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Figure 1: Two approaches to training an algorithm selector are compared. In (a), short trajectories are extracted by running
solvers from the portfolio of interest which are then used to train a classifier to predict the best solver. In (b), trajectories are
produced from running a simulated annealing algorithm whose parameters are tuned via irace [25] to optimise a machine-
learning metric.

ABSTRACT
The choice of input-data used to train algorithm-selection models
is recognised as being a critical part of the model success. Recently,
feature-free methods for algorithm-selection that use short trajec-
tories obtained from running a solver as input have shown promise.
However, it is unclear to what extent these trajectories reliably
discriminate between solvers. We propose a meta approach to gen-
erating discriminatory trajectories with respect to a portfolio of
solvers. The algorithm-configuration tool irace is used to tune the
parameters of a simple Simulated Annealing algorithm (SA) to pro-
duce trajectories that maximise the performance metrics of ML
models trained on this data. We show that when the trajectories
obtained from the tuned SA algorithm are used in ML models for
algorithm-selection and performance prediction, we obtain signifi-
cantly improved performance metrics compared to models trained
both on raw trajectory data and on exploratory landscape features.
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1 INTRODUCTION
Algorithm-selection — the process of selecting the best algorithm
to solve a given problem instance — is motivated by the fact that
algorithms in a portfolio deliver complementary performance on
diverse problem instances and was first recognised by Rice [40]
in 1976. Algorithm-selectors usually take the form of a model that
given an input describing an instance, either predict the label of
the best solver (classification) or its performance (regression) [46].
Typically models are trained using a feature-vector that describes
the instance. In continuous domains, Exploratory Landscape Anal-
ysis [27] is often used to create features, whereas in combinatorial
domains, it is more typical to use hand-designed features that are
specific to the domain.

However, feature-based selection poses a number of issues.
Firstly, in some domains, specifying features is not intuitive, and it
can be difficult to create a sufficient number to train a model. Con-
versely, in other domains, feature-selection methods are required
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to select the most informative ones [18, 26, 44]. Secondly, instance
features often do not correlate well with algorithm performance
data. For instance, Sim et. al. [43] demonstrate in the TSP domain
that instances that are close in the feature-space can be very distant
in the performance space (i.e., the Euclidean distance between their
feature-vectors is small while the distance between the performance
of two algorithms on the instances is very large). Thirdly, while
features can capture nuances of a fitness landscape [27], they are
usually defined independently of any solver [15], which appears
problematic if the goal is to inform solver prediction.

To address this, some recent work proposes to use information
extracted from fitness trajectories obtained by running a solver for
a short period of time to train selectors [15, 22, 39]: these methods
directly capture something about the search process of a solver
on an instance. Time-series features can be extracted from the
trajectories and used to train a selector [8, 9, 39] or alternatively, the
trajectory can be used directly [39], avoiding the need for feature-
calculation. However, for trajectory-based data to be useful to train
a model, it must be discriminatory — despite the success of some of
the approaches just mentioned above, it is clear that many meta-
heuristic solvers might produce similar trajectories on an instance,
particularly given their stochastic nature.

In this article, we propose a method that harnesses the benefits
that trajectory-based approaches can bring (i.e. that they reflect
algorithm behaviour) but also addresses the weaknesses just raised.
Our method is inspired by research in other fields where meta-
algorithms have been used to learn a transformation that enables
an existing algorithm or model to improve its performance. For
example, in the domain of classification, [24] use genetic program-
ming to learn a low-dimensional embedding of ML datasets such
that when a classifier is applied in the learned space, classification
metrics are improved. In robotics, [5, 6] describe a meta-approach
to solving control problems in which an EA learns a definition of
an archive such that when a MAP-Elites algorithm [29] is applied
in the defined archive, objective performance is improved. Also in
robotics, Meyerson et. al. [28] propose a method for meta-learning
behaviour descriptors which are then used by novelty-search algo-
rithm [23] to solve a maze-navigation task. As described in Figure 1,
our proposed method uses the well-known algorithm-configuration
tool irace [25] to tune the parameters of a simple Simulated An-
nealing (SA) algorithm [21] such that it produces short trajectories
that when used to train an algorithm-selector or regressor, optimise
the model metrics (e.g. regression or classification). The goal of
tuning the SA algorithm is therefore to produce short, discrimina-
tory trajectories that can be cheaply calculated. Following training,
when new test instances arrive, the tuned SA algorithm is run to
create an input trajectory to a model which is trained to either
predict performance or the label of the best solver from a portfolio
of interest.

