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Abstract: We study the number of degree 𝑛 number fields with discriminant bounded by 𝑋 .
In this article, we improve an upper bound due to Schmidt on the number of such fields that
was previously the best known upper bound for 6 ≤ 𝑛 ≤ 94.

1 Introduction and outline of paper

Let 𝑁𝑛 (𝑋) := #{𝐾/Q : [𝐾 : Q] = 𝑛, |Disc(𝐾) | ≤ 𝑋} count the number of degree 𝑛 number fields over Q
with bounded discriminant of size 𝑋 . We consider all extensions as being inside a fixed algebraic closure
Q of Q. A classical theorem of Hermite shows that 𝑁𝑛 (𝑋) is finite, and an optimized and modern version
of Hermite’s argument due to Schmidt [Sch95] shows that 𝑁𝑛 (𝑋) may be bounded by 𝑂𝑛 (𝑋

𝑛+2
4 ). It is
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conjectured that the actual sharp upper bound is 𝑂𝑛 (𝑋); thus improvements to the Schmidt bound, and
the classical work of Hermite, have attracted a lot of attention.

For 𝑛 ≤ 5, precise asymptotic formulas for 𝑁𝑛 (𝑋) are known [DH69, CDyDO02, Bha05, Bha10].
For large 𝑛, there are substantial improvements over the Schmidt bound, beginning with work of Ellenberg
and Venkatesh [EV06], which was subsequently improved in work of Couveignes [Cou20] and Lemke
Oliver and Thorne [LOT22]. For 𝑛 ≥ 95, the best bound is that of [LOT22], namely 𝑁𝑛 (𝑋) ≪𝑛 𝑋

𝑐 (log𝑛)2 ,
where 𝑐 ≤ 1.564 is an explicitly computable constant. While this improvement is substantial as 𝑛→∞, in
the complementary regime 6 ≤ 𝑛 ≤ 94, the Schmidt bound has remained the best available for 25 years.

Our main theorem gives a general improvement over the Schmidt bound.

Theorem 1.1. For each 𝑛 ≥ 6 and every 𝜖 > 0, we have 𝑁𝑛 (𝑋) ≪𝑛,𝜖 𝑋
𝑛+2

4 − 1
4𝑛−4+𝜖 .

We do not expect that the saving 1
4𝑛−4 is optimal for our method, but to extract a further saving

from the work below would take significant care. In fact, our work is inspired by work of Bhargava,
Shankar, and Wang [BSW22b] in a different context, and simultaneously with our work, an improvement
of (essentially) 1

2𝑛−2 over Schmidt’s bound was independently obtained by the same authors in [BSW22a].
Their independent work bears some similarity with our approach, but remarkably the two approaches
differ greatly in multiple ways. Therefore, we expedite some pieces of our approach, while focusing on
other pieces where our techniques are different and which we expect to have other applications in different
settings.

In §2, we summarize Schmidt’s approach of estimating 𝑁𝑛 (𝑋) by counting monic polynomials
𝑓 (𝑥) = 𝑥𝑛 + 𝑐1𝑥

𝑛−1 + · · · + 𝑐𝑛 where each 𝑐𝑖 is bounded by 𝑂 (𝑋 𝑖
2𝑛−2 ). We slightly restructure Schmidt’s

method in order to not restrict to polynomials of trace 0. To improve upon Schmidt’s bound, we separately
count polynomials with “particularly small” discriminants and polynomials with “particularly squarefull”
discriminants in comparison to the discriminants of the fields they cut out. Our method is easier to
describe in the context of Schmidt’s method; thus, we defer further description until §2.1. Roughly
speaking, we study polynomials with “particularly small” discriminant in §4 and polynomials with
“particularly squarefull” discriminant in §6 and §7. Inspired by [ST23], we bound both the archimedean
and nonarchimedean local density of polynomials of small discriminant in Proposition 4.1; these densities
are important in §6 and §7. These densities bear some resemblance to the ‘Main Heuristic assumption’ in
[ST23], but Proposition 4.1, though natural, appears to be novel. Due to the significant blend of analytic
techniques developed to work with polynomials in different contexts, we devote an early section, Section
3, to their exposition.

It is in §5 and §6 that our approach differs most substantially from [BSW22b] and [BSW22a]. In
§5, which we regard as our most novel, we study the nonarchimedean Fourier transform of the set of
polynomials whose discriminant is divisible by a large power of a prime. The main results of this section
are somewhat technical statements about the support and size of this Fourier transform, but their proofs
rely on a beautiful and substantial structure of the discriminant that is revealed upon taking its Fourier
transform. We expect that such Fourier transforms, and the underlying structure of the discriminant so
revealed, may play a role in other problems beyond that considered in Theorem 1.1, for example perhaps in
generalizing the ideas from [ST23]. We use the considerations of §5 to show in §6 bounds for polynomials
whose discriminants are “powerful": that is, they admit prime factors to large powers. Section 3 describes
the various techniques, such as change of variables, that permeate the next three sections. We hope this
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reference section facilitates the reading of the rest of the paper. Finally, in §7, we study polynomials
whose discriminants have a large factor that is not powerful, incorporating the framework of [BSW22b].
The specific prime factorization of the large factor dividing the polynomial discriminant determines which
polynomials are treated using §6 or §7, and is described in the next section.

2 Outline of approach

Let F𝑛 (𝑋) denote the set of fields 𝐾/Q with degree 𝑛 and discriminant satisfying |Disc(𝐾) | ≤ 𝑋 . Note
that 𝑁𝑛 (𝑋) = #F𝑛 (𝑋), our desired count. The Schmidt bound [Sch95] asserts that #F𝑛 (𝑋) ≪𝑛 𝑋

𝑛+2
4 . The

key to Schmidt’s approach is the following.

Lemma 2.1. Let 𝐾 ∈ F𝑛 (𝑋) and assume 𝐾 is primitive, i.e. that it has no proper nontrivial subfields.
Then there is a monic polynomial 𝑓 (𝑥) ∈ Z[𝑥] with trace 0, i.e. 𝑓 (𝑥) = 𝑥𝑛 + 𝑐2𝑥

𝑛−2 + · · · + 𝑐𝑛, for which
𝐾 ≃ Q[𝑥]/⟨ 𝑓 (𝑥)⟩ and where each 𝑐𝑖 satisfies |𝑐𝑖 | ≪𝑛 𝑋

𝑖
2𝑛−2 .

Proof. In the Minkowski embedding, the trace 0 elements of O𝐾 form a rank 𝑛−1 lattice with covolume
≍𝑛 |Disc(𝐾) |1/2. The 𝑛− 1 Minkowski minima for this lattice satisfy 𝜆1 · · ·𝜆𝑛−1 ≍ |Disc(𝐾) |1/2, so
𝜆1 ≪𝑛 |Disc(𝐾) |1/2(𝑛−1) . In particular, there is a non-zero element 𝛼 ∈ O𝐾 with trace 0 whose height
is 𝑂𝑛 ( |Disc(𝐾) | 1

2𝑛−2 ). Since 𝛼 has trace 0 and 𝛼 ≠ 0, it follows that 𝛼 ∉ Q. By our assumption that 𝐾
admits no interesting subfields, it follows that Q(𝛼) = 𝐾 . The minimal polynomial of 𝛼 then satisfies the
conclusion of the lemma. □

There are 𝑂𝑛 (𝑋
𝑛+2

4 ) polynomials of the type produced in Lemma 2.1. It thus follows that the number
of primitive fields contained in F𝑛 (𝑋) is also 𝑂𝑛 (𝑋

𝑛+2
4 ).

Remark 2.2. To get a bound on non-primitive fields too, Schmidt (essentially) uses this argument, but
over a moving subfield. His bound actually improves for the number of imprimitive fields: if 𝑑max is the
largest proper divisor of 𝑛, his bound on imprimitive fields in F𝑛 (𝑋) is 𝑋

𝑑max+2
4 . This is smaller than the

bound claimed in Theorem 1.1, so it suffices to prove the claimed bound holds for the set Fprim
𝑛 (𝑋) of

primitive field extensions.

It is possible to rework Schmidt’s argument slightly to make it marginally more convenient to invoke
the results of the earlier work of Bhargava, Shankar, and Wang [BSW22b]. First, we consider polynomials
without trace 0.

Define the height 𝐻 of a polynomial 𝑓 (𝑥) = 𝑥𝑛 +𝑐1𝑥
𝑛−1+ . . . 𝑐𝑛 by 𝐻 = max|𝑐𝑖 |1/𝑖 . We will frequently

abuse notation by using the phrase ‘polynomials of height 𝐻’ to mean polynomials with height bounded
by 𝐻.

Lemma 2.3. Let 𝑛 ≥ 2. There is a constant𝐶𝑛 > 0 such that each field𝐾 ∈ Fprim
𝑛 (𝑋) is cut out by ≫𝑛 𝑋

1
2𝑛−2

polynomials 𝑓 (𝑥) ∈ Z[𝑥] of the form 𝑓 (𝑥) = 𝑥𝑛 + 𝑐1𝑥
𝑛−1 + . . . 𝑐𝑛, where each 𝑐𝑖 satisfies |𝑐𝑖 | ≤ 𝐶𝑖𝑛𝑋

𝑖
2𝑛−2 .

Proof. By the proof of Lemma 2.1, each 𝐾 ∈ F
prim
𝑛 (𝑋) has an element 𝛼 ∈ O𝐾 with trace 0 and height

bounded by 𝐻0 := 𝐵𝑛𝑋
1

2𝑛−2 , for a positive constant 𝐵𝑛. Then there are at least 𝐻0 elements in O𝐾 of
height at most 2𝐻0, corresponding to the translates 𝛼+ 𝑘 for |𝑘 | ≤ 𝐻0, 𝑘 ∈ Z. The minimal polynomial
𝑚(𝑥) = 𝑥𝑛 + 𝑐1𝑥

𝑛−1 + · · · + 𝑐𝑛 of such an element satisfies |𝑐𝑖 | ≪𝑛 𝐻
𝑖
0, and the result follows. □
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For an admissible choice of 𝐶𝑛 in Lemma 2.3, set 𝐻 := 𝐶𝑛𝑋
1

2𝑛−2 . There are 𝑂𝑛 (𝐻
𝑛2+𝑛

2 ) polynomials
of height 𝐻, with each primitive field cut out by at least ≫𝑛 𝐻 different polynomials. Dividing by this
minimum multiplicity, we find that there must be no more than 𝑂𝑛 (𝐻

𝑛2+𝑛−2
2 ) =𝑂𝑛 (𝑋

𝑛+2
4 ) different fields

produced, again recovering Schmidt’s bound.

Remark 2.4. The argument of Lemma 2.3 is a bit ad hoc, but its conclusion is likely close to optimal, apart
from constants depending on 𝑛. For “typical” fields 𝐾 ∈ F𝑛 (𝑋), we should expect the multiplicity with
which 𝐾 is cut out to be ≍𝑛 𝐻𝑛/

√︁
|Disc(𝐾) |. If 𝐻 = 𝑋

1
2𝑛−2 ≈ |Disc(𝐾) | 1

2𝑛−2 , this expected multiplicity is
about 𝐻. The proof of Lemma 2.3 thus doesn’t lose much, and its proof will be convenient in the next
section.

2.1 Strategy and Proof of Main Theorem

While Lemmas 2.1 and 2.3 guarantee that each field 𝐾 ∈ F
prim
𝑛 (𝑋) is cut out by a polynomial of height

𝐻 ≪𝑛 𝑋
1

2𝑛−2 , it is not the case that every such polynomial cuts out a field of discriminant at most 𝑋 .
In particular, for “typical” 𝑓 (𝑥) of height 𝐻, we have disc( 𝑓 ) ≈ 𝐻𝑛2−𝑛 = 𝑋

𝑛
2 , and this is typically also

the order of the discriminant of the field cut out by 𝑓 . We should thus expect the relevant polynomials
attached to 𝐾 ∈ F

prim
𝑛 (𝑋) to be exceptional in one of two ways: either the discriminant of 𝑓 is unusually

small, or the discriminant of the field cut out by 𝑓 is much smaller than the discriminant of 𝑓 . In the latter
case, the ratio of the two discriminants is the square of the index [O𝐾 : Z[𝛼]] where 𝛼 is a root of 𝑓 ; we
call this integer the index of the polynomial 𝑓 , denoted index( 𝑓 ).

