ny such that

GO <M1 +s" <M1+ |sP™ Vs e Co. (4.6)
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The function H(s) := (1 + 5)7™G(s) is in H*(B(U)) and it follows from Theo-
rem 2.3 that there exists a boundary function Hy € L3’ (R, B(U)) such that H(x +iy)
converges to Hy(y) in the strong operator topology for almost every y € R as x | 0.
Consequently, G (y) — (1+iy)"Hp(y) =: Go(y) in the strong operator topology for
almost every y € R as x | 0. The weak measurability of G follows from that of Hy,
and, furthermore, Go is polynomially bounded as Hy € L3 (R, B(U)). Consequently,
[Gol € S"(BU)).

It remains to show that [G,] — [Go] in S’ (B(U)) as x | 0. To this end, we note
that (4.2) holds with & = 0 as follows from (4.6). Moreover, for arbitrary xo > 0, G
is bounded on the bounded strip {x + iy : x € (0, xp), |y| < a} for every a > 0,
and so (4.5) is satisfied. Invoking Theorem 4.1 and Lemma 4.2, we see that there
exists I' € §'(B(U)) such that [G,] — T in S'(B(U)) as x | 0 and I'(¢) = [Go](p)
forallp € D.ButDisdensein S andsoI'(¢) = [Gol(p) forall ¢ € S. Consequently,
[Go] =T and [G,] — [Golin S’ (B(U)) as x | 0. |

The following theorem shows that if a holomorphic function G : Co — B(U)
satisfies condition (4.2) and the boundary distribution of G is in L (R, B(U)), then G
is bounded on C.

Theorem 4.5 Let G : Co — B(U) be holomorphic. Assume that there exist M > 0
and m, k € Ny such that (4.2) holds and the boundary distribution T' € S'(B(U))
of G (which exists by Theorem 4.1) is such that T' = [F], where F € LY (R, B(U)).
Then the following statements hold.

(1) G e H®(BW)) and |Gl < [IF Ly
(2) Under the additional assumption that U is separable, G, (y) — F(y) inthe strong
operator topology for almost every y € Ras x | 0, and |G|l = || F| Lge-

Proof (1) Let u, v € U. It is clear that the scalar holomorphic function G*¥ defined
by G*V(s) := (G(s)u, v) satisfies (4.2) (with M replaced by |u]/||v||M) and G*-?
has 'Y € &’ as its boundary distribution, that is,

[GH] — IV = [FI"* = [F""] inS' asx |0, S

where GV (y) := (G (y)u, v) for all y € R and F*? is the scalar-valued function
in L*°(R) given by F*V(y) := (F(y)u,v) for all y € R. An application of [8,
Theorem 6.5.1 and commentary below (6.60)] or [10, Theorem 5.2] shows that G*-? €
H>°. Consequently, G* has a boundary function g, , € L (R) such that Gy'"(y) —
8u.v(y) almost everywhere as x |, 0 and

IG* IHee = lIgu,vllLes. (4.8)

Moreover, by [19, Theorem 3.1 (Chapter I) and Corollary 3.2 (Chapter II)], G%**
converges to g, , in the weak*-topology as x |, 0, and so, a fortiori, [G¥"] — [ Su.wl
inS’asx | 0.Invoking (4.7), we obtain that there exists anull set N, , C R depending
on u and v such that

F“'(y) = guv(y) Yy € R\N,y, 4.9)
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which, together with (4.8), gives

HG(s)u, v)| < G llpee = [IF*“ Il < [ Fllizgellullivll Yu,ve U, Vs e Co.

Now sup =1 (G(s)u, v)| = [[G(s)ul| forall s € Cp and u € U, and thus,
IGull < IFllcgelull Yue U, Vs € Co,

showing that |G|l < || F|lL and G € H*(B(U)).

(2) Now assume that U is separable. By statement (1), G € H*(B(U)), and
consequently, it follows from Theorem 2.3 that there exists a boundary function Gg €
L3P (R, B(U)) such that Gy (y) converges to Go(y) in the strong operator topology for
almost every y € Ras x | 0 and [|G[[~ = [|Goll e It remains to show that

F(y) =Go(y) forae. y e R. (4.10)

Let the function g, , and the set N, be defined as in the proof of statement (1). We
note that there exist null sets N, , C R, depending on u and v, such that

(Go()u, v) = guw(y) Vy € R\N,y. (4.11)

Let V C U be acountable dense subset and let N be the union of all sets N, ,, and ]\Nf,,,v
with u, v € V. Then, as a countable union of null sets, N is a null set and it follows
from (4.9) and (4.11) that

(F(Yu,v) = (Go(y)u,v) Yu,veV,VyecR\N.
As V is dense in U, we conclude that
(F(y)u,v) = (Go(y)u,v) Yu,veU,VyeR\N,

which in turn implies that (4.10) holds. O

The next result is of particular importance for our purposes.
Proposition 4.6 Let G : Co — B(U) be holomorphic and assume that there exist

(i) M > 0andm, k € Ny such that (4.2) is satisfied;

(ii) xo > O such that, for every a > 0, (4.5) holds for some g, € L'(—a,a).

For 6 € R, let vy and pg be as in (3.4). If the limit Go(y) = limy o0 G, (y) exists
in the strong operator topology for almost every y € R and pgGo € LY (R, B(U)),
thentgG € H*(B(U)) and |[rgGllx~ < |lpaGollLee, with equality holding when U
is separable.

Note that if U is separable and G is of so-called bounded type (that is, G is in the
Nevanlinna class) [31, Section 4.2], or equivalently, G is of the form G = N/d,
where N € H®(B(U)) and d is a scalar-valued H°-function such that d(s) # 0
for all s € Cyp, then lim, o Gx(y) exists in the strong operator topology for almost
every y € R, see [31, Sections 4.3 and 4.6].
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Proof of Proposition 4.6. By Theorem 4.1, there exists I' € S'(B(U)) such that [G,] |
I'in §'(B(U)) as x | 0. Assuming that the limit Go(y) = lim, o G (y) exists in the
strong operator topology for almost every y € R, Lemma 4.2 guarantees that I'(¢) =
[Gol(p) forallp € D.By hypothesis pgGo € LY (R, B(U)),hence [Go] € S'(B(U)),
and therefore, I'(¢) = [Go](¢) for all ¢ € S. Setting H := ryG, we have that

IH&) | < M(1+1s])"(1+ (Res)™¥) Vs e Co,

where n is the smallest non-negative integer such that n > m — min{0, 6}, showing
that H satisfies the growth condition (4.2). It is clear that H(x 4+iy) — pg(y)Go(y) in
the strong operator topology for almost every y € Rasx | 0, and pgI" = pg[Go] =
[peGol € S'(B(U)) is the boundary distribution of H. As pgGo € LS (R, B(U)), an
application of Theorem 4.5 to H shows thatryG = H € H*(B(U)) and |[rg G ||}y =
[Hl[1 < llpaGollLee, with equality holding under the additional assumption of
separability of U. O

The following corollary is an immediate consequence of Corollary 4.4 and Propo-
sition 4.6.