We evaluate the proposed approach on the well-known BBOB
test-suite [11] to learn models for both classification and regres-
sion. Models are trained either using the trajectory from the tuned
SA algorithm directly or by extracting time-series features from
the tuned trajectory. As a baseline, we compare the results of the
meta-algorithm to models that directly use ELA features and to
previous results that use trajectory data obtained by running all
solvers in a portfolio. We show the meta-algorithm outperforms

ELA-based models in all experiments; obtains better RMSE than
single trajectory-based methods relying on the solver portfolio, and
provides similar or better performance to a multi-trajectory input
method but at a considerable less computational cost.

To the best of our knowledge, this is the first time such an ap-
proach has been used to improve algorithm-selectors. It addresses
several weaknesses in current practice, such as recognising the need
to use training data which reflects the behaviour of a solver (i.e. is
‘algorithm-centric’; the need to have a cheap method of computing
input to a model; ensuring the inputs are discriminatory and finally,
that scales with the size of the portfolio of solvers (unlike the ap-
proach described in [39] which requires trajectories to be computed
for every solver in the portfolio to create input to a model).

Reproducibility: code, data, and additional plots are available
at [38].

2 RELATEDWORK
We focus on related work in algorithm-selection in the continu-
ous domain given this is the subject of our study. A more general
overview of algorithm-selection (which includes models for both
classification and performance prediction) can be found in [17].

In continuous optimisation, the vastmajority of previouswork fo-
cuses on the use of landscape-features to train selectors. Exploratory
Landscape Analysis (ELA) [27] is a popular method for extracting
features, which has grown over the years with a gradual introduc-
tion of new features [10, 19, 30]. The reader is referred to [34] for
formal definitions of the most used features and their properties.
The use of ELA features has been shown to be successful in both
algorithm configuration [3] and algorithm selection [17] on bench-
mark data as well as real-world optimisation problems [37]. The
main drawback of ELA however is the overhead cost induced by
the feature computation: typically this involves sampling a large
number of points in order to compute features then discarding
the samples, which can be wasteful. In combinatorial optimisation,
feature-free approaches to algorithm-selection are beginning to
emerge [1, 2, 42, 50] that use deep-learning (DL) models but have
the disadvantage that deep-learning models can be very difficult to
explain.

All of the approaches just described take an instance-centric
view: that is, the input to a selector is independent of the execution
of any algorithm. As already noted in 1, this can be problematic,
given that previous work has suggested that there is not necessarily
a strong correlation between the distance of two instances in a
feature-space and the distance in the performance space according
to a chosen portfolio of solvers [43].

Some recent work has begun to address this, using information
derived from running a solver as input to a selector. For example,
recent work from Jankovic et. al. [14, 15] proposes extracting ELA
features from the search trajectory of an algorithm. In [14], trajec-
tories are obtained using half of the available budget and combined
with the state variables of the algorithm to train a performance pre-
dictor. However, their approach was outperformed by classical ELA
features computed on the full search space. In [15], ELA features
were computed from short trajectories of 30𝑑 points: this informa-
tion was then used to train a model that predicted an algorithm to
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warm-start a search process. Cenikj et. al. [8] log algorithm trajec-
tories using a large budget which is used to construct time-series
of statistics derived from both the population fitness to train a clas-
sifier that predicts which of the 24 BBOB functions the trajectory
belongs to. Their approach successfully outperforms a model which
is trained on ELA features extracted from algorithm trajectories
rather than on statistical information. Kostovska et. al. [22] also use
time-series features to train a model: the features are extracted from
state variables of CMA-ES to perform a per-run algorithm selection
with warm-starting, which demonstrates similar performance to
ELA features on the per-run algorithm selection task. Most recently,
in [39], probing-trajectories capturing the best-so-far or best-per-
generation fitness over a small number of generations are used
directly to train a selector without extracting any features. Despite
the promise of these trajectory approaches, there remain some is-
sues. Firstly, there can be wide variance in trajectories obtained
from running the same solver on an instance multiple times, hence
randomly sampled trajectories might not discriminate between
solvers. Secondly, in the approach described in [39], models are
trained using a concatenated list of short trajectories obtained from
each solver in the portfolio as input. Clearly, this does not scale
with increasing sizes of portfolios, where the cost of computing
even short trajectories over multiple solvers could be prohibitive.