The condition that the discriminant is small is global, while the condition that the index is large is
local. However, since both conditions are preserved under translation, it follows from the proof of Lemma
2.3 that each 𝐾 ∈ F

prim
𝑛 (𝑋) will still be cut out by ≫𝑛 𝐻 of these exceptional polynomials. Thus, our

main task is to bound the number of exceptional polynomials.

Proof of Theorem 1.1

We now describe the proof of our main theorem more concretely.
By Lemma 2.3, to bound 𝐾 ∈ F

prim
𝑛 (𝑋) it suffices to bound the number of polynomials 𝑓 with height

up to 𝐻 ≍𝑛 𝑋
1

2𝑛−2 that cut out a field with discriminant 𝑋 ≍𝑛 𝐻2𝑛−2, where each field is counted with
multiplicity of order at least 𝐻.

In Section 4, we prove the following corollary, bounding the the number of polynomials with small
discriminant.

Corollary 2.5. Let 𝑛 ≥ 3 and let 𝐻 be sufficiently large in terms of 𝑛. The number of polynomials 𝑓 (𝑥) ∈
Z[𝑥] of the form 𝑓 (𝑥) = 𝑥𝑛 + 𝑐1𝑥

𝑛−1 + · · · + 𝑐𝑛 with |𝑐𝑖 | ≤ 𝐻𝑖 and |disc( 𝑓 ) | ≤ 𝐻𝑛2−𝑛−2 is 𝑂𝑛 (𝐻
𝑛2+𝑛

2 −1).

If 𝑓 (𝑥) is irreducible and cuts out the field 𝐾 , then the discriminants of 𝑓 and 𝐾 are related through
the equation disc( 𝑓 ) = Disc(𝐾) [O𝐾 : Z[𝛼]]2, where 𝛼 is a root of 𝑓 over 𝐾 . As indicated above, we refer
to the index [O𝐾 : Z[𝛼]] as the index of 𝑓 , which we denote by index( 𝑓 ). Corollary 2.5 implies that with
at most 𝑂𝑛 (𝐻

𝑛2+𝑛
2 −1) exceptions,

index( 𝑓 )2 ·Disc(𝐾) = disc( 𝑓 ) > 𝐻𝑛2−𝑛−2.
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As Disc(𝐾) ≤ 𝑋 ≍𝑛 𝐻2(𝑛−1) , each of these polynomials has large index bounded from below by

index( 𝑓 ) ≫𝑛 𝐻
𝑛2−𝑛−2

2 −(𝑛−1) = 𝐻
𝑛(𝑛−3)

2 . (2.1)

Thus each of these polynomials has discriminant divisible by a large square. To bound the number of
such polynomials, we consider two subcases: when the radical of index( 𝑓 ) is small or large. (Recall that
the radical of an integer is the product of its prime divisors.) In Section 6, we prove the following bound
on the number of polynomials with large index, but small index radical.

Theorem 2.6. Let 𝑛 ≥ 6 and fix any 𝜖 > 0. Then for any 𝐻 ≥ 1, the number of polynomials 𝑓 (𝑥) ∈ Z[𝑥] of
degree 𝑛 and height 𝐻 for which rad(index( 𝑓 )) < 𝐻1−𝜖 but index( 𝑓 ) > 𝐻

𝑛(𝑛−3)
2 is 𝑂𝑛,𝜖 (𝐻

𝑛2+𝑛
2 − 4

3 −
4
𝑛
+𝜖 +

𝐻
𝑛2+𝑛

2 − 2𝑛
3 +3+𝜖 ).

Note that for all 𝑛 ≥ 8, the first term above is larger, and therefore governs our overall bound. However,
for 𝑛 = 6,7 the second term dominates.

In Section 7, we bound the number of polynomials with large index radical.

Theorem 2.7. For any 𝑛 ≥ 3, any 𝐻 ≥ 1, any 𝜖 > 0, and any 𝑀 ≥ 1, the number of polynomials 𝑓 of
degree 𝑛, height 𝐻, and where 𝑚2 | disc 𝑓 for some squarefree 𝑚 ≥ 𝑀 is

𝑂𝑛,𝜖

(𝐻 𝑛2+𝑛
2

√
𝑀

+𝐻 𝑛2+𝑛
2 − 1

2+𝜖
)
.

Theorem 2.6 implies that the number of polynomials of height 𝐻, index bounded below by (2.1),
and with rad(index( 𝑓 )) < 𝐻1−𝜖 is 𝑂𝑛,𝜖 (𝐻

𝑛2+𝑛
2 −1+𝜖 ). All remaining uncounted polynomials have

rad(index( 𝑓 )) ≥ 𝐻1−𝜖 , and thus have a squarefree divisor 𝑚 of size at least 𝐻1−𝜖 such that 𝑚2 | disc( 𝑓 ).
Taking 𝑀 = 𝐻1−𝜖 in Theorem 2.7 shows that there are at most 𝐻 𝑛2+𝑛

2 − 1
2+𝜖 such polynomials. Combining

these bounds, we find that
𝐻 ·#Fprim

𝑛 (𝑋) ≪𝑛,𝜖 𝐻
𝑛2+𝑛

2 − 1
2+𝜖 ,

which completes the proof of Theorem 1.1 using 𝐻 ≍𝑛 𝑋
1

2𝑛−2 . □

3 Local fields, étale algebras and mass formulas

Changes of variables between etale algebras, polynomial roots and polynomial coefficients will be used
throughout this paper, so we introduce this section as a useful reference. As such, the terminology here is
self-contained.

Let 𝑣 be a place of Q. Throughout most of this paper, we will be concerned with the properties of the
set of monic, degree 𝑛 polynomials 𝑓 ∈ Z[𝑥] for which |disc( 𝑓 ) |𝑣 is small in some suitable sense. We
approach these questions locally, viewing our polynomials (perhaps after a suitable change of variables) as
lying inside OQ𝑣 [𝑥], where OQ𝑣 = Z𝑣 if 𝑣 is finite and OQ𝑣 = [−1,1] if 𝑣 =∞ (note that this selection of
[−1,1] instead of R may be nonstandard, but is useful in our context). Rather than study the discriminant
of 𝑓 as a polynomial in its coefficients c ∈ O𝑛

Q𝑣
, we prefer to study the discriminant by means of its simpler
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expression in terms of the roots of 𝑓 . These roots may be thought of as an 𝑛-tuple 𝜆𝜆𝜆 ∈ Q𝑣
𝑛

for a fixed
choice of algebraic closure Q𝑣 , but the locus of points inside Q𝑣

𝑛
actually arising as roots of polynomials

in OQ𝑣 [𝑥] appears difficult to access directly. Thus, we pass through an intermediate space, the étale
algebra associated with 𝑓 .

Let P𝑛 (OQ𝑣 ) be the space of monic, degree 𝑛 polynomials with coefficients in OQ𝑣 . Given a separable
polynomial 𝑓 ∈ P𝑛 (OQ𝑣 ), the quotient Q𝑣 [𝑥]/ 𝑓 is a degree 𝑛 étale algebra 𝐾𝑣 over Q𝑣 . This étale algebra
is equipped with a natural element (namely, the image of 𝑥), and, conversely, given an element 𝛼 ∈ 𝐾𝑣,
the polynomial Nm(𝑥 −𝛼) will be associated with 𝛼 under this map. Now, for any 𝑣, there are only
finitely many degree 𝑛 étale algebras 𝐾𝑣 over Q𝑣 . Thus, the image of the map 𝑓 ↦→ 𝑥 ∈ Q𝑣 [𝑥]/ 𝑓 naturally
decomposes as a disjoint union over the different étale algebras. Moreover, if 𝑣 is finite, then the image of
𝑓 in fact lands in O𝐾𝑣 , the ring of integers of 𝐾𝑣 . If 𝑣 =∞, then we define O𝐾𝑣 to be the compact closure
of the image.

Given 𝛼 ∈ O𝐾𝑣 , the roots of the associated polynomial 𝑓𝛼 = Nm(𝑥 − 𝛼) are easily determined.
Explicitly, if we write 𝐾𝑣 = ⊕𝑟

𝑖=1𝐹𝑖 with each 𝐹𝑖 a (field) extension of Q𝑣, then any 𝛼 ∈ O𝐾𝑣 may be
expressed as 𝛼 = (𝛼1, . . . , 𝛼𝑟 ) with each 𝛼𝑖 ∈ 𝐹𝑖. The roots of 𝑓𝛼 are then the images of each 𝛼𝑖 under
the [𝐹𝑖 : Q𝑣] embeddings of 𝐹𝑖 into our fixed choice Q𝑣. Thus, while we are in principle interested in
performing computations in the space of roots𝜆𝜆𝜆 ∈ Q𝑣

𝑛
, in practice, we instead perform these computations

inside étale algebras.
In carrying out the computations to follow, we find it convenient to fix a coordinatization of O𝐾𝑣 when

𝑣 is finite. In particular, if 𝐾𝑣 = ⊕𝑟
𝑖=1𝐹𝑖 as above, then by choosing an integral basis 𝜔𝑖,1, . . . ,𝜔𝑖,[𝐹𝑖 :Q𝑣 ]

for each 𝐹𝑖, the collection 𝜔1,1, . . . ,𝜔𝑟 , [𝐹𝑟 :Q𝑣 ] is an integral basis for 𝐾𝑣. This identifies O𝐾𝑣 with O𝑛
Q𝑣

,
whose generic element we denote a. The transformation from the coordinates a to the roots 𝜆𝜆𝜆 is linear,
with block diagonal matrix 𝑀𝐾𝑣 = ⊕𝑟

𝑖=1𝑀𝐹𝑖 , where

𝑀𝐹𝑖 =
©­­«

𝜄1(𝜔𝑖,1) . . . 𝜄1(𝜔𝑖, [𝐹𝑖 :Q𝑣 ])
...

...

𝜄[𝐹𝑖 :Q𝑣 ] (𝜔𝑖,1) . . . 𝜄[𝐹𝑖 :Q𝑣 ] (𝜔𝑖, [𝐹𝑖 :Q𝑣 ])

ª®®¬ ,
with 𝜄1, . . . , 𝜄[𝐹𝑖 :Q𝑣 ] denoting the embeddings of 𝐹𝑖 into Q𝑣. Notice that |det𝑀𝐹𝑖 |𝑣 = |disc(𝐹𝑖) |1/2𝑣 by
definition of the discriminant, hence |det𝑀𝐾𝑣 |𝑣 = |disc(𝐾𝑣) |1/2𝑣 .

Closing the loop, the roots 𝜆𝜆𝜆 of a polynomial 𝑓 ∈ P𝑛 (OQ𝑣 ) naturally determine its coefficients c by
means of the elementary symmetric polynomials. Namely, given the roots 𝜆𝜆𝜆 = (𝜆1, . . . ,𝜆𝑛) ∈ Q𝑣 of a
monic polynomial 𝑓 , define the change of variable 𝜆𝜆𝜆 to 𝜎𝜎𝜎 = (𝜎1, · · · ,𝜎𝑛) ∈ Q𝑣 via

𝜎𝑖 (𝜆𝜆𝜆) =
∑︁

𝑆⊂{1, · · · ,𝑛}
|𝑆 |=𝑖

∏
𝑗∈𝑆
𝜆 𝑗

for 𝑖 = 1, . . . , 𝑛. This change of variable yields the polynomial 𝑓 (𝑥) = 𝑥𝑛 −𝜎1𝑥
𝑛−1 + · · · (−1)𝑘𝜎𝑘𝑥𝑛−𝑘 +

· · · + (−1)𝑛𝜎𝑛. Each 𝜎𝑖 is the 𝑖-th elementary symmetric polynomial in 𝜆𝑖 .
Figure 1 summarizes the different spaces, maps between them, and variable naming conventions we

adopt.
At this stage, it only remains to discuss the change of measure between the various spaces, in

particular between polynomials and étale algebras. First, the space P𝑛 (OQ𝑣 ) is equipped with a natural
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Étale algebras∐
𝐾𝑣/Q𝑣 deg 𝑛

O𝐾𝑣 ∋ 𝛼
Coordinates (𝑣 = 𝑝)∐
𝐾𝑣/Q𝑣 deg 𝑛

O𝑛Q𝑣 ∋ a

Polynomials
P𝑛 (OQ𝑣 ) ∋ 𝑓

Roots
Q𝑣

𝑛 ∋ 𝜆𝜆𝜆

Coefficients
O𝑛
Q𝑣

∋ c

𝜙 : 𝛼 ↦→Nm(𝑥−𝛼)=: 𝑓𝛼

∼

∐
𝑀𝐾𝑣

𝑓 ↦→𝑥∈Q𝑣 [𝑥 ]/ 𝑓

𝜆𝜆𝜆 ↦→∏(𝑥−𝜆𝑖 )=
∑(−1)𝑖𝜎𝑖 (𝜆𝜆𝜆)𝑥𝑛−𝑖

c ↦→ 𝑓c

Figure 1: Maps between spaces of polynomials, étale algebras, and roots. The dashed arrow indicates
this map is defined for separable polynomials.

