
Mathematics of Control, Signals, and Systems (2024) 36:729–773
https://doi.org/10.1007/s00498-024-00387-4

ORIG INAL ART ICLE

Operator-valued multiplier theorems for causal
translation-invariant operators with applications to control
theoretic input-output stability

Chris Guiver1 · Hartmut Logemann2 ·Mark R. Opmeer2

Received: 11 January 2024 / Accepted: 6 May 2024 / Published online: 30 May 2024
© The Author(s) 2024

Abstract
We prove an operator-valued Laplace multiplier theorem for causal translation-
invariant linear operators which provides a characterization of continuity from
Hα(R,U ) to Hβ(R,U ) (fractional U -valued Sobolev spaces, U a complex Hilbert
space) in terms of a certain boundedness property of the transfer function (or sym-
bol), an operator-valued holomorphic function on the right-half of the complex plane.
We identify sufficient conditions under which this boundedness property is equiva-
lent to a similar property of the boundary function of the transfer function. Under the
assumption that U is separable, the Laplace multiplier theorem is used to derive a
Fourier multiplier theorem. We provide an application to mathematical control the-
ory, by developing a novel input-output stability framework for a large class of causal
translation-invariant linear operators which refines existing input-output stability the-
ories. Furthermore, we show how our work is linked to the theory of well-posed
linear systems and to results on polynomial stability of operator semigroups. Several
examples are discussed in some detail.
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1 Introduction

It is well-known (see [36, Theorem 10.3.5], [38, Theorem 9.1 ] or [41]) that a linear
operator G : L2(R,U ) → L2(R,U ) is causal, translation-invariant and continuous
if, and only if, there exists a bounded B(U )-valued holomorphic function G on the
open right-half complex plane such that

Gu = L−1(GLu) for all u ∈ L2(R,U )with support in [0,∞), (1.1)

in which case,

∥
∥G

∥
∥B(L2(R,U ))

= sup
Re s>0

‖G(s)‖.

Here, U is a complex Hilbert space, B(U ) denotes the space of bounded linear oper-
ators U → U , L is the Laplace transform, and causality of G means that if u and v

coincide on an interval of the form (−∞, τ ), then so do Gu and Gv.
We remark that representations of causal translation-invariant (or right-shift invari-

ant) operators by holomorphic functions play an important role in mathematical
systems and control theory in general (see [28]) and in the theory of well-posed
linear systems in particular (see [36]). In a control-theoretic context, the holomorphic
function G representing the operator G — the so-called symbol of G — is referred
to as the transfer function of G. The multiplier theorem [36, Theorem 10.3.5] (or [38,
Theorem 9.1]) mentioned above (see representation formula (1.1)) rests on the Paley-
Wiener theorem (see, for example, [4, Theorem 1.8.3] or [36, Theorem 10.3.4]), and
the Hilbert space structure of L2(R,U ) is crucial. Indeed, it is well-known that not
all causal translation-invariant operators on Banach spaces admit such a multiplier
representation [29, 41].

In Sect. 3 of this paper, we prove the following generalization of the above result.

Laplace multiplier theorem. Let α, β ∈ R. A linear operator G : Hα(R,U ) →
Hβ(R,U ) is bounded, translation-invariant and causal if, and only if, there exists
a B(U )-valued holomorphic function G on the open right-half complex plane such
that

Gu = L−1(GLu) for all u ∈ Hα(R,U ) with support bounded on the left

and

γ := sup
Re s>0

‖(1 + s)β−αG(s)‖ < ∞, (1.2)

where Hα(R,U ) is the fractional Sobolev space of U -valued tempered distributions
(sometimes also referred to as aBessel potential space). Furthermore,‖G‖B(Hα,Hβ) =
γ .

The above multiplier theorem appears as Theorem 3.1 in the paper. Its proof is
based on the representation result for operators L2(R,U ) → L2(R,U ) and a natural
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scale of causal translation-invariant isometric isomorphisms L2(R,U ) → Hα(R,U ).
We use the Laplace multiplier theorem to derive the following corollary.

Fourier multiplier corollary. Assume that U is separable and let α, β ∈ R. A
linear operator G : Hα(R,U ) → Hβ(R,U ) is bounded, translation-invariant and
causal if, and only if, there exists a B(U )-valued holomorphic functionG on the open
right-half complex plane such that

Gu = F−1(G0Fu) for all u ∈ Hα(R,U ) and γ < ∞, (1.3)

in which case

‖G‖B(Hα,Hβ) = γ = ess supy∈R‖(1 + iy)β−αG0(y)‖ < ∞,

where F denotes the Fourier transform and G0(y) := limx↓0 G(x + iy) for almost
every y ∈ R.

We remark that the separability of U is crucial for the existence of the pointwise
boundary limit G0. The above Fourier multiplier corollary generalizes the L2-result
in [38, Theorems 5.2 and 6.5].

Whilst a non-causal translation-invariant bounded linear operator G on L2(R,U )

also admits a multiplier representation of the form (1.3) (see [5, Theorems 71–73]
and [38, Theorem 5.2]), there does not exist a bounded holomorphic function G on
the open right-half plane such that G0 is the boundary function of G. In a more
general setting (where, for example, the functions in the domain and codomain of
the operator may depend on several variables), the relationship between causality and
holomorphicity has been explored in [17]. We remark that Fourier multiplier theorems
play an important role in the abstract theory of linear and quasilinear parabolic systems
[2, 3] and in the stability theory of operator semigroups (see, for example, [32, 33]).
We emphasize that our work focuses on causal operators and note that causality does
not play a role in much of the Fourier multiplier literature.

Returning to the above Laplace multiplier theorem, given a holomorphic B(U )-
valued function G on the open right-half plane, it may be difficult to check directly if
the quantity γ defined in (1.2) is finite. Usually, if the boundary function G0 exists,
the imaginary axis condition

γ0 := ess supy∈R‖(1 + iy)β−αG0(y)‖ < ∞

is easier to deal with. If γ < ∞, then γ = γ0; however, if γ0 < ∞, then it does
in general not follow that γ = γ0 < ∞. For applications of the above theorems
(in a control theoretic context, for example), it is important, therefore, to identify
conditions which ensure that the finiteness of γ0 implies that of γ , in which case γ =
γ0. In Sect. 4 of this paper, inspired by certain results on distributional boundary
values of holomorphic functions from [8–10, 26], we derive several such conditions.
In particular, it is shown that ifG is polynomially bounded and γ0 < ∞, then γ = γ0.
We remark that the relevant theorems in [8–10, 26] are not in a suitable form to be
directly applicable in the current context and, hence, we develop and prove bespoke
versions of these results.
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There is a rich history of analysing control systems from a functional analytic per-
spective, see, for instance, [13, 27, 28, 36, 43]. In the so-called input-output approach
to systems and control, a system is considered as an operator, usually referred to as
the input-output operator, mapping inputs (control functions) to outputs (observation
functions), both ofwhich are defined onR or [0,∞) (interpreted as the bi-lateral or uni-
lateral time axis, respectively) and take values in aHilbert spaceU . As causality is a key
feature of physical control systems, input-output operators are assumed to be causal.
Certain continuity or boundedness properties of the input-output operator are referred
to as input-output stability, a theory which dates back to the 1960s (see [15]), with L2-
stability (finite-energy-input finite-energy-output) and L∞-stability (bounded-input
bounded-output) being the most prominent examples.1 For various classes of systems,
input-output stability properties have been (i) characterized in terms of transfer func-
tions and (ii) linked to stability concepts in the sense of Lyapunov, see, for example,
[34, Chapter 12], [36, Chapter 8], [39, Section 3.7] and [42].

In Sect. 5, we apply the above Laplace multiplier theorem and the results of Sect. 4
to develop a novel control-theoretic input-output stability framework, referred to as
Sobolev stability, for a large class of causal translation-invariant operators (equiva-
lently, causal convolution operatorswithB(U )-valued distributional kernels). Our new
concept of Sobolev (α, β)-stability relates to the boundedness of a causal translation-
invariant input-output operator G as a map from domG ⊂ Hα(R,U ) to Hβ(R,U ),
where α, β ∈ R. It is particularly relevant in the analysis of systems which are not L2-
stable, but exhibit certain weaker stability properties and, as we demonstrate, can
be viewed as considerable refinement of the concept of P-stability [23, 30]. In Theo-
rem 5.4, we provide several characterizations of Sobolev (α, β)-stability ofG in terms
of its transfer function G, and use these to link Sobolev stability to results on polyno-
mial decay of operator semigroups [1, 6, 30] in Proposition 5.9. We also make contact
with the theory of well-posed linear systems [36] by providing, in Corollary 5.7, cri-
teria for Sobolev (α, β)-stability of the input-output operators of well-posed linear
systems.

In Sect. 6, we discuss several examples in detail, including a neutral functional
differential equation and a heat equation on a square with boundary control along the
top edge. Using the results on Sobolev stability from Sect. 5, we determine for which
values of α and β the systems under consideration are Sobolev (α, β)-stable. Finally,
in Sect. 7, we derive a half-line version of the above Laplace multiplier theoremwhich
provides a characterization of right-shift invariant bounded linear operators defined
on the subspace of all u ∈ Hα(R,U ) with support in [0,∞).

Apart from Sect. 3, 4, 5, 6 and 7 which we have described in some detail, the paper
contains Section 2 and an Appendix (Section 8). The former is devoted to notation,
terminology, backgroundmaterial and preliminaries, whilst the latter contains remarks
on the convolution of vector-valued distributions (Appendix 1), the proofs of two
results from Sect. 2 (Appendix 2) and the proof of Theorem 4.1 (Appendix 3).

Finally, throughout the paper, to simplify the presentation, we consider the sce-
nario of causal translation-invariant linear operators, the domains and codomains of
which consist of vector-valued distributions with values in the same Hilbert space U .

1 We remark that input-output stability theory is not restricted to linear systems, see, for example, [11, 15].
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The case of operators mapping a space of U -valued distributions to a space of Y -
valued distributions (Y another Hilbert space) can be reduced to said scenario by an
augmentation trick: if G is a causal translation-invariant linear operator mapping U -
valued to Y -valued distributions with a B(U ,Y )-valued transfer function G, then,
setting Ũ := U × Y ,

G̃ :=
(

0 0
G 0

)

and G̃ :=
(

0 0
G 0

)

,

the operator G̃ is causal, linear and translation invariant, maps Ũ -valued distri-
butions to Ũ -valued distributions, and G̃, the transfer function of G̃, has values
in B(Ũ ) = B(Ũ , Ũ ). The results of the paper facilitate the analysis of G̃ and G̃,
and any conclusions can be used to draw corresponding conclusions relating to G
and G, the original operator and its transfer function, respectively.

2 Preliminaries

Most mathematical notation used is standard. As usual, let N, Z, R and C denote
the positive integers (natural numbers), integers, real numbers and complex numbers,
respectively. Furthermore, we set

N0 := N ∪ {0}, R+ := [0,∞) and Cμ := {

s ∈ C : Re (s) > μ} ∀ μ ∈ R .

Let X and Z be complex Banach spaces. The space of all linear bounded operators
X → Z is denoted by B(X , Z). Endowed with the usual induced operator norm,
B(X , Z) becomes a Banach space. We set B(X) := B(X , X). The space of continu-
ous functions from R → X is denoted by C(R, X), and C∞(R, X) and C∞

c (R, X)

denote the subspaces of smooth functions and smooth functions with compact support,
respectively.

For more details on the following material on spaces of vector-valued functions
and distributions, we refer to

• [13, Appendix A.5] and [22, Chapter III] for vector-valued measurability and
integration;

• [31, Chapter 4] and [38] for operator-valued H∞-functions;
• [2, Chapter III: Sections 4.1 and 4.2], [3, Chapter VII], [14, Chapter XVI: Section
2], [16, Chapter 8] and [43, Chapters 3, 5 and 6] for vector-valued distributions.

Let L p(R, X) denote the usual Bochner-Lebesgue space of functions R → X , where
1 ≤ p ≤ ∞. As usual, L p

loc(R, X) stands for the localized version of L p(R, X).
The subspace of functions in L p(R, X) with support bounded on the left is denoted
by L p

� (R, X), and we set

L p
+(R, X) := {u ∈ L p

� (R, X) : supp u ⊂ [0,∞)} ⊂ L p
� (R, X).

Let S be the Schwartz space of rapidly decreasing smooth functions R → C and
let D ⊂ S be the space of compactly supported smooth test functions R → C,
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endowedwith their usual topologies. The spaces of all continuous linear mapsD → X
and S → X are denoted by D′(X) and S ′(X), respectively. We have that S ′(X) ⊂
D′(X) and the elements in D′(X) are called X -valued distributions. A distribution
in S ′(X) is said to be tempered (or, slowly growing). The subspace of distributions
inD′(X) with support bounded on the left is denoted byD′

�(X), and similarly, S ′
�(X)

stands for the space of tempered distributions having support bounded on the left.
Let f ∈ L1

loc(R, X). The map D → X , ϕ �→ ∫ ∞
−∞ ϕ(t) f (t) dt is well defined

and continuous, and we denote the corresponding regular distribution by [ f ]. If f ∈
L p(R, X), 1 ≤ p ≤ ∞, or if there exists r > 0 such that the function t �→ ‖ f (t)‖ is
polynomially bounded on the set R\[−r , r ], then [ f ] extends to S and [ f ] ∈ S ′(X).

Moreover, set

OM := {η ∈ C∞(R,C) : η(k)is polynomially bounded for every k ∈ N0},
O+

M := {η ∈ C∞(R,C) : η(k) is polynomially bounded on [0,∞)for every k ∈ N0}

and, for τ ∈ R,

Uτ := {η ∈ C∞(R,C) : ∃ t1 < t0 < τ s.t. η(t) = 1 ∀ t ∈ (t0,∞) and η(t)

= 0 ∀ t ∈ (−∞, t1)}.

We note that ifψ ∈ O+
M, then, for every τ ∈ R,ψ and its derivatives are polynomially

bounded on [τ,∞). Conversely, if ψ ∈ C∞(R,C) is such that ψ and its derivatives
are polynomially bounded on [τ,∞) for some τ ∈ R, thenψ ∈ O+

M. For our purposes,
the most important functions ψ ∈ O+

M which are not polynomially bounded on the
whole real line are of the form ψ(t) = e−ct , where c > 0. If ψ ∈ OM, then ψϕ ∈ S
for all ϕ ∈ S. Consequently, the product ψu, where ψ ∈ OM and u ∈ S ′(X), defined
by

(ψu)(ϕ) := u(ψϕ) ∀ϕ ∈ S,

is a tempered X -valued distribution. For u ∈ S ′(X) ⊂ D′(X) and ψ ∈ C∞(R,C),
the product ψu is in D′(X), but in general not in S ′(X). However, if ψ ∈ O+

M
and u ∈ S ′(X) with supp u ⊂ [τ,∞) for some τ ∈ R, then it is straightforward to
show that the product ψu defined by

(ψu)(ϕ) := u(ηψϕ) ∀ϕ ∈ S, where η ∈ Uτ is arbitrary,

does not depend on η ∈ Uτ , and ψu ∈ S ′(X).
For a function f ∈ L1(R, X), we define the Fourier transform by

(F f )(y) :=
∫ ∞

−∞
e−iyt f (t) dt ∀ y ∈ R.

123



Mathematics of Control, Signals, and Systems (2024) 36:729–773 735

AsF is an automorphismonS, the definition of the Fourier transform extends toS ′(X)

via

(Fu)(ϕ) := u(Fϕ) ∀ϕ ∈ S, where u ∈ S ′(X).