Although we are unaware of other work that attempts to im-
prove discrimination between model inputs depending on solvers,
it is worth mentioning research from other domains which uses
a meta-algorithm approach in which a process is nested inside
an outer learning loop that learns something that improves the
performance of the inner process. As noted in Section 1, these
approaches are common both in Evolutionary Robotics [5, 6, 28]
and particularly in the Quality-Diversity literature [33]. The latter
requires a space to be defined in which an algorithm searches for
diverse but high-quality solutions. A meta-algorithm searches for
the most appropriate space in which to run the optimiser of interest.
Our work builds on this idea by using a meta-algorithm to tune a
simulated annealing algorithm to produce trajectories which are
discriminatory with respect to solvers in a portfolio of interest and
therefore enable better algorithm-selection models to be trained.

3 METHODS
In this section, we describe the methods used to generate data, the
portfolio of solvers of interest and the machine-learning models
used.

3.1 Searching for Discriminatory Trajectories
As shown in Figure 1, the meta-approach we propose tunes a Simu-
lated Annealing [21] algorithm to produce discriminating trajecto-
ries. We chose SA both for its simplicity and for the ability to easily
tune its hyper-parameters. To minimise the computational effort
required to compute trajectories which are used as input to a model
but are not used to solve an instance, we minimise the length of
the trajectories optimised by SA. We use the dual annealing algo-
rithm from scipy [49] 1 to provide the trajectories. The search over
the configurations of the dual annealing algorithm is performed

1version 1.10.1

using the default irace [25] package 2, setting the maximum num-
ber of experiments to 5,000. The parameters involved in creating
differentiating trajectories and their possible values are:

• The length of the trajectory 𝑛 ∈ [5, 100]. The length is re-
stricted to 100 to provide short trajectories with a low budget
of function evaluations.

• The SA initial temperature 𝑇 ∈ [0.02, 5𝑒4].
• The SA visiting distribution parameter 𝑣 ∈ [1.5, 2.5].
• The SA acceptance parameter 𝑎 ∈ [−1.1𝑒4,−5].

We extract two kinds of trajectories: the ‘best’ trajectory records
the best fitness seen so far on an instance during a run of the
SA algorithm, while the ‘current’ trajectory records the current
fitness value (given that SA can accept worse solutions). The fitness
function used in irace is the classification accuracy of a model
trained on a set of trajectories for a model that predicts the label of
the best solver, and the RMSE in a performance prediction task. The
method for determining the labels/performance data is described
in the next section.

3.2 Data
We consider the first 5 instances of the 24 noiseless Black-Box Op-
timisation Benchmark (BBOB) functions in dimension 𝑑 = 10 from
the COCO platform [12] as a test-bed. For each instance, we collect
data from running three algorithms: CMA-ES [13], Particle Swarm
Optimisation (PSO) [16], and Differential Evolution (DE) [45]. Each
algorithm is run 5 times per instance. Following the method de-
scribed in [39], we record the best median target value obtained
from running CMA-ES, PSO and DE after 100,000 function evalua-
tions. Note that although this is a very large number of evaluations,
its only purpose is to provide a ‘true’ label or performance value
for each algorithm to train and evaluate models. The data obtained
is used to label each instance with the best-performing algorithm
to train a classification model to predict the best solver and as the
performance value for a prediction task.