Haar/Lebesgue measure 𝜈 by means of the coefficient isomorphism O𝑛
Q𝑣

→ P𝑛 (OQ𝑣 ); if 𝑣 is finite, we
normalize the measure 𝜈 so that 𝜈(P𝑛 (OQ𝑣 )) = 1. Each étale algebra 𝐾𝑣 is also equipped with a natural
Haar/Lebesgue measure that we denote 𝜇, normalized if 𝑣 is finite so that 𝜇(O𝐾𝑣 ) = 1. The fundamental
result we use is due to Serre [Ser08, Lemma 3] and Shankar–Tsimerman [ST23, Lemma 2.2].

Lemma 3.1. With notation as above, we have 𝜙∗𝜈 = |disc(𝐾𝑣) |1/2𝑣 |disc( 𝑓𝛼) |1/2𝑣 𝜇. In particular, for any
𝜈-integrable function 𝜓 on P𝑛 (OQ𝑣 ), we have∫

P𝑛 (OQ𝑣 )
𝜓( 𝑓 ) 𝑑𝜈 =

∑︁
𝐾𝑣/Q𝑣 deg. n

|disc(𝐾𝑣) |1/2𝑣
|Aut(𝐾𝑣) |

∫
O𝐾𝑣

|disc( 𝑓𝛼) |1/2𝑣 𝜓( 𝑓𝛼) 𝑑𝜇.

4 The density of polynomials with small discriminant

We begin by proving the following proposition on the density of polynomials over some completion Q𝑣
of Q with small discriminant. This result in the case that Q𝑣 = R will be the key ingredient in the proof
of Corollary 2.5, and the ideas behind the proof in the case that Q𝑣 is non-archimedean will be the key
ingredient in the proof of Theorem 2.6.

Proposition 4.1. Let 𝑛 ≥ 2 and let Q𝑣 be a completion of Q. Let |·|𝑣 be the associated absolute value
and let 𝜇𝑣 be the associated Haar measure on Q𝑣 , normalized in the case that 𝑣 is finite so that the total
measure of Z𝑣 is 1 and so that 𝜇𝑣 agrees with usual Lebesgue measure in the case that 𝑣 is infinite. For
c ∈ Q𝑛𝑣 , let 𝑓c(𝑥) := 𝑥𝑛 + 𝑐1𝑥

𝑛−1 + · · · + 𝑐𝑛.
Then for any 𝛿 ∈ (0,1), there holds

𝜈({c ∈ Q𝑛𝑣 : |𝑐𝑖 |𝑣 ≤ 1 for all 𝑖 and |disc( 𝑓c(𝑥)) |𝑣 ≤ 𝛿}) ≪𝑛 𝛿
1
2+

1
𝑛 , (4.1)
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where 𝜈 denotes the product measure on Q𝑛𝑣 .

Proof. Let 1𝛿 ( 𝑓 ) be the characteristic function for the set of polynomials where |Disc( 𝑓 ) |𝑣 ≤ 𝛿.
Then applying the change of variables discussed in Section 3, we find

𝜈({c ∈ Q𝑛𝑣 :|𝑐𝑖 |𝑣 ≤ 1 for all 𝑖 and |disc( 𝑓c(𝑥)) |𝑣 ≤ 𝛿})

=
∑︁

[𝐾𝑣 :Q𝑣 ]=𝑛

|Disc(𝐾𝑣) |1/2𝑣
|Aut(𝐾𝑣) |

∫
O𝐾𝑣

|Disc( 𝑓𝛼) |1/2𝑣 1𝛿 ( 𝑓𝛼) d𝜇(𝛼)

≤ 𝛿1/2
∑︁

[𝐾𝑣 :Q𝑣 ]=𝑛

|Disc(𝐾𝑣) |1/2𝑣
|Aut(𝐾𝑣) |

∫
O𝐾𝑣

1𝛿 ( 𝑓𝛼) d𝜇(𝛼),

where 𝑓𝛼 denotes the characteristic polynomial of 𝛼, and where, in the inequality in the second line, we
used the bound |Disc( 𝑓𝛼) |𝑣 = |Disc(𝛼) |𝑣 ≤ 𝛿, valid for any 𝛼 for which 1𝛿 ( 𝑓𝛼) ≠ 0. Note in particular
that any polynomial with a repeated root has discriminant 0, but that the set of such polynomials has
measure 0 and thus does not affect the integral.

We now estimate the integral, beginning with the case where 𝐾𝑣 ≃ Q𝑛𝑣 is the totally split algebra. In
this case, |Disc(𝛼) |𝑣 =

∏
𝑖< 𝑗 |𝛼𝑖 −𝛼 𝑗 |2𝑣, where 𝛼𝑖 , 𝛼 𝑗 are the roots of 𝑓𝛼. Consequently, for any point in

the support of 1𝛿 , we have
𝑛∏
𝑖=1

∏
𝑗≠𝑖

|𝛼𝑖 −𝛼 𝑗 |𝑣 ≤ 𝛿.

The pigeonhole principle then implies that there must be some 𝑖 for which∏
𝑗≠𝑖

|𝛼𝑖 −𝛼 𝑗 |𝑣 ≤ 𝛿1/𝑛.

If we let 𝛼′
𝑗
= 𝛼𝑖 −𝛼 𝑗 for each 𝑗 ≠ 𝑖, it thus follows that

∏
𝑗≠𝑖 |𝛼′𝑗 |𝑣 ≤ 𝛿1/𝑛. Since O𝐾𝑣 is compact, the

measure of points satisfying this condition is 𝑂𝑛 (𝛿1/𝑛), independent of 𝛼𝑖 . We therefore conclude in this
case that ∫

O𝐾𝑣

1𝛿 ( 𝑓𝛼) d𝜇(𝛼) ≪𝑛 𝛿
1
𝑛 .

We now turn to the case that 𝐾𝑣 is not the totally split algebra. The idea in this case is substantially
the same, but requires the notation from Section 3. The discriminant Disc(𝛼) satisfies

|Disc(𝛼) |𝑣 =
𝑛∏
𝑖=1

∏
𝑗≠𝑖

|𝜆𝑖 −𝜆 𝑗 |𝑣 .

Proceeding as in the totally split case, we conclude that for 𝛼 in the support of 1𝛿 , there must be some 𝑖
for which ∏

𝑗≠𝑖

|𝜆𝑖 −𝜆 𝑗 |𝑣 ≤ 𝛿
1
𝑛 . (4.2)
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Accounting for the determinant of the matrix 𝑀𝐾𝑣 sending the coordinates a to the roots 𝜆𝜆𝜆 = (𝜆1, . . . ,𝜆𝑛),
we conclude that ∫

O𝐾𝑣

1𝛿 ( 𝑓𝛼) d𝜇(𝛼) ≪𝑛 |Disc(𝐾𝑣) |−1/2
𝑣 𝛿

1
𝑛 .

We therefore find that

𝛿1/2
∑︁

[𝐾𝑣 :Q𝑣 ]=𝑛

|Disc(𝐾𝑣) |1/2𝑣
|Aut(𝐾𝑣) |

∫
O𝐾𝑣

1𝛿 ( 𝑓𝛼) d𝜇(𝛼) ≪𝑛 𝛿
1
2+

1
𝑛

∑︁
[𝐾𝑣 :Q𝑣 ]=𝑛

1
|Aut(𝐾𝑣) |

≪𝑛 𝛿
1
2+

1
𝑛 ,

since the summation may be bounded in terms of the number of étale algebras of degree 𝑛, which in turn
may be bounded solely in terms of 𝑛. □

Remark 4.2. The bound (4.1) is sharp for an infinite sequence of 𝛿 tending to 0. In particular, one can
realize a lower bound of magnitude ≫ 𝛿

1
2+

1
𝑛 for all 𝛿 when 𝑣 is an archimedean valuation. One can also

realize this lower bound for the nonarchimedean totally split étale algebras 𝐾𝑣 ≃ Q𝑛𝑣 and 𝛿 = 𝑝−𝑘 when
𝑘 = 𝑚𝑛(𝑛−1) for some 𝑘 and 𝑚 ≥ 1 since the product in (4.2) has 𝑛(𝑛−1) factors in these cases, and
therefore can be realized in these cases. For many other 𝛿, the bound can be improved using the discrete
nature of the valuation group. In our optimization process below, we have no freedom in choosing 𝛿 and
cannot exploit such improvements. Therefore, we rely on the upper bound (4.1).

We now use Proposition 4.1 to bound the number of integral polynomials with small archimedean
discriminant.

Lemma 4.3. Let 𝑛 ≥ 3,𝑌 ≥ 1, and𝐻 sufficiently large in terms of 𝑛. Then the number of polynomials 𝑓 (𝑥) ∈
Z[𝑥] of the form 𝑓 (𝑥) = 𝑥𝑛+𝑐1𝑥

𝑛−1+ · · ·+𝑐𝑛 with |𝑐𝑖 | ≤ 𝐻𝑖 and disc( 𝑓 ) ≤ 𝐻𝑛2−𝑛/𝑌 is𝑂𝑛 (𝐻
𝑛2+𝑛

2 /𝑌 1
2+

1
𝑛 +

𝐻
𝑛2+𝑛

2 −1).

The key idea behind Lemma 4.3 is that the coefficients of the polynomials 𝑓 (𝑥) with small discriminant
must lie in a compact region in R𝑛 with small volume, and thus we should expect there to be relatively
few polynomials whose coefficients lie in this region. This is made rigorous by means of the Lipschitz
principle from [Dav51]:

Lemma 4.4 (Davenport). If Ω ⊆ R𝑛 is a compact semialgebraic region (i.e., cut out by algebraic
inequalities), then the number of lattice points in the intersection satisfies the bound

Z𝑛∩Ω = vol(Ω) +𝑂 (max
𝜋

vol
(
𝜋(Ω))

)
, (4.3)

where the maximum runs over the projections 𝜋 of R𝑛 onto its various coordinate hyperplanes (i.e., the
regions in R𝑑 for 𝑑 < 𝑛 obtained by “forgetting” 𝑛− 𝑑 of the coordinates). The implicit constants depend
only on the dimension 𝑛 and the degrees of the equations defining Ω.

Proof of Lemma 4.3. Define Ω𝐻,𝑌 ⊆ R𝑛 to be

Ω𝐻,𝑌 := {(𝑐1, . . . , 𝑐𝑛) ∈ R𝑛 : |𝑐𝑖 | ≤ 𝐻𝑖 ,disc(𝑥𝑛 + 𝑐1𝑥
𝑛−1 + · · · + 𝑐𝑛) ≤ 𝐻𝑛

2−𝑛/𝑌 }.
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The maximum volume of the coordinate projections of Ω𝐻,𝑌 is trivially 𝑂𝑛 (𝐻
𝑛2+𝑛

2 −1), coming from
forgetting the discriminant condition and using the coordinate projection (𝑐1, . . . , 𝑐𝑛) ↦→ (𝑐2, . . . , 𝑐𝑛). By
Lemma 4.4, the statement thus reduces to showing that vol(Ω𝐻,𝑌 ) ≪𝑛 𝐻

𝑛2+𝑛
2 /𝑌 1

2+
1
𝑛 . Since the region

Ω𝐻,𝑌 is obtained by an anisotropic dilation we find vol(Ω𝐻,𝑌 ) = 𝐻
𝑛2+𝑛

2 vol(Ω1,𝑌 ). Thus it suffices to
bound vol(Ω1,𝑌 ). Taking 𝛿 = 𝑌−1 and Q𝑣 = R in Proposition 4.1, we immediately deduce that

vol(Ω1,𝑌 ) ≪𝑛 𝑌
− 1

2 −
1
𝑛 . (4.4)

This completes the proof. □

This lemma implies Corollary 2.5, used in §2.1 to prove our main theorem.