It is well-known that the Fourier transform F is an automorphism on S ′(X) with F
andF−1 being sequentially continuous. If f ∈ L1(R, X), thenF[ f ] = [F f ]. If X =
U is a complex Hilbert space, then the restriction of F to L1(R,U ) ∩ L2(R,U )

extends to an automorphism on L2(R,U ), in fact, (1/
√
2π)F is a unitary operator

on L2(R,U ), and so ‖Fu‖L2(R) = √
2π‖u‖L2(R) for every u ∈ L2(R,U ).

For θ ∈ R andU a complex Hilbert space, we define the Sobolev space (sometimes
also called Bessel potential space)

H θ (R,U ) := {

u ∈ S ′(U ) : (

y �→ (1 + y2)θ/2(Fu)(y)
) ∈ L2(R,U )

}

,

with inner product and associated norm given by

〈u, v〉 := 1

2π

∫ ∞

−∞
(1 + y2)θ 〈(Fu)(y), (Fv)(y)〉 dy, ∀ u, v ∈ H θ (R,U ),

and

‖u‖H θ :=
(

1

2π

∫ ∞

−∞
(1 + y2)θ‖(Fu)(y)‖2dy

)1/2

, ∀ u ∈ H θ (R,U ),

respectively. The space H θ (R,U ) is complete and hence a Hilbert space. We note
that H0(R,U ) = L2(R,U ) and ‖u‖H0 = ‖u‖L2 for all u ∈ L2(R,U ). If θ ≥ 0,
then H θ (R,U ) ⊂ L2(R,U ), whilst H θ (R,U ) contains non-regular distributions
when θ < 0. We also note that if u ∈ H θ (R,U ), then Fu ∈ L2

loc(R,U ) whatever the
value of θ . We will also make use of the space H θ

� (R,U ) := H θ (R,U ) ∩ S ′
�(R,U )

and the half-line Sobolev space

H θ+(R,U ) := {u ∈ H θ (R,U ) : supp u ⊂ [0,∞)} ⊂ H θ
� (R,U ).

The following lemma is well-known for scalar-valued H θ -spaces. As we could not
find a suitable reference for the vector-valued case, a proof is included in Appendix
2.

Lemma 2.1 Let U be a complex Hilbert space and θ ∈ R. The following statements
hold.

(1) C∞
c (R,U ) is dense in H θ (R,U ).

(2) The space {u ∈ C∞
c (R,U ) : supp u ⊂ (0,∞)} is dense in H θ+(R,U ).

For the rest of this section, let X be a complexBanach space. TheLaplace transformLu
of a distribution u ∈ D′(X) such that supp u ⊂ [τ,∞) and e−μ · u ∈ S ′(X) for
some τ, μ ∈ R is defined by

(Lu)(s) := (

e−μ · u
)

(ηe−(s−μ) · ) ∀ s ∈ Cμ,
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where η ∈ Uτ is arbitrary. It is straightforward to show that the definition does not
depend on η. The classical Laplace transform is a special case in the sense that if f :
R → X is such that f (t) = 0 for a.e. t ∈ (−∞, τ ) and e−μ · f ∈ L1(R, X) for
some τ, μ ∈ R, then (L[ f ])(s) = (L f )(s) for all s ∈ Cμ. For u ∈ D′(X) with supp u
bounded on the left, we define the abscissa of convergence σ(u) as the infimum of
all μ ∈ R such that e−μ · u ∈ S ′(X). If no such μ exists, then we set σ(u) = ∞.
If σ(u) < ∞, then the Laplace transform of u exists and is holomorphic on Cσ(u),
and u is said to be Laplace transformable.

For later purposes, we state the following lemma on the vector-valued Laplace
transform, the proof of which can be found in Appendix 2.

Lemma 2.2 Let h : Cμ → X be holomorphic, where μ ∈ R. If

sup
s∈Cμ

‖s2h(s)‖ < ∞,

then there exists h ∈ C(R, X) such that h(t) = 0 for all t ≤ 0, supt>0 ‖e−νt t−1h(t)‖ <

∞ and e−ν · h ∈ L1(R, X) for every ν > μ and (Lh)(s) = h(s) for all s ∈ Cμ.

For each τ ∈ R, the shift or translation operator Sτ : L1
loc(R, X) → L1

loc(R, X) is
defined by (Sτ f )(t) := f (t − τ). Letting u ∈ D′(X), the definition

(Sτu)(ϕ) := u(S−τ ϕ) ∀ϕ ∈ D

extends the translationoperator toD′(X).A linearmapT : dom T ⊂ D′(X) → D′(X)

is said to be translation invariant if Sτu ∈ dom T and SτTu = T Sτu for all u ∈ dom T
and all τ ∈ R. Furthermore, we say that T is causal if, for all τ ∈ R and all u ∈ dom T ,
we have

supp u ⊂ [τ,∞) ⇒ supp(Tu) ⊂ [τ,∞).

It is a routine exercise to show that if T is translation invariant, then T is causal if, for
all u ∈ dom T ,

supp u ⊂ [0,∞) ⇒ supp(Tu) ⊂ [0,∞).

For μ ∈ R, we let H∞
μ (X) denote the Hardy space of all bounded holomorphic

functions Cμ → B(X). Equipped with the norm

‖H‖H∞
μ

:= sup
s∈Cμ

‖H(s)‖,

H∞
μ (X) is a Banach space. We setH∞(X) := H∞

0 (X).
The following result on H∞(B(U )) (known as Fatou’s theorem), U a separable

complex Hilbert space, will be frequently used in this paper. For the proof we refer to
[31, Theorem B, Section 4.6] and [31, Theorem C, Section 4.8] or [38, Theorem 6.4].
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Theorem 2.3 Let U be a separable complex Hilbert space and let H ∈ H∞(B(U )).
Then H has a non-tangential limit H0(y) = lims→iy H(s) in the strong operator
topology for almost all y ∈ R and

ess supy∈R‖H0(y)‖ = ‖H‖H∞ .

Furthermore, ‖H0(y)‖ = lims→iy ‖H(s)‖ non-tangentially for almost all y ∈ R.

For notational simplicity, in the scalar-valued case (that is, when X = C orU = C), we
shall drop X or U from the notation of function and distribution spaces: for example,
C(R),D′,S ′, H θ (R) andHμ stand forC(R,C),D′(C),S ′(C), H θ (R,C) andHμ(C),
respectively.

3 Operator-valuedmultiplier theorems

The main objective of the current section is to prove the following Laplace multiplier
theorem for a class of causal and translation-invariant operators. Throughout this
section, let U be a complex Hilbert space.

Theorem 3.1 Let α, β ∈ R.

(1) If G ∈ B(

Hα(R,U ), Hβ(R,U )
)

is causal and translation invariant, then there
exists a unique holomorphic function G : C0 → B(U ) such that

Gu = (L−1 ◦ MG ◦ L)(u) ∀ u ∈ Hα
� (R,U ) (3.1)

and

sup
s∈C0

‖(1 + s)β−αG(s)‖ = ‖G‖B(Hα,Hβ), (3.2)

where MG denotes multiplication by G.
(2) If G : C0 → B(U ) is holomorphic and such that

sup
s∈C0

‖(1 + s)β−αG(s)‖ < ∞, (3.3)

then there exists a unique causal translation-invariant operatorG ∈ B(

Hα(R,U ),

Hβ(R,U )
)

such that (3.1) and (3.2) hold.

Condition (3.3) means that the function s �→ (1 + s)β−αG(s) is in the Hardy
space H∞(B(U )). The norm on the right-hand side of (3.2) is the operator norm
induced by the norms of Hα(R,U ) and Hβ(R,U ).

As for the expression (1 + s)β−α appearing in (3.2) and (3.3), the following con-
vention applies throughout the paper: We identify the complex power function with
exponent θ ∈ R with its principal branch on the domain C\(−∞, 0], and thus,
(1 + s)β−α ∈ (0,∞) if s ∈ (−1,∞).
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Theorem 3.1 is a generalization of the following well-known result, see [36, The-
orem 10.3.5], [38] or [41].

Theorem 3.2 A linear operator G : L2(R,U ) → L2(R,U ) is bounded, translation-
invariant and causal if, and only if, there exists G ∈ H∞(B(U )) such that G is of the
form (3.1) (with Hα

� (R,U ) replaced by L2+(R,U )). Moreover, G and G determine
each other uniquely, and

∥
∥G

∥
∥B(L2(R,U ))

= ‖G‖H∞ .

The proof of Theorem 3.1 is based on Theorem 3.2 and a scale of causal translation-
invariant isometric isomorphisms L2(R,U ) → H θ (R,U ), θ ∈ R, which we shall
now introduce. For which purpose, let θ ∈ R, set

rθ (s) := (1 + s)−θ ∀ s ∈ C−1 and ρθ (y) := rθ (iy) ∀ y ∈ R, (3.4)

and define a linear map Rθ : S ′(U ) → S ′(U ) by Rθ := F−1 ◦ Mρθ ◦ F . Note that

Rθu := F−1(ρθFu) = (F−1ρθ )�u ∀ u ∈ S ′(U ). (3.5)

Here we have used that ρθ ∈ OM (equivalently,F−1ρθ is a distribution of rapid decay)
from which it follows that, for every u ∈ S ′(U ), the products ρθFu and (F−1ρθ )�u
are well-defined tempered distributions, so that the convolution theorem (exchange
formula) can be invoked to obtain the second equality in (3.5), see Appendix 1.

The next result gathers properties of the scale of operators Rθ .

Proposition 3.3 For every θ ∈ R, the operator Rθ defined by (3.5) has the following
properties.

(1) Rθ : S ′(U ) → S ′(U ) is a sequentially continuous isomorphism and R−1
θ = R−θ .

(2) Rθ is translation invariant.
(3) Rθ is causal.
(4) For every α ∈ R, Rθ (Hα(R,U )) = Hα+θ (R,U ) and ‖Rθu‖Hα+θ = ‖u‖Hα , that

is, the restriction of Rθ to Hα(R,U ) is an isometric isomorphism Hα(R,U ) →
Hα+θ (R,U ).

Proposition 3.3 has some overlap with [40, Proposition 31.8] in the sense that, for
the scalar-valued case, it is shown that there exists an isometric isomorphism map-
ping Hα(R) onto Hβ(R). However, the isometric isomorphism is not causal, and
therefore [40, Proposition 31.8] is not suitable as a tool in the proof of Theorem 3.1.

Before we provide a proof of Proposition 3.3, it is convenient to state and prove the
following technical lemma.

Lemma 3.4 Let θ ∈ R and let rθ and ρθ be defined as in (3.4). Then supp(F−1ρθ ) ⊂
[0,∞), e−ν ·F−1ρθ ∈ S ′ for all ν ∈ (−1, 0) and

(L(F−1ρθ )
)

(s) = rθ (s) for all s ∈
C−1.

Proof Let θ ∈ R, ν ∈ (−1, 0) and k ∈ N0 such that k ≥ 2 − θ . Setting hθ (s) :=
(1 + s)−krθ (s) = (1 + s)−(k+θ) for all s ∈ C−1, we have that s2hθ (s) is bounded
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on Cμ for fixed but arbitrary μ ∈ (−1, ν). It follows from Lemma 2.2 that there
exists a function hθ ∈ C(R) such that hθ (t) = 0 for all t ≤ 0, e−ν · hθ ∈ L1(R)

and (Lhθ )(s) = hθ (s) for all s ∈ Cμ. In particular,

(Fhθ )(y) = (Lhθ )(iy) = hθ (iy) ∀ y ∈ R.

Defining rθ := (1+D)khθ ∈ S ′, where D denotes differentiation (in the distributional
sense), it follows that supp rθ ⊂ [0,∞), e−ν · rθ ∈ S ′, (Lrθ )(s) = rθ (s) for all s ∈ Cμ

and Frθ = ρθ . Consequently, rθ = F−1ρθ and
(L(F−1ρθ )

)

(s) = rθ (s) for all s ∈
Cμ. The latter identity holds for everyμ ∈ (−1, ν), and hence it holds for all s ∈ C−1,
completing the proof. �

It follows from (3.5), Lemma 3.4 and the convolution theorem for Laplace trans-
forms (see Appendix 1) that, for every θ ∈ R,

L(Rθu) = rθLu ∀ u ∈ S ′
�(U ),

and, consequently,

Rθu = (L−1 ◦ Mrθ ◦ L)

(u) ∀ u ∈ S ′
�(U ). (3.6)

We proceed to prove Proposition 3.3.

Proof of Proposition 3.3. (1) It is immediate that Rθ R−θ = R−θ Rθ = I . Hence, Rθ is
an isomorphism and R−1

θ = R−θ . Moreover, as F , F−1 and multiplication by ρθ are
sequentially continuous on S ′(U ), it follows that Rθ is sequentially continuous.

(2) Let τ ∈ R and u ∈ S ′(U ). Then Rθ Sτu = F−1(ρθe−iτ ·Fu), and thus,

FRθ Sτu = ρθe
−iτ ·Fu = e−iτ · (ρθFu) = F(

SτF−1(ρθFu)
) = F(Sτ Rθu).

Consequently, Rθ Sτu = Sτ Rθu, establishing the translation invariance of Rθ .

(3) By Lemma 3.4, supp(F−1ρθ ) ⊂ [0,∞). Using that Rθu = (F−1ρθ )�u for
all u ∈ S ′(U ), causality follows from [43, Theorem 5.11-1].

(4) For u ∈ Hα(R,U ), we compute

2π‖Rθu‖2Hα+θ =
∫ ∞

−∞
(1 + y2)α+θ |ρθ (y)|2‖(Fu)(y)‖2dy

=
∫ ∞

−∞
(1 + y2)α‖(Fu)(y)‖2dy = 2π‖u‖2Hα ,

where we have used that |ρθ (y)|2 = |1 + iy|−2θ = (1 + y2)−θ , showing that Rθ

restricted to Hα(R,U ) maps isometrically into Hα+θ (R,U ). For v ∈ Hα+θ (R,U ),
we have that R−θ v ∈ Hα(R,U ), and, by statement (1), Rθ (R−θ v) = v, showing
that Rθ restricted to Hα(R,U ) maps onto Hα+θ (R,U ). Hence, the restriction of Rθ

to Hα(R,U ) is an isometric isomorphism Hα(R,U ) → Hα+θ (R,U ). �
We are now in a position to prove Theorem 3.1.
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Proof of Theorem 3.1. (1) Assume that G ∈ B(

Hα(R,U ), Hβ(R,U )
)

is causal and
translation invariant. An application of Proposition 3.3 yields that

R−βGRα : L2(R,U ) → L2(R,U )

is a causal translation-invariant bounded linear operator. Therefore, invoking Theo-
rem 3.2, there exists a function H ∈ H∞(B(U )) such that

R−βGRαv = L−1(HLv) ∀ v ∈ L2+(R,U ).

Appealing to (3.6) and Proposition 3.3, we conclude that

Gu = RβL−1(HL(R−αu)
) = L−1(GLu) = (L−1 ◦ MG ◦ L)(u) ∀ u ∈ Hα+(R,U ),

where G(s) := (1 + s)α−βH(s). As G and L−1 ◦ MG ◦ L are translation invariant,
it follows that (3.1) holds. To establish uniqueness of G, let G̃ : C0 → B(U ) be
holomorphic and assume that Gu = (L−1 ◦MG̃ ◦L)(u) for all u ∈ Hα

� (R,U ). Then,
for fixed ϕ ∈ D, ϕ(t) �≡ 0, it follows from (3.1) that GL(ϕ ⊗ v) = G̃L(ϕ ⊗ v) for
all v ∈ U , where (ϕ ⊗ v)(t) := ϕ(t)v for all t ∈ R. Consequently, (Lϕ)(s)G(s)v =
(Lϕ)(s)G̃(s)v for all s ∈ C0 and all v ∈ U , showing that G̃ = G.