Corollary 4.7 Assume that U is separable. For 6 € R, let rg and pg be as in (3.4).
Let G : Cy — B(U) be holomorphic and polynomially bounded on Cy. Under these
conditions, the limit Go(y) = limy o Gy (y) exists in the strong operator topology
for almost every y € R, G is weakly measurable, and, furthermore, if pgGo €
LY R, B(U)), thenrgG € H*(B(U)) and |IrgGllpee = l1poGollLge-

5 Sobolev stability

In this section, we develop a new input-output stability framework for a large class
of causal translation-invariant linear operators defined on spaces of vector-valued
distributions. Using Theorem 3.1, the results of Sect. 4 and well-known theorems on
the representation of translation-invariant operators by convolution kernels (impulse
responses), we provide characterizations of boundedness properties of such operators
(as maps from H*(R, U) to H PR, U)) in terms of the Laplace transforms of their
kernels (transfer functions). Throughout this section, let U be a complex Hilbert space.

Before addressing the main topic of this section, it is convenient to state and prove
the following lemma.

Lemma5.1 Leta € Randuy € H*R,U), k e N. Ifuy - uin H*(R,U) as k —
00, then uy — u in S'(U) as k — oo.

Proof Let (uy)ren be a convergent sequence in H*(R, U) with limit u. If « > 0,
then uy — u in L%(R, U), and so, uy — u in S'(U) as k — oo. Let us now
assume that @ < 0. By Proposition 3.3, R_,u; — R_,u in LZ(R, U) as k — oo.
Consequently, R_quy — R_qu in §’(U) as k — oo. Invoking Proposition 3.3 once
more, we have that R:(L = R, is a sequentially continuous operator from &’ (U) into
itself, and thus, uy — u in S’ (U) as k — oo. |
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Recall that DQ(X ) denotes the subspace of all distributions in D’(X) with support
bounded on the left, where X = U or B(U). If K € D,(B(U)), then the convolution
product K xu is a well-defined distribution in D}, (U) forallu € D, (U), see Appendix 1.
Itis useful torecall the close relationship between causal translation-invariant operators
on D'(U) and convolution operators with kernels in D' (B(U)) supported on [0, 00).
In the following, when considering linear operators G : dom G C D'(U) — D'(U),
it is always understood that dom G is endowed with the relative topology induced
by D' (U).

Proposition 5.2 Let G : dom G C D'(U) — D' (U) be a linear operator such that
CF R, U) C dom G. The following statements hold.

(1) If G is continuous, causal and translation invariant, then there exists a unique K €
D'(B(U)) such that supp K C [0, 00) and Gu = K»u forallu € D,(U)Ndom G.

(2) If there exists K € D'(B(U)) such that supp K C [0, 00) and Gu = Kxu for
allu € CP(R, U), then G is continuous, causal and translation invariant.

(3) Let a, B € R. IfdomG = H*(R,U), G € B(H*(R,U), H*(R, U)), and G
is causal and translation invariant, then there exists K € D'(B(U)) such
that supp K C [0, 00) and Gu = Kxu for allu € H} (R, U).

Proof (1) Denote the restriction of G to CS°(R, U) by G¢. As G is assumed to be
continuous, it is clear that G is continuous as an operator from C°(R, U) to D' (U).
Consequently, it follows from [43, Theorems 3.5-1 and 5.10-1] that there exists a
unique K € D'(B(U)) such that

Gu=Geu=Kxu YueC R,U). (5.1

The identity Gu = K»*u extends to all u € D,(U) N dom G by the denseness
of C(R, U) in D'(U), the continuity assumption on G, and the continuity prop-
erties of the convolution product (see Appendix 1). Invoking [43, Theorem 5.11-1],
the causality of G, and (5.1), we conclude that supp K C [0, 00).

(2) This statement is a consequence of results in [43, Chapter 5].

(3) As G € B(H*(R,U), HP(R, U)), the restriction G. of G to CFMR,U) is
a continuous operator from C°(R, U) to H A(R, U). Consequently, appealing to
Lemma 5.1, G, is continuous as an operator from C°(R, U) to D'(U). The claim
now follows by arguments identical to those used in the proof of statement (1). [

The distribution K appearing in Proposition 5.2 is called the kernel or impulse
response of the operator G. If 0(K) < oo (finite abscissa of convergence),
then G(s) := (LK)(s) exists for all s € C; (k) and the function G, a B(U)-valued
holomorphic function defined on C, (), is referred to as the transfer function of G.
If u € D,(U) is such that o (u) < oo, then K*u is Laplace transformable and

(LGu)(s) = G(s)(Lu)(s) Vs eCy, 5.2)

where p := max (o(K), (1)), see Appendix 1. Observe that G is the unique func-
tion which satisfies (5.2). Therefore, in control theoretic applications, where Gu is the
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output generated by the input u, the transfer function G is often determined by com-
puting the (necessarily unique) function which satisfies (5.2) (such as by computing
the quotient (L(Gu))(s)/(Lu)(s) when these quantities are scalar valued).

Definition 5.3 Leta, 8 € R. A linear operator G : dom G C D'(U) — D'(U) is said
to be Sobolev (o, B)-stable if C°(R, U) C dom G, G(CP (R, U)) C HP R, U),and
there exists ¥ > 0 such that

IGullgs < yllullge Yu € CER, U). (5.3)

The next theorem, the main result of this section, provides several characterizations
of Sobolev («, B)-stability in terms of transfer functions.

Theorem 5.4 Let G : dom G C D'(U) — D'(U) be a causal translation-invariant
continuous linear operator such that C°(R, U) C dom G, and let K € D' (B(U)) be
the kernel of G. For arbitrary a, f € R, the following statements are equivalent.

(1) G is Sobolev (a, B)-stable.

(2) There exists a unique causal and translation-invariant operator G¢ € B(H* (R, U),
HPB R, U)) such that Gu = Gu for allu € H*(R, U) Ndom G.

(3) K is Laplace transformable, o (K) < 0 and the transfer function G of G satisfies

sup ||(1 4 5)P7*G(s)|| < oc. 54)

seCo

(4) K is Laplace transformable and there exist p > max (0, o (K)) and a holomorphic
Sunction G® : Co — B(U) such that G® and the transfer function G of G coincide
on C, and

sup  [|(1 4+ )P 4GE(s)| < o0. (5.5)
O<Res<pu

(5) K is Laplace transformable and there exists a holomorphic function G® : Co —
B(U) such that G¢ and the transfer function G of G coincide on C,,, where v :=
max(0, o (K)), and

sup ||(1 4+ 5)P*GE(s)| < oo. (5.6)

seCy

Note that if, in statements (4) and (5), o (K) > 0, then G® is a holomorphic extension
of G.