Proof of Corollary 2.5. Take 𝑌 = 𝐻2 in Lemma 4.3. □

5 Nonarchimedean Fourier transforms

Recall that if 𝑓 (𝑥) is irreducible and cuts out the field 𝐾, then its discriminant satisfies disc( 𝑓 ) =
Disc(𝐾) [O𝐾 : Z[𝛼]]2, where 𝛼 is a root of 𝑓 over 𝐾 , and where [O𝐾 : Z[𝛼]] =: index( 𝑓 ). In this section,
we assemble the main technical ingredients that will be used in the proof of Theorem 2.6. This theorem
bounds the number of integral polynomials 𝑓 whose index is large, but for which rad(index( 𝑓 )) is small.
This condition implies that such polynomials will have discriminants divisible by large powers of primes.
We therefore begin with the following simple lemma.

Lemma 5.1. Let 𝑛 ≥ 2 and 𝑘 ≥ 1, and let 𝑝 be prime. The set of monic polynomials 𝑓 ∈ Z[𝑥] for which
𝑝2𝑘 divides the discriminant of 𝑓 is determined by congruence conditions (mod 𝑝2𝑘) with relative
density ≪ 𝑝−𝑘−

2𝑘
𝑛 .

Proof. The fact that this condition is determined from congruence conditions follows from the fact that
the discriminant of a polynomial is a polynomial in its coefficients. The density of these congruence
conditions may be determined by computing the Haar measure of the set of monic polynomials in Z𝑝 [𝑥]
satisfying this condition. Therefore, the claim about the density follows from Proposition 4.1 by taking
Q𝑣 = Q𝑝 and 𝛿 = 𝑝−2𝑘 . □

We now introduce the main object of study in this section. Let P𝑛 (Z/𝑝2𝑘Z) be the set of monic degree
𝑛 polynomials over Z/𝑝2𝑘Z, and let 𝜓𝑝2𝑘 be the characteristic function of the subset of polynomials whose
discriminant is congruent to 0 (mod 𝑝2𝑘). For any u ∈ Z𝑛, we define the Fourier transform 𝜓𝑝2𝑘 (u) of
𝜓𝑝2𝑘 by

𝜓𝑝2𝑘 (u) :=
1
𝑝2𝑘𝑛

∑︁
c∈ (Z/𝑝2𝑘Z)𝑛

𝜓𝑝2𝑘 ( 𝑓c) exp
(
2𝜋𝑖⟨c,u⟩
𝑝2𝑘

)
, (5.1)

where 𝑓c(𝑥) = 𝑥𝑛 + 𝑐1𝑥
𝑛−1 + · · · + 𝑐𝑛 and ⟨·, ·⟩ denotes the standard inner product.

We begin with a series of lemmas that will be used to determine the support of 𝜓𝑝2𝑘 .
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Lemma 5.2. Write the monic polynomial 𝑓 as 𝑓 (𝑥) = 𝑥𝑛−𝜎1𝑥
𝑛−1+ · · · (−1)𝑘𝜎𝑘𝑥𝑛−𝑘 + · · ·+ (−1)𝑛𝜎𝑛. For

each 1 ≤ 𝑖 ≤ 𝑛, define 𝐷𝑖 := 𝜕disc 𝑓
𝜕𝜎𝑖

∈ Z[𝜎1, . . . ,𝜎𝑛]. Then the discriminant disc( 𝑓 ) and partial derivatives
𝐷𝑖 satisfy

1. For any 1 ≤ 𝑟 ≤ 𝑟 + 𝑘 ≤ 𝑛 and 1 ≤ 𝑠− 𝑘 ≤ 𝑠 ≤ 𝑛, we have disc( 𝑓 ) | (𝐷𝑟𝐷𝑠 −𝐷𝑟+𝑘𝐷𝑠−𝑘).

2.
∑

1≤𝑖≤𝑛𝐷𝑖 · (𝑛+1− 𝑖) ·𝜎𝑖−1 = 0 where we define 𝜎0 = 1.

The second part of the above lemma can be derived from equation (1.27) in Chapter 12 of [GKZ08],
but we were unaware of this reference until recently, so we provide a proof.

Proof. Our first goal is to give an expression for 𝐷𝑖 (𝜎𝜎𝜎(𝜆𝜆𝜆)) ∈ C[𝜆𝜆𝜆]. Recall the change of variables to go
from roots 𝜆𝜆𝜆 to coefficients 𝜎𝜎𝜎(𝜆𝜆𝜆) of a polynomial described in Section 3. The Jacobian matrix for this
change of variables is 𝐵(𝜆𝜆𝜆) where 𝐵𝑖 𝑗 = 𝜕𝑐𝑖

𝜕𝜆 𝑗
. A quick computation verifies that

𝜕𝑐𝑖

𝜕𝜆 𝑗
= 𝑐𝑖−1(𝜆1, . . . ,𝜆 𝑗 , . . . ,𝜆𝑛),

where we write 𝜆 𝑗 to indicate that the 𝑗-th coordinate should be omitted. Below, we use the shorthand
𝜆𝜆𝜆 𝑗 = (𝜆1, . . . ,𝜆 𝑗 , . . . ,𝜆𝑛). When 𝜆𝑖 ≠ 𝜆 𝑗 for all 𝑖 ≠ 𝑗 , we define the matrix 𝐴(𝜆𝜆𝜆) = (𝐴𝑖 𝑗) by

𝐴𝑖 𝑗 = 𝜆
𝑛− 𝑗
𝑖

(−1) 𝑗+1/
∏
𝑘≠𝑖

(𝜆𝑖 −𝜆𝑘).

Then one can verify that

(𝐴𝐵)𝑖 𝑗
∏
𝑘≠𝑖

(𝜆𝑖 −𝜆𝑘) =
(
𝜆𝑛−1
𝑖 𝜎0(𝜆𝜆𝜆 𝑗) −𝜆𝑛−2

𝑖 𝜎1(𝜆𝜆𝜆 𝑗) + · · · + (−1)𝑛−1𝜎𝑛−1(𝜆𝜆𝜆 𝑗)
)
=
∏
𝑘≠ 𝑗

(𝜆𝑖 −𝜆𝑘).

To see the last equality, we used the identity

𝑛−1∏
𝑖=1

(𝑥− 𝑎𝑖) =
𝑛−1∑︁
𝑘=0

(−1)𝑘𝜎𝑖 (𝑎𝑎𝑎)𝑥𝑛−1−𝑘 (5.2)

for expressing a polynomial with roots𝑎𝑎𝑎 = (𝑎1, . . . , 𝑎𝑛−1) in terms of the elementary symmetric polynomials
in these roots. This shows that (𝐴𝐵)𝑖 𝑗 is 0 if 𝑖 ≠ 𝑗 and is equal to 1 if 𝑖 = 𝑗 , hence 𝐴𝐵 = 𝐼.

By the inverse function theorem and chain rule, we obtain the inverse function 𝜆𝑖 = 𝜆𝑖 (𝜎𝜎𝜎) with
𝜕𝜆𝑖
𝜕𝜎 𝑗

= 𝐴𝑖 𝑗 , and 𝜕𝐷
𝜕𝜎𝑖

=
∑
𝑗
𝜕𝐷
𝜕𝜆 𝑗

𝜕𝜆 𝑗

𝜕𝜎𝑖
=
∑
𝑗
𝜕𝐷
𝜕𝜆 𝑗

𝐴 𝑗𝑖 .
By an abuse of notation, we write disc(c) := 𝐷 (c) := disc( 𝑓c), and with 𝑓 = 𝑥𝑛−𝜎1𝑥

𝑛−1+ · · · (−1)𝑛𝜎𝑛
as in the lemma statement, we write 𝐷 = disc( 𝑓 ). For 𝜎𝜎𝜎 = (𝜎1, . . . ,𝜎𝑛) = 𝜎𝜎𝜎(𝜆𝜆𝜆), we note that (5.2)
also shows that the roots of 𝑓 are precisely the 𝜆𝑖. Thus 𝐷 (𝜎𝜎𝜎(𝜆𝜆𝜆)) = ∏

𝑖< 𝑗 (𝜆𝑖 −𝜆 𝑗)2, and we have
𝜕𝐷
𝜕𝜆 𝑗

= 2𝐷
∑
𝑘≠ 𝑗 (𝜆 𝑗 −𝜆𝑘)−1. This implies that

𝐷𝑖 :=
𝜕𝐷

𝜕𝜎𝑖
= 2𝐷

∑︁
𝑗

𝜆𝑛−𝑖𝑗 (−1)𝑖+1 ·
∏
𝑘≠ 𝑗

(𝜆 𝑗 −𝜆𝑘)−1 ·
(∑︁
𝑘≠ 𝑗

(𝜆 𝑗 −𝜆𝑘)−1) = 2𝐷
∑︁
𝑗

𝜆𝑛−𝑖𝑗 (−1)𝑖+1 ·𝑊 𝑗 ,
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where we denote
𝑊 𝑗 =

∏
𝑘≠ 𝑗

(𝜆 𝑗 −𝜆𝑘)−1 ·
∑︁
𝑘≠ 𝑗

(𝜆 𝑗 −𝜆𝑘)−1.

Observe that

𝐷𝑊 𝑗 =
∏

𝑖<𝑘,𝑖≠ 𝑗 ,𝑘≠ 𝑗

(𝜆𝑖 −𝜆𝑘)2 ·
∏
𝑘≠ 𝑗

(𝜆 𝑗 −𝜆𝑘) ·
∑︁
𝑘≠ 𝑗

(𝜆 𝑗 −𝜆𝑘)−1

is a polynomial in C[𝜆𝜆𝜆]. We thus obtain 𝐷𝑖 (𝜆𝜆𝜆) as a polynomial in the Zariski open set 𝐷 (𝜆𝜆𝜆) ≠ 0 in the
affine space of 𝜆𝜆𝜆. As 𝐷𝑖 (𝜎𝜎𝜎(𝜆𝜆𝜆)) agrees with 𝐷𝑖 (𝜆𝜆𝜆) in that open set, they agree everywhere in 𝜆𝜆𝜆 affine
space (and not merely when 𝜆𝑖 ≠ 𝜆 𝑗 for all 𝑖 ≠ 𝑗).

We now evaluate 𝐷𝑖. Notice that 𝐷𝑊 𝑗 is zero if 𝜆 𝑗 is a triple root of 𝑓 , or if there exists a double
root 𝜆𝑖 = 𝜆𝑘 with 𝑖, 𝑘 ≠ 𝑗 . If there is a unique double root 𝜆 𝑗 = 𝜆𝑘0 , then 𝐷𝑊 𝑗 =

∏
𝑖<𝑘,𝑖≠ 𝑗 ,𝑘≠ 𝑗 (𝜆𝑖 −

𝜆𝑘)2∏
𝑘≠ 𝑗 ,𝑘0 (𝜆 𝑗 −𝜆𝑘) = 𝐷𝑊𝑘0 . Stated differently — if 𝑓 has two distinct pairs of double roots or a triple

root, then 𝐷𝑖 = 0 for all 𝑖. If there is a unique double root 𝜆 𝑗 , then for any 𝑖 we compute

𝐷𝑖 = (−1)𝑖+1𝜆𝑛−𝑖𝑗 ·4𝐷𝑊 𝑗 .

Therefore as a polynomial in C[𝜎𝜎𝜎], it follows that

𝐷𝑟𝐷𝑠 −𝐷𝑟+𝑘𝐷𝑠−𝑘 ≡ (4𝐷𝑊 𝑗)2(−1)𝑟+𝑠 · (𝜆2𝑛−𝑟−𝑠
𝑗 −𝜆2𝑛−𝑟−𝑠

𝑗 ) = 0

on the variety cut out by 𝐷 (𝜎𝜎𝜎) = 0. Since 𝐷 (𝜎𝜎𝜎) is irreducible, it follows from Hilbert’s Nullstellensatz
that 𝐷 | 𝐷𝑟𝐷𝑠 −𝐷𝑟+𝑘𝐷𝑠−𝑘 .