To establish the equality of norms (3.2), we invoke Theorem 3.2 again to obtain

‖R−βGRα‖B(L2+(R,U )) = ‖H‖H∞ = sup
s∈C0

‖(1 + s)β−αG(s)‖. (3.7)

Using Proposition 3.3 once again, the restriction of R−β to Hβ(R,U ) is an isometric
isomorphism Hβ(R,U ) → L2(R,U ), and so

‖R−βGRαu‖L2 = ‖GRαu‖Hβ ∀ u ∈ L2+(R,U ).

Furthermore, Rα maps L2+(R,U ) isometrically onto Hα+(R,U ), and so,

sup
‖u‖L2=1, u∈L2+(R,U )

‖GRαu‖Hβ = sup
‖v‖Hα =1, v∈Hα+(R,U )

‖Gv‖Hβ .

Therefore,

‖R−βGRα‖B(L2+(R,U )) = sup
‖u‖L2=1, u∈L2+(R,U )

‖R−βGRαu‖L2 = sup
‖v‖Hα =1, v∈Hα+(R,U )

‖Gv‖Hβ .

Hence, ‖G‖B(Hα+,Hβ
+)

= ‖R−βGRα‖B(L2+(R,U )), and so, by (3.7),

‖G‖B(Hα+,Hβ
+)

= sup
s∈C0

‖(1 + s)β−αG(s)‖. (3.8)
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Finally, let u ∈ Hα(R,U ), u �= 0. By Lemma 2.1, there exist u j ∈ C∞
c (R,U ), j ∈ N,

such that u j → u in Hα(R,U ) as j → ∞. Choosing τ j ∈ R such that supp(Sτ j u j ) ⊂
[0,∞), we have that Sτ j u j ∈ Hα+(R,U ) for all j ∈ N and, by translation invariance
and (3.8),

‖Gu j‖Hβ

‖u j‖Hα
= ‖Sτ j Gu j‖Hβ

‖Sτ j u j‖Hα
= ‖G(Sτ j u j )‖Hβ

‖Sτ j u j‖Hα
≤ sup

s∈C0

‖(1 + s)β−αG(s)‖.

Consequently,

‖Gu‖Hβ

‖u‖Hα
= lim

j→∞
‖Gu j‖Hβ

‖u j‖Hα
≤ sup

s∈C0

‖(1 + s)β−αG(s)‖,

which, together with (3.8) shows that (3.2) holds.
(2) Conversely, let G : C0 → B(U ) be holomorphic and assume that (3.3) holds.

Obviously, H defined by H(s) := (1 + s)β−αG = rα−β(s)G(s) is in H∞(B(U )),
and so, by Theorem 3.2 there exists a causal and translation-invariant operator H ∈
B(L2(R,U )) such that Hu = (L−1 ◦ MH ◦ L)(u) for all u ∈ L2+(R,U ). As H and
L−1 ◦ MH ◦ L are translation invariant, it follows that

Hu = (L−1 ◦ MH ◦ L)(u) ∀ u ∈ L2
�(R,U ). (3.9)

Using Proposition 3.3, it is clear that the linear operator

G := Rβ ◦ H ◦ R−α : Hα(R,U ) → Hβ(R,U )

is causal, translation-invariant and bounded. Furthermore, by (3.6) and (3.9),

G = L−1 ◦ Mrβ ◦ MH ◦ Mr−α ◦ L = L−1 ◦ Mrβ−αH ◦ L
= L−1 ◦ MG ◦ L on Hα

� (R,U ),

showing that (3.1) holds. Finally, as Hα
� (R,U ) is dense in Hα(R,U ), it is clear that G

is the unique operator in B(

Hα(R,U ), Hβ(R,U )
)

satisfying (3.1). �
The following corollary is an immediate consequence of Theorem 3.1.

Corollary 3.5 If G ∈ B(L2(R,U )) is causal and translation-invariant, then, for
all α > 0 (α < 0), G restricts (extends) to a causal translation-invariant bounded
linear operator Hα(R,U ) → Hα(R,U ).

Next wewant to apply Theorem 3.1 to derive a Fouriermultiplier theorem. To facilitate
such an application of Theorem 3.1, it is convenient to state and prove an auxiliary
result first.

Let H2(U ) be the Hardy space of all holomorphic functions C0 → U such that

‖ f ‖H2 := sup
x>0

(∫ ∞

−∞
‖ f (x + iy)‖2dy

)1/2

< ∞.
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By the Paley-Wiener theorem (see [4, Theorem 1.8.3], [31, Section 4.8] or [36, The-
orem 10.3.4]), the Laplace transform maps L2+(R,U ) isomorphically onto H2(U ),
and

‖Lu‖H2 = √
2π‖u‖L2 ∀ u ∈ L2+(R,U ).

For each f ∈ H2(U ), the boundary limit f0(y) := limx↓0 f (x + iy) exists for almost
every y ∈ R, the boundary function f0 is in L2(R,U ), the map

B : H2(U ) → L2(R,U ), f �→ f0 (3.10)

is an isometry,

(B ◦ L)(u) = Fu ∀ u ∈ L2+(R,U ), (3.11)

and B(H2(U )) = F(L2+(R,U )) = {g ∈ L2(R,U ) : supp(F−1g) ⊂ [0,∞)}, see [4,
Theorem 1.8.3], [31, Section 4.8] or [36, Section 10.3] for details.

The following lemma relates certain Fourier multipliers to the corresponding
Laplace multipliers.

Lemma 3.6 Assume that U is separable. Let G : C0 → B(U ) be holomorphic and
such that sups∈C0

‖(1 + s)−kG(s)‖ < ∞ for some k ∈ N0. Then the limit G0(y) :=
limx↓0 G(x + iy) exists in the strong operator topology for almost every y ∈ R and

(F−1 ◦ MG0 ◦ F)(u) = (L−1 ◦ MG ◦ L)(u) ∀ u ∈ L2
�(R,U ).

Proof. SinceF−1◦MG0 ◦F andL−1◦MG◦L are translation-invariant, it is sufficient
to show that

(F−1 ◦ MG0 ◦ F)(u) = (L−1 ◦ MG ◦ L)(u) ∀ u ∈ L2+(R,U ). (3.12)

SetH(s) := (1+s)−kG(s) for all s ∈ C0. Then,H ∈ H∞(B(U )) and, byTheorem2.3,
there exists a boundary functionH0 such thatH(x+iy) converges toH0(y) in the strong
operator topology for almost every y ∈ R as x ↓ 0 and ess supy∈R‖H0(y)‖ = ‖H‖H∞ .
Let u ∈ L2+(R,U ) and set H := L−1 ◦ MH ◦ L. As H is causal, Hu ∈ L2+(R,U ),
and, invoking (3.11), we have that

F(Hu) = (B ◦ L)(Hu) = MH0B(Lu) = MH0(Fu) = (MH0 ◦ F)(u).

Consequently, Hu = (F−1 ◦ MG0 ◦ F)(u), and thus,

(F−1 ◦ MH0 ◦ F)(u) = (L−1 ◦ MH ◦ L)(u) ∀ u ∈ L2+(R,U ).

An application of (I + D)k (recall that D denotes differentiation in the distributional
sense) to both sides of the above equation leads to

(I + D)k(F−1 ◦ MH0 ◦ F)(u) = (I + D)k(L−1 ◦ MH ◦ L)(u) ∀ u ∈ L2+(R,U ).
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Using standard properties of the Fourier and Laplace transforms, it follows that

(F−1 ◦ Mρ−kH0 ◦ F)(u) = (L−1 ◦ Mr−kH ◦ L)(u) ∀ u ∈ L2+(R,U ),

where r−k andρ−k are given by (3.4).As r−kH = G andρ−kH0 = G0, equation (3.12)
follows from the above identity. �

We are now in the position to prove the following Fourier multiplier result.

Corollary 3.7 Assume that U is separable and let α, β ∈ R.

(1) If G : Hα(R,U ) → Hβ(R,U ) is a bounded linear causal translation-invariant
operator, then there exists a unique holomorphic function G : C0 → B(U ) such
that

Gu = (F−1 ◦ MG0 ◦ F)(u) ∀ u ∈ Hα(R,U ) (3.13)

and

sup
s∈C0

‖(1 + s)β−αG(s)‖ = ‖G‖B(Hα,Hβ) = ess supy∈R‖(1 + iy)β−αG0(y)‖,
(3.14)

where G0(y) := limx↓0 G(x + iy), with the limit existing in the strong operator
topology for almost every y ∈ R, andMG0 denotes the operator of multiplication
by G0.

(2) Conversely, if G : C0 → B(U ) is holomorphic and such that

sup
s∈C0

‖(1 + s)β−αG(s)‖ < ∞, (3.15)

thenG0(y) := limx↓0 G(x + iy) exists in the strong operator topology for almost
every y ∈ R, G given by (3.13) is a bounded linear causal translation-invariant
operator Hα(R,U ) → Hβ(R,U ) and (3.14) holds.

Proof (1) Assume that G ∈ B(

Hα(R,U ), Hβ(R,U )
)

is causal and translation
invariant. By statement (1) of Theorem 3.1 there exists a unique holomorphic func-
tion G : C0 → B(U ) such that Gu = (L−1 ◦MG ◦L)(u) for all u ∈ Hα

� (R,U ) and
the first equality in (3.14) holds. Hence, the function rα−βG is inH∞(B(U )), and so,
Theorem 2.3 yields that the boundary limit G0(y) := limx↓0 G(x + iy) exists in the
strong operator topology for almost every y ∈ R (here separability of U is used) and

ess supy∈R‖ρα−βG0(y)‖ = ‖rα−βG‖H∞ . (3.16)

Consequently, the second equality in (3.14) also holds. Furthermore, it follows from
Lemma 3.6 that

(F−1 ◦ MG0 ◦ F)(u) = (L−1 ◦ MG ◦ L)(u) ∀ u ∈ C∞
c (R,U ).
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Therefore,

Gu = (F−1 ◦ MG0 ◦ F)(u) ∀ u ∈ C∞
c (R,U ). (3.17)

Next, we note that

F−1 ◦ MG0 ◦ F = Rβ ◦ F−1 ◦ Mρα−βG0 ◦ F ◦ R−α. (3.18)

By (3.16), the function y �→ ‖ρα−β(y)G0(y)‖ is essentially bounded. Combining this
with Proposition 3.3, it follows that the right-hand side of (3.18) is a bounded operator
from Hα(R,U ) to Hβ(R,U ), and thus,F−1◦MG0 ◦F ∈ B(

Hα(R,U ), Hβ(R,U )
)

.
Therefore, since C∞

c (R,U ) is dense in Hα(R,U ) by Lemma 2.1, equation (3.17)
yields that Gu = (F−1 ◦ MG0 ◦ F)(u) for all u ∈ Hα(R,U ), establishing (3.13).

(2) Conversely, let G : C0 → B(U ) be holomorphic and assume that (3.15)
holds. By Theorem 3.1, there exists a unique causal translation-invariant opera-
tor G ∈ B(

Hα(R,U ), Hβ(R,U )
)

such that

Gu = (L−1 ◦ MG ◦ L)(u) ∀ u ∈ Hα
� (R,U )

and (3.14) holds. By (3.15), G is polynomially bounded, and thus it follows from
Lemma 3.6 thatG0(y) := limx↓0 G(x + iy) exists in the strong operator topology for
almost every y ∈ R (here separability of U is used) and

Gu = L−1 ◦ MG ◦ L = F−1 ◦ MG0 ◦ F ∀ u ∈ C∞
c (R,U ).

Moreover, since rα−βG ∈ H∞(B(U )), it follows that (3.16) holds. Therefore, as in
the proof of statement (1), we have thatF−1 ◦MG0 ◦F ∈ B(

Hα(R,U ), Hβ(R,U )
)

,
and, invoking the denseness of C∞

c (R,U ) in Hα(R,U ) (see Lemma 2.1), the above
identity yields that Gu = (F−1 ◦ MG0 ◦ F)(u) for all u ∈ Hα(R,U ), completing
the proof. �

We close this section by showing how Proposition 3.3 can be used to derive a
generalization of the Paley-Wiener theorem which provides a natural isomorphism
between H θ+(R,U ) and a suitably weighted H2-space. To this end, we introduce the
space

H2,θ (U ) := rθH2(U ) = {u : C0 → U : u holomorphic and r−θu ∈ H2(U )}, θ ∈ R

of holomorphic functions,where rθ is defined in (3.4). Endowedwith the norm ‖u‖H2,θ

:= ‖r−θu‖H2 , the space H2,θ (U ) is complete.
The following result contains the classical Paley-Wiener theorem as a special case.

Proposition 3.8 Let θ ∈ R. The Laplace transform maps H θ+(R,U ) isomorphically
onto H2,θ (U ) and

‖Lu‖H2,θ = √
2π‖u‖H θ ∀ u ∈ H θ+(R,U ). (3.19)

123



Mathematics of Control, Signals, and Systems (2024) 36:729–773 745

Proof Let θ ∈ R and u ∈ S ′(U ). It follows from (3.5) and Lemma 3.4 that

L(Rαu) = rαLu ∀ u ∈ S ′
�(U ), ∀α ∈ R. (3.20)

Let u ∈ H θ+(R,U ). Proposition 3.3 ensures that R−θu ∈ L2+(R,U ) and ‖u‖H θ =
‖R−θu‖L2 , and thus,

√
2π‖u‖H θ = √

2π‖R−θu‖L2 = ‖L(R−θu)‖H2 , (3.21)

where, in the last equality,we have used the classical Paley-Wiener theorem.Appealing
to (3.20), we see that L(R−θu) = r−θLu, which combined with (3.21) gives

√
2π‖u‖H θ = ‖r−θLu‖H2 = ‖Lu‖H2,θ ,

showing that L maps H θ+(R,U ) isomorphically intoH2,θ (U ) and (3.19) holds.

To show surjectivity, let v ∈ H2,θ (U ). By the classical Paley-Wiener theorem there
exists u ∈ L2+(R,U ) such that v = rθLu. Setting v := Rθu, we have that v ∈
H θ+(R,U ) by Proposition 3.3. By (3.20), Lv = L(Rθu) = rθLu = v, showing that L
maps H θ+(R,U ) onto H2,θ (U ). �

4 Boundary values of vector-valued holomorphic functions defined
on the right-half plane

In this section, we explore the key hypothesis (3.3) on the holomorphic function G in
Theorem3.1 in greater detail: In particular, under the assumption that the limitG0(y) =
limx↓0 G(x + iy) exists in the strong operator topology for almost every y ∈ R, we
shall consider the imaginary axis condition

ess supy∈R‖(1 + iy)β−αG0(y)‖ < ∞. (4.1)

The motivation for our interest in (4.1) is that the verification of the imaginary axis
condition (4.1) is usually considerably easier than establishing the uniform bound-
edness of (1 + s)β−αG(s) on the open right-half plane. We shall identify conditions
under which the existence of the strong limitG0(y) = limx↓0 G(x + iy) together with
the imaginary axis condition (4.1) is sufficient for the function s �→ (1 + s)β−αG(s)
to be in H∞(B(U )). This will involve the consideration of the boundary behaviour
of G(x + iy) in the sense of distributions as x ↓ 0.

For a holomorphic function G : C0 → X , X a complex Banach space, set

Gx (y) := G(x + iy) ∀ y ∈ R, where x > 0.

The following result addresses the existence and properties of boundary distributions
for X -valued holomorphic functions defined on C0.
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Theorem 4.1 Let X be a complex Banach space, G : C0 → X be holomorphic, and
assume that there exist M ≥ 0 and m, k ∈ N0 such that

‖G(s)‖ ≤ M
(

1 + |s|)m(

1 + (Re s)−k) ∀ s ∈ C0. (4.2)

Then there exists a tempered distribution � ∈ S ′(X) (the so-called boundary dis-
tribution of G) such that [Gx ] → � in S ′(X) as x ↓ 0, supp(F−1�) ⊂ [0,∞)

and L(F−1�) = G.