Before we prove Theorem 5.4, we state two immediate consequences in the form
of a corollary.

Corollary 5.5 Let G : dom G C D'(U) — D'(U) be a causal translation-invariant

continuous linear operator such that C°(R, U) C dom G, and let o, § € R.

(1) If G is Sobolev (a, B)-stable, then G(H“(R, U) N dom G) c HPR,U)
and ||Gullys < yllullge for allu € H*(R,U) N dom G, where y > 0 is the
constant appearing in (5.3).
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(2) If G is Sobolev (a, B)-stable, then G is Sobolev (o« +0, B+0)-stable for all 9 € R.

Proof of Theorem 5.4. (1)=>(2). Assume that statement (1) holds. As C(R, U)
is dense in H*(R, U) (by Lemma 2.1), it follows from (5.3) that there exists a
unique operator G¢ € B(HY(R, U), H#(R, U)) such that G’y = Gu for all u €
CF (R, U). We proceed to show that G® and G coincide on H*(R, U) N dom G.
To this end, let u € H*(R, U) N dom G. Lemma 2.1 guarantees the existence of
a sequence (ug)ken in C°(R, U) such that uy — u in H*(R,U) as k — oo.
Since G¢ € B(H*(R, U), HP(R, U)), we have that G°u, — G®u in H?(R, U)
as k — oo. Invoking Lemma 5.1, we conclude that

uy —u in S’'(U) and Gup — G°u in S'(U) ask—oo. (5.7)
As G®uy = Guy for all k € N, the second convergence gives
Guy — G°u in S'(U) ask — oo. (5.8)

The first convergence in (5.7) implies that uy — u in D'(U) as k — oo,
whence Guy — Gu in D'(U) as k — oo as G is continuous. Appealing to (5.8)
shows that Gu = Gu in D'(U). In particular, the distribution Gu extends continu-
ously to S, and hence is tempered and coincides with G°u. Asu € H*(R, U)Ndom G
was arbitrary, it follows that G and G® coincide on H*(R, U) Ndom G. It is a routine
exercise to show that G® inherits the properties of translation-invariance and causality
from G.

(2)= (3). Invoking Theorem 3.1, we conclude that there exists a holomorphic
function G® : Cy — B(U) such that

sup [|(1 4+ 5)P~*G(s)|| < oo, (5.9)

seCyp

and G°u = (E_l o MG(C) o L) (u) forallu € H}*(R, U). By [43, Theorem 6.5-1] there
exists a Laplace transformable K¢ € D'(B(U)) with supp K¢ C [0, 00), 0 (K®) < 0
and (LK®)(s) = G®(s) for all s € Cy. Invoking the convolution theorem (exchange
formula) for the Laplace transform (see Appendix 1), we obtain

Geu = (E_l OMGe Oﬁ)u = (ﬁ_l OMEKe OE)M = Ke*M VM S CCOO(R, U)
Therefore,
Kxu = Gu =G = K%u Yu e CIPR,U). (5.10)

To establish that statement (3) holds, it is sufficient to prove that K = K°. Indeed, in
this case it follows from (5.9) that inequality (5.4) is satisfied. To show that K = K¢,
letp € Dandv € U,andsety := ¢ € D, where the superscript “”” denotes reflection,
that is, ¢(z) := @(—t) for all t € R. Then K*xy € C®(R, B(U)), Kx(}y ® v) €
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C®([R,U) and
K(p)v = K@W)v = (Kx)(0)v = (Kx(¥ ® v))(0).

Similarly, K¢(p)v = (K*x(¥®v))(0). Together with an application of (5.10) withu =
¥ ® v this shows that K (¢)v = K°(p)v. This holds for all ¢ € D and all v € U, and
thus K = K°©.

(3)= (4). This implication is trivially true.

(4)=>(5). Since K is Laplace transformable, supp K C [0, co) (by Proposition 5.2)
and . > o (K), it follows that the function G is polynomially bounded on C,, (see,
for example, [43, Theorem 6.5-1]). Now Ge|<cu = G|(c#, and so, it follows from (5.5)
that G® is polynomially bounded on Cy. An application of Corollary 4.7 to G° shows
that (5.6) is satisfied.

(5)=>(1). Assume that statement (5) holds, that is, there exists a holomorphic
function G® : Cy — B(U) of G such that G°(s) = G(s) forall s € C, and (5.6) is
satisfied. To show that G is Sobolev (¢, 8)-stable, we note that, by Theorem 3.1, there
exists a translation-invariant and causal operator G¢ € B(H*(R, U), H?(R, U)) such
that

Gu=(L"oMgeoL(u) YueHR,U).
Consequently,
(LGw)(s) = G(s)(Lu)(s) = GE(s)(Lu)(s) = (L(G*u))(s) Yu e CE[R,U), Vs eC,,

showing that Gu = G®u for all u € C°(R, U), and thereby completing the proof. [

The following corollary shows that, under suitable assumptions, Sobolev («, B)-
stability follows if the transfer function satisfies a natural boundedness condition on
the imaginary axis.

Corollary5.6 Let G : dom G C D' (U) — D'(U) be a causal translation-invariant
continuous linear operator such that C2°(R, U) C dom G and let K € D' (B(U)) be
the kernel of G. Assume that K is Laplace transformable and there exists a holomorphic
function G® : Co — B(U) such that G°(s) = G(s) for all s € C,, where G is the
transfer function of G and v := max (O, cr(K)). Then, for o, B € R, the following
statements hold.

(1) Under the assumption that the following three conditions are satisfied:

(i) there exist M > 0, m, k € Ng and u > v such that

IGS )1l < M(1+1Is|™)(1+ (Res)ik) forall s € Csuch that0 < Res < u,

(ii) there exist xo > O such that, for every a > 0, there exists g, € L'(=a,a)
satisfying

IG*(x + iyl < ga(y) V(x.y) € (0,x0) x [—a,al,
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(iii) the limit G§(y) = limy o G$(y) exists in the strong operator topology for
almost every y € R,

the operator G is Sobolev (v, B)-stable, provided that
esssup,pll(1 +iy)P"*G{(»)| < oo. (5.11)

(2) Assume that U is separable and G® is polynomially bounded on the strip 0 <
Res < w for some p > v. Under these conditions, the limit G{(y) =
lim, o G$(y) exists in the strong operator topology for almost every y € R,
and, if (5.11) holds, then G is Sobolev («, B)-stable.

Proof (1) By Proposition 5.2, supp K C [0, 00), and so, the function G = LK is
polynomially bounded on C,, as follows from [43, Theorem 6.5-1]. Thus, by condition
(i), there exist N > M and an integer n > m such that

IGS)I < N(1+Is")(1+ Res)™*) Vs e Co.