In order to prove the second statement, notice that discriminant is translation invariant. That
is, disc(𝜆1 + 𝑡,𝜆2 + 𝑡, . . . ,𝜆𝑛 + 𝑡) = disc(𝜆1,𝜆2, . . . ,𝜆𝑛). Now we can consider the function 𝜎𝑖 (𝑡) :=
𝜎𝑖 (𝜆1 + 𝑡,𝜆2 + 𝑡, . . . ,𝜆𝑛 + 𝑡). It is clear that 𝑑𝜎𝑖 (𝑡 )

𝑑𝑡
= 𝜎𝑖−1(𝜆1 + 𝑡, . . . ,𝜆𝑛 + 𝑡) (𝑛− 𝑖 +1). Therefore

𝑑𝐷 (𝜎𝜎𝜎(𝑡))
𝑑𝑡

����
𝑡=0

=
∑︁
𝑖

𝜕𝐷

𝜕𝜎𝑖

𝑑𝜎𝑖

𝑑𝑡

�����
𝑡=0

=
∑︁
𝑖

𝐷𝑖 ·𝜎𝑖−1 · (𝑛− 𝑖 +1) = 0,

completing the proof. □

This lemma is general. We exploit the relationship 𝐷 | 𝐷𝑟𝐷𝑠 −𝐷𝑟+𝑘𝐷𝑠−𝑘 below, but we note that
there are many other algebraic relationships on the discriminant and its derivatives that might yield further
refinements on the structure of the support of 𝜓𝑝2𝑘 . In practice, we use the following more specific lemma.

Lemma 5.3. Given c ∈ Z𝑛 corresponding to a polynomial 𝑓c(𝑥) with disc( 𝑓c) ≡ 0 mod 𝑝2𝑘 , let Dc :=
( 𝜕disc( 𝑓 )

𝜕𝑐1
, . . . ,

𝜕disc( 𝑓 )
𝜕𝑐𝑛

) denote the gradient vector of the discriminant function, and let 𝑣𝑖 (c) denote the
valuation at 𝑝 of 𝜕disc( 𝑓 )

𝜕𝑐𝑖
(c) = 𝐷𝑖 (c).

Then there either exists 𝑎 ∈ Z≥0 such that

min{𝑣𝑖 (c), 𝑘} = min{𝑣𝑛 (c) + (𝑛− 𝑖)𝑎, 𝑘} (5.3)

or 𝑏 ∈ Z with 0 ≤ 𝑏 ≤ min(val𝑝 (𝑛), 𝑘) such that

min{𝑣𝑖 (c), 𝑘} = min{𝑣1(c) + (𝑖−1)𝑏, 𝑘}. (5.4)
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Intuitively, min{𝑣𝑖 (c), 𝑘} almost forms an arithmetic progression, except that when a term is greater
than 𝑘 we change it to 𝑘 . Thus this lemma shows that the support of 𝜓𝑝2𝑘 is constrained to these “near
arithmetic progressions”.

Proof. By Lemma 5.2 (1), we see that when 𝑝2𝑘 | disc( 𝑓c), 𝑝2𝑘 | 𝐷𝑟 (c)𝐷𝑠 (c) −𝐷𝑟+ℓ (c)𝐷𝑠−ℓ (c) for all
relevant 𝑟, 𝑠, ℓ. This implies the valuation relations min{𝑣𝑟 (c) + 𝑣𝑠 (c),2𝑘} = min{𝑣𝑟+ℓ (c) + 𝑣𝑠−ℓ (c),2𝑘}.
Specializing to 𝑟 = 𝑠 = 𝑖 and ℓ = 1 gives that min{2𝑣𝑖 (c),2𝑘} = min{𝑣𝑖−1(c) + 𝑣𝑖+1(c),2𝑘}. Thus(
𝑣𝑖−1(c), 𝑣𝑖 (c), 𝑣𝑖+1(c)

)
is an arithmetic progression when 𝑣𝑖 (c) < 𝑘 and “nearly” an arithmetic progression

otherwise.
It is not possible for the sequence min{𝑣𝑖 (𝑐), 𝑘} to initially decrease and later decrease. For otherwise,

there would exist 𝑟 and 𝑠, with 𝑟 < 𝑠− 1, such that min{𝑣𝑟 (𝑐), 𝑘} and min{𝑣𝑠 (𝑐), 𝑘} are smaller than
min{𝑣𝑖 (𝑐), 𝑘} for each 𝑟 < 𝑖 < 𝑠. But this would contradict the valuation relation above with ℓ = 1.

Hence the sequence min{𝑣𝑖 (c), 𝑘} is either non-increasing (giving (5.3)) or non-decreasing (giv-
ing (5.4)). Note that Lemma 5.2(2) implies that 𝑛𝐷1(c) is in the ideal generated by (𝐷2(c), . . . , 𝐷𝑛 (c)),
which restricts 𝑏 ≤ min{val𝑝 (𝑛), 𝑘} ≤ 𝑛 in (5.4). □

Lemma 5.3 implies that the support of 𝜓𝑝2𝑘 is also on “near arithmetic progressions.”

Lemma 5.4 (Support on near arithmetic progressions). For u = (𝑢1, . . . , 𝑢𝑛) ∈ (Z/𝑝2𝑘Z)𝑛, we have that

𝜓𝑝2𝑘 (u) = 0

unless u satisfies one of the two “near arithmetic progression” properties that

min{𝑣𝑝 (𝑢𝑖), 𝑘} = min{𝑣𝑝 (𝑢𝑛) + (𝑛− 𝑖)𝑎, 𝑘} (5.5)

for some 𝑎 ∈ Z≥0, or
min{𝑣𝑝 (𝑢𝑖), 𝑘} = min{𝑣𝑝 (𝑢1) + (𝑖−1)𝑏, 𝑘} (5.6)

for some 𝑏 ∈ Z with 0 ≤ 𝑏 ≤ min{𝑣𝑝 (𝑛), 𝑘}.

Proof. For each 𝑐𝑐𝑐 ∈ (Z/𝑝2𝑘Z)𝑛 such that 𝑝2𝑘 | disc( 𝑓𝑐𝑐𝑐), we associate the locus

𝑃c := {v ∈ (Z/𝑝2𝑘Z)𝑛 : 𝑝2𝑘 | disc( 𝑓v),v− c ∈ 𝑝𝑘 · (Z/𝑝2𝑘Z)𝑛}.

Two such 𝑃c and 𝑃c′ are equal if and only if c− c′ ≡ 0 mod 𝑝𝑘 . Thus we can decompose the set of
congruence classes of polynomials whose discriminant is divisible by 𝑝2𝑘 into a disjoint union of 𝑃c over
a set 𝐶 of representatives c from 𝑝𝑘 (Z/𝑝2𝑘Z)𝑛 satisfying 𝑝2𝑘 | disc( 𝑓c), giving

𝜓𝑝2𝑘 =
∑︁
c∈𝐶

1̂𝑃c .

This leads us to study 1̂𝑃c . Below, we use the notation Dc for the gradient vector of the discriminant
function and the notation 𝑣𝑖 for the 𝑝-valuation for the 𝑖-th coordinate of Dc as in Lemma 5.3. From the
Taylor expansion

disc( 𝑓v) ≡ disc( 𝑓c) +Dc · (v− c) mod 𝑝2𝑘
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and the fact that 𝑝2𝑘 | disc( 𝑓c), we see that 𝑃c can be written as

𝑃c =
{
v ∈ (Z/𝑝2𝑘Z)𝑛 : Dc ·

v− c
𝑝𝑘

≡ 0 mod 𝑝𝑘
}
. (5.7)

Direct computation on the definition shows

1̂𝑃c (𝜉𝜉𝜉) =
1
𝑝2𝑘𝑛 exp

(
2𝜋𝑖

⟨𝜉𝜉𝜉,c⟩
𝑝2𝑘

) ∑︁
v∈𝑃c

exp
(
2𝜋𝑖

⟨𝜉𝜉𝜉,v− c⟩
𝑝2𝑘

)
. (5.8)

Let 𝑤 := min(𝑣𝑖 (c), 𝑘) denote the minimum valuation among the coordinates of Dc. We will now show
that

1̂𝑃c (𝜉𝜉𝜉) =
{

exp(2𝜋𝑖 𝜉𝜉𝜉 ·c
𝑝2𝑘 ) · 𝑝

𝑤−𝑘

𝑝𝑘𝑛
, 𝜉𝜉𝜉 ≡ 𝛼Dc(mod 𝑝𝑘) for some 𝛼 ∈ Z/𝑝𝑘Z

0 otherwise.
(5.9)

To see this, first note that by (5.7), the set 𝑃c − c forms an additive group. This implies that∑︁
v∈𝑃c

exp
(
2𝜋𝑖

⟨𝜉𝜉𝜉,v− c⟩
𝑝2𝑘

)
= exp

(
2𝜋𝑖

⟨𝜉𝜉𝜉,u− c⟩
𝑝2𝑘

) ∑︁
v∈𝑃c

exp
(
2𝜋𝑖

⟨𝜉𝜉𝜉,v− c⟩
𝑝2𝑘

)
(5.10)

for any u ∈ 𝑃c.
When 𝜉𝜉𝜉 ≡ 𝛼Dc mod 𝑝𝑘 for some 𝛼 ∈ Z/𝑝𝑘Z, all summands in (5.8) are equal to 1 by the definition

of 𝑃c in (5.7). The first case of (5.9) follows from the fact that |𝑃c | = 𝑝𝑘 (𝑛−1)+𝑤 . If 𝜉𝜉𝜉 cannot be written
as 𝛼Dc, then there must be some u ∈ 𝑃c such that ⟨𝜉𝜉𝜉,u− c⟩ . 0 mod 𝑝2𝑘 . Inserting this choice of u
into (5.10) shows that 1̂𝑃c (𝜉𝜉𝜉) = 0. Thus (5.9) is shown.

It follows that for all u in the support of 𝜓𝑝2𝑘 , u ≡ 𝛼Dc for some c. The near arithmetic progression
conditions (5.5) and (5.6) are then implied by Lemma 5.3. □

For the phases u = (𝑢1, . . . , 𝑢𝑛) for which the Fourier transform 𝜓𝑝2𝑘 (u) does not vanish, we will
need an improvement over the trivial bound |𝜓𝑝2𝑘 (u) | ≤ |𝜓𝑝2𝑘 (0) | ≪𝑛 𝑝

−𝑘− 2𝑘
𝑛 given by Lemma 5.1. In

fact, for our purposes, it will suffice to restrict our attention to those phases for which only 𝑢1 and 𝑢2
are possibly non-zero. For the phases u = (𝑢1, . . . , 𝑢𝑛) in which only 𝑢1 is non-zero, we observe that the
Fourier transform is typically 0.

Lemma 5.5. Let 𝑝 be prime, 𝑛 ≥ 6, and 𝑘 ≥ 3. Suppose that 𝑢1 ∈ Z, and define u ∈ Z𝑛 by u= (𝑢1,0,0, . . . ,0).
Then 𝜓𝑝2𝑘 (u) = 0 if 𝑝2𝑘/gcd(𝑝2𝑘 , 𝑛) does not divide 𝑢1.

Proof. Since only 𝑢1 ≠ 0, by definition, we have

𝜓𝑝2𝑘 (u) = 1
𝑝2𝑛𝑘

∑︁
c∈ (Z/𝑝2𝑘Z)𝑛

𝜓𝑝2𝑘 ( 𝑓c) exp
(
2𝜋𝑖𝑐1𝑢1

𝑝2𝑘

)
.

As the map 𝑥 ↦→ 𝑥+1 induces a bĳection from the support of 𝜓𝑝2𝑘 to itself (that is, on the set of polynomials
whose discriminant is divisible by 𝑝2𝑘), sending 𝑐1 = 𝑐1( 𝑓 ) to 𝑐1 +𝑛 for each 𝑓 , we also have

𝜓𝑝2𝑘 (u) = 1
𝑝2𝑛𝑘

∑︁
c∈ (Z/𝑝2𝑘Z)𝑛

𝜓𝑝2𝑘 ( 𝑓c) exp
(
2𝜋𝑖(𝑐1 +𝑛)𝑢1

𝑝2𝑘

)
.

This implies that either 𝜓𝑝2𝑘 (u) = 0 or 𝑝2𝑘 | 𝑛𝑢1. □
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To study phases u = (𝑢1, . . . , 𝑢𝑛) with both 𝑢1 and 𝑢2 non-zero, we’ll use the following additional
result.