We compare the results of our meta-trajectories approach to
training models that use (1) probing-trajectories directly to train
models, (2) time-series features extracted from the trajectories and
(3) state-of-the-art ELA feature-vectors as input. We obtain trajec-
tory data directly from [47] which records search-trajectories per
run. Note that some automated algorithm configuration was per-
formed by [47] before they collected this data, see [48] for further
details. ELA feature-data for the BBOB suite is extracted from [35].
For each feature, 100 independent values are available per function
instance which were sampled using the Soboĺ low-discrepancy
sequence. We use data from the 10-dimensional functions with a
feature computation budget of 30×𝑑 and the general recommenda-
tion for feature computation 50×𝑑 [20]. We select 10 cheap features
based on their expressiveness and invariance to transformation,
described in [36].

4 MACHINE LEARNING TASKS
We use the trajectories obtained from the tuned SA algorithm to
train two types of ML models: (a) a classifier that predicts the best

2version 3.5
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Table 1: Function evaluations budgets for each algorithm in
our portfolio for 2 and 7 generations.

Algorithm
Trajectory 2 generations 7 generations

CMA-ES 20 70
DE 60 210
PSO 80 280
ALL 160 560

solver and (b) a regressor that predicts performance. The follow-
ing section describes the model inputs, the models used, and the
validation procedures that are applied.

4.1 Inputs for ML models
Models can be trained with three types of input:

• Raw Probing-Trajectories: these consist of a time-series of
fitness values from the first 𝑛 function evaluations of an al-
gorithm. Two types of trajectory are recorded. The ‘current’
trajectory simply logs the fitness obtained at every function
evaluation in the order that they occur. On the other hand,
the ‘best’ trajectory records the best-so-far fitness seen dur-
ing a run after each function evaluation. We use the labels
‘best’ and ‘current’ to refer to these trajectories from this
point onwards.
These trajectories are obtained from the SA algorithm or
directly from the data published by [47]. This archive con-
tains data describing individual trajectories of CMA-ES, PSO,
and DE. Following the approach of [39], we also consider
‘concatenated’ trajectories from each of three algorithms
which we refer to as the ‘ALL’ trajectory (i.e. it combines
individual trajectories into a single new trajectory that can
be used to train a model). For the portfolio solvers CMA-
ES/PSO/DE, we use trajectories obtained over 2 generations
and separately over 7 generations. The data we obtained
from [47] was generated using a different population size for
each solver (due to parameter tuning) hence the length of the
trajectories generated for each solver are slightly different.
The values are provided in Table 1.
The input to a model is always a time-series representing
one algorithm run. As just described, the length of the time-
series depends on the number of generations and population
size used in the algorithms.

• Time-series Features: As in [9, 39], we also extract time-series
features from all trajectories defined in the previous section,
using the tsfresh Python package 3, and perform feature
selection using the Boruta Python package 4. Input is a vector
of features, representing one algorithm run.

• ELA Features From the 100 10−dimensional feature vectors
that are available for each BBOB instances (see Section 3.2),
we randomly sample 5 vectors. This ensures fair compari-
son between features and trajectories as data from 5 runs is

3version 0.20.1
4version 0.3

available for calculating trajectories. We compare two bud-
gets for features: the recommended budget of 50𝑑 = 500
sample points and 30𝑑 = 300 sample points. In this case, the
input is a 10−dimensional vector of features, representing
one function instance.

4.2 Models
The classification task is a typical algorithm-selection task, i.e.,
given an input, output the best algorithm to use from a given port-
folio. As noted previously, the best algorithm is defined as the
algorithm having the lowest median performance after 100,000
function evaluations. There is no under-represented label: out of
the 24 functions, CMA-ES is the best performing algorithm for 11
functions, DE for 7, and PSO for 6. We use the classification accuracy
as the metric to evaluate the model. The model used depends on
the type of input:

• Feature-based: inputs can be derived from calculating ei-
ther ELA features or time-series features extracted from the
probing-trajectories. We train a default Random Forests [7]
from the scikit-learn package [32]5 as performed in [4, 37].
We train separate models using ELA features or time-series
features.

