
The Easiest Hard Problem: Now Even Easier
Ruben Horn

Helmut Schmidt University
Hamburg, Germany
r.horn@hsu-hh.de

Sarah L. Thomson
Edinburgh Napier University
Edinburgh, United Kingdom
s.thomson4@napier.ac.uk

Daan van den Berg
Vrije Universiteit Amsterdam
University of Amsterdam
Amsterdam, Netherlands

daan@yamasan.nl

Pieter Adriaans
Institute for Logic, Language, and Computation

University of Amsterdam
Amsterdam, Netherlands

pieter@pieter-adriaans.com

ABSTRACT
We present an exponential decay function that characterizes the
number of solutions to instances of the Number Partitioning Prob-
lem (NPP) with uniform distribution of bits across the integers. This
function is fitted on the number of optimal solutions of random
instances with lengths between 10 and 20 integers and may be used
as a heuristic either directly by new algorithms for the NPP or as a
benchmark to evaluate howwell different Evolutionary Algorithms
(EAs) cover the search space. Despite the long history of the NPP,
it seems such a characterization does not yet exist.
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1 INTRODUCTION
The Number Partitioning Problem (NPP) is a well knownNP-hard
problem [2, Chapter 5]. It is a special case of the alsoNP-hard Subset
Sum Problem (SSP), where the aim is to find a subset𝐴 of a set of pos-
itive integers 𝑆 𝑡 ∈ [0..∑𝑆] so that |𝑡−∑𝐴| is minimized. In the (two-
way) NPP 𝑡 = ⌈1/2∑𝑆⌉ so the resulting subset have equal sums. Like
other combinatorial optimization problems (like the travelling sales-
person problem [2, Chapter 5] or protein-folding [1]), there can be
multiple optimal solutions to a single instance. Hence, the frequency
of optimal solutions may directly correlate with the computational
hardness of an instance, as the probability of a search algorithm
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to finding a solution increases with their frequency. The peculiar
property of the NPP is that it is often significantly easier than other
problems in the class ofNP-hard problem. If

∑
𝐴= ⌈1/2∑𝑆⌉, the al-

gorithm can terminate immediately, because no better partition can
exist. This property, as well as its easy-hard-easy [8], have resulted
in the NPP being nicknamed “the easiest hard problem” [4, 6, 8].

As shown in the experiments by Richard Korf [5], the discrepancy
of the optimal solutions |∑𝐴−⌈1/2∑𝑆⌉ | for NPP instances decreases
as the number of integers 𝑛 grows with a fixed range of values lim-
ited to𝑚 binary digits. Likewise, the number of solutions that are
evaluated by a search algorithm peaks and slowly declines as per-
fect solutions are found (earlier). This was later also replicated by
StephanMertens [6]. These observations are not surprising, because
the number of possible partitions of 𝑛 integers with𝑚 bits each 2𝑛/2
grows much faster than the maximum sum of the set 𝑛(2𝑚−1) over
𝑛with constant𝑚. Therefore, at some point, a perfect partitionmust
exist and the likelihood of any search algorithm finding it increases
as the number of these solutions grows even further. The relation
of𝑚/𝑛 to the frequency of optimal solutions (and their optimality)
was illustrated by Brian Hayes [4] and recently replicated in [7]. To
the best of our knowledge, there has not been any other attempt yet
to characterize the frequency, existence, or distribution of optimal
solutions to instances of the NPP.

2 CHARACTERIZATION
First, we generate a dataset by sampling instances with random in-
tegers with𝑚 bits each for 𝑛 ∈ [10..20]. For each, 𝑛 we generate five
different instances for all possible values of the ratio𝑚/𝑛 ∈ (0,1.5]
with integers in [2𝑚−1 ..2𝑚−1]. We enumerate all possible values
of𝑚/𝑛 by adding a single bit at the integer index that has the fewest
bits. Thus, some instances do not have a perfectly uniform bit dis-
tribution. The generated instances are then solved using an exact
branch and bound algorithm [9] and the number of optimal solutions
counted. Since there are twice as many solutions for sets with odd
sums than for equivalent sets with even sums [4], those with odd
sums are discarded, leaving 8895 instances over all 𝑛. The frequency
of optimal solutions for the resulting instances with even sums is
visualized in Fig. 1 for 𝑛=10 and 𝑛=20, using a logarithmic vertical
scale. Since they both appear to follow an exponential decay with
a knee between around 0.8 to 1.0, we fit the Eq. (1) with the initial
offset parameter 𝑁0 and rate of decay −𝜆 over𝑚/𝑛. A constant offset
of +1 is added, since there is always at least one optimal solution to
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Figure 1: Characterizations of the number of optimal (mostly
perfect for𝑚/𝑛<0.8) solutions for different 𝑛 and𝑚/𝑛≤ 1.5