Lemma 5.6. Let 𝑝 be prime, 𝑛 ≥ 6, and 𝑘 ≥ 3. Suppose that 𝑢1, 𝑢2 ∈ Z, and define u ∈ Z𝑛 by
u = (𝑢1, 𝑢2,0, . . . ,0). Then

𝜓𝑝2𝑘 (u) ≪𝑛 𝑝
− 2𝑛𝑘

3 gcd(𝑢2, 𝑝
2𝑘) 𝑛3 .

Proof. Let 𝑒𝑝2𝑘 : Z𝑝 → C be the continuous extension of the map defined on integers 𝑥 by 𝑒𝑝2𝑘 (𝑥) :=
exp( 2𝜋𝑖𝑥

𝑝2𝑘 ). By definition, it follows that we may rewrite the Fourier transform as

𝜓𝑝2𝑘 (u) =
∫
P𝑛 (Z𝑝 )

𝜓𝑝2𝑘 ( 𝑓 )𝑒𝑝2𝑘 (𝑢1𝑐1( 𝑓 ) +𝑢2𝑐2( 𝑓 )) 𝑑𝜈( 𝑓 ),

where 𝑐1( 𝑓 ) and 𝑐2( 𝑓 ) respectively denote the coefficients of 𝑥𝑛−1 and 𝑥𝑛−2 in 𝑓 . Applying the change
of variables from Section 3, we find this integral is equal to∑︁

[𝐾𝑝 :Q𝑝 ]=𝑛

|Disc(𝐾𝑝) |1/2𝑝
|Aut(𝐾𝑝) |

∫
O𝐾𝑝

|Disc( 𝑓𝛼) |1/2𝑝 𝜓𝑝2𝑘 ( 𝑓𝛼)𝑒𝑝2𝑘 (−𝑢1𝜎1(𝜆𝜆𝜆) +𝑢2𝜎2(𝜆𝜆𝜆))𝑑𝜇(𝛼), (5.11)

where 𝑓𝛼 is the characteristic polynomial of 𝛼 and 𝜎𝑖 (𝜆𝜆𝜆) denotes the 𝑖-th elementary symmetric function
in the roots 𝜆𝜆𝜆. Fixing the étale algebra 𝐾𝑝 = 𝐹1 × · · · ×𝐹𝑟 (with 𝑛𝑖 := deg(𝐹𝑖)), we note that 𝜎1 is linear as
a polynomial in 𝜆𝜆𝜆, and is therefore also linear in the choice of coordinates a ∈ Z𝑛𝑝 from Section 3 and the
proof of Proposition 4.1 (which we use in this proof as well). Additionally, 𝜎2 is a quadratic form in 𝜆𝜆𝜆
with Gram matrix

𝑄 =

©­­­­«
0 1 1 . . . 1
1 0 1 . . . 1
...

. . .
...

1 1 1 . . . 0

ª®®®®¬
,

that is, 𝜎2(𝜆𝜆𝜆) = 1
2𝜆𝜆𝜆
𝑇𝑄𝜆𝜆𝜆, where we regard 𝜆𝜆𝜆 as a column vector. As 𝜆𝜆𝜆 = 𝑀𝐾𝑝a, we therefore find that 𝜎2,

as a polynomial in a, has Gram matrix 𝑀𝑇
𝐾 𝑝
𝑄𝑀𝐾𝑝 . For convenience in what is to come, we note now

that det𝑄 = (−1)𝑛−1(𝑛−1). Thus |det𝑀𝑇
𝐾 𝑝
𝑄𝑀𝐾𝑝 |𝑝 ≪𝑛 |Disc(𝐾𝑝) |𝑝, where 𝑀𝐾𝑝 is as in Section 3.

Similarly, using the formula in Section 3, if one considers 𝜎2 (as a polynomial in a) as a quadratic form
modulo 𝑝, this computation shows that we have |Disc(𝐾𝑝) |𝑝 ≪ 𝑝−corankF𝑝 (𝜎2 ) , as the corank represents
the number of column vectors that are linearly dependent 𝑝-adically.

For each a = (𝑎1, . . . , 𝑎𝑛) ∈ Z𝑛𝑝 associated to a point 𝛼 ∈ O𝐾𝑝 in the support of 𝜓𝑝2𝑘 , we introduce the
following quantities:

• We set ℓ = 𝑘 − 𝑣𝑝 (𝑢2 )
2 , and in the following we will write 𝑎 ≡ 𝑏 mod 𝑝ℓ to mean that 𝑣𝑝 (𝑎− 𝑏) ≥ ℓ,

including the case when ℓ is a half integer.

• We write 𝑆 for the set of 𝑖 (or, by abuse of notation, the set of 𝑎𝑖) with the following property: one
of the roots for which 𝑎𝑖 is a coefficient is subject to a congruence 𝜆 ≡ 𝜆′ (mod 𝑝ℓ), where 𝜆′ is
some other root, and where the congruence is as polynomials in the appropriate integral bases.
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• We write 𝑚 := |𝑆 |.

If 𝑎𝑖 ∈ 𝑆, then using the Galois action we see that every root for which 𝑎𝑖 is a coefficient will be
subject to such a congruence, and thus we may regard this congruence as being of the form 𝛼 ≡ 𝛾(𝛼′)
(mod 𝑝ℓ) for some nontrivial 𝛾 ∈ Gal(Q𝑝/Q𝑝).

We distinguish two cases:

1. If 𝛼 𝑗 ≡ 𝛾(𝛼 𝑗) (mod 𝑝ℓ) for some nontrivial 𝛾 ∈ Gal(𝐹̃𝑗/Q𝑝), let |𝛾 | denote the order of 𝛾. Taking
traces shows that |𝛾 |𝛼 𝑗 must be congruent (mod 𝑝ℓ) to an element of the subfield 𝐹𝛾

𝑗
of 𝐹𝑗 fixed

by 𝛾. Since 𝛾 acts nontrivially on the conjugates of 𝐹𝑗 , this subfield has degree at most 𝑛 𝑗/2, from
which it follows that at least 𝑛 𝑗/2 values 𝑟 𝑗 are greater than ℓ. This will be satisfied for a proportion
of 𝑂 (𝑝−ℓ𝑛 𝑗/2) of the possible 𝛼 𝑗 .

2. We divide the set of remaining 𝛼 into equivalence classes where 𝛼 𝑗1 ≡ 𝛾2(𝛼 𝑗2) ≡ · · · ≡ 𝛾𝑡 (𝛼 𝑗𝑡 )
(mod 𝑝ℓ) for some 𝑡 ≥ 2. Once the 𝛾 are fixed, any one of the 𝛼 𝑗 determines all the rest (mod 𝑝ℓ).
Assuming without loss of generality that 𝛼 𝑗1 is of minimal degree, these congruences will be
satisfied for a proportion of 𝑂 (min(𝑝−ℓ (𝑛 𝑗2+···+𝑛 𝑗𝑡 ) )) of the possible tuples (𝛼 𝑗1 , . . . , 𝛼 𝑗𝑡 ).

There are 𝑂𝑛 (1) ways of partitioning the set of 𝛼 into equivalence classes as above and choosing the
𝛾. Altogether we obtain a density ≪𝑛 𝑝

−ℓ𝑁/2, where 𝑁 is the total of the degrees 𝑛 𝑗 over those 𝛼 𝑗
corresponding to at least one coordinate in 𝑆. As 𝑁 ≥ 𝑚 = |𝑆 |, this density is ≪𝑛 𝑝

−ℓ𝑚/2. Moreover, the
above procedure identifies ≥ 𝑚/2 pairs of roots, distinct but not necessarily disjoint, which are congruent
(mod 𝑝ℓ), so we have

|Disc( 𝑓𝛼) |1/2𝑝 ≤ 𝑝−
𝑚ℓ
2 |Disc(𝐾𝑝) |1/2𝑝 (5.12)

for any such 𝛼. So far we obtain a bound

≪ 𝑝−𝑚ℓ |Disc(𝐾𝑝) |1/2𝑝 (5.13)

for the integral in (5.11).
For the 𝑛−𝑚 remaining coordinates 𝑎𝑖 ∉ 𝑆, we may change 𝑎𝑖 by an arbitrary multiple of 𝑝 ⌈ℓ ⌉ while

preserving the discriminant. Motivated by the method of (non)stationary phase, by Taylor expanding, we
then observe that

𝑢2𝜎2(a+𝑏𝑖𝑝 ⌈ℓ ⌉)−𝑢1𝜎1(a+𝑏𝑖𝑝 ⌈ℓ ⌉) ≡ 𝑢2𝜎2(a)−𝑢1𝜎1(a)+𝑏𝑖𝑝 ⌈ℓ ⌉ ·
(
𝑢2
𝜕𝜎2
𝜕𝑎𝑖

(a)−𝑢1
𝜕𝜎1
𝜕𝑎𝑖

(a)
)

(mod 𝑝2𝑘),

where we use 𝑏𝑖 to indicate a vector whose only nonzero component is 𝑏𝑖 in the 𝑖-th coordinate. We have
used that 𝜎1(a) is linear in 𝑎𝑖 and the relationship between ℓ and 𝑢2 in omitting higher derivatives. This
implies that the integral∫

𝑏𝑖∈Z𝑝
|Disc( 𝑓𝛼) |1/2𝑝 𝜓𝑝2𝑘 ( 𝑓𝛼)𝑒𝑝2𝑘 (−𝑢1𝜎1(a+ 𝑏𝑖𝑝 ⌈ℓ ⌉) +𝑢2𝜎2(a+ 𝑏𝑖𝑝 ⌈ℓ ⌉)) 𝑑𝑏𝑖

will vanish unless the congruence 𝑢2
𝜕𝜎2
𝜕𝑎𝑖

(a) −𝑢1
𝜕𝜎1
𝜕𝑎𝑖

(a) ≡ 0 (mod 𝑝2𝑘−⌈ℓ ⌉) is satisfied. Consequently,
we may restrict the integral∫

O𝐾𝑝

|Disc( 𝑓𝛼) |1/2𝑝 𝜓𝑝2𝑘 ( 𝑓𝛼)𝑒𝑝2𝑘 (−𝑢1𝜎1(𝜆𝜆𝜆) +𝑢2𝜎2(𝜆𝜆𝜆))𝑑𝜇(𝛼) (5.14)
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to those points satisfying the congruence 𝑢2
𝜕𝜎2
𝜕𝑎𝑖

(a) −𝑢1
𝜕𝜎1
𝜕𝑎𝑖

(a) ≡ 0 (mod 𝑝2𝑘−⌈ℓ ⌉) for each 𝑎𝑖 ∉ 𝑆. Since
𝜎2 is quadratic, these are linear constraints, and they will be independent over Z𝑝 since the coefficients of
𝜕𝜎2
𝜕𝑎𝑖

are precisely the entries of the 𝑖-th column of the Gram matrix 𝑀𝑇
𝐾𝑝
𝑄𝑀𝐾𝑝 , which is nonsingular

by our earlier computation. In fact, the same computation reveals that the density of points a ∈ Z𝑛𝑝
satisfying these conditions will be at most 𝑝−(𝑛−𝑚) ⌊ℓ ⌋ |Disc(𝐾𝑝) |−1

𝑝 . This bound, multiplied by (5.12), is
𝑂 (𝑝−(𝑛−𝑚2 )ℓ |Disc(𝐾𝑝) |−1/2).

To obtain the same bound if ℓ is a half-integer (so that ⌊ℓ⌋ = ℓ− 1
2 ), we begin by recasting the previous

argument slightly. We have seen that, if 𝛼 meets the conditions described by 𝑆, then the integrand in (5.14)
is constant in the box a+ 𝑝 ⌈ℓ ⌉Z𝑛−𝑚𝑝 , and that the total measure of these boxes is 𝑝−(𝑛−𝑚) ⌈ℓ ⌉ |Disc(𝐾𝑝) |−1

𝑝 .
We now slightly enlarge the boxes, dividing Z𝑛−𝑚𝑝 into boxes of the form a+ 𝑝 ⌊ℓ ⌋Z𝑛−𝑚𝑝 . Here a choice

of the coordinates in 𝑆 will be fixed, and each a will be chosen to meet the conditions described by 𝑆 and
satisfy 𝜓𝑝2𝑘 ( 𝑓𝔞) = 1. The following will hold for all a′ = a+ 𝑝 ⌊ℓ ⌋b ∈ a+ 𝑝 ⌊ℓ ⌋Z𝑛−𝑚𝑝 :

1. We will have |Disc( 𝑓a′) |𝑝 ≤ |Disc( 𝑓a) |𝑝, with strict inequality if and only if b satisfies any of a
nonempty finite set of Z𝑝-linear constraints (mod 𝑝).