• Time-series-based: for trajectory-based input, we use a spe-
cialised time-series classifier, specifically the default Rotation
Forests [41] from the sktime package6. Although other time-
series classifiers could have been chosen we selected this as
it is closely related to the classifier used for features.

The regression task consists of a performance prediction of one
algorithm from our portfolio after 100,000 function evaluations.
Here, the performance measure used for the regression task is
the Root Mean Squared Error (RMSE). Note the performances of
algorithms are not normalised.

• Feature-based: we use the default Random Forests [7] from
the scikit-learn package [32], following the method used in
in [14, 34]. Models were trained using ELA features and time-
series features. As the latter did not lead to any improvements
on the RMSE, results are not shown for this model for space
reasons.

• Time-series-based: we use a specialised time-series regressor,
specifically the Time Series Forests from the sktime package7.
As for the classification, it is chosen for its closeness to the
classifier used for features.

4.3 Validation
Both classification and regression share the same validation proce-
dure. Following the method described in [22], we perform a leave-
one-instance-out (LOIO) cross-validation. All Classifiers and regres-
sors are trained using data from all runs of the 24 functions on all
except one instance. The runs from the 24 functions on the instance
left out are used as the validation set. Overall, 24×(5−1)×5 = 480 in-
puts are used to train the model while the remaining 24×1×5 = 120
inputs are used for validation.

5version 1.1.3
6version 0.16.1
7version 0.16.1
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Table 2: SA parameters for the best configuration found by
irace for each ML task.

Task # samples T visit acceptance
Default 100 5230 2.62 −5
Classification
current 99 23,318.74 2.185 −8,848.35

Classification
best 99 15,912.03 1.831 −5,110.81

Regression
CMA-ES current 62 19,578.93 1.998 −1,053.54

Regression
CMA-ES best 85 21,838.23 2.299 −7,878.54

Regression
PSO current 66 42,832.28 2.492 −3,601.99

Regression
PSO best 34 49,602.83 1.722 −10,325.21

Regression
DE current 36 45,778.60 2.053 −5,925.62

Regression
DE best 64 4,315.52 1.938 −6,135.95

5 RESULTS
In this section, we present the results obtained for both ML tasks,
i.e., algorithm selection performed with a classifier (Section 5.2)
and performance prediction of the three algorithms in our portfolio
(Section 5.3).

5.1 Tuned SA Parameters
The motivation for the meta-algorithm proposed is to learn hyper-
parameter values for an SA algorithm that produces discriminatory
trajectories. Using irace, we tune SA separately on eight different
tasks: classification using best/current trajectories; regression for
each of three solvers, using best/current trajectories).

The parameters obtained in each case are shown in Table 2
and used to create test trajectories for all results shown below.
It is clear from this table that for each scenario, a unique set of
hyper-parameters is obtained. By default, irace outputs the four
best configurations found. However in two tasks, irace returns fewer
configurations: three for the prediction of CMA-ES performances
using the ‘current’ trajectory and two for the prediction of DE
performances using the ‘current’ trajectory. Figure 2 shows the
distributions of the four tuned parameters (i.e., number of samples,
temperature, visit, and acceptance) for each task across all output
configurations. We observe that the tuned parameters vary widely
with respect to the default configuration of SA that uses 100 samples,
a temperature of 5,230, a visit of 2.62 and an acceptance of −5. The
variance of the distribution of configurations found by irace is small
for each task indicating that there do not seem to be multiple optima
in the search-space.

5.2 Algorithm Selection
Figure 3 compares the classification accuracies obtained with ELA
features and trajectories (individual trajectories from algorithms
in the portfolio, concatenated trajectories from algorithms in the
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Figure 2: Distributions of SA parameters found by irace for
the differentML tasks: classification, performance prediction
of CMA-ES, PSO, and DE.
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portfolio, default SA trajectories used as baseline (𝑆𝐴), and tuned
SA trajectories (𝑆𝐴−𝑏𝑒𝑠𝑡, 𝑆𝐴−𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ). Following [39], we display
results for trajectories obtained over 2 and 7 generations for each
of the portfolio algorithms. ‘Best’ trajectories are displayed for 2
generations (Figure 3a) and ‘current’ trajectories for 7 generations
(Figure 3b) to save space (additional plots are available at [38]). For
each of the different methods of obtaining trajectories, we show box-
plots for classifiers trained on trajectories and time-series features
(with/without selection), and indicate median ELA performance as
a line.