An alternative to the growth bound (4.2) is given by

‖G(s)‖ ≤ N
(

1 + |s|)n(Re s)−k ∀ s ∈ C0, (4.3)

where N > 0 and n ∈ N0, see, for example, [8, equation (6.60)] and [10, equation
(4.7)]. Trivially, if (4.3) holds, then so does (4.2) with M = N andm = n. Conversely,
if (4.2) is satisfied, then it is straightforward to show that (4.3) holds with N = 2M
and n = m + k. Consequently, Theorem 4.1 remains valid when (4.2) is replaced
by (4.3).

In the scalar-valued case, Theorem 4.1 is a special case of [8, Theorem 4.7.4]. For
vector-valued functions, the existence of tempered boundary distributions is stated,
without proof, in [9, Theorem 4.1]. We refer the reader to Appendix 3 for a proof of
Theorem 4.1.

Next, we investigate under what conditions boundary distributions and point-
wise boundary limits coincide. In this paper, our focus will be on the situation
wherein X = B(U ), where U is a complex Hilbert space. It is well-known that
if U is separable, then pointwise boundary limits of functions in H∞(B(U )) exist in
the strong operator topology, but not necessarily in the norm topology of B(U ), and
the strong limit need not be Bochner measurable (as a B(U )-valued function), but will
be weakly measurable. Therefore, it would be too restrictive to assume that the point-
wise boundary limit of a holomorphic function G : C0 → B(U ) is in L1

loc(R,B(U ))

(locally Bochner integrable).
Therefore, it is useful to consider the weak integral (also called Pettis integral)

for B(U )-valued functions, where U is a complex Hilbert space. Let � ⊂ R be a set
of positive Lebesgue measure. A function F : � → B(U ) is said to be weakly
measurable if the scalar-valued function � → C, t �→ 〈F(t)u, v〉 is Lebesgue
measurable for all u, v ∈ U . Furthermore, if F is weakly measurable, then the func-
tion � → C, t �→ ‖F(t)‖ is Lebesgue measurable (see, for example, [22, Proof
of Theorem 3.5.5]). For 1 ≤ p ≤ ∞, let L p

w(�,B(U )) denote the space of func-
tions F : � → B(U ) such that F is weakly measurable and

‖F‖L p
w

:=
(∫

�

‖F(t)‖pdt

)1/p

< ∞ if p < ∞ and

‖F‖L∞
w

:= ess supp‖F(t)‖ < ∞ if p = ∞.
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It is well-known that L p
w(�,B(U )) is complete, and, for F ∈ L1

w(�,B(U )), there
exists a unique integral

∫

�
F(t) dt ∈ B(U ) such that

〈(∫

�

F(t) dt

)

u, v

〉

=
∫

�

〈F(t)u, v〉 dt ∀ u, v ∈ U ,

and

∥
∥
∥
∥

∫

�

F(t) dt

∥
∥
∥
∥

≤
∫

�

‖F(t)‖ dt = ‖F‖L1
w
,

see, for example, [13, Appendix A.5]. Under the assumption thatU is separable, weak
measurability of F : � → B(U ) implies that F is also strongly measurable, that is,
the function � → U , t �→ F(t)u is Bochner measurable for every u ∈ U , see [22,
Theorem 3.5.5]. Therefore, ifU is separable, then the function t �→ F(t)u is Bochner
integrable for every F ∈ L p

w(�,B(U )) and every u ∈ U , and a routine argument
shows that

(∫

�

F(t) dt

)

u =
∫

�

F(t)u dt ∀ u ∈ U ,

where the integral on the left-hand side is the weak B(U )-valued integral of F , whilst
the integral on the right-hand side is the U -valued Bochner integral of Fu. Conse-
quently, when U is separable, the weak B(U )-valued integral can also be considered
as a strong B(U )-valued integral.

Finally, we introduce the space L p
w,loc(R,B(U )) of all functions F : R → B(U )

such that F |� ∈ L p
w(�,B(U )) for every bounded measurable set � ⊂ R. It follows

from the properties listed above that, for every F ∈ L1
w,loc(R,B(U )), the func-

tional [F] given by

[F](ϕ) :=
∫ ∞

−∞
ϕ(t)F(t) dt ∀ϕ ∈ D (4.4)

is well-defined and continuous on D, whence [F] ∈ D′(B(U )). Similarly, if F ∈
L1
w,loc(R,B(U )) is such that ‖F(t)‖ is polynomially bounded on a set of the form {t ∈

R : |t | ≥ τ } for some τ > 0, then the right-hand side of (4.4) is well-defined for
all ϕ ∈ S, and [F] ∈ S ′(B(U )).

Throughout the rest of this section, let U be a complex Hilbert space. The next
result provides a sufficient condition which guarantees that the boundary distribution
of a holomorphic function is equal to the regular distribution induced by the pointwise
boundary limit.

Lemma 4.2 Let G : C0 → B(U ) be holomorphic. Assume that there exists � ∈
S ′(B(U )) such that [Gx ] → � inS ′(B(U )) as x ↓ 0, the limitG0(y) := limx↓0 Gx (y)
exists in the strong operator topology for almost every y ∈ R, and there exists x0 > 0
such that, for each a > 0, there exists ga ∈ L1(−a, a) satisfying
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‖G(x + iy)‖ = ‖Gx (y)‖ ≤ ga(y) ∀ (x, y) ∈ (0, x0) × [−a, a]. (4.5)

Under these conditions, G0 ∈ L1
w,loc(R,B(U )) and �(ϕ) = [G0](ϕ) for all ϕ ∈ D.

We remark that condition (4.5) is equivalent to the existence of x0 > 0 and g ∈ L1
loc(R)

such that

‖G(x + iy)‖ = ‖Gx (y)‖ ≤ g(y) ∀ (x, y) ∈ (0, x0) × R.

Note that if condition (4.5) is satisfied for some x0 > 0, then it holds for all x0 > 0.
Furthermore, if G is bounded on every bounded strip of the form {x + iy : x ∈
(0, x0), |y| ≤ a}, a > 0, then (4.5) is satisfied.

We illustrate Lemma 4.2 with a class of examples, and demonstrate that, in the
absence of condition (4.5), the conclusions of Lemma 4.2 may fail to hold.

Example 4.3 (1) Let y j ∈ R, j = 1, . . . , n, be such that y j �= yk if j �= k, and let
H : C0 → B(U ) be holomorphic and polynomially bounded, where U is assumed to
separable. Consider the holomorphic function G : C0 → B(U ) given by

G(s) :=
( n

∏

j=1

(s − iy j )
−θ j

)

H(s) ∀ s ∈ C0, where θ j ∈ (0, 1), j = 1, . . . , n.

It follows from Theorem 4.1 that there exists � ∈ S ′(B(U )) such that [Gx ] → �

in S ′(B(U )) as x ↓ 0. As H is polynomially bounded there exists m ∈ N such
that (1+s)−mH(s) is bounded onC0 and it follows from Theorem 2.3 that there exists
a boundary functionH0 ∈ L∞

w,loc(R,B(U )) such thatH(x+ iy) converges toH0(y) in
the strong operator topology for almost every y ∈ R as x ↓ 0. Consequently,G(x+iy)
converges toG0(y) := ∏n

j=1

(

i(y− y j )
)−θ jH0(y) in the strong operator topology for

almost every y ∈ R as x ↓ 0. Furthermore,G satisfies (4.5), and therefore Lemma 4.2
ensures that �(ϕ) = [G0](ϕ) for all ϕ ∈ D.

(2) For θ ∈ (0, 1), the scalar function G(s) = s−θ is an instance of the above
example. Let us now consider the case wherein θ = 1, that is, G(s) = 1/s. It is
clear that condition (4.5) is not satisfied. The existence of a distribution � ∈ S ′ such
that [Gx ] → � in S ′ as x ↓ 0 follows from Theorem 4.1. Whilst the pointwise
boundary limit G0(y) = 1/(iy) exists for every y �= 0, it is not in L1

loc(R,C),
and hence does not induce a regular distribution, showing that the conclusions of
Lemma 4.2 do not hold. Finally, using calculations similar to those in [18, p. 19/20],
it is not difficult to show that � = pvG0 + πδ, where

(pvG0)(ϕ) := lim
ε↓0

(∫ −ε

−∞
G0(y)ϕ(y)dy +

∫ ∞

ε

G0(y)ϕ(y)dy

)

∀ϕ ∈ S,

the principal-value distribution induced by G0. ♦
For T ∈ D′(B(U )) and u, v ∈ U , it is convenient to define a scalar-valued

distribution T u,v ∈ D′ by T u,v(ϕ) := 〈T (ϕ)u, v〉 for all ϕ ∈ D. We note that
if F ∈ L1

w,loc(R,B(U )), then [F]u,v = [ f ], where f (t) := 〈F(t)u, v〉 for all t ∈ R.
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Proof of Lemma 4.2. Trivially,Gx is weakly measurable for every x > 0, and thusG0
is also weakly measurable. Moreover, we have that ‖Gx‖ ∈ L1

loc(R) for every x > 0,
and so, for arbitrary a > 0, the restriction of ‖Gx‖ to [−a, a] is in L1(−a, a). By
hypothesis, Gx (y) converges to G0(y) in the strong operator topology for almost
every y ∈ R as x ↓ 0, that is, there exists a null set N ⊂ R such that limx↓0 Gx (y)u =
G0(y)u for all u ∈ U and all y ∈ R\N . Let y ∈ R\N and ε > 0. There exists u ∈ U
such that ‖u‖ = 1 and ‖G0(y)‖ ≤ ‖G0(y)u‖ + ε. Hence,

‖G0(y)‖ ≤ lim inf
x↓0 ‖Gx (y)u‖ + ε ≤ lim inf

x↓0 ‖Gx (y)‖ + ε.

This holds for every y ∈ R\N and ε > 0, and thus, we obtain that, for every a > 0,

‖G0(y)‖ ≤ lim inf
x↓0 ‖Gx (y)‖ ≤ ga(y) for a.e. y ∈ [−a, a].

Consequently,G0 ∈ L1
w,loc(R,B(U )), and therefore,G0 induces a regular distribution

[G0] ∈ D′(B(U )).
Let ϕ ∈ D, let a > 0 be such that suppϕ ⊂ [−a, a] and let u, v ∈ U . It

is clear that the function y �→ 〈Gx (y)u, v〉ϕ(y) is in L1(R) for every x > 0
and 〈Gx (y)u, v〉ϕ(y) → 〈G0(y)u, v〉ϕ(y) for almost every y ∈ R as x ↓ 0. Fur-
thermore, there exists ga ∈ L1(−a, a) such that (4.5) holds, and so

|〈Gx (y)u, v〉ϕ(y)| ≤ g̃a(y)|ϕ(y)| ∀ (x, y) ∈ (0, x0) × R,

where g̃a(y) := ‖u‖‖v‖ga(y) for y ∈ [−a, a] and g̃a(y) := 0 for |y| > a. Triv-
ially, the function g̃a |ϕ| is in L1(R), and an application of Lebesgue’s dominated
convergence theorem shows that 〈Gxu, v〉ϕ → 〈G0u, v〉ϕ in L1(R) as x ↓ 0, and so,

[Gx ]u,v(ϕ) =
∫ ∞

−∞
ϕ(y)〈Gx (y)u, v〉 dy

→
∫ ∞

−∞
ϕ(y)〈G0(y)u, v〉 dy = [G0]u,v(ϕ) as x ↓ 0.

On the other hand, [Gx ]u,v(ϕ) → �u,v(ϕ) as x ↓ 0, and thus, 〈[G0](ϕ)u, v〉 =
〈�(ϕ)u, v〉. This holds for all u, v ∈ U , showing that [G0](ϕ) = �(ϕ). The claim
now follows as ϕ ∈ D was arbitrary. �

Corollary 4.4 Assume that U is separable and let G : C0 → B(U ) be holomorphic
and polynomially bounded on C0. Then the limitG0(y) := limx↓0 Gx (y) exists in the
strong operator topology for almost every y ∈ R, G0 is weakly measurable, G0 is
polynomially bounded, [G0] ∈ S ′(B(U )) and [Gx ] → [G0] in S ′(B(U )) as x ↓ 0.

Proof The function G is polynomially bounded on C0, and so, there exist M > 0
and m ∈ N0 such that

‖G(s)‖ ≤ M |1 + s|m ≤ M(1 + |s|)m ∀ s ∈ C0. (4.6)
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The function H(s) := (1 + s)−mG(s) is in H∞(B(U )) and it follows from Theo-
rem 2.3 that there exists a boundary functionH0 ∈ L∞

w (R,B(U )) such thatH(x + iy)
converges to H0(y) in the strong operator topology for almost every y ∈ R as x ↓ 0.
Consequently,Gx (y) → (1+iy)mH0(y) =: G0(y) in the strong operator topology for
almost every y ∈ R as x ↓ 0. The weak measurability of G0 follows from that of H0,
and, furthermore,G0 is polynomially bounded asH0 ∈ L∞

w (R,B(U )). Consequently,
[G0] ∈ S ′(B(U )).

It remains to show that [Gx ] → [G0] in S ′(B(U )) as x ↓ 0. To this end, we note
that (4.2) holds with k = 0 as follows from (4.6). Moreover, for arbitrary x0 > 0, G
is bounded on the bounded strip {x + iy : x ∈ (0, x0), |y| ≤ a} for every a > 0,
and so (4.5) is satisfied. Invoking Theorem 4.1 and Lemma 4.2, we see that there
exists � ∈ S ′(B(U )) such that [Gx ] → � in S ′(B(U )) as x ↓ 0 and �(ϕ) = [G0](ϕ)

for all ϕ ∈ D. ButD is dense inS and so�(ϕ) = [G0](ϕ) for all ϕ ∈ S. Consequently,
[G0] = � and [Gx ] → [G0] in S ′(B(U )) as x ↓ 0. �

The following theorem shows that if a holomorphic function G : C0 → B(U )

satisfies condition (4.2) and the boundary distribution ofG is in L∞
w (R,B(U )), thenG

is bounded on C0.

Theorem 4.5 Let G : C0 → B(U ) be holomorphic. Assume that there exist M > 0
and m, k ∈ N0 such that (4.2) holds and the boundary distribution � ∈ S ′(B(U ))

of G (which exists by Theorem 4.1) is such that � = [F], where F ∈ L∞
w (R,B(U )).

Then the following statements hold.

(1) G ∈ H∞(B(U )) and ‖G‖H∞ ≤ ‖F‖L∞
w
.

(2) Under the additional assumption thatU is separable,Gx (y) → F(y) in the strong
operator topology for almost every y ∈ R as x ↓ 0, and ‖G‖H∞ = ‖F‖L∞

w
.

Proof (1) Let u, v ∈ U . It is clear that the scalar holomorphic function Gu,v defined
by Gu,v(s) := 〈G(s)u, v〉 satisfies (4.2) (with M replaced by ‖u‖‖v‖M) and Gu,v

has �u,v ∈ S ′ as its boundary distribution, that is,

[Gu,v
x ] → �u,v = [F]u,v = [Fu,v] in S ′ as x ↓ 0, (4.7)

where Gu,v
x (y) := 〈Gx (y)u, v〉 for all y ∈ R and Fu,v is the scalar-valued function

in L∞(R) given by Fu,v(y) := 〈F(y)u, v〉 for all y ∈ R. An application of [8,
Theorem 6.5.1 and commentary below (6.60)] or [10, Theorem 5.2] shows thatGu,v ∈
H∞. Consequently,Gu,v has a boundary function gu,v ∈ L∞(R) such thatGu,v

x (y) →
gu,v(y) almost everywhere as x ↓ 0 and

‖Gu,v‖H∞ = ‖gu,v‖L∞ . (4.8)

Moreover, by [19, Theorem 3.1 (Chapter I) and Corollary 3.2 (Chapter II)], Gu,v
x

converges to gu,v in the weak∗-topology as x ↓ 0, and so, a fortiori, [Gu,v
x ] → [gu,v]

inS ′ as x ↓ 0. Invoking (4.7), we obtain that there exists a null set Nu,v ⊂ R depending
on u and v such that

Fu,v(y) = gu,v(y) ∀ y ∈ R\Nu,v, (4.9)
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which, together with (4.8), gives

|〈G(s)u, v〉| ≤ ‖Gu,v‖H∞ = ‖Fu,v‖L∞ ≤ ‖F‖L∞
w

‖u‖‖v‖ ∀ u, v ∈ U , ∀ s ∈ C0.