Hence, G° satisfies the hypotheses of Proposition 4.6 (with &6 = « — ). Conse-
quently, if esssup,cp|l(1 + iy)ﬂ’“Gg(y)H < 00, then Proposition 4.6 guarantees
that sup,c, [I(1 + $)P~2Ge(s)|| < oo. Sobolev («, B)-stability of G now follows
from Theorem 5.4.

(2) Assume that U is separable and the function G® is polynomially bounded on the
strip0 < Res < w for some ;& > v. As in the proof of statement (1), we have that G is
polynomially bounded on C,,, and thus, G is polynomially bounded on Cy. It follows
that conditions (i) and (ii) of statement (1) hold. Moreover, there exists k € Ny such
that H(s) := (1 + s) %G®(s) is bounded on C and therefore, as U is assumed to be
separable, the limit Hy(y) = lim, o H(x 4 iy) exists in the strong operator topology
for almost every y € R, implying that condition (iii) of statement (1) is also satisfied.
As a consequence, the claim now follows from statement (1). ([l

Next, we make contact with the theory of well-posed linear state-space systems, see,
for example, the monograph [36]. Each of these systems has a translation-invariant and
causal input-output operator G € B(Li(R, U)) for some u € R, where the Hilbert

space Lft(]R, U) is defined by

loc

LR, U) :={ueLf (R, U):e " ueLl’R U)} and (u, V)13 = (e u e ) o

Conversely, for every translation-invariant and causal operator G belonging to B (Li
(R, U)) for some u € R, there exists a well-posed state-space system which has G as
its input-output operator. If G € B(LIZL (R, U)) is translation invariant and causal, then,
invoking Proposition 5.2, there exists a kernel K € D'(B(U)) such that supp K C
[0,00) and Gu = Kxu for all u € Li,z(R’ U), where LIZM(R, U) denotes the

subspace of Li(R, U) all functions with support bounded on the left. Furthermore,
the causal translation-invariant operator G, € B(L*(R, U)) given by

Guu=e " G(e" u) YueL*R,U)
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has kernel K, := ¢™#* K € D'(B(U)), and an application of Theorem 5.4 to G,
witha = 8 = Oshowsthato (K,) < Oand SUPseC, (LK) ()]l < oo.Consequently,
o0 (K) < pandthe transfer function G = LK of G satisfies that Supsec,, IG(s)] < o0,
thatis, G € H7(B(U)).

The above discussion shows that Theorem 5.4 is applicable to the input-output
operators of well-posed linear systems. The following corollary is an immediate con-
sequence of Theorem 5.4 and Corollary 5.6.

Corollary5.7 Let w > 0, a, 8 € R and let G € B(Li(R, U)) be causal and
translation-invariant with transfer function G € H;?(B(U)). The following state-
ments hold.

(1) The operator G is Sobolev («, B)-stable if, and only if, there exists a holomorphic
extension G* : Co — B(U) of G such that supy_ge s, I (1 +95)P2Ge(s)|| < oo.

(2) Assume that there exists a holomorphic extension G® : Cy — B(U) of G satis-
Jying the conditions (1)-(iil) of statement (1) of Corollary 5.6. If esssup e || (1 +
iy)ﬁ""GS(y)Il < 09, then G is Sobolev (o, B)-stable.

(3) Assume that U is separable and there exists a holomorphic extension G® : Co —
B(U) of G such that G® is polynomially bounded on the strip 0 < Res < L.
Ifesssup,cpll(1+ iy)ﬁ_“Gg(y)H < 09, then G is Sobolev («, B)-stable.

Statements (1) and (2) can be understood as a substantial generalization of [30, The-
orem 6]. To explain this, we recall the concept of P-stability [23, 30]: a holomorphic
function H : @ — B(U), where  C C is open and such that Cp C €, is said to be
P-stable of order o > 0 if the following two conditions are satisfied:

6) SUPseC, [[H(s)|| < oo forall u > 0;

(ii) there exists M > 0 such that |H(y)|| < M(1 + |y|*) forall y € R.

Let u € Rand let G € B(LIZL(R, U)) be causal and translation-invariant. The
growth bound o (G) of G is defined by

o(G) ==inf{v < pu: G € B(L] ,(R, U))}.

We note that the definition is meaningful because L‘ZJ (R, U) C Li (R U) C

Li(R, U) for all v < p. Furthermore, we say that G is regular if its transfer func-
tion G has the property that G(x) converges in 3(U) with respect to the strong operator
topology as x — oo, where x € (0, 00).

Whilst [30, Theorem 6] is formulated in a state-space setting with time-
domain [0, 00), an inspection of the proofs of [30, Theorem 6 and Lemma 7] shows
that [30, Theorem 6] can be rephrased in our double-time axis input-output framework
as follows.?

Proposition 5.8 Let i > Oandlet G € B(Li(R, U)) be causal, translation-invariant
and regular with transfer function G € HZO (B(U)). Assume that G has a holomorphic

extension G® : Q — B(U), where Q C C is open and such that Co C Q. Fora >0,
the following statements hold.

2 Jthas been pointed out in [20] that [30, Theorem 6] is not correct as stated, but can be rectified by replacing
the interpolation space W22 (0, oo; U) used in [30] by Hﬂi R, U).
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(1) If G® is P-stable of order a and there exist M > 0 and k € Ny such that
IGE(s)| < M(Res)* forall s € Csuch that 0 < Res < 1,

then G is Sobolev («, 0)-stable.
(2) If o(G) = 0 and G is Sobolev («, 0)-stable, then G® is P-stable of order a.

Proof The hypotheses of statement (1) imply that G satisfies the conditions (i)-(iii) of
statement (1) of Corollary 5.6, and thus, statement (1) is a special case of statement (2)
of Corollary 5.7. Statement (2) is an immediate consequence of Theorem 5.4. ]

As for statement (2), it is clear that, in the absence of the condition w(G) = 0,
Soboleyv stability does not necessarily imply P-stability (see Examples 6.1, 6.2 and 6.4
below).

We close this section, by linking Sobolev stability to certain results on polynomial
decay of strongly continuous semigroups [1, 6, 30].

Proposition 5.9 Let T () be a strongly continuous semigroup on U, denote its gener-
ator by A, and let oo > 0. Assume that sup,~ | T (t)|| < oo and the intersection of the
spectrum of A with iR is empty. The following statements are equivalent.

(1) sup;=q I1/%T (A7 < oo.

(2) supyeg (1 +iy)~* @yl — A7 < oo

(3) supeg, (1 + )% (sT — A7 < oo

(4) The convolution operator L%(R, U) - LIZOC(R, U), ur f_'oo T(- —tu(r)dr
is Sobolev («, 0)-stable.

Proof The equivalence (1)< (2) follows from [6, Theorem 2.4]. The implica-
tion (3) = (2) holds trivially, whilst the implication (2)=> (3) follows from the fact
that, by the Hille-Yosida theorem, there exists M > 0 such that

I(s1 — A" < MRes)™! ¥seCo
combined with an application of Proposition 4.6 with G(s) = (s/ — A)~!. Finally,
the transfer function of the convolution operator in statement (4) is (sI — A)~!, and
thus, the equivalence (3) < (4) is a consequence of Theorem 5.4. O

6 Examples

To illustrate the results in the previous sections, we discuss five examples.