2. 𝜓𝑝2𝑘 ( 𝑓a) will be identically 1.

3. The quantity −𝑢1𝜎1(𝜆𝜆𝜆) +𝑢2𝜎2(𝜆𝜆𝜆) (mod 𝑝2𝑘) will be constant on boxes of side length 𝑝 ⌊ℓ ⌋ , and
hence may be written as the sum of a constant depending only on a, and a quadratic polynomial
𝑞(b) depending only on b (mod 𝑝).

4. After an invertible Z𝑝-linear change of variables, we may write 𝑞(b) = 𝑐1𝑏
2
1 + · · · + 𝑐𝑡𝑏

2
𝑡 + (terms

involving only 𝑏𝑡+1, . . . , 𝑏𝑛−𝑚), where we have 𝑛−𝑚− 𝑡 ≤ corankF𝑝 (𝜎2).

Ignoring the condition (1) for now, the integral over a+ 𝑝 ⌊ℓ ⌋b reduces to |Disc( 𝑓a) |1/2𝑝 𝑝−(𝑛−𝑚) ⌈ℓ ⌉

times a sum over b (mod 𝑝) ∈ F𝑛−𝑚𝑝 , which factors as a product of 𝑡 Gauss sums, bounded above by 𝑝𝑡/2,
and a sum of the other 𝑛−𝑚− 𝑡 variables, which is ≤ 𝑝𝑛−𝑚−𝑡 ≤ 𝑝corankF𝑝 (𝜎2 ) ≪ |Disc(𝐾𝑝) |−1

𝑝 . Altogether
we obtain a bound

≪ |Disc( 𝑓a) |1/2𝑝 𝑝−(𝑛−𝑚) ⌈ℓ ⌉ 𝑝𝑡/2 |Disc(𝐾𝑝) |−1

≪ |Disc( 𝑓a) |1/2𝑝 𝑝−(𝑛−𝑚)ℓ |Disc(𝐾𝑝) |−1

≪ 𝑝−(𝑛−𝑚2 )ℓ |Disc(𝐾𝑝) |−1/2. (5.15)

We handle the condition (1) by an inductive argument. Passing to the set of b satisfying any one of the
linear constraints, and choosing a Z𝑝-basis for this set, (1)-(4) will remain true, with the rank 𝑡 of the
Gauss sum either remaining the same, or decreasing by 1. Since |Disc( 𝑓 ) |𝑝 decreases by a factor of 𝑝, as
does the measure of the set being integrated over, while 𝑡 may decrease by 1, we obtain a bound a factor of
𝑂 (𝑝−1) smaller than (5.15). Continuing to pass to such subsets, and using inclusion-exclusion as needed,
we obtain the same bound (5.15) incorporating (1).

Our density bounds for 𝑎𝑖 ∈ 𝑆 and 𝑎𝑖 ∉ 𝑆 have not been proved independent, so adding the minimum
of (5.13) and (5.15) over the 2𝑛 choices for 𝑆, and noting that |Disc(𝐾𝑝) |𝑝 ≤ 1, we obtain

|Disc(𝐾𝑝) |1/2𝑝
|Aut(𝐾𝑝) |

∫
O𝐾𝑝

|Disc( 𝑓𝛼) |1/2𝑝 𝜓𝑝2𝑘 ( 𝑓𝛼)𝑒𝑝2𝑘 (−𝑢1𝜎1(𝜆𝜆𝜆) +𝑢2𝜎2(𝜆𝜆𝜆))𝑑𝜇(𝛼) ≪𝑛 𝑝
− 2𝑛ℓ

3 .
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Adding this across the 𝑂𝑛 (1) étale algebras, and recalling that ℓ = 𝑘 − 𝑣𝑝 (𝑢2 )
2 , we deduce the result. □

6 Polynomials with a large and powerful index

The main goal of this section is to prove Theorem 2.6, which states that the number of polynomials for
which index( 𝑓 ) ≫𝑛 𝐻

𝑛(𝑛−3)
2 but rad(index( 𝑓 )) < 𝐻1−𝜖 is 𝑂𝑛,𝜖 (𝐻

𝑛2+𝑛
2 − 4

3 −
4
𝑛
+𝜖 +𝐻 𝑛2+𝑛

2 − 2𝑛
3 +3+𝜖 ).

We begin with the following elementary lemma that, in the context of Theorem 2.6, will allow us to
choose a convenient divisor of the index.

Lemma 6.1. Let 𝑚 ≥ 2 be an integer, and let 𝐶 = rad(𝑚) be the product of the primes dividing 𝑚. Let
𝑘 ≥ 2. If 𝑚 ≥ 𝐶2𝑘−2, then for every 𝑥 ∈ R such that 𝐶𝑘−1 ≤ 𝑥 ≤ 𝑚/𝐶𝑘−1, 𝑚 has a 𝑘-powerful divisor 𝑑 in
the interval [𝑥,𝐶𝑥].

(Recall that an integer 𝑑 is 𝑘-powerful if every prime 𝑝 | 𝑑 divides 𝑑 to order at least 𝑘 .)

Proof. We begin by proving a slightly stronger statement in the case that 𝑚 is itself 𝑘-powerful, in
particular producing a 𝑘-powerful divisor in every interval of the form [𝑥,𝐶𝑥] with 𝐶𝑘−1 ≤ 𝑥 ≤ 𝑚/𝐶. If
𝑥 ≤ 𝐶𝑘 , then we simply take the divisor 𝑑 to be 𝐶𝑘 . If 𝑥 > 𝐶𝑘 , then we consider divisors of the form 𝐶𝑘𝑎

with 𝑎 a divisor of 𝑚/𝐶𝑘 , and we claim there must be such a divisor 𝑎 in the interval [𝑥/𝐶𝑘 , 𝑥/𝐶𝑘−1].
If this interval includes 𝑚/𝐶𝑘 , then we take the divisor 𝑎 to be 𝑚/𝐶𝑘 itself. Otherwise, let 𝑎 be the
minimal divisor of 𝑚/𝐶𝑘 greater than 𝑥/𝐶𝑘−1. Then every prime divisor 𝑝 of 𝑎 is at most 𝐶, and thus
𝑎/𝑝 ≥ 𝑥/𝐶𝑘 . On the other hand, by the minimality assumption on 𝑎, 𝑎/𝑝 ≤ 𝑥/𝐶𝑘−1, and thus 𝑎/𝑝 is the
claimed divisor. This completes the proof in the case 𝑚 is 𝑘-powerful.

If 𝑚 is not 𝑘-powerful, let 𝑚′ denote the maximal 𝑘-powerful divisor of 𝑚 and let 𝐶′ = rad(𝑚′),
and notice that 𝐶′ ≤ 𝐶. Additionally, we have 𝑚/𝐶𝑘−1 ≤ 𝑚′/𝐶′ (𝑘−1) . It then follows from the previous
paragraph that 𝑚′ has a 𝑘-powerful divisor in the interval [𝑥,𝐶′𝑥] ⊆ [𝑥,𝐶𝑥] for 𝑥 as in the statement of
the lemma, and thus 𝑚 must too. □

We now turn to the proof of Theorem 2.6.

Proof of Theorem 2.6. We wish to show that the number of monic polynomials 𝑓 (𝑥) ∈ Z[𝑥] of degree 𝑛 and
height𝐻 for which rad(index( 𝑓 )) < 𝐻1−𝜖 but index( 𝑓 ) > 𝐻

𝑛(𝑛−3)
2 is𝑂𝑛,𝜖 (𝐻

𝑛2+𝑛
2 − 4

3 −
4
𝑛
+𝜖 +𝐻 𝑛2+𝑛

2 − 2𝑛
3 +3+𝜖 ).

Suppose we are considering such a polynomial 𝑓 . By Lemma 6.1 applied with 𝑘 = 3, there is some
cubefull divisor 𝑑 of the index of 𝑓 satisfying 𝐻2−2𝜖 < 𝑑 ≤ 𝐻3−3𝜖 . By the remainder theorem, given
such a divisor 𝑑, the polynomial 𝑓 will lie in the support of the function 𝜓𝑑2 =

∏
𝑝𝑘 | |𝑑 𝜓𝑝2𝑘 . Moreover,

the support of this function is determined by congruence conditions (mod 𝑑2). Since 𝑑2 > 𝐻, we may
not simply estimate the number of such polynomials by naïvely counting the number in each residue
class. Instead, we identify the space of monic, degree 𝑛 polynomials with Z𝑛 and we let 𝜙 : R𝑛 → R be a
non-negative Schwartz function, chosen so that it is greater than 1 on the unit box [−1,1]𝑛 and so that its
Fourier transform 𝜙 has compact support contained in [− 1

2𝑛5 ,
1

2𝑛5 ]𝑛.
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Then by Poisson summation,∑︁
c∈Z𝑛

𝜙

( 𝑐1
𝐻
, . . . ,

𝑐𝑛

𝐻𝑛

)
𝜓𝑑2 ( 𝑓c) = 𝐻

𝑛2+𝑛
2

∑︁
u∈Z𝑛

𝜙

(𝑢1𝐻

𝑑2 , . . . ,
𝑢𝑛𝐻

𝑛

𝑑2

)
𝜓𝑑2 (u)

= 𝐻
𝑛2+𝑛

2 𝜓𝑑2 (0)𝜙(0) +𝐻
𝑛2+𝑛

2
∑︁

0≠u∈Z𝑛
𝜙

(𝑢1𝐻

𝑑2 , . . . ,
𝑢𝑛𝐻

𝑛

𝑑2

)
𝜓𝑑2 (u) (6.1)

where 𝜓𝑑2 (u) is defined by

𝜓𝑑2 (u) = 1
𝑑2𝑛

∑︁
𝑓 ∈ (Z/𝑑2Z)𝑛

𝜓𝑑 ( 𝑓 )𝑒
2𝜋𝑖⟨ 𝑓 ,u⟩
𝑑2 .

By the remainder theorem, 𝜓𝑑2 (u) may be decomposed as 𝜓𝑑2 (u) =
∏
𝑝𝑘 | |𝑑 𝜓𝑝2𝑘 (𝛾𝑝u) for some 𝛾𝑝

coprime to 𝑝. Thus, 𝜓𝑑2 (u) may be bounded by the results of the previous section, in particular
Lemma 5.1, Lemma 5.4, and Lemma 5.6. Using Lemma 5.1, the first term on the right-hand side of (6.1)
is 𝑂𝑛,𝜙,𝜖 (𝐻

𝑛2+𝑛
2 𝑑−1− 2

𝑛
+𝜖 ). Added over cubefull integers 𝑑 > 𝐻2−2𝜖 , this yields a total contribution that

is 𝑂𝑛,𝜙,𝜖 (𝐻
𝑛2+𝑛

2 − 4
3 −

4
𝑛
+𝜖 ), which matches the bound claimed in Theorem 2.6.

For the contribution from the sum of the non-trivial Fourier coefficients, we first note that by the
compact support of 𝜙, the summation is supported on those u for which each |𝑢𝑖 | ≤ 𝑑2/2𝐻𝑖. Since we
have assumed that 𝑑 ≤ 𝐻3−3𝜖 , this implies that 𝑢𝑖 = 0 for 𝑖 ≥ 6. In particular, since 𝑢6 = 0, it follows
from the arithmetic progression property of the support (Lemma 5.4) of 𝜓𝑑2 that each 𝑢𝑖 for 𝑖 ≤ 5 must
be divisible by 𝑑/gcd(𝑛6−𝑖 , 𝑑). (In the worst case, when (5.6) holds for every prime 𝑝 dividing 𝑑, we
bound 𝑏 ≤ 𝑣𝑝 (𝑛)). Thus, writing 𝑢𝑖 = (𝑑/gcd(𝑛6−𝑖 , 𝑑))𝑢′

𝑖
, we find that 𝑢′

𝑖
satisfies |𝑢′

𝑖
| ≤ 𝑑/𝐻𝑖, which

in particular also implies that 𝑢𝑖 = 0 for 𝑖 ≥ 3. If 𝑢2 = 0, then the sum is only over integers |𝑢1 | ≤ 𝑑2/𝐻.
However, by Lemma 5.5, 𝜓𝑑2 (u) will vanish unless 𝑢1 is divisible by 𝑑2/gcd(𝑑2, 𝑛), which forces 𝑢1 = 0
in this range as well. As we have already considered the contribution from the trivial Fourier coefficient,
we may therefore assume that 𝑢2 ≠ 0.