Now sup‖v‖=1 |〈G(s)u, v〉| = ‖G(s)u‖ for all s ∈ C0 and u ∈ U , and thus,

‖G(s)u‖ ≤ ‖F‖L∞
w

‖u‖ ∀ u ∈ U , ∀ s ∈ C0,

showing that ‖G‖H∞ ≤ ‖F‖L∞
w
and G ∈ H∞(B(U )).

(2) Now assume that U is separable. By statement (1), G ∈ H∞(B(U )), and
consequently, it follows from Theorem 2.3 that there exists a boundary functionG0 ∈
L∞
w (R,B(U )) such thatGx (y) converges toG0(y) in the strong operator topology for

almost every y ∈ R as x ↓ 0 and ‖G‖H∞ = ‖G0‖L∞
w
. It remains to show that

F(y) = G0(y) for a.e. y ∈ R. (4.10)

Let the function gu,v and the set Nu,v be defined as in the proof of statement (1). We
note that there exist null sets Ñu,v ⊂ R, depending on u and v, such that

〈G0(y)u, v〉 = gu,v(y) ∀ y ∈ R\Ñu,v. (4.11)

Let V ⊂ U be a countable dense subset and let N be the union of all sets Nu,v and Ñu,v

with u, v ∈ V . Then, as a countable union of null sets, N is a null set and it follows
from (4.9) and (4.11) that

〈F(y)u, v〉 = 〈G0(y)u, v〉 ∀ u, v ∈ V , ∀ y ∈ R\N .

As V is dense in U , we conclude that

〈F(y)u, v〉 = 〈G0(y)u, v〉 ∀ u, v ∈ U , ∀ y ∈ R\N ,

which in turn implies that (4.10) holds. �
The next result is of particular importance for our purposes.

Proposition 4.6 Let G : C0 → B(U ) be holomorphic and assume that there exist

(i) M > 0 and m, k ∈ N0 such that (4.2) is satisfied;
(ii) x0 > 0 such that, for every a > 0, (4.5) holds for some ga ∈ L1(−a, a).

For θ ∈ R, let rθ and ρθ be as in (3.4). If the limit G0(y) = limx↓0 Gx (y) exists
in the strong operator topology for almost every y ∈ R and ρθG0 ∈ L∞

w (R,B(U )),
then rθG ∈ H∞(B(U )) and ‖rθG‖H∞ ≤ ‖ρθG0‖L∞

w
, with equality holding when U

is separable.

Note that if U is separable and G is of so-called bounded type (that is, G is in the
Nevanlinna class) [31, Section 4.2], or equivalently, G is of the form G = N/d,
where N ∈ H∞(B(U )) and d is a scalar-valued H∞-function such that d(s) �= 0
for all s ∈ C0, then limx↓0 Gx (y) exists in the strong operator topology for almost
every y ∈ R, see [31, Sections 4.3 and 4.6].
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Proof of Proposition 4.6. By Theorem 4.1, there exists � ∈ S ′(B(U )) such that [Gx ] ↓
� in S ′(B(U )) as x ↓ 0. Assuming that the limit G0(y) = limx↓0 Gx (y) exists in the
strong operator topology for almost every y ∈ R, Lemma 4.2 guarantees that �(ϕ) =
[G0](ϕ) for allϕ ∈ D. By hypothesisρθG0 ∈ L∞

w (R,B(U )), hence [G0] ∈ S ′(B(U )),
and therefore, �(ϕ) = [G0](ϕ) for all ϕ ∈ S. Setting H := rθG, we have that

‖H(s)‖ ≤ M
(

1 + |s|)n(1 + (

Re s)−k) ∀ s ∈ C0,

where n is the smallest non-negative integer such that n ≥ m − min{0, θ}, showing
thatH satisfies the growth condition (4.2). It is clear thatH(x + iy) → ρθ (y)G0(y) in
the strong operator topology for almost every y ∈ R as x ↓ 0, and ρθ� = ρθ [G0] =
[ρθG0] ∈ S ′(B(U )) is the boundary distribution of H. As ρθG0 ∈ L∞

w (R,B(U )), an
application of Theorem 4.5 toH shows that rθG = H ∈ H∞(B(U )) and ‖rθG‖H∞ =
‖H‖H∞ ≤ ‖ρθG0‖L∞

w
, with equality holding under the additional assumption of

separability of U . �

The following corollary is an immediate consequence of Corollary 4.4 and Propo-
sition 4.6.

Corollary 4.7 Assume that U is separable. For θ ∈ R, let rθ and ρθ be as in (3.4).
Let G : C0 → B(U ) be holomorphic and polynomially bounded on C0. Under these
conditions, the limit G0(y) = limx↓0 Gx (y) exists in the strong operator topology
for almost every y ∈ R, G0 is weakly measurable, and, furthermore, if ρθG0 ∈
L∞
w (R,B(U )), then rθG ∈ H∞(B(U )) and ‖rθG‖H∞ = ‖ρθG0‖L∞

w
.

5 Sobolev stability

In this section, we develop a new input-output stability framework for a large class
of causal translation-invariant linear operators defined on spaces of vector-valued
distributions. Using Theorem 3.1, the results of Sect. 4 and well-known theorems on
the representation of translation-invariant operators by convolution kernels (impulse
responses), we provide characterizations of boundedness properties of such operators
(as maps from Hα(R,U ) to Hβ(R,U )) in terms of the Laplace transforms of their
kernels (transfer functions). Throughout this section, letU be a complexHilbert space.

Before addressing the main topic of this section, it is convenient to state and prove
the following lemma.

Lemma 5.1 Let α ∈ R and uk ∈ Hα(R,U ), k ∈ N. If uk → u in Hα(R,U ) as k →
∞, then uk → u in S ′(U ) as k → ∞.

Proof Let (uk)k∈N be a convergent sequence in Hα(R,U ) with limit u. If α ≥ 0,
then uk → u in L2(R,U ), and so, uk → u in S ′(U ) as k → ∞. Let us now
assume that α < 0. By Proposition 3.3, R−αuk → R−αu in L2(R,U ) as k → ∞.
Consequently, R−αuk → R−αu in S ′(U ) as k → ∞. Invoking Proposition 3.3 once
more, we have that R−1−α = Rα is a sequentially continuous operator from S ′(U ) into
itself, and thus, uk → u in S ′(U ) as k → ∞. �
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Recall that D′
�(X) denotes the subspace of all distributions in D′(X) with support

bounded on the left, where X = U or B(U ). If K ∈ D′
�(B(U )), then the convolution

product K�u is awell-defineddistribution inD′
�(U ) for allu ∈ D′

�(U ), seeAppendix1.
It is useful to recall the close relationshipbetween causal translation-invariant operators
on D′(U ) and convolution operators with kernels in D′(B(U )) supported on [0,∞).
In the following, when considering linear operators G : domG ⊂ D′(U ) → D′(U ),
it is always understood that domG is endowed with the relative topology induced
by D′(U ).

Proposition 5.2 Let G : domG ⊂ D′(U ) → D′(U ) be a linear operator such that
C∞
c (R,U ) ⊂ domG. The following statements hold.

(1) If G is continuous, causal and translation invariant, then there exists a unique K ∈
D′(B(U )) such that supp K ⊂ [0,∞) and Gu = K�u for all u ∈ D′

�(U )∩domG.
(2) If there exists K ∈ D′(B(U )) such that supp K ⊂ [0,∞) and Gu = K�u for

all u ∈ C∞
c (R,U ), then G is continuous, causal and translation invariant.

(3) Let α, β ∈ R. If domG = Hα(R,U ), G ∈ B(Hα(R,U ), Hβ(R,U )), and G
is causal and translation invariant, then there exists K ∈ D′(B(U )) such
that supp K ⊂ [0,∞) and Gu = K�u for all u ∈ Hα

� (R,U ).

Proof (1) Denote the restriction of G to C∞
c (R,U ) by Gc. As G is assumed to be

continuous, it is clear that Gc is continuous as an operator from C∞
c (R,U ) to D′(U ).

Consequently, it follows from [43, Theorems 3.5-1 and 5.10-1] that there exists a
unique K ∈ D′(B(U )) such that

Gu = Gcu = K�u ∀ u ∈ C∞
c (R,U ). (5.1)

The identity Gu = K�u extends to all u ∈ D′
�(U ) ∩ domG by the denseness

of C∞
c (R,U ) in D′(U ), the continuity assumption on G, and the continuity prop-

erties of the convolution product (see Appendix 1). Invoking [43, Theorem 5.11-1],
the causality of G, and (5.1), we conclude that supp K ⊂ [0,∞).

(2) This statement is a consequence of results in [43, Chapter 5].
(3) As G ∈ B(Hα(R,U ), Hβ(R,U )), the restriction Gc of G to C∞

c (R,U ) is
a continuous operator from C∞

c (R,U ) to Hβ(R,U ). Consequently, appealing to
Lemma 5.1, Gc is continuous as an operator from C∞

c (R,U ) to D′(U ). The claim
now follows by arguments identical to those used in the proof of statement (1). �

The distribution K appearing in Proposition 5.2 is called the kernel or impulse
response of the operator G. If σ(K ) < ∞ (finite abscissa of convergence),
then G(s) := (LK )(s) exists for all s ∈ Cσ(K ) and the function G, a B(U )-valued
holomorphic function defined on Cσ(K ), is referred to as the transfer function of G.
If u ∈ D′

�(U ) is such that σ(u) < ∞, then K�u is Laplace transformable and

(LGu)(s) = G(s)(Lu)(s) ∀ s ∈ Cμ, (5.2)

where μ := max
(

σ(K ), σ (u)
)

, see Appendix 1. Observe that G is the unique func-
tion which satisfies (5.2). Therefore, in control theoretic applications, where Gu is the
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output generated by the input u, the transfer function G is often determined by com-
puting the (necessarily unique) function which satisfies (5.2) (such as by computing
the quotient (L(Gu))(s)/(Lu)(s) when these quantities are scalar valued).

Definition 5.3 Let α, β ∈ R. A linear operator G : domG ⊂ D′(U ) → D′(U ) is said
to be Sobolev (α, β)-stable ifC∞

c (R,U ) ⊂ domG,G(C∞
c (R,U )) ⊂ Hβ(R,U ), and

there exists γ > 0 such that

‖Gu‖Hβ ≤ γ ‖u‖Hα ∀ u ∈ C∞
c (R,U ). (5.3)

The next theorem, the main result of this section, provides several characterizations
of Sobolev (α, β)-stability in terms of transfer functions.

Theorem 5.4 Let G : domG ⊂ D′(U ) → D′(U ) be a causal translation-invariant
continuous linear operator such that C∞

c (R,U ) ⊂ domG, and let K ∈ D′(B(U )) be
the kernel of G. For arbitrary α, β ∈ R, the following statements are equivalent.

(1) G is Sobolev (α, β)-stable.
(2) There exists a unique causal and translation-invariant operatorGe ∈ B(Hα(R,U ),

Hβ(R,U )) such that Geu = Gu for all u ∈ Hα(R,U ) ∩ domG.
(3) K is Laplace transformable, σ(K ) ≤ 0 and the transfer functionG of G satisfies

sup
s∈C0

‖(1 + s)β−αG(s)‖ < ∞. (5.4)

(4) K is Laplace transformable and there existμ > max(0, σ (K )) and a holomorphic
function Ge : C0 → B(U ) such thatGe and the transfer functionG of G coincide
on Cμ and

sup
0<Re s<μ

‖(1 + s)β−αGe(s)‖ < ∞. (5.5)

(5) K is Laplace transformable and there exists a holomorphic function Ge : C0 →
B(U ) such that Ge and the transfer function G of G coincide on Cν , where ν :=
max(0, σ (K )), and

sup
s∈C0

‖(1 + s)β−αGe(s)‖ < ∞. (5.6)

Note that if, in statements (4) and (5), σ(K ) > 0, thenGe is a holomorphic extension
of G.

Before we prove Theorem 5.4, we state two immediate consequences in the form
of a corollary.

Corollary 5.5 Let G : domG ⊂ D′(U ) → D′(U ) be a causal translation-invariant
continuous linear operator such that C∞

c (R,U ) ⊂ domG, and let α, β ∈ R.

(1) If G is Sobolev (α, β)-stable, then G
(

Hα(R,U ) ∩ domG
) ⊂ Hβ(R,U )

and ‖Gu‖Hβ ≤ γ ‖u‖Hα for all u ∈ Hα(R,U ) ∩ domG, where γ > 0 is the
constant appearing in (5.3).
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(2) If G is Sobolev (α, β)-stable, then G is Sobolev (α+θ, β+θ)-stable for all θ ∈ R.

Proof of Theorem 5.4. (1)⇒ (2). Assume that statement (1) holds. As C∞
c (R,U )

is dense in Hα(R,U ) (by Lemma 2.1), it follows from (5.3) that there exists a
unique operator Ge ∈ B(Hα(R,U ), Hβ(R,U )) such that Geu = Gu for all u ∈
C∞
c (R,U ). We proceed to show that Ge and G coincide on Hα(R,U ) ∩ domG.

To this end, let u ∈ Hα(R,U ) ∩ domG. Lemma 2.1 guarantees the existence of
a sequence (uk)k∈N in C∞

c (R,U ) such that uk → u in Hα(R,U ) as k → ∞.
Since Ge ∈ B(Hα(R,U ), Hβ(R,U )), we have that Geuk → Geu in Hβ(R,U )

as k → ∞. Invoking Lemma 5.1, we conclude that

uk → u in S ′(U ) and Geuk → Geu in S ′(U ) as k → ∞. (5.7)

As Geuk = Guk for all k ∈ N, the second convergence gives

Guk → Geu in S ′(U ) as k → ∞. (5.8)

The first convergence in (5.7) implies that uk → u in D′(U ) as k → ∞,
whence Guk → Gu in D′(U ) as k → ∞ as G is continuous. Appealing to (5.8)
shows that Gu = Geu in D′(U ). In particular, the distribution Gu extends continu-
ously toS, and hence is tempered and coincides withGeu. As u ∈ Hα(R,U )∩domG
was arbitrary, it follows that G and Ge coincide on Hα(R,U )∩ domG. It is a routine
exercise to show that Ge inherits the properties of translation-invariance and causality
from G.

(2)⇒ (3). Invoking Theorem 3.1, we conclude that there exists a holomorphic
function Ge : C0 → B(U ) such that

sup
s∈C0

‖(1 + s)β−αGe(s)‖ < ∞, (5.9)

and Geu = (L−1 ◦MGe
0
◦L)(

u
)

for all u ∈ Hα
� (R,U ). By [43, Theorem 6.5-1] there

exists a Laplace transformable K e ∈ D′(B(U )) with supp K e ⊂ [0,∞), σ(K e) ≤ 0
and (LK e)(s) = Ge(s) for all s ∈ C0. Invoking the convolution theorem (exchange
formula) for the Laplace transform (see Appendix 1), we obtain

Geu = (L−1 ◦ MGe ◦ L)u = (L−1 ◦ MLK e ◦ L)u = K e�u ∀ u ∈ C∞
c (R,U ).