Example 6.1 (Rational functions) Let U be a complex Hilbert space. Following [31],
a B(U)-valued function G is called rational if it is meromorphic on C U {oo}. The
Laurent expansion of G at oo is of the form

o0
Gs)=) Gjs/. GjeBU). deZ. Gg#0 (6.1)
j=d
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and converges in a neighbourhood of co. The integer d is said to be the relative degree
of G. It is not difficult to see that G is rational if, and only if, G = P/q, where P
is a B(U)-valued polynomial and q is a scalar-valued polynomial. For the relative
degree d of G we have thatd = deg q —deg P. Furthermore, a B(U )-valued function G
is rational if, and only if, it is the Laplace transform of a distribution K = & + A,
where ® and A are of the form

n
Zfljel/.tFj, >0 mo

o) =1{ % . A=) "8Y'D;, F;,DjeBWU), n.m,lj €Ny, r;€C.
0, 1<0 =0

Let G be a B(U)-valued rational function with relative degree d, set K := L£71G,
let ;1 € R be such that G is holomorphic on C, and let G, be the convolution operator
with kernel e™#" K. Note that the transfer function G, of G, is given by G, (s) =
G (s + ). It follows from Theorem 5.4 that G, is Sobolev (0, B)-stable for every g <
d.Moreover, the relative degree of G can be characterized in terms of Sobolev stability
of G as follows:

d =max{f € R: G, is Sobolev (0, ) — stable}. (6.2)

The above identity is an immediate consequence of Theorem 5.4 and the fact that the
relative degrees of the functions G and G, coincide.

The concept of relative degree and the identity (6.2) extend to 5(U)-valued func-
tions which are meromorphic at oo, that is, functions G which can be represented by
a Laurent series of the form (6.1) on some neighbourhood of co. The resolvents of
bounded linear operators provide a class of examples of B(U )-valued functions which
are meromorphic at co.

We close this example by remarking that the notion of relative degree plays an
important role in classical and adaptive control of finite-dimensional systems. Whilst
attempts (see, for example, [12]) have been made to extend it to systems with irrational
transfer functions, a fully adequate generalization is still missing. We feel that the
concept of Sobolev stability (or some localized version of it) might be a suitable tool
to facilitate such a generalization, and we are planning to pursue this in future research.

O

Example 6.2 (Series connection of a rational transfer function and a delay line) Let G
be a B(U)-valued rational function, where U is a complex Hilbert space, assume
that G is holomorphic on Cy, and let G be the convolution operator on D, (U) with
kernel £~!G. Define the operator H by Hu := §;x(Gu) for all u € D'(U), where §;
is the Dirac distribution supported at t > 0. Then the transfer function H of H is
given by H(s) = e " G(s). It follows from Theorem 5.4 and Example 6.1 that

max{B € R : His Sobolev (0, B)-stable} = relative degree of G.

This is not surprising since convolution with §; leaves any regularity properties
unchanged. O
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Example 6.3 (A neutral functional differential equation) Consider the controlled and
observed neutral functional differential equation

wi) —w(t —r)=—aw() +u(), z() =w(), (6.3)

where a, t > 0 are positive parameters, u is the control function or input and z
is the observation or output. We assume that # has support bounded on the left.
Taking Laplace transforms (under zero initial conditions) of (6.3) and comput-
ing (Lz)(s)/(Lu)(s) shows that the transfer function of (6.3) is given by

1
=i ra

see equation (5.2) and the subsequent commentary. It follows from [24] that the func-
tion G has the following properties:

(i) supsec, |G(s)| < oo forevery u > 0;

(ii) there exists an open set §2 containing Cg such that G is holomorphic on 2;

(iii) there exist poles s (j € N) of G suchthatRes; < 0,Res; — Oand|s;| — oo
as j — o0;

(iv) G is not bounded on Cy, that is, G ¢ H>;

(v) G(s)/(1 + s) is bounded on Cy.

In particular, it follows that the causal and translation-invariant input-output oper-
ator G of (6.3) (that is, the map u +> z under zero initial conditions) maps Li’ ((R)
boundedly into itself for every u > 0. An application of Theorem 5.4 guarantees
that G is Sobolev (1, 0)-stable. O

Example 6.4 (A 1-dimensional heat equation) Consider the following heat equation
on the unit interval with Dirichlet control and Neumann observation at the right end
point:

d

ow 2w d
E(S’t)z?(é?t)7 e

w
©,0)=0, w(l, i) =u@t), &e©1),
9 9 (6.4)

Jw
z(t) = E(l’t)'

As in Example 6.3, u is the input and z is output, both of which take values in U = C.
We assume that u has support bounded on the left. Calculating (£z)(s)/(Lu)(s) (under
zero initial conditions) is routine and shows that the transfer function G is given by

G(s) = +/stanh(y/5) Vs e Cy,

see equation (5.2) and the subsequent commentary. The function G is not bounded
on any right-half complex plane (and thus is not the transfer function of a well-posed
state-space system [36]), but evidently satisfies

sup | (14 ) 2G(s)| < oc. 6.5)

SG(C()
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Therefore, the input-output operator G of (6.4) (that is, the convolution operator with
kernel £71G) is (1/2, 0)-Sobolev stable by Theorem 5.4. Corollary 5.5 yields that G
is (1/2 + 6, 0)-Sobolev stable for all 6 € R. O

Example 6.5 (A 2-dimensional heat equation) Consider the following controlled and
observed heat equation on the unit square 2 := (0, 1) x (0, 1):

ow 0w 0w
E(élv §2, t) = a_slz(glﬂ 525 Z‘) + @(él? %‘27 t)’

wO &0 =0 w80 =0 E.&)eQ,  ©66)
60020, Dy 10 = i,
o5, " T g TR

z¢, ) =wérL,k, 1),

wherex € [0, 1) is aparameter which specifies the & -position at which the observation
is taken. We choose as input and output space U = L?(0, 1), and the U-valued input
and output functions u and z are given by u(¢) := u(-,t) and z(¢) := z(-,t). The
control function u# acts via a Neumann boundary condition along the top edge of
the square, and is assumed to have support bounded to the left. For each t+ > 0, the
output z(¢) corresponds to the observation of the profile w( -, k, t). As may be shown by
arguments analogous to those used in [ 7], the mapping L%(R, U) > L%(R, U),ur—z
determined by (6.6) under zero initial conditions is well-defined and continuous. The
present example is based on [20, Section 4, Example (7)], which in turn is inspired by
[21, Example 7.14], and we refer the reader to [7] for more details of controlled and
observed heat equations on bounded domains in R”.
The transfer function G is given by

G(s)v = ﬁZhn(s; k)¢, (v)sin(nr ) Youe L2(0, 1),
n=1

where ¢, are the Fourier sine coefficients of v, namely,

1
Ln(v) = ﬁ(v, sin(nmw ')>L2(0,1) = \/5/ v(n)sin(nTn)dn VneN,
0

and

cosh(k+/s + n2m?)

hy(s; k) = VseC__2, VneN.
" Vs + n272 sinh(v/s + n2n2) g

The function G belongs to H*(B(U)) and so, by Theorem 3.1, the input-output
operator of (6.6) extends to a causal translation-invariant operator G € 5 (L3R, U)).