Figure 3a where trajectories are obtained from only 2 generations
shows that classifiers trained on SA trajectories (tuned or by default)
and on the ‘ALL’ trajectories outperform classifiers trained on ELA
features at both budgets with respect to median fitness. Recall
however that the SA trajectories are obtained from only 100 or
fewer samples depending on the tuned sample-size, i.e. they use
three to five times less budget than ELA features. 𝑆𝐴_𝑏𝑒𝑠𝑡_𝑙𝑜𝑖𝑜
has a median accuracy of 95% compared to 94.5% for the ‘ALL’
classifier. 𝑆𝐴_𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑙𝑜𝑖𝑜 has a 92.5% median accuracy using the
raw-trajectory, rising to 95% accuracy when time-series feature
selection is used. The tuned SA trajectories result in better accuracy
than the untuned version (as expected). Classifiers trained on the
raw trajectory data outperform the feature-based approaches as a
rule of thumb. Training on individual trajectories performs poorly
in comparison in each case.

Figure 3b shows results when trajectories are collected over 7
generations using ‘current’ trajectories. In contrast to the previous
results, all methods except the DE classifier have a median accuracy
better than those obtained using ELA features. While the SA tra-
jectories outperform ELA features, they are outperformed by other
classifiers: 𝑆𝐴_𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑙𝑜𝑖𝑜 has a median accuracy of 94.2% which
is lower than all other classifiers except for the one trained on DE
trajectories. Nevertheless, we highlight that the SAmethods require
significantly fewer function evaluations to achieve this result than
every other algorithm presented here except CMA-ES. SA is also
more robust than CMA-ES which has one outlier with 85% accuracy,
while SA consistently performs above 90%.

Overall, tuning SA to find discriminating trajectories to train
an algorithm-selector is a good low-budget approach in that it
requires significantly fewer function evaluations than ELA features
and some of the trajectories approaches. It also provides some
confidence the trajectories are discriminatory: this is not guaranteed
when calculating trajectories from the three solvers in the portfolio
due to the stochastic nature of the methods. Furthermore, if the
portfolio of algorithms is large, this introduces an additional burden
due to the number of combinations of trajectories that could be
concatenated, making it more difficult to select the best combination
to train with. The budget required for this may be more expensive
than calculating ELA features for a large portfolio.

5.3 Performance Prediction
Figure 4 shows the RMSE of the performance prediction of CMA-ES,
PSO, and DE using trajectories and ELA features for 7 generations
on both ‘best’ and ‘current’ trajectories. Note that this should be
minimised. For each solver in the portfolio, we show the RMSE of
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Figure 3: Accuracy of classification on the LOIO cross-
validation for best-so-far and current probing-trajectories,
time series features and time series feature selection for 2 and
7 generations. Median ELA feature accuracy is represented
by lines for 300 and 500 function evaluations.

the predicted performance obtained from the set of regressors8. For
each regressor, we omit the results from training using time-series
features as they do not improve results.

We observe that for CMA-ES (Figure 4a) and DE (Figure 4c)
performance predictions, all of the trajectory-based regressors out-
perform or match ELA performances. However, for PSO, only the
tuned SA-based regressors outperform ELA. All of the other meth-
ods result in an RMSE that is worse than predicted by the ELA
regressors.

8Similar results are obtained using 2 generations — results are not included for space
reasons
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The default SA configuration ‘current’ trajectory outperforms
all regressors trained on individual trajectories from the original
portfolio (CMA-ES/DE/PSO/ALL) with a median RMSE of 5.91.
However, the best result is obtained from the tuned SA approach
𝑆𝐴_𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝐶𝑀𝐴 with a median RMSE of 5.28. Again, we remind
the reader that this is also the approach using the smallest budget
of function evaluations with 62 (close to the CMA-ES trajectory 70
evaluations and nine times less than the ‘ALL’ trajectory).