Therefore,

K�u = Gu = Geu = K e�u ∀ u ∈ C∞
c (R,U ). (5.10)

To establish that statement (3) holds, it is sufficient to prove that K = K e. Indeed, in
this case it follows from (5.9) that inequality (5.4) is satisfied. To show that K = K e,
letϕ ∈ D andv ∈ U , and setψ := ϕ̌ ∈ D,where the superscript “ˇ”denotes reflection,
that is, ϕ̌(t) := ϕ(−t) for all t ∈ R. Then K�ψ ∈ C∞(R,B(U )), K�(ψ ⊗ v) ∈
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C∞(R,U ) and

K (ϕ)v = K (ψ̌)v = (K�ψ)(0)v = (K�(ψ ⊗ v))(0).

Similarly, K e(ϕ)v = (K e�(ψ⊗v))(0). Togetherwith an applicationof (5.10)withu =
ψ ⊗ v this shows that K (ϕ)v = K e(ϕ)v. This holds for all ϕ ∈ D and all v ∈ U , and
thus K = K e.

(3)⇒ (4). This implication is trivially true.
(4)⇒ (5). Since K is Laplace transformable, supp K ⊂ [0,∞) (by Proposition 5.2)

and μ > σ(K ), it follows that the function G is polynomially bounded on Cμ (see,
for example, [43, Theorem 6.5-1]). NowGe|Cμ

= G|Cμ
, and so, it follows from (5.5)

that Ge is polynomially bounded on C0. An application of Corollary 4.7 to Ge shows
that (5.6) is satisfied.

(5)⇒ (1). Assume that statement (5) holds, that is, there exists a holomorphic
function Ge : C0 → B(U ) of G such that Ge(s) = G(s) for all s ∈ Cν and (5.6) is
satisfied. To show that G is Sobolev (α, β)-stable, we note that, by Theorem 3.1, there
exists a translation-invariant and causal operatorGe ∈ B(Hα(R,U ), Hβ(R,U )) such
that

Geu = (L−1 ◦ MGe ◦ L(

u) ∀ u ∈ Hα
� (R,U ).

Consequently,

(L(Gu)
)

(s) = G(s)(Lu)(s) = Ge(s)(Lu)(s) = (L(Geu)
)

(s) ∀ u ∈ C∞
c (R,U ), ∀ s ∈ Cν,

showing that Gu = Geu for all u ∈ C∞
c (R,U ), and thereby completing the proof. �

The following corollary shows that, under suitable assumptions, Sobolev (α, β)-
stability follows if the transfer function satisfies a natural boundedness condition on
the imaginary axis.

Corollary 5.6 Let G : domG ⊂ D′(U ) → D′(U ) be a causal translation-invariant
continuous linear operator such that C∞

c (R,U ) ⊂ domG and let K ∈ D′(B(U )) be
the kernel ofG.Assume that K isLaplace transformable and there exists a holomorphic
function Ge : C0 → B(U ) such that Ge(s) = G(s) for all s ∈ Cν , where G is the
transfer function of G and ν := max

(

0, σ (K )
)

. Then, for α, β ∈ R, the following
statements hold.

(1) Under the assumption that the following three conditions are satisfied:

(i) there exist M > 0, m, k ∈ N0 and μ > ν such that

‖Ge(s)‖ ≤ M
(

1 + |s|m)(

1 + (Re s
)−k

) for all s ∈ Csuch that 0 < Re s < μ,

(ii) there exist x0 > 0 such that, for every a > 0, there exists ga ∈ L1(−a, a)

satisfying

‖Ge(x + iy)‖ ≤ ga(y) ∀ (x, y) ∈ (0, x0) × [−a, a],
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(iii) the limit Ge
0(y) = limx↓0 Ge

x (y) exists in the strong operator topology for
almost every y ∈ R,

the operator G is Sobolev (α, β)-stable, provided that

ess supy∈R‖(1 + iy)β−αGe
0(y)‖ < ∞. (5.11)

(2) Assume that U is separable and Ge is polynomially bounded on the strip 0 <

Re s < μ for some μ > ν. Under these conditions, the limit Ge
0(y) =

limx↓0 Ge
x (y) exists in the strong operator topology for almost every y ∈ R,

and, if (5.11) holds, then G is Sobolev (α, β)-stable.

Proof (1) By Proposition 5.2, supp K ⊂ [0,∞), and so, the function G = LK is
polynomially bounded onCμ as follows from [43, Theorem 6.5-1]. Thus, by condition
(i), there exist N ≥ M and an integer n ≥ m such that

‖Ge(s)‖ ≤ N
(

1 + |s|n)(1 + (Re s)−k) ∀ s ∈ C0.

Hence, Ge satisfies the hypotheses of Proposition 4.6 (with θ = α − β). Conse-
quently, if ess supy∈R‖(1 + iy)β−αGe

0(y)‖ < ∞, then Proposition 4.6 guarantees
that sups∈C0

‖(1 + s)β−αGe(s)‖ < ∞. Sobolev (α, β)-stability of G now follows
from Theorem 5.4.

(2) Assume thatU is separable and the functionGe is polynomially bounded on the
strip 0 < Re s < μ for someμ > ν. As in the proof of statement (1), we have thatG is
polynomially bounded onCμ, and thus,Ge is polynomially bounded onC0. It follows
that conditions (i) and (ii) of statement (1) hold. Moreover, there exists k ∈ N0 such
that H(s) := (1 + s)−kGe(s) is bounded on C0 and therefore, as U is assumed to be
separable, the limit H0(y) = limx↓0 H(x + iy) exists in the strong operator topology
for almost every y ∈ R, implying that condition (iii) of statement (1) is also satisfied.
As a consequence, the claim now follows from statement (1). �

Next, wemake contact with the theory ofwell-posed linear state-space systems, see,
for example, themonograph [36]. Each of these systems has a translation-invariant and
causal input-output operator G ∈ B(L2

μ(R,U )) for some μ ∈ R, where the Hilbert
space L2

μ(R,U ) is defined by

L2
μ(R,U ) := {u ∈ L2

loc(R,U ) : e−μ · u ∈ L2(R,U )} and 〈u, v〉L2
μ

:= 〈e−μ · u, e−μ · v〉L2 .

Conversely, for every translation-invariant and causal operator G belonging to B(L2
μ

(R,U )) for some μ ∈ R, there exists a well-posed state-space system which has G as
its input-output operator. IfG ∈ B(L2

μ(R,U )) is translation invariant and causal, then,
invoking Proposition 5.2, there exists a kernel K ∈ D′(B(U )) such that supp K ⊂
[0,∞) and Gu = K�u for all u ∈ L2

μ, �(R,U ), where L2
μ,�(R,U ) denotes the

subspace of L2
μ(R,U ) all functions with support bounded on the left. Furthermore,

the causal translation-invariant operator Gμ ∈ B(L2(R,U )) given by

Gμu = e−μ · G
(

eμ · u
) ∀ u ∈ L2(R,U )
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has kernel Kμ := e−μ · K ∈ D′(B(U )), and an application of Theorem 5.4 to Gμ

withα = β = 0 shows thatσ(Kμ) ≤ 0 and sups∈C0
‖(LKμ)(s)‖ < ∞. Consequently,

σ(K ) ≤ μ and the transfer functionG = LK ofG satisfies that sups∈Cμ
‖G(s)‖ < ∞,

that is, G ∈ H∞
μ (B(U )).

The above discussion shows that Theorem 5.4 is applicable to the input-output
operators of well-posed linear systems. The following corollary is an immediate con-
sequence of Theorem 5.4 and Corollary 5.6.

Corollary 5.7 Let μ ≥ 0, α, β ∈ R and let G ∈ B(L2
μ(R,U )) be causal and

translation-invariant with transfer function G ∈ H∞
μ (B(U )). The following state-

ments hold.

(1) The operator G is Sobolev (α, β)-stable if, and only if, there exists a holomorphic
extensionGe : C0 → B(U ) ofG such that sup0<Re s<μ ‖(1+ s)β−αGe(s)‖ < ∞.

(2) Assume that there exists a holomorphic extension Ge : C0 → B(U ) of G satis-
fying the conditions (i)-(iii) of statement (1) of Corollary 5.6. If ess supy∈R‖(1 +
iy)β−αGe

0(y)‖ < ∞, then G is Sobolev (α, β)-stable.
(3) Assume that U is separable and there exists a holomorphic extension Ge : C0 →

B(U ) of G such that Ge is polynomially bounded on the strip 0 < Re s < μ.
If ess supy∈R‖(1 + iy)β−αGe

0(y)‖ < ∞, then G is Sobolev (α, β)-stable.

Statements (1) and (2) can be understood as a substantial generalization of [30, The-
orem 6]. To explain this, we recall the concept of P-stability [23, 30]: a holomorphic
function H : � → B(U ), where � ⊂ C is open and such that C0 ⊂ �, is said to be
P-stable of order α ≥ 0 if the following two conditions are satisfied:

(i) sups∈Cμ
‖H(s)‖ < ∞ for all μ > 0;

(ii) there exists M > 0 such that ‖H(iy)‖ ≤ M(1 + |y|α) for all y ∈ R.
Let μ ∈ R and let G ∈ B(L2

μ(R,U )) be causal and translation-invariant. The
growth bound ω(G) of G is defined by

ω(G) := inf{ν ≤ μ : G ∈ B(L2
ν,�(R,U ))}.

We note that the definition is meaningful because L2
ν,�(R,U ) ⊂ L2

μ,�(R,U ) ⊂
L2

μ(R,U ) for all ν ≤ μ. Furthermore, we say that G is regular if its transfer func-
tionG has the property thatG(x) converges inB(U )with respect to the strong operator
topology as x → ∞, where x ∈ (0,∞).

Whilst [30, Theorem 6] is formulated in a state-space setting with time-
domain [0,∞), an inspection of the proofs of [30, Theorem 6 and Lemma 7] shows
that [30, Theorem 6] can be rephrased in our double-time axis input-output framework
as follows.2

Proposition 5.8 Letμ ≥ 0 and let G ∈ B(L2
μ(R,U )) be causal, translation-invariant

and regular with transfer functionG ∈ H∞
μ (B(U )). Assume thatG has a holomorphic

extension Ge : � → B(U ), where � ⊂ C is open and such that C0 ⊂ �. For α ≥ 0,
the following statements hold.

2 It has been pointed out in [20] that [30, Theorem 6] is not correct as stated, but can be rectified by replacing
the interpolation space W 2,α(0, ∞;U ) used in [30] by Hα+(R,U ).
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(1) If Ge is P-stable of order α and there exist M > 0 and k ∈ N0 such that

‖Ge(s)‖ ≤ M(Re s)−k for all s ∈ Csuch that 0 < Re s < 1,

then G is Sobolev (α, 0)-stable.
(2) If ω(G) = 0 and G is Sobolev (α, 0)-stable, then Ge is P-stable of order α.

Proof The hypotheses of statement (1) imply thatGe satisfies the conditions (i)-(iii) of
statement (1) of Corollary 5.6, and thus, statement (1) is a special case of statement (2)
of Corollary 5.7. Statement (2) is an immediate consequence of Theorem 5.4. �

As for statement (2), it is clear that, in the absence of the condition ω(G) = 0,
Sobolev stability does not necessarily imply P-stability (see Examples 6.1, 6.2 and 6.4
below).

We close this section, by linking Sobolev stability to certain results on polynomial
decay of strongly continuous semigroups [1, 6, 30].

Proposition 5.9 Let T (t) be a strongly continuous semigroup on U, denote its gener-
ator by A, and let α > 0. Assume that supt≥0 ‖T (t)‖ < ∞ and the intersection of the
spectrum of A with iR is empty. The following statements are equivalent.

(1) supt≥0 ‖t1/αT (t)A−1‖ < ∞.
(2) supy∈R ‖(1 + iy)−α(iy I − A)−1‖ < ∞.
(3) sups∈C0

‖(1 + s)−α(s I − A)−1‖ < ∞.
(4) The convolution operator L2

�(R,U ) → L2
loc(R,U ), u �→ ∫ ·

−∞ T ( · − τ)u(τ ) dτ
is Sobolev (α, 0)-stable.

Proof The equivalence (1)⇔ (2) follows from [6, Theorem 2.4]. The implica-
tion (3)⇒ (2) holds trivially, whilst the implication (2)⇒ (3) follows from the fact
that, by the Hille-Yosida theorem, there exists M > 0 such that

‖(s I − A)−1‖ ≤ M(Re s)−1 ∀ s ∈ C0

combined with an application of Proposition 4.6 with G(s) = (s I − A)−1. Finally,
the transfer function of the convolution operator in statement (4) is (s I − A)−1, and
thus, the equivalence (3)⇔ (4) is a consequence of Theorem 5.4. �

6 Examples

To illustrate the results in the previous sections, we discuss five examples.

Example 6.1 (Rational functions) Let U be a complex Hilbert space. Following [31],
a B(U )-valued function G is called rational if it is meromorphic on C ∪ {∞}. The
Laurent expansion of G at ∞ is of the form

G(s) =
∞
∑

j=d

G j s
− j , G j ∈ B(U ), d ∈ Z, Gd �= 0 (6.1)
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and converges in a neighbourhood of∞. The integer d is said to be the relative degree
of G. It is not difficult to see that G is rational if, and only if, G = P/q, where P
is a B(U )-valued polynomial and q is a scalar-valued polynomial. For the relative
degree d ofGwe have that d = deg q−degP. Furthermore, aB(U )-valued functionG
is rational if, and only if, it is the Laplace transform of a distribution K = � + �,
where � and � are of the form

�(t) :=

⎧

⎪⎪⎨

⎪⎪⎩

n
∑

j=0

t l j eλ j t Fj , t ≥ 0

0, t < 0

, � :=
m

∑

j=0

δ( j)Dj , Fj , Dj ∈ B(U ), n,m, l j ∈ N0, λ j ∈ C.

Let G be a B(U )-valued rational function with relative degree d, set K := L−1G,
letμ ∈ R be such thatG is holomorphic onCμ and letGμ be the convolution operator
with kernel e−μ · K . Note that the transfer function Gμ of Gμ is given by Gμ(s) =
G(s+μ). It follows from Theorem 5.4 that Gμ is Sobolev (0, β)-stable for every β ≤
d. Moreover, the relative degree ofG can be characterized in terms of Sobolev stability
of Gμ as follows:

d = max{β ∈ R : Gμ is Sobolev (0, β) − stable}. (6.2)

The above identity is an immediate consequence of Theorem 5.4 and the fact that the
relative degrees of the functions G and Gμ coincide.

The concept of relative degree and the identity (6.2) extend to B(U )-valued func-
tions which are meromorphic at ∞, that is, functions G which can be represented by
a Laurent series of the form (6.1) on some neighbourhood of ∞. The resolvents of
bounded linear operators provide a class of examples ofB(U )-valued functions which
are meromorphic at ∞.

We close this example by remarking that the notion of relative degree plays an
important role in classical and adaptive control of finite-dimensional systems. Whilst
attempts (see, for example, [12]) have beenmade to extend it to systems with irrational
transfer functions, a fully adequate generalization is still missing. We feel that the
concept of Sobolev stability (or some localized version of it) might be a suitable tool
to facilitate such a generalization, andwe are planning to pursue this in future research.

♦

Example 6.2 (Series connection of a rational transfer function and a delay line) LetG
be a B(U )-valued rational function, where U is a complex Hilbert space, assume
that G is holomorphic on C0, and let G be the convolution operator on D′

�(U ) with
kernel L−1G. Define the operator H by Hu := δτ �(Gu) for all u ∈ D′(U ), where δτ

is the Dirac distribution supported at τ > 0. Then the transfer function H of H is
given by H(s) = e−τ sG(s). It follows from Theorem 5.4 and Example 6.1 that

max{β ∈ R : H is Sobolev (0, β)-stable} = relative degree of G.