If 𝑢2 ≠ 0, then by Lemma 5.6, 𝜓̂𝑑2 (u) ≪𝑛,𝜖 𝑑
−2𝑛/3+𝜖 gcd(𝑑2, 𝑢2)𝑛/3 ≪𝑛 𝑑

−𝑛/3+𝜖 gcd(𝑑,𝑢′2)
𝑛/3. This

case thus yields a contribution that is

≪𝑛,𝜖

𝐻
𝑛2+𝑛

2 +𝜖

𝑑𝑛/3

∑︁
|𝑢′1 |≪𝑛𝑑/𝐻

∑︁
0≠ |𝑢′2 |≪𝑛𝑑/𝐻2

gcd(𝑑,𝑢′2)
𝑛/3 ≪𝑛,𝜖 𝑑𝐻

𝑛2+𝑛
2 − 2𝑛

3 −1+𝜖 , (6.2)

by noting that the summation over 𝑢′2 is dominated by the 𝑂 (𝑑 𝜖 ) values 𝑢′2 for which gcd(𝑑,𝑢′2) is
largest possible, but that this gcd is 𝑂𝑛 (𝑑/𝐻2) from the bound on 𝑢′2. After summing over cubefull
integers 𝐻2−2𝜖 < 𝑑 < 𝐻3−3𝜖 , we find a total contribution from the non-trivial Fourier coefficients that is
𝑂𝑛,𝜖 (𝐻

𝑛2+𝑛
2 − 2𝑛

3 +3+𝜖 ), which completes the proof of the theorem. □

7 Strong and weak multiples

In this section, we prove Theorem 2.7, which bounds the number of polynomials of height 𝐻 whose
discriminants have large squarefree divisors. To do this, we build on the work of Bhargava, Shankar, and
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Wang [BSW22b]. As before, to any c = (𝑐1, . . . , 𝑐𝑛) ∈ Z𝑛 we associate the monic degree 𝑛 polynomial
𝑓c(𝑥) = 𝑥𝑛 + 𝑐1𝑥

𝑛−1 + · · · + 𝑐𝑛.
Theorem 2.7 should be compared with [BSW22b, Theorem 4.4], where a similar statement is proven

but where the second term is 𝐻 𝑛2+𝑛
2 − 1

5+𝜖 instead of 𝐻 𝑛2+𝑛
2 − 1

2+𝜖 . It should also be compared with [BSW22a,
Theorem 4], where a strictly stronger statement is proven. Additionally, as sketched in [BSW22b], it is
possible to prove that the first term on the right-hand side is 𝐻 𝑛2+𝑛

2 /𝑀 , but we do not pursue this as it is
not necessary in the proof of our main theorem.

To prove Theorem 2.7, we follow the same strategy as [BSW22b], offering improvements to each
of the two key steps. For a squarefree integer 𝑚, let W𝑚 be the underlying set of polynomials whose
discriminant is divisible by 𝑚2, that is

W𝑚 := {c ∈ Z𝑛 : |𝑐𝑖 | ≤ 𝐻𝑖 ,𝑚2 | disc( 𝑓c)}.

We decompose this set as follows. For a prime 𝑝, we say that disc( 𝑓 ) is a strong multiple of 𝑝2 if disc(𝑔)
is a multiple of 𝑝2 for every polynomial 𝑔 congruent to 𝑓 (mod 𝑝), and we say that disc( 𝑓 ) is a weak
multiple of 𝑝2 otherwise. Let W(1)

𝑚 ⊆ W𝑚 be the subset consisting of polynomials for which disc( 𝑓 ) is a
strong multiple of 𝑝2 for every prime 𝑝 | 𝑚, and let W(2)

𝑚 ⊆ W𝑚 be the subset of those for which disc( 𝑓 )
is a weak multiple of 𝑝2 for every prime 𝑝 | 𝑚. By considering the factorization of 𝑚, Bhargava, Shankar,
and Wang [BSW22b] make the simple observation that for any 𝑀 > 1,⋃

𝑚≥𝑀
𝑚 squarefree

W𝑚 ⊆
⋃

𝑚≥
√
𝑀

𝑚 squarefree

W
(1)
𝑚 ∪

⋃
𝑚≥

√
𝑀

𝑚 squarefree

W
(2)
𝑚 .

Thus, to prove Theorem 2.7, it is sufficient to prove the following pair of propositions that refine [BSW22b,
Theorem 1.5(a)] and [BSW22b, Theorem 1.5(b)], respectively.

Proposition 7.1. For any 𝑌 > 1, 𝐻 > 0, and 𝜖 > 0,⋃
𝑚≥𝑌

𝑚 squarefree

W
(1)
𝑚 ≪𝑛,𝜖

𝐻
𝑛2+𝑛

2 +𝜖

𝑌
+𝐻 𝑛2+𝑛

2 −𝑛+1+𝜖 .

Proposition 7.2. For any 𝑌 > 1 and any 𝜖 > 0, we have⋃
𝑚≥𝑌

𝑚 squarefree

W
(2)
𝑚 ≪𝑛

𝐻
𝑛2+𝑛

2

𝑌
+𝐻 𝑛2+𝑛

2 − 1
2+𝜖 .

We now turn to the proofs of these propositions.

7.1 Strong multiples and Proposition 7.1

To prove Proposition 7.1, we apply a line of reasoning similar to the geometric sieve (c.f. Theorem 3.3
of [Bha14]).
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Recall that each c ∈ Z𝑛 corresponds to a degree 𝑛 polynomial 𝑓c = 𝑥𝑛 + 𝑐1𝑥
𝑛−1 + · · · + 𝑐𝑛. The

discriminant disc( 𝑓c) is a polynomial in the coefficients 𝑐𝑖 . More generally, to any c ∈ R𝑛 we can associate
the gradient vector Dc := ( 𝜕disc( 𝑓 )

𝜕𝑐1
, . . . ,

𝜕disc( 𝑓 )
𝜕𝑐𝑛

). Then we see that disc( 𝑓c) is a strong multiple of 𝑝2 if
and only if both disc( 𝑓c) ≡ 0 mod 𝑝 and Dc ≡ 0 mod 𝑝. Thus it suffices to bound the number of c with
|𝑐𝑖 | ≤ 𝐻𝑖 (1 ≤ 𝑖 ≤ 𝑛) such that disc( 𝑓c) ≡ 0 mod 𝑞 and 𝜕disc( 𝑓 )

𝜕𝑐𝑛
≡ 0 mod 𝑞 for some squarefree integer

𝑞 ≥ 𝑌 . To simplify, we replace 𝜕disc( 𝑓 )
𝜕𝑐𝑛

(c) by the resultant of 𝜕disc( 𝑓 )
𝜕𝑐𝑛

(c) and disc( 𝑓c) with respect to
𝑐𝑛−1. Denote the two polynomials disc( 𝑓c) and Res(disc( 𝑓c), 𝜕disc( 𝑓 )

𝜕𝑐𝑛
) by 𝑔1(c) and 𝑔2(c), respectively,

where we notate 𝑔2(c) even though 𝑔2 doesn’t depend on 𝑐𝑛−1 so that it suffices to count common roots c
of 𝑔1 and 𝑔2.

We first show that 𝑔1(c), as a polynomial in (Z[𝑐1, . . . , 𝑐𝑛−2, 𝑐𝑛]) [𝑐𝑛−1], has degree 𝑛 and nonzero
constant leading coefficient, or equivalently that 𝑔1(c) =

∑
𝑖≤𝑛𝛼𝑖𝑐

𝑖
𝑛−1 with 𝛼𝑛 ≠ 0. To see this, we compute

𝑔1(c) = disc( 𝑓c) via the resultant matrix 𝐴 of the monic polynomial 𝑓c(𝑥) and its derivative 𝑓 ′c (𝑥). In this
matrix, we observe that 𝑐𝑛−1 occurs exactly 0 times in the first 𝑛−1 rows, twice in rows 𝑛 to (2𝑛−2), and
once in the (2𝑛−1)st row. Thus the degree is at most 𝑛. We explicitly compute that the coefficient 𝛼𝑛 is

𝛼𝑛 =
∑︁

0≤𝑘≤𝑛−1
(−𝑛)𝑘 ·

(
𝑛−1
𝑘

)
= (1−𝑛)𝑛−1 ≠ 0.

Next, from the weighted homogeneity property of resultants, we observe that 𝑔2(c) may be expressed as
a homogeneous polynomial of degree 𝑛2(𝑛−2) in the roots of 𝑓 , and is therefore a weighted homogeneous
polynomial in c of the same degree, where each 𝑐𝑖 has weight 𝑖. It therefore has degree at most 𝑛(𝑛−2) as
a polynomial in 𝑐𝑛, and we observe that there is a unique permutation giving rise to a term of such degree
in the determinant representation of the resultant, corresponding to choosing the top entry of the columns
associated to disc( 𝑓c) and the bottom entry of the columns associated to 𝜕disc( 𝑓 )

𝜕𝑐𝑛
. We conclude that 𝑔2(c),

as a polynomial in 𝑐𝑛, has degree 𝑛(𝑛−2) and that its leading coefficient is a non-zero constant depending
only on 𝑛. In particular, 𝑔2(c) will be a non-zero polynomial in 𝑐𝑛 for any choice of the coordinates
(𝑐1, . . . , 𝑐𝑛−2).

The total number of tuples among the first 𝑛−2 coordinates (𝑐1, . . . , 𝑐𝑛−2) satisfying |𝑐𝑖 | ≤ 𝐻𝑖 is of
the order 𝐻𝑛(𝑛+1)/2−(2𝑛−1) . For each such tuple, the number of 𝑐𝑛 such that 𝑔2(𝑐1, . . . , 𝑐𝑛−2, 𝑐𝑛) = 0 is
absolutely bounded by the degree in 𝑐𝑛, and thus bounded by 𝑂𝑛 (1); the number of 𝑐𝑛−1 is trivially
bounded by 𝐻𝑛−1. These contribute at most 𝑂𝑛 (𝐻𝑛(𝑛+1)/2−𝑛) many c.

If 𝑔2(𝑐1, . . . , 𝑐𝑛−2, 𝑐𝑛) ≠ 0, then we take 𝑞 ≥ 𝑌 to be any squarefree divisor of 𝑔2(𝑐1, . . . , 𝑐𝑛−2, 𝑐𝑛);
there are at most 𝑂𝑛,𝜖 (𝐻 𝜖 ) many such choices 𝑞. The number of 𝑐𝑛−1 with |𝑐𝑛−1 | ≤ 𝐻𝑛−1 such
that 𝑔1(𝑐1, . . . , 𝑐𝑛) ≡ 0 mod 𝑞 is at most 𝑂𝑛 (max{1, 𝐻𝑛−1/𝑌 }). In total, these contribute at most
𝑂𝑛 (𝐻𝑛(𝑛+1)/2+𝜖 /𝑌 ) +𝑂𝑛 (𝐻𝑛(𝑛+1)/2+𝜖 −(𝑛−1) ).

Combining these two bounds completes the proof of Proposition 7.1. □

7.2 Weak multiples and Proposition 7.2

We now turn to Proposition 7.2, which is an improvement of the second error term in [BSW22b, Theorem
1.5(b)]. Our input consists simply of the application of a sharper sieve result at the heart of their argument.
In particular, the error term in question originates in Propositions 2.6 and 3.5 of [BSW22b], depending
on whether 𝑛 is odd or even. The proofs of both propositions rely on an application of the Selberg sieve
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to bound the number of “distinguished orbits” of an appropriate orthogonal group acting on the space
of symmetric 𝑛×𝑛 matrices over 1

2Z. For each prime 𝑝, they establish that they are able to sieve out a
proportion of congruence conditions which is uniformly bounded away from 0, and then an application of
the Selberg sieve yields their result.

It turns out that an application of the large sieve in the form of [Ser08, Theorem 10.1.1] immediately
yields the stated stronger result. We also note that further improvements might be possible, in particular
by incorporating Fourier analysis when applying the Selberg sieve as a large sieve, as done in [AGLO+23].
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