For predicting DE, the default configuration of SA with the ‘best’
trajectory also outperforms other trajectory-based regressors where
the algorithm comes from the initial portfolio and also outperforms
the regressor trained on ELA features (Figure 4c). For this task, both
specifically tuned SA methods have similar performance with a
median RMSE of 23.95 for 𝑆𝐴_𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝐷𝐸 on the ‘current’ trajec-
tory and 24.6 for 𝑆𝐴_𝑏𝑒𝑠𝑡_𝐷𝐸 on the ‘best’ trajectory. For this task,
it is more advantageous to use 𝑆𝐴_𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝐷𝐸: its performance
is slightly better but its computational cost is lower, i.e., 36 func-
tion evaluations against 64 for 𝑆𝐴_𝑏𝑒𝑠𝑡_𝐷𝐸. Using only 36 function
evaluations (i.e. the tuned value from irace), 𝑆𝐴_𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝐷𝐸 uses
almost half CMA-ES budget to compute trajectories and 15 times
less evaluations than the ‘ALL’ trajectory.

Prediction of performances of PSO (Figure 4b) is the only regres-
sion task where only the specifically tuned SA methods outperform
ELA features. All other models trained using trajectories obtain
worse RMSE. Both tuned SA methods achieve similar RMSE with a
median of 54.4 for 𝑆𝐴_𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑃𝑆𝑂 and 60.6 for 𝑆𝐴_𝑏𝑒𝑠𝑡_𝑃𝑆𝑂 . We
suggest 𝑆𝐴_𝑏𝑒𝑠𝑡_𝑃𝑆𝑂 seems more beneficial from a computational
point of view as it requires only 34 function evaluations against 66
for 𝑆𝐴_𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑃𝑆𝑂 .

To summarise, it is clear that trajectory-based algorithm selection
and trajectory-based performance prediction provide performances
that are equal to or better than the metrics obtained using ELA
features as input, using far less computational budget. Tuning SA
to obtain discriminating trajectories is the only trajectory-based
approach to consistently outperform ELA features, and also outper-
forms other trajectory-based models.

5.4 Transfer Learning to reduce computation
In previous sections, we showed that tuning SA to produce discrim-
inatory trajectories outperforms the state-of-the-art. For the regres-
sion task, SA was tuned separately to create trajectories to train
regressors for each of the three solvers (CMA-ES, DE, PSO). The ML
literature suggests that often there is potential for transfer-learning
(TL) [31] between models — this aims to improve the performance
of learners on target domains by transferring the knowledge con-
tained in different but related source domains. Therefore we now
assess whether TL can be exploited to reduce the computational
burden of tuning per solver. For example, we examine whether the
hyper-parameters used to produce discriminatory trajectories for
PSO and DE can also be used to predict CMA-ES performances.

Figure 5 shows the RMSE for performance prediction of CMA-ES
using regressors trained on trajectories tuned on DE, PSO and CMA-
ES respectively. As expected, the specialists 𝑆𝐴_𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝐶𝑀𝐴 and
𝑆𝐴_𝑏𝑒𝑠𝑡_𝐶𝑀𝐴 outperform all other configurations (median perfor-
mance 5.91, 5.28 respectively for the ‘best’ and ‘current’ trajectory
models). Nevertheless, using trajectories obtained from SA with
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Figure 4: RMSE of performance prediction of CMA-ES, PSO,
and DE on the LOIO cross-validation for best-so-far and cur-
rent probing-trajectories for 7 generations. Median ELA fea-
ture RMSE is represented by lines for 300 and 500 function
evaluations.
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trajectories for all tuned SA (including other tasks). Median
ELA features RMSE are represented by lines for 300 and 500
function evaluations.