We claim that s > (145)? G(s) is bounded on C forall § € R, so that G is («a, 8)-
Sobolev stable forall («, 8) € R? by Theorem 5.4. Since G is bounded on C, the claim
for non-positive 6 is trivial, and so we focus on the case that & > 0. By statement (2)
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of Corollary 5.6 it suffices to show that y — (1 + iv)!Go(y) = (1 +iy)?G(y) is
bounded on R.
For which purpose, let y € R, sets, = s5,(y) := iy +n?n2 #Oforalln € N,

and note that
sp= (> + n4n4)%ei agn) and Res, = (y> + n4n4)% cos(arg(sy)) .

Standard hyperbolic identities give that

cosh(ks,) = cosh(k Re s,,) cos(k Im s,) + i sinh(k Re s;,) sin(x Im s,,)

and |cosh(1<s,,)|2 = COShz(K Res,) — Sil’lz(K Ims,) < coshz(/c Resy) .
Similarly,

sinh(s,,) = sinh(Re s;) cos(Im s;) + i cosh(Re s;,) sin(Im s,,)

and |sinh(sn)|2 = sinh? (Res,) + sin’ (Ims,) > sinh? (Resy) .
Consequently, there exists a constant k£ > 0 such that

cosh(k Re sy,)
sinh(Re s,,)

< kexp ((1/V2)(k — D2 +n*7hi) VyeR, VneN,

cosh(ksy,)
sinh(s;,)

< kexp ((k — D+ n4n4)% cos(arg(sy)))

where we have used that k — 1 < 0 and arg(sy,) € (—m/4, w/4). Therefore,
k
I (iy; 1)| < — exp ((1/v/2)(k — 1)(y* +n4n4)%) VyeR, VneN.
nw

It is straightforward to show that, for each fixed 6 > 0, there exist y* > 0 and y;’ €
[0, y*] for every n € N such that

max| (1 + ) ha(iy: 0] = 1+ i) ha iy )]

In particular, there exist constants /, A > 0 such that

rna())(l(l + i) hyGiy: k)| <le™™ VneN.
y>

Since

o0
10+ i) G vl 2 = (Y10 +i9 haGys 1) vl 2,y Yo € L2O. 1), Yy eR,

n=1

the claim is proven. O
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7 Remarks on right-shift invariant operators on the half-line

In this section, we indicate how the results in Sections 3-5 can be used to obtain
corresponding results for right-shift invariant operators acting on functions defined on
the half-line. Recall the half-line space Hﬁ R, U), ¢ € R, defined in Section 2. By
Lemma 2.1, H¥ (R, U) is the closure of the subspace {u € C*(R, U) : suppu C
(0, o0)} with respect to the norm topology of H* (R, U). Throughout this section, U
denotes a complex Hilbert space.

An operator G € B(HY(R, U), Hf(]R, U)) is said to be right-shift invariant
if $;G = GS; for all T > 0. It is straightforward to show that right-shift invari-
ance of G implies causality, in the sense that, forall 7 > O and all u € ij (R, U),

suppu C [t,00) = supp(Gu) C [t, 00).

The following lemma shows that a right-shift invariant operator in B(H§ (R, U), H _’E
(R, U)) has a unique causal and translation-invariant bilateral extension belonging
to B(H*(R, U), HF (R, U)).

Lemma7.1 Leta, B € R.

(1) IfG € B(HY (R, U), H_E R, U)) is right-shift invariant, then there exists a unique
causal and translation-invariant operator G® € B(H*(R, U), HB(R, U)) such
that

G®| e =G and |G®|gye ypy = 1Gllz e 16 -
lHer,v) G Ise. ) = 1G g o it

(2) If G is a causal and translation-invariant operator in B(H*(R, U), H* (R, U)),
then the restriction G4 = Glyewruy) is a right-shift invariant operator

in BH{ R, U), HE(R, U)) and, furthermore, ”G"‘”B(Hﬁ,Hf) = |Glipne, mey-

The above lemma is a generalization of [38, Theorem 6.2] which addresses the L2-
case (¢ = B = 0). The arguments used in [38] extend to the case of arbitrary « and
B, and therefore, we do not include a proof of Lemma 7.1.

The following corollary, a right-half line version of Theorem 3.1, provides a char-
acterization of right-shift invariant bounded operators G : HY (R, U) — H f R, U).
It is an immediate consequence of Theorem 3.1 and Lemma 7.1.

Corollary7.2 Leta, B € R.
(1) IfG: HY(R,U) — Hf (R, U) is a bounded linear right-shift invariant operator,

then there exists a unique holomorphic function G : Cy — B(U) such that

sup (1 +5) " “G(s)|l = |G|l

seCo

Gu= (L oMgoL)u) Yue H R, U).

) and

@ Springer



Mathematics of Control, Signals, and Systems (2024) 36:729-773 765

(2) Conversely, if G : Co — B(U) is holomorphic and such that sups.c, I(1 +
HP*G(s)| < oo, then G = L' o Mg o L is a right-shift invariant
bounded operator HY (R, U) — Hf(]R, U) and ”G”B(Hi,Hf) = sup,ec, II(1 +

PG (s)].

The above corollary is a generalization of a well-known result for the L>-case (« =
B = 0), see, for example, [41]. For the special case whereina = 8 = 1 and U = C,
statement (1) can also be found in [29]. Whilst Corollary 7.2 is essentially identical
to [20, Theorem 3.1], we mention that it has been derived here by somewhat different
means.

The half-line space HY (R, U) is a so-called zero-trace space because, fora > 1/2,
it can be shown that if u € HY(R, U), then u<j)(0) = 0 for all j € Ny such that
Jj < o — 1/2 (see, for example, [3, Chapter VIII, Theorem 1.6.8]). Another half-
line version of H*(R, U) (when o > 0) is the space of restrictions {u|jg,cc) : # €
H*(R, U)} equipped with the norm |lu|| := inf{[|v]|ge : v]|{0,00) = u}. This is a
bigger space than HY (R, U) and a characterization of right-shift invariant bounded
linear operators on this space is more difficult and is addressed in [20].

Finally, by an argument very similar to that leading to Corollary 7.2, a right-half
line version of the Fourier multiplier result in Corollary 3.7 can derived. Furthermore,
Lemma 7.1 and Corollary 7.2 together with the results in Sects. 4 and 5 can be used
to develop a theory of Sobolev stability for right-shift invariant operators defined on
half-line spaces.