This is not surprising since convolution with δτ leaves any regularity properties
unchanged. ♦
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Example 6.3 (A neutral functional differential equation) Consider the controlled and
observed neutral functional differential equation

ẇ(t) − ẇ(t − r) = −aw(t) + u(t), z(t) = w(t), (6.3)

where a, τ > 0 are positive parameters, u is the control function or input and z
is the observation or output. We assume that u has support bounded on the left.
Taking Laplace transforms (under zero initial conditions) of (6.3) and comput-
ing (Lz)(s)/(Lu)(s) shows that the transfer function of (6.3) is given by

G(s) = 1

s(1 − e−τ s) + a
,

see equation (5.2) and the subsequent commentary. It follows from [24] that the func-
tion G has the following properties:

(i) sups∈Cμ
|G(s)| < ∞ for every μ > 0;

(ii) there exists an open set � containing C0 such that G is holomorphic on �;
(iii) there exist poles s j ( j ∈ N) ofG such that Re s j < 0, Re s j → 0 and |s j | → ∞

as j → ∞;
(iv) G is not bounded on C0, that is, G /∈ H∞;
(v) G(s)/(1 + s) is bounded on C0.
In particular, it follows that the causal and translation-invariant input-output oper-

ator G of (6.3) (that is, the map u �→ z under zero initial conditions) maps L2
μ,�(R)

boundedly into itself for every μ > 0. An application of Theorem 5.4 guarantees
that G is Sobolev (1, 0)-stable. ♦
Example 6.4 (A 1-dimensional heat equation) Consider the following heat equation
on the unit interval with Dirichlet control and Neumann observation at the right end
point:

∂w

∂t
(ξ, t) = ∂2w

∂ξ2
(ξ, t),

∂w

∂ξ
(0, t) = 0, w(1, t) = u(t), ξ ∈ (0, 1),

z(t) = ∂w

∂ξ
(1, t).

⎫

⎪⎪⎬

⎪⎪⎭

(6.4)

As in Example 6.3, u is the input and z is output, both of which take values inU = C.
We assume that u has support bounded on the left. Calculating (Lz)(s)/(Lu)(s) (under
zero initial conditions) is routine and shows that the transfer function G is given by

G(s) = √
s tanh(

√
s) ∀ s ∈ C0 ,

see equation (5.2) and the subsequent commentary. The function G is not bounded
on any right-half complex plane (and thus is not the transfer function of a well-posed
state-space system [36]), but evidently satisfies

sup
s∈C0

∣
∣(1 + s)−

1
2G(s)

∣
∣ < ∞. (6.5)
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Therefore, the input-output operator G of (6.4) (that is, the convolution operator with
kernel L−1G) is (1/2, 0)-Sobolev stable by Theorem 5.4. Corollary 5.5 yields that G
is (1/2 + θ, θ)-Sobolev stable for all θ ∈ R. ♦

Example 6.5 (A 2-dimensional heat equation) Consider the following controlled and
observed heat equation on the unit square � := (0, 1) × (0, 1):

∂w

∂t
(ξ1, ξ2, t) = ∂2w

∂ξ21
(ξ1, ξ2, t) + ∂2w

∂ξ22
(ξ1, ξ2, t),

w(0, ξ2, t) = 0, w(1, ξ2, t) = 0,

∂w

∂ξ2
(ξ1, 0, t) = 0,

∂w

∂ξ2
(ξ1, 1, t) = ũ(ξ1, t),

z̃(ξ1, t) = w(ξ1, κ, t) ,

⎫

⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

(ξ1, ξ2) ∈ �, (6.6)

where κ ∈ [0, 1) is a parameterwhich specifies the ξ2-position atwhich the observation
is taken. We choose as input and output space U = L2(0, 1), and the U -valued input
and output functions u and z are given by u(t) := ũ( · , t) and z(t) := z̃( · , t). The
control function u acts via a Neumann boundary condition along the top edge of
the square, and is assumed to have support bounded to the left. For each t ≥ 0, the
output z(t) corresponds to the observationof the profilew( · , κ, t).Asmaybe shownby
arguments analogous to those used in [7], themapping L2

�(R,U ) → L2
�(R,U ) ,u �→ z

determined by (6.6) under zero initial conditions is well-defined and continuous. The
present example is based on [20, Section 4, Example (7)], which in turn is inspired by
[21, Example 7.14], and we refer the reader to [7] for more details of controlled and
observed heat equations on bounded domains in R

n .
The transfer function G is given by

G(s)v = √
2

∞
∑

n=1

hn(s; κ)ζn(v) sin(nπ ·) ∀ v ∈ L2(0, 1) ,

where ζn are the Fourier sine coefficients of v, namely,

ζn(v) = √
2〈v, sin(nπ ·)〉L2(0,1) = √

2
∫ 1

0
v(η) sin(nπη) dη ∀ n ∈ N ,

and

hn(s; κ) := cosh(κ
√
s + n2π2)√

s + n2π2 sinh(
√
s + n2π2)

∀ s ∈ C−π2 , ∀ n ∈ N .

The function G belongs to H∞(B(U )) and so, by Theorem 3.1, the input-output
operator of (6.6) extends to a causal translation-invariant operator G ∈ B(L2(R,U )).

We claim that s �→ (1+s)θG(s) is bounded onC0 for all θ ∈ R, so thatG is (α, β)-
Sobolev stable for all (α, β) ∈ R

2 byTheorem5.4. SinceG is bounded onC0, the claim
for non-positive θ is trivial, and so we focus on the case that θ > 0. By statement (2)
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of Corollary 5.6 it suffices to show that y �→ (1 + iy)θG0(y) = (1 + iy)θG(iy) is
bounded on R.

For which purpose, let y ∈ R, set sn = sn(y) := √

iy + n2π2 �= 0 for all n ∈ N,
and note that

sn = (y2 + n4π4)
1
4 ei arg(sn) and Re sn = (y2 + n4π4)

1
4 cos(arg(sn)) .

Standard hyperbolic identities give that

cosh(κsn) = cosh(κ Re sn) cos(κ Im sn) + i sinh(κ Re sn) sin(κ Im sn)

and |cosh(κsn)|2 = cosh2(κ Re sn) − sin2(κ Im sn) ≤ cosh2(κ Re sn) .

Similarly,

sinh(sn) = sinh(Re sn) cos(Im sn) + i cosh(Re sn) sin(Im sn)

and |sinh(sn)|2 = sinh2(Re sn) + sin2(Im sn) ≥ sinh2(Re sn) .

Consequently, there exists a constant k > 0 such that

∣
∣
∣
∣

cosh(κsn)

sinh(sn)

∣
∣
∣
∣
≤ cosh(κ Re sn)

sinh(Re sn)
≤ k exp

(

(κ − 1)(y2 + n4π4)
1
4 cos(arg(sn))

)

≤ k exp
(

(1/
√
2)(κ − 1)(y2 + n4π4)

1
4
) ∀ y ∈ R, ∀ n ∈ N,

where we have used that κ − 1 < 0 and arg(sn) ∈ (−π/4, π/4). Therefore,

|hn(iy; κ)| ≤ k

nπ
exp

(

(1/
√
2)(κ − 1)(y2 + n4π4)

1
4
) ∀ y ∈ R, ∀ n ∈ N.

It is straightforward to show that, for each fixed θ > 0, there exist y∗ > 0 and y∗
n ∈

[0, y∗] for every n ∈ N such that

max
y>0

|(1 + iy)θhn(iy; κ)| = |(1 + iy∗
n )

θhn(iy
∗
n ; κ)| .

In particular, there exist constants l, λ > 0 such that

max
y>0

|(1 + iy)θhn(iy; κ)| ≤ le−λn ∀ n ∈ N .

Since

‖(1 + iy)θG(iy)v‖L2(0,1) ≤
( ∞

∑

n=1

|(1 + iy)θhn(iy; κ)|
)

‖v‖L2(0,1) ∀ v ∈ L2(0, 1), ∀ y ∈ R ,

the claim is proven. ♦
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7 Remarks on right-shift invariant operators on the half-line

In this section, we indicate how the results in Sections 3-5 can be used to obtain
corresponding results for right-shift invariant operators acting on functions defined on
the half-line. Recall the half-line space Hα+(R,U ), α ∈ R, defined in Section 2. By
Lemma 2.1, Hα+(R,U ) is the closure of the subspace {u ∈ C∞(R,U ) : supp u ⊂
(0,∞)} with respect to the norm topology of Hα(R,U ). Throughout this section, U
denotes a complex Hilbert space.

An operator G ∈ B(Hα+(R,U ), Hβ
+(R,U )) is said to be right-shift invariant

if SτG = GSτ for all τ ≥ 0. It is straightforward to show that right-shift invari-
ance of G implies causality, in the sense that, for all τ ≥ 0 and all u ∈ Hα+(R,U ),

supp u ⊂ [τ,∞) ⇒ supp(Gu) ⊂ [τ,∞).

The following lemma shows that a right-shift invariant operator in B(Hα+(R,U ), Hβ
+

(R,U )) has a unique causal and translation-invariant bilateral extension belonging
to B(Hα(R,U ), Hβ(R,U )).

Lemma 7.1 Let α, β ∈ R.

(1) If G ∈ B(Hα+(R,U ), Hβ
+(R,U )) is right-shift invariant, then there exists a unique

causal and translation-invariant operator Gb ∈ B(Hα(R,U ), Hβ(R,U )) such
that

Gb|Hα+(R,U ) = G and ‖Gb‖B(Hα,Hβ) = ‖G‖B(Hα+,Hβ
+)

.

(2) If G is a causal and translation-invariant operator in B(Hα(R,U ), Hβ(R,U )),
then the restriction G+ := G|Hα+(R,U ) is a right-shift invariant operator

in B(Hα+(R,U ), Hβ
+(R,U )) and, furthermore, ‖G+‖B(Hα+,Hβ

+)
= ‖G‖B(Hα,Hβ).

The above lemma is a generalization of [38, Theorem 6.2] which addresses the L2-
case (α = β = 0). The arguments used in [38] extend to the case of arbitrary α and
β, and therefore, we do not include a proof of Lemma 7.1.

The following corollary, a right-half line version of Theorem 3.1, provides a char-
acterization of right-shift invariant bounded operators G : Hα+(R,U ) → Hβ

+(R,U ).
It is an immediate consequence of Theorem 3.1 and Lemma 7.1.

Corollary 7.2 Let α, β ∈ R.

(1) If G : Hα+(R,U ) → Hβ
+(R,U ) is a bounded linear right-shift invariant operator,

then there exists a unique holomorphic function G : C0 → B(U ) such that

sup
s∈C0

‖(1 + s)β−αG(s)‖ = ‖G‖B(Hα+,Hβ
+)

and

Gu = (L−1 ◦ MG ◦ L)(u) ∀ u ∈ Hα+(R,U ).
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(2) Conversely, if G : C0 → B(U ) is holomorphic and such that sups∈C0
‖(1 +

s)β−αG(s)‖ < ∞, then G := L−1 ◦ MG ◦ L is a right-shift invariant
bounded operator Hα+(R,U ) → Hβ

+(R,U ) and ‖G‖B(Hα+,Hβ
+)

= sups∈C0
‖(1 +

s)β−αG(s)‖.

The above corollary is a generalization of a well-known result for the L2-case (α =
β = 0), see, for example, [41]. For the special case wherein α = β = 1 and U = C,
statement (1) can also be found in [29]. Whilst Corollary 7.2 is essentially identical
to [20, Theorem 3.1], we mention that it has been derived here by somewhat different
means.

The half-line space Hα+(R,U ) is a so-called zero-trace space because, for α > 1/2,
it can be shown that if u ∈ Hα+(R,U ), then u( j)(0) = 0 for all j ∈ N0 such that
j < α − 1/2 (see, for example, [3, Chapter VIII, Theorem 1.6.8]). Another half-
line version of Hα(R,U ) (when α ≥ 0) is the space of restrictions {u|[0,∞) : u ∈
Hα(R,U )} equipped with the norm ‖u‖ := inf{‖v‖Hα : v|[0,∞) = u}. This is a
bigger space than Hα+(R,U ) and a characterization of right-shift invariant bounded
linear operators on this space is more difficult and is addressed in [20].

Finally, by an argument very similar to that leading to Corollary 7.2, a right-half
line version of the Fourier multiplier result in Corollary 3.7 can derived. Furthermore,
Lemma 7.1 and Corollary 7.2 together with the results in Sects. 4 and 5 can be used
to develop a theory of Sobolev stability for right-shift invariant operators defined on
half-line spaces.

8 Appendix

The purpose of the appendix is twofold: to present some background material on
the convolution of vector-valued distributions (Appendix 1) and to provide proofs of
Lemmas 2.1 and 2.2 (Appendix 2) and Theorem 4.1 (Appendix 3).

Appendix 1: Remarks on the convolution of vector-valued distributions

Let X be a complex Banach space and let Z = X or Z = B(X). The subspace of all
distributions inD′(Z)with support bounded on the left is denoted byD′

�(Z). As usual,
we set D′

� := D′
�(C). In the following, when using the term “convolution product”,

we mean a bilinear mapping which is continuous in each argument. It is well-known
that there exists a unique convolution product

D′
�(B(X)) × D′

�(X) → D′
�(X), (K , u) �→ K�u (8.1)

satisfying

(k ⊗ T )�( f ⊗ x) = (k� f ) ⊗ (T x) ∀ k, f ∈ D′
�, ∀ T ∈ B(X), ∀ x ∈ X ,
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where k� f is the standard convolution product of the scalar-valued distributions k
and f , see [3, p. 432/433], [14, Chapter XVI: Section 2], [16, Chapter 8] or [43,
Chapter 5].

If K and u are Laplace transformable, then the convolution theorem (exchange
formula) for Laplace transforms holds:

(L(K�u)
)

(s) = (LK )(s)(Lu)(s) for all s ∈ C such that Re s > max{σ(K ), σ (u)},

see [14, Chapter XVI: Section 2], [16, Chapter 8] or [43, Chapter 6].
If K and u have supports which are bilaterally unbounded, then it is still possible to

define a convolution product of K and u, provided certain assumptions are satisfied.
For the current purposes, it is sufficient to consider the case wherein K is of the
form K = k ⊗ I , where k is a scalar-valued distribution. We set O′

C := F−1OM ⊂
S ′ (distributions of rapid decay) and recall that there exists a well-defined scalar
convolution product

O′
C × S ′ → S ′, (k, f ) �→ k� f ,

see [35, Théorème XI (Chapitre VII)] or [40, Definition 30.2]. By [35, Théorème XV
(Chapitre VII)] or [40, Theorem 30.4], the convolution theorem (exchange formula)
for Fourier transforms holds:

F(k� f ) = (Fk)(F f ) ∀ k ∈ O′
C, ∀ f ∈ S ′. (8.2)

Note that themultiplicationon the right-hand sideof (8.2) iswell-definedbecauseFk ∈
OM andF f ∈ S ′. An application of [3, Appendix: Theorem 1.5.3] together with argu-
ments similar to those used in the proof of [3, Appendix: Theorem 1.9.1] shows that
there exists a unique convolution product

O′
C × S ′(X) → S ′(X), (k, u) �→ k�u (8.3)

satisfying

k�( f ⊗ x) = (k� f ) ⊗ x ∀ k ∈ O′
C, ∀ f ∈ S ′, ∀ x ∈ X . (8.4)

It is a routine exercise to show that if the supports of k ∈ O′
C and u ∈ S ′(X) are

bounded on the left, then k�u in the sense of (8.3) coincides with (k ⊗ I )�u in the
sense of (8.1).