Table 1: Fitted values and 𝑅2 metric for Eq. (1)

𝑛 𝑁0 𝜆 𝑅2 RMSE RMSPE

10 404.388 11.051 0.941 4.477 1.053%
11 714.169 11.887 0.977 5.088 0.549%
12 1427.166 13.128 0.982 7.971 0.614%
13 2920.215 14.526 0.978 16.487 0.379%
14 5597.876 15.347 0.990 21.939 0.329%
15 10216.711 16.143 0.994 32.009 0.434%
16 20825.808 17.533 0.992 72.013 0.299%
17 36584.847 18.002 0.995 82.399 0.387%
18 78474.330 19.770 0.992 262.836 0.294%
19 151955.578 20.829 0.992 439.552 0.264%
20 296965.253 21.877 0.993 800.628 0.262%

the NPP, even if it is not perfect.

𝑁0×2−𝜆𝑚/𝑛+1 (1)

The coefficient of determination 𝑅2 is very high, with over 0.99 for
lengths 𝑛 ≥ 14 in Table 1, which indicates that this model quite
accurately describes the observations in our dataset. While the Root
Mean Square Error (RMSE) appears at first glance to be large for
increasing 𝑛, the Root Mean Square Percentage Error (RMSPE) is
below 0.5% for 𝑛 ≥ 13 and the characterization in Fig. 1 is visually
sound. Since thevalues inTable1 increasemonotonically,weattempt
to generalize Eq. (1) by characterizing its parameters as functions of
𝑛. While 𝜆 increases linearly,𝑁0 grows exponentially. The combined
model is therefore given by Eq. (2) and has an 𝑅2 score of 0.993 and
RMSE of 379.831 or RMSPE of 0.384%. Since 𝜆 is almost equal to 𝑛,
we can simplify themodel significantly into Eq. (3) and still achieve a
reasonable𝑅2 scoreof 0.956 andRMSEof 945.625orRMSPEof 0.718%.

(0.418583×1.961385𝑛)×2−(1.081473𝑛+0.149822)𝑚/𝑛+1 (2)
(0.42×1.96𝑛)×2−𝑚+1 (3)

3 DISCUSSION
The rationale behind fitting an exponential decay function with a
base of two comes from the binary exponential nature of the possible
partitions: the choice of including or excluding each integer. Since
the distribution of bits over the integers and the sampling of their
concrete values is uniform, the histogram of all possible subset sums
probably form something similar to an Irwin–Hall distribution [3].
The solution to the NPP is at the center of this distribution, and the
parameter 𝑁0 predicts the maximum height of its peak. As𝑚 and
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Figure 2: Fitted functions of the parameters of Eq. (1)

therefore
∑
𝑆 grows, this distribution is stretched out and flattens as

described by Eq. (1) because the number of solutions stays the same
for constant𝑛. Since this may also cause gaps in the distribution and
no partition yields a perfect partition, the algorithm cannot termi-
nate early while the search tree cannot be pruned (much) due to the
uniformity of the integers. This likely explains why Van den Berg
andAdriaans [9] also find that the hardest and easiest instances both
have a uniformdistribution of bits over the integers. This complexity
of theNPPmight be an indication of fractal properties:Anon-integer
dimension and self-similarity of subset sum frequencies.

4 CONCLUSION
In this paper, we proposed a model that predicts the number of opti-
mal solutions for the NPP reasonably well. In fact, this model can be
simplified without sacrificing a lot of accuracy by eliminating one of
its parameters (𝜆) but maintaining an 𝑅2 score of 0.956, making the
NPP even easier. Investigating the underlying distribution further
might allow an extension to the SSP. In the realm of Evolutionary
Algorithms (EAs) the NPP might be an interesting benchmark to
evaluate how well/quickly EAs discover all optimal solutions which
can nowbe predicted reasonably accurately. Instanceswith𝑚/𝑛≤ 0.8
appear to have perfect solutions [4, 7]. Perhaps the discrepancy for
𝑚/𝑛>0.8 can be characterized similarly as a heuristic of the optimal
solution discrepancy for non-exact/metaheuristic algorithms. In the
future we will further investigate the potential fractal properties of
the NPP and SSP.
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