8 Appendix
The purpose of the appendix is twofold: to present some background material on

the convolution of vector-valued distributions (Appendix 1) and to provide proofs of
Lemmas 2.1 and 2.2 (Appendix 2) and Theorem 4.1 (Appendix 3).

Appendix 1: Remarks on the convolution of vector-valued distributions

Let X be a complex Banach space and let Z = X or Z = B(X). The subspace of all
distributions in D’(Z) with support bounded on the left is denoted by D}, (Z). As usual,
we set D, := D, (C). In the following, when using the term “convolution product”,

we mean a bilinear mapping which is continuous in each argument. It is well-known
that there exists a unique convolution product

D,(B(X)) x Dy(X) = Dy(X), (K,u) > K*u 8.1
satisfying

(k@ T)*(f ®x) = (kxf) ® (Tx) Vk,f €D, VT € BXX), Vx € X,
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where kx f is the standard convolution product of the scalar-valued distributions k
and f, see [3, p. 432/433], [14, Chapter XVI: Section 2], [16, Chapter 8] or [43,
Chapter 5].

If K and u are Laplace transformable, then the convolution theorem (exchange
formula) for Laplace transforms holds:

(L(K#u))(s) = (LK)(s)(Lu)(s) foralls € Csuchthat Res > max{o(K), o (u)},

see [14, Chapter XVI: Section 2], [16, Chapter 8] or [43, Chapter 6].

If K and u have supports which are bilaterally unbounded, then it is still possible to
define a convolution product of K and u, provided certain assumptions are satisfied.
For the current purposes, it is sufficient to consider the case wherein K is of the
form K = k ® I, where k is a scalar-valued distribution. We set O := F “1om C
S’ (distributions of rapid decay) and recall that there exists a well-defined scalar
convolution product

Ocx8 — 8, (k, f) > kxf,

see [35, Théoreme XI (Chapitre VII)] or [40, Definition 30.2]. By [35, Théoreme XV
(Chapitre VII)] or [40, Theorem 30.4], the convolution theorem (exchange formula)
for Fourier transforms holds:

Fksf) = (FKN(Ff) YkeOp VfeS. (8.2)

Note that the multiplication on the right-hand side of (8.2) is well-defined because Fk €
Omand F f € S'. An application of [3, Appendix: Theorem 1.5.3] together with argu-
ments similar to those used in the proof of [3, Appendix: Theorem 1.9.1] shows that
there exists a unique convolution product

O¢ x §'(X) = S'(X), (k,u) — kxu (8.3)
satisfying

kx(f @x)=(kxf)®x Vke O, VfeS8, VxeX. (8.4)
It is a routine exercise to show that if the supports of k € Op and u € S'(X) are
bounded on the left, then kxu in the sense of (8.3) coincides with (k ® I)*u in the

sense of (8.1).
The identity (8.4), together with (8.2), the denseness of &’ ® X in S'(X) [3,
Appendix: Theorem 1.3.6] and continuity properties of the Fourier transform and the

convolution product (8.3), shows that convolution theorem for Fourier transforms (8.2)
carries over to the vector-valued case, that is,

Flksu) = (Fk)(Fu) Yk e Op, Yu e 8(X). (8.5)
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Appendix 2: Proofs of Lemmas 2.1 and 2.2

Proof of Lemma 2.1. In the following, let V. = U or V = C. By statements (3) and (4)
of Proposition 3.3, the restriction of the operator Ry to L>(R, V) is a causal isomor-
phism from L2(R, V) onto H? (R, V) (for every 6 € R). To avoid awkward notation,
we use the same symbol Ry to denote the scalar- and vector-valued versions of the oper-
ator. As usual, the tensor product F(R, C)®@ U C F(R, U), where F = L2, F = c
or F = HY, is defined as the vector space spanned by all finite linear combinations
> i=1 fi ®uj, where f; € F(R,C),u; € Uand (f; @u;)(+) := f;()u;.

(1) As Rg(L*(R,V)) = HY@R,V) for V = U,C, L*(R,C) ® U is dense
in L2(R, U) and

Ry(LPXR,C)®@U) = Ry(L*(R,C)H)®@ U = H' (R, C) ® U,

it follows that HY(R,C) ® U is dense in H’(R, U). Now C(R,C) is dense
in H?(R, C) (see, for example, [37, Lemma 15.10]), implying that C°(R, C) ® U is
dense H?(R, U) ® U, and thus, C(R, U) is dense in HY (R, U).

(2) Invoking the causality of Ry and R;l = R_y, it follows that Ry (Li(R, V) =
Hﬁ(R, V) for V.= U, C. By an argument similar to that used in the proof of
statement (1), we obtain that Hi (R, C) ® U is dense in Hf (R, U). Consequently,
as Hf (R, €) is the closure of the subspace {u € C*°(R,C) : suppu C (0, 00)}
with respect to the norm topology of H?(R, U) (see [25, Theorem 3.29]), the
space {u € C(R, U) : suppu C (0, 00)} is dense in Hﬁ(R, U). O

Proof of Lemma 2.2. We proceed in two steps.

Step 1: p > 0. In this case, it follows from an application of [4, Theorem 2.5.1]
(with, in the notation of [4], ® = u, g(s) = sh(s) and b = 1) that there exists & €
C(R, X) suchthath(t) = Oforallt <0, sup,.q ||e_”’t_1h(t)|| < ooforeveryv > u
and (Lh)(s) = h(s) for all s € C,,. Furthermore, letting v > u, and choosing 0 <
& < v — u, we have that

M :=sup eV ()| < oo.
t>0

Consequently, | h(t)|| < Mte™® for all t > 0, showing that e " h € L'(R, X)
and completing the proof of the claim when > 0.

Step 2: u < 0. Set g(s) := h(s + p) for all s € Cp. Then g is a holomorphic X-
valued function on Cy such that SUPsecy ||s2g(s)|| < 00. By Step 1, there exists g €
C(R, X) such that g(¢) = 0 forall # < 0, sup,_ [le” 't 1g(t)| < coande ™ g €
L'(R, X) for every w > 0 and (Lg) = g(s) for all s € Cy. Routine arguments show
that the function 4 : R — X, t — e"/g(¢) has all the required properties. |

Appendix 3: Proof of Theorem 4.1

Before we prove Theorem 4.1, we develop some auxiliary material which will play a
key role in the proof.
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For n € Ny, we define i, : C\(iR) — R} by

b (s) (A +1s)"Res)™, 0<|Res| <1
§) =
! A+ s, Res| > 1.
Throughout this appendix, let X be a complex Banach space. The following result is a

special case of [26, Lemma 2] (translated from the upper/lower- to the right/left-half
plane setting).