The identity (8.4), together with (8.2), the denseness of S ′ ⊗ X in S ′(X) [3,
Appendix: Theorem 1.3.6] and continuity properties of the Fourier transform and the
convolution product (8.3), shows that convolution theorem for Fourier transforms (8.2)
carries over to the vector-valued case, that is,

F(k�u) = (Fk)(Fu) ∀ k ∈ O′
C, ∀ u ∈ S ′(X). (8.5)
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Appendix 2: Proofs of Lemmas 2.1 and 2.2

Proof of Lemma 2.1. In the following, let V = U or V = C. By statements (3) and (4)
of Proposition 3.3, the restriction of the operator Rθ to L2(R, V ) is a causal isomor-
phism from L2(R, V ) onto H θ (R, V ) (for every θ ∈ R). To avoid awkward notation,
we use the same symbol Rθ to denote the scalar- and vector-valued versions of the oper-
ator. As usual, the tensor product F(R,C)⊗U ⊂ F(R,U ), where F = L2, F = C∞

c
or F = H θ , is defined as the vector space spanned by all finite linear combinations
∑n

j=1 f j ⊗ u j , where f j ∈ F(R,C), u j ∈ U and ( f j ⊗ u j )( · ) := f j ( · )u j .

(1) As Rθ (L2(R, V )) = H θ (R, V ) for V = U ,C, L2(R,C) ⊗ U is dense
in L2(R,U ) and

Rθ (L
2(R,C) ⊗U ) = Rθ (L

2(R,C)) ⊗U = H θ (R,C) ⊗U ,

it follows that H θ (R,C) ⊗ U is dense in H θ (R,U ). Now C∞
c (R,C) is dense

in H θ (R,C) (see, for example, [37, Lemma 15.10]), implying that C∞
c (R,C) ⊗U is

dense H θ (R,U ) ⊗U , and thus, C∞
c (R,U ) is dense in H θ (R,U ).

(2) Invoking the causality of Rθ and R−1
θ = R−θ , it follows that Rθ (L2+(R, V )) =

H θ+(R, V ) for V = U ,C. By an argument similar to that used in the proof of
statement (1), we obtain that H θ+(R,C) ⊗ U is dense in H θ+(R,U ). Consequently,
as H θ+(R,C) is the closure of the subspace {u ∈ C∞(R,C) : supp u ⊂ (0,∞)}
with respect to the norm topology of H θ (R,U ) (see [25, Theorem 3.29]), the
space {u ∈ C∞

c (R,U ) : supp u ⊂ (0,∞)} is dense in H θ+(R,U ). �

Proof of Lemma 2.2. We proceed in two steps.
Step 1: μ ≥ 0. In this case, it follows from an application of [4, Theorem 2.5.1]

(with, in the notation of [4], ω = μ, q(s) = sh(s) and b = 1) that there exists h ∈
C(R, X) such that h(t) = 0 for all t ≤ 0, supt>0 ‖e−νt t−1h(t)‖ < ∞ for every ν > μ

and (Lh)(s) = h(s) for all s ∈ Cμ. Furthermore, letting ν > μ, and choosing 0 <

ε < ν − μ, we have that

M := sup
t>0

‖e−(ν−ε)t t−1h(t)‖ < ∞.

Consequently, ‖e−νt h(t)‖ ≤ Mte−εt for all t ≥ 0, showing that e−ν · h ∈ L1(R, X)

and completing the proof of the claim when μ ≥ 0.
Step 2: μ < 0. Set g(s) := h(s + μ) for all s ∈ C0. Then g is a holomorphic X -

valued function on C0 such that sups∈C0
‖s2g(s)‖ < ∞. By Step 1, there exists g ∈

C(R, X) such that g(t) = 0 for all t ≤ 0, supt>0 ‖e−ωt t−1g(t)‖ < ∞ and e−ω · g ∈
L1(R, X) for every ω > 0 and (Lg) = g(s) for all s ∈ C0. Routine arguments show
that the function h : R → X , t �→ eμt g(t) has all the required properties. �

Appendix 3: Proof of Theorem 4.1

Before we prove Theorem 4.1, we develop some auxiliary material which will play a
key role in the proof.
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For n ∈ N0, we define hn : C\(iR) → R+ by

hn(s) :=
{

(1 + |s|2)n(Re s)−n, 0 < |Re s| ≤ 1

(1 + |s|2)n, |Re s| > 1.

Throughout this appendix, let X be a complex Banach space. The following result is a
special case of [26, Lemma 2] (translated from the upper/lower- to the right/left-half
plane setting).

Lemma 8.1 LetF : C\(iR) → X beholomorphic, and, for x ∈ R, x �= 0, setFx (y) :=
F(x + iy) for all y ∈ R. If there exist n ∈ N0 and L > 0 such that

‖F(s)‖ ≤ Lhn(s) ∀ s ∈ C\(iR), (8.6)

then there exists � ∈ S ′(X) such that
([Fx ] − [F−x ]

) → � in S ′(X) as x ↓ 0.

Next we relate the growth conditions (8.6) and (4.2). In view of the condition (4.2),
we set

gm,k(s) := (1 + |s|)m(1 + (Re s)−k) ∀ s ∈ C0,

where k,m ∈ N0.

Lemma 8.2 Let k,m ∈ N0. The exists C > 0 such that, for all s ∈ C0,

gm,k(s) ≤ C

{

hk(s), if k ≥ m

hm(s), if k < m.

Proof Let s ∈ C0 and write s = x + iy, where x > 0 and y ∈ R.
Case 1: k ≥ m. If x > 1, then |s| > 1, and so,

gm,k(s) ≤ 2(1 + |s|)m ≤ 2(1 + |s|)k ≤ 2(1 + |s|2)k .

If 0 < x ≤ 1, then

gm,k(s) ≤ 2(1 + |s|)mx−k ≤ 2(1 + |s|)k x−k ≤ 2γ k(1 + |s|2)k x−k,

where γ := maxa≥0(1 + a)(1 + a2)−1 = 1/
(

2(
√
2 − 1)

)

. We conclude that in this
case

gm,k(s) ≤ 2γ khk(s) ∀ s ∈ C0.

Case 2: k < m. If x > 1, then |s| > 1, and so,

gm,k(s) ≤ 2(1 + |s|)m ≤ 2(1 + |s|2)m .
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Furthermore, if 0 < x < 1, then

gm,k(s) ≤ 2(1 + |s|)mx−k ≤ 2(1 + |s|)mx−m ≤ 2γm(1 + |s|2)mx−m .

Consequently, we have that

gm,k(s) ≤ 2γmhm(s) ∀ s ∈ C0.

The claim now follows with C = 2γmax(k,m). �

We are now in the position to prove Theorem 4.1.

Proof of Theorem 4.1. We proceed in three steps.
Step 1: Existence of the boundary distribution �.
To use Lemma 8.1, we define a holomorphic function F : C\(iR) → X by

setting F(s) := G(s) when Re s > 0 and F(s) := 0 when Re s < 0. As G sat-
isfies the growth bound (4.2), it follows from Lemma 8.2 that (8.6) holds for F
with n = max(k,m) and L = MC . The existence of � ∈ S ′(X) such that [Gx ] → �

in S ′(X) as x ↓ 0 is now guaranteed by Lemma 8.1.
Step 2: suppF−1� ⊂ [0,∞).
We note that, for every μ > 0, there exists a constant Mμ > 0 such that

‖G(s)‖
|s|m+2 ≤ Mμ

|s|2 ∀ s ∈ Cμ,

as follows from (4.2). Defining the holomorphic X -valued function H by

H(s) := 1

sm+2G(s) ∀ s ∈ C0,

we see that sups∈Cμ
‖s2H(s)‖ ≤ Mμ for every μ > 0. Invoking Lemma 2.2 shows

that there exists H ∈ C(R, X) such that H(t) = 0 for all t ≤ 0, e−μ · H ∈ L1(R, X)

for every μ > 0 and

H(s) =
∫ ∞

−∞
e−st H(t) dt ∀ s ∈ C0.

Therefore,

H(x + iy) =
∫ ∞

−∞
e−iyt(e−xt H(t)

)

dt = (F(e−x · H)
)

(y) ∀ x > 0, ∀ y ∈ R.

Let now x > 0 be fixed, but arbitrary. Setting Hx (y) := H(x + iy) for all y ∈ R, the
above can be expressed as

Hx = F(e−x · H).
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Obviously, (x + iy)m+2Hx (y) = Gx (y) for all y ∈ R. Defining b(y) := (x + iy)m+2

for all y ∈ R, this can be written as bHx = Gx . Noting that b[Hx ] = [bHx ], we obtain

F(

(x I + D)m+2[e−x · H ]) = bF[e−x · H ] = b[F(e−x · H)] = b[Hx ] = [bHx ] = [Gx ],
(8.7)

where D denotes distributional differentiation. Since H(t) = 0 for all t < 0, it follows
that supp

(

(x I + D)m+2[e−x · H ]) ⊂ [0,∞), and so,

supp
(F−1[Gx ]

) ⊂ [0,∞).

This holds for all x > 0, and, since [Gx ] → � in S ′(X) as x ↓ 0, the continuity
of F−1 then guarantees that suppF−1� ⊂ [0,∞).

Step 3: L(F−1�) = G.
Note that, by (8.7),

(x I + D)m+2[e−x · H ] = F−1[Gx ]. (8.8)

Next, we let x go to 0. As we do not know that [H ] ∈ S ′(X), it cannot be concluded
that the left-hand side of (8.8) converges to Dm+2[H ] in S ′(X) as x ↓ 0. However,
[H ] ∈ D′(X), and so it is clear that

(x I + D)m+2[e−x · H ] → Dm+2[H ] in D′(X) as x ↓ 0.

Together with (8.8) and the convergence of [Gx ] to � in S ′(X) as x ↓ 0, this implies

(Dm+2[H ])(ϕ) = (F−1�)(ϕ) ∀ϕ ∈ D.

Hence, for c > 0,

(

e−c · Dm+2[H ])(ϕ) = (

e−c · (F−1�)
)

(ϕ) ∀ϕ ∈ D. (8.9)

Obviously, as the distributionF−1� is tempered andhas support in [0,∞), it is Laplace
transformable. Since e−c · ∈ O+

M, the distribution e−c · (F−1�) is also tempered, and
hence Laplace transformable. It is sufficient to prove that

(L(e−c · (F−1�))
)

(s) = G(s + c) ∀ s ∈ C0. (8.10)

Indeed, as c > 0 is arbitrary, it then follows that
(L(F−1�)

)

(s) = G(s) for all s ∈ C0.

We proceed to establish (8.10). Using an induction argument, it can be shown that

(

e−c · Dn[H ])(ϕ) =
n

∑

k=0

(
n

k

)

ck
(

Dn−k(e−c · [H ]))(ϕ) ∀ n ∈ N0, ∀ϕ ∈ D. (8.11)
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We postpone the derivation of (8.11) to the end of the proof.
As e−c · [H ] = [e−c · H ] and e−c · H ∈ L1(R, X), we have that e−c · [H ] ∈

S ′(X). Consequently, D j (e−c · [H ]) is in S ′(X) for every j ∈ N0, and it follows
from (8.9), (8.11) and the denseness of D in S that

(

e−c · (F−1�)
)(

ϕ) =
m+2
∑

k=0

(
m + 2

k

)

ck
(

Dm+2−k(e−c · [H ]))(ϕ) ∀ϕ ∈ S.

Taking Laplace transforms on both sides of the above identity yields

(L(e−c · (F−1�))
)

(s) =
(
m+2
∑

k=0

(
m + 2

k

)

cksm+2−k

)

H(s + c)

= (s + c)m+2H(s + c) ∀ s ∈ C0,

whence

(L(e−c · (F−1�))
)

(s) = G(s + c) ∀ s ∈ C0,

which is (8.10).
It remains to derive (8.11). Trivially, (8.11) is valid for n = 0. Assume now that (8.11)
holds for some n ∈ N0. Setting ψ := e−c · and T (k) := DkT for T ∈ S ′(X)

and k ∈ N0, the induction hypothesis takes the form

ψ[H ](n) =
n

∑

k=0

(
n

k

)

ck(ψ[H ])(n−k) on D.

Asψ[H ](n+1) = (ψ[H ](n))′+cψ[H ](n) (onD), it follows from the induction hypoth-
esis and a straightforward calculation that

ψ[H ](n+1) =
n

∑

k=0

(
n

k

)

ck(ψ[H ])(n+1−k) +
n+1
∑

k=1

(
n

k − 1

)

ck(ψ[H ])(n+1−k) on D.

As
(
n

0

)

= 1 =
(
n + 1

0

)

,

(
n

n

)

= 1 =
(
n + 1

n + 1

)

and

(
n

k − 1

)

+
(
n

k

)

=
(
n + 1

k

)

∀ k ∈ {1, . . . , n},

we conclude that

ψ[H ](n+1) =
n+1
∑

k=0

(
n + 1

k

)

ck(ψ[H ])(n+1−k) on D,
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completing the induction argument. �
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29. Partington JR,Ünalmış B (1998)On the representation of shift-invariant operators by transfer functions.

Syst Control Lett 33:25–30
30. Paunonen L, Laakkonen P (2015) Polynomial input-output stability for linear systems. IEEE Trans

Autom Control 60:2797–2802
31. Rosenblum M, Rovnyak J (1997) Hardy classes and operator theory. Oxford University Press, New

York, 1985 (corrected reprint available as, Dover. Mineola, N.Y
32. Rozendaal J (2023) Operator-valued (L p, Lq ) Fourier multipliers and stability theory for evolution

equations. Indag Math 34:1–36
33. Rozendaal J, Veraar M (2018) Stability theory for semigroups using (L p, Lq ) Fourier multipliers. J

Funct Anal 275:2845–2894
34. Rugh WJ (1996) Linear systems theory, 2nd edn. Prentice Hall, Upper Saddle River
35. Schwartz L (1966) Théorie des Distributions, nouvelle édition. Hermann, Paris
36. Staffans OJ (2005) Well-posed linear systems. Cambridge University Press, Cambridge
37. Tartar L (2007) An introduction to Sobolev and interpolation spaces. Springer, Berlin
38. Thomas EGF (1997) Vector-valued integration with applications to the operator-valued H∞- space.

IMA J Math Control Inform 14:109–136
39. Trentelman HL, Stoorvogel AA, Hautus M (2001) Control theory for linear systems. Springer, London
40. Treves F (1967) Topological vector spaces, distributions and kernels. Academic Press, New York
41. Weiss G (1991) Representation of shift-invariant operators on L2 by H∞ transfer functions: an ele-

mentary proof, a generalization to L p , and a counterexample for L∞. Math Control Signals Syst
4:193–203

42. Weiss G, Rebarber R (2001) Optimizability and estimatability for infinite-dimensional linear systems.
SIAM J Control Optim 39:1204–1232

43. Zemanian AH (1995) Realizability theory for continuous linear systems. Academic Press, New York,
1972 (reprint available as, Dover. Mineola, N.Y)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.1007/s00020-023-02738-3
https://doi.org/10.1007/s00020-023-02738-3
https://doi.org/10.1007/s00498-017-0203-z
https://doi.org/10.1007/s00498-017-0203-z

	Operator-valued multiplier theorems for causal translation-invariant operators with applications to control theoretic input-output stability
	Abstract
	1 Introduction
	2 Preliminaries
	3 Operator-valued multiplier theorems
	4 Boundary values of vector-valued holomorphic functions defined on the right-half plane
	5 Sobolev stability
	6 Examples
	7 Remarks on right-shift invariant operators on the half-line
	8 Appendix
	Appendix 1: Remarks on the convolution of vector-valued distributions
	Appendix 2: Proofs of Lemmas 2.1 and 2.2
	Appendix 3: Proof of Theorem 4.1

	Acknowledgements
	References