hyper-parameters tuned on DE or PSO to predict CMA-ES perfor-
mance is surprisingly robust: using parameters tuned for PSO gives
a median RSME of 6.5 (compared to 5.91 from the specialist), while
parameters tuned for DE have median RMSE 6.79. We also note
that tuning on a ’best’ trajectory and re-using the parameters to
generate a ‘current’ trajectory for a solver often results in a no-
ticeable loss in RSME: for example, using parameters tuned on the
CMA-ES ‘current’ trajectories to obtain trajectories for CMA-ES
‘best’ increases the median RMSE from 5.91 to 6.96. Finally, it is
worth observing that all methods provide better results than re-
gressors trained on ELA features: that is, tuning SA to generate
discriminatory trajectories for any of the solvers in the portfolio
provides a set of hyper-parameters that can be re-used to create
trajectories for other solvers in the portfolio that can be used to
predict performance more accurately than ELA features.

Given that the ‘best’ and ‘current’ trajectories have different
configurations of SA that can be very different, it seems not possible
to transfer the tuned parameters to the other type of trajectory
without having a loss in performance.

6 CONCLUSION
We addressed the issue of algorithm-selection and performance
prediction in a continuous optimisation setting. Previous work [39]
has shown that using data that is algorithm-centric (i.e. trajectories)
to train models can outperform ML models trained using features
(e.g., ELA), with the additional advantage of being low-budget in
terms of the number of function evaluations needed to create a
trajectory. However there are some weaknesses with this approach:
(1) it is difficult to ensure that trajectories are sufficiently discrim-
inatory to train a high-performing model and (2) as a trajectory

needs to be generated per solver in a portfolio, the approach does
not scale well.

To address this, we proposed a meta-algorithm that tunes the
hyper-parameters of a simple solver (Simulated Annealing) to gen-
erate trajectories that when used as input data to an ML model,
improve its performance metric (either classification or regression).
This directly addresses both weaknesses identified above. Firstly,
the meta-algorithm learns to create discriminatory trajectories. Sec-
ondly, rather than generating trajectories from each solver in a
portfolio as in [39], only one trajectory needs to be generated using
the tuned SA algorithm. Furthermore, the SA trajectories only use
100 or fewer samples and, therefore are obtained at a very low
budget. We highlight the following findings:

• The ML performance-metrics obtained using models that use
trajectories from a tuned SA algorithm as input outperform
the samemetrics obtained frommodels that use ELA features
as input, using considerably less budget (at minimum, ≈ 1/3
of the ELA budget).

• For classification models that predict the label of the best
solver, at low-budget (2 generations), models using SA tra-
jectories from the tuned SA algorithm as input have similar
median accuracy to those obtained using an ‘ALL’ trajectory,
but use ≈ 62% of the budget used by ‘ALL’.

• For all three regression models that predict performance
(CMA-ES, DE, PSO), the best RMSE is obtained by a model
that uses an SA trajectory as input.

• Although using the meta-algorithm to tune each model indi-
vidually leads to the best results, the loss in RMSEwhen using
a set of hyper-parameters tuned for one solver to obtain tra-
jectories for a different solver is very small, suggesting that
budget could be saved with the trade-off of a small reduction
in performance.

Obvious next steps include testing the approach on a larger
portfolio of solvers and on different benchmarks.With respect to the
latter, it would be particularly interesting to consider combinatorial
optimisation domains here although this may exclude a comparison
to ELA-based methods as the use of landscape features is much less
common in combinatorial domains.

Given that the method relies on creating a time-series of data,
then a more thorough evaluation of state-of-the-art time-series
classifiers (and tuning of their hyper-parameters) is also likely to
improve results. We investigated tuning the hyper-parameters of
a Simulated Annealing algorithm to create the discriminatory tra-
jectories but clearly, other algorithms could replace this. We stress
however that the motivation behind this work is to generate data at
a low-cost, therefore this might restrict the type of algorithm that
could be used. It would also be interesting to design a specialist
algorithm whose only purpose would be to generate discrimina-
tory trajectories. Finally, further work in understanding the extent
to which transfer-learning could be exploited to further reduce
computation would be beneficial.
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