Lemma 8.1 LetF : C\(iR) — X be holomorphic, and, forx € R, x # 0, setF,(y) :=
F(x 4 iy) for all y € R. If there exist n € No and L > 0 such that

IF(s)|| < Lhp(s) Vs e C\(R), (8.6)

then there exists ® € S'(X) such that ([Fx] — [F_X]) — ®inS'(X)asx | 0.

Next we relate the growth conditions (8.6) and (4.2). In view of the condition (4.2),
we set

gmi(s) == (1 +[sD™(1 + Res) %) Vs e Cy,

where k, m € Ny.

Lemma 8.2 Let k, m € Ny. The exists C > 0 such that, for all s € Cy,

hi(s), if k=m

m <C
& k(5) o (s), if k <m.

Proof Lets € Cp and write s = x + iy, wherex > Oand y € R.
CASE 1:k > m.If x > 1, then |s| > 1, and so,

gmi(s) < 2(14[sD™ < 2(1 + IsDF < 2(1 + |sPH)E.
If0 < x <1, then
gmi(s) <2014 [sD™x7F <201 + IsfxF < 20K + sk a7,

where y := max,>o(1 +a)(1 +a?)~! = 1/(2(+/2 — 1)). We conclude that in this
case

gmk(s) < 2yFhi(s) Vs e Cy.
CASE 2: k <m.If x > 1, then |s| > 1, and so,
gmi(s) < 2(1 4 [sD™ < 2(1 + [s[H™.
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Furthermore, if 0 < x < 1, then
Zn k() < 201+ IsD™x7F < 21+ [s)"x ™" < 29" (14 |sP)"x ",
Consequently, we have that
gm k() <2y"hy,(s) Vs e Cy.

The claim now follows with C = 2y max(k.m), O
We are now in the position to prove Theorem 4.1.

Proof of Theorem 4.1. We proceed in three steps.

Step 1: Existence of the boundary distribution T.

To use Lemma 8.1, we define a holomorphic function F : C\(iR) — X by
setting F(s) := G(s) when Res > 0 and F(s) := 0 when Res < 0. As G sat-
isfies the growth bound (4.2), it follows from Lemma 8.2 that (8.6) holds for F
with n = max(k, m) and L = MC. The existence of I' € S'(X) such that [G,] — T
in §8'(X) as x | 0is now guaranteed by Lemma 8.1.

Step 2: supp F~'T" C [0, 00).

We note that, for every u > 0, there exists a constant M,, > 0 such that

IGOI _ My
|S|m+2 - |S|2

e C,,
as follows from (4.2). Defining the holomorphic X-valued function H by
1
H(s) := WG(S) Vs e Cy,

we see that SUPseC,, IsZH(s)|| < M, for every i > 0. Invoking Lemma 2.2 shows

that there exists H € C(R, X) such that H(r) = O forallr <0,e " H € L' (R, X)
for every u > 0 and

oo

H(s) =/ e STH()dt Vs e Cy.
—00

Therefore,

H(x +iy) = /Oo e V(e H () dr = (F(e ™ H))(y) Yx>0, VyeR.

—00

Let now x > 0 be fixed, but arbitrary. Setting H, (y) := H(x +iy) forall y € R, the
above can be expressed as

H, =F(e " H).
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Obviously, (x +iy)"T?H, (y) = G, (y) forall y € R. Defining b(y) := (x +iy)"+?
forall y € R, this can be written as bH, = G;. Noting that b[H, ] = [bH, ], we obtain

F((I 4+ D)y"**[e™ H]) = bFle™ H]=blF(e™* H)l = b[H,] = [bH,] = [G,],
8.7

where D denotes distributional differentiation. Since H () = Oforall # < 0, it follows
that supp((x/ + D) t2[e—x" H]) C [0, 00), and so,

supp(f_l[Gx]) C [0, 00).
This holds for all x > 0, and, since [G,] — I in §'(X) as x | 0, the continuity
of F~! then guarantees that supp F~'T" C [0, 00).
Step 3: L(F~T) = G.
Note that, by (8.7),
(xI + D))" P’[e™ H] = FG,]. (8.8)
Next, we let x go to 0. As we do not know that [H] € S'(X), it cannot be concluded
that the left-hand side of (8.8) converges to D" *2[H] in &’(X) as x | 0. However,
[H] € D'(X), and so it is clear that
(xI +D)"’[¢e™* H] — D"’[H] inD'(X) asx | 0.
Together with (8.8) and the convergence of [Gy] to " in §'(X) as x | 0, this implies
(D"[HD(p) = (F~'T)(9) Vg eD.
Hence, for ¢ > 0,
(e7¢ D" [H1)(9) = (¢ (F'I))(¢) VeeD. (8.9)
Obviously, as the distribution /! T" is tempered and has supportin [0, 00), itis Laplace
transformable. Since e ¢ € (9;“,1, the distribution e ~¢" (F~!T) is also tempered, and
hence Laplace transformable. It is sufficient to prove that
(L™ (F'M))(s) =G(s +¢) Vs eCo. (8.10)
Indeed, as ¢ > 0 is arbitrary, it then follows that (E(]-"_1 F))(s) = G(s) foralls € Cy.

We proceed to establish (8.10). Using an induction argument, it can be shown that

(e D"[H]) (@) =) <Z>ck(D"k(ec' [H]))(¢) VneNy, Yo eD. (8.11)
k=0
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We postpone the derivation of (8.11) to the end of the proof.

As e ' [H] = [e H] and e ¢ H € L' (R, X), we have that e ¢ [H] €
S’(X). Consequently, D/ (e=¢"[H]) is in S’(X) for every j € Np, and it follows
from (8.9), (8.11) and the denseness of D in S that

m+2
2
(e F ') =>) <m: >ck(Dm+2—k(e—f' [HD)(p) YoeS.
k=0

Taking Laplace transforms on both sides of the above identity yields

m—+2
(L™ (F'T)) ) = (Z (m ; z)cks’”“"‘) H(s +0)

k=0 k
= (s + )" ?H(s +¢) Vs e Co,

whence
(L™ (F'T)))(s) = G(s +¢) Vs e Cy,

which is (8.10).

It remains to derive (8.11). Trivially, (8.11) is valid for n = 0. Assume now that (8.11)
holds for some n € Ny. Setting ¢ = ¢ ¢ and T® := DT for T e S'(X)
and k € Np, the induction hypothesis takes the form

YHI™ = Z (Z)ck(lﬂ[H])("_k) on D.
k=0

As Y [H]"D = (Y[H]™Y 4y [H]™ (on D), it follows from the induction hypoth-
esis and a straightforward calculation that

n n+1

n n n — n n —
-W[H]( +1) — Z (k>ck(w[H])( +1—k) +](2:; (k B 1>Ck(w[H])( +1—k) on D.

k=0

As

we conclude that

n+1

ALIEEDY (" : l)c"w[m)(”““ on D,

k=0
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completing the induction argument. ]
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