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ABSTRACT
Morpho-Evolution (ME) refers to the simultaneous optimisation of

a robot’s design and controller to maximise performance given a

task and environment. Many genetic encodings have been proposed

which are capable of representing design and control. Previous re-

search has provided empirical comparisons between encodings in

terms of their performance with respect to an objective function

and the diversity of designs that are evaluated, however there has

been no attempt to explain the observed findings. We address this

by applying Local Optima Network (LON) analysis to investigate

the structure of the fitness landscapes induced by three different

encodings when evolving a robot for a locomotion task, shedding

new light on the ease by which different fitness landscapes can be

traversed by a search process. This is the first time LON analysis

has been applied in the field of ME despite its popularity in combi-

natorial optimisation domains; the findings will facilitate design of

new algorithms or operators that are customised to ME landscapes

in the future.
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1 INTRODUCTION
Ever since the pioneering work of Karl Sims almost 30 years ago

[40], evolutionary approaches to simultaneously optimise both the

designs (i.e. the body) and controllers of robots have gathered pace.

We term this morpho-evolution (ME) in this article. A variety of
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approaches now exist ranging from those that apply evolution

purely in simulation [19], through hybrid approaches that combine

hardware and software evolution [11] to those that evolve purely

in hardware [5]. Evolutionary frameworks that facilitate ME must

consider the challenging question of how to represent both designs

and controllers in a form that can be evolved. Direct encodings

such as directed trees [49] provide a one-to-one mapping between

a genotype encoding the design and control that is realised as the

phenotype, and have been postulated to facilitate the fine-tuning

of parameters [50]. On the other hand, indirect encodings such as

Compositional Pattern Producing Networks (CPPNs) [42] and L-

Systems [18] result in many-to-one genotype-phenotype mappings

which have several potential benefits, e.g. in being able to produce

repeating patterns. This characteristic is generally useful in robotics

as it can facilitate the creation of symmetrical designs, e.g. with

equal numbers of actuators on each side of a body. However, when

using an indirect encoding, the genotype and the phenotype spaces

are not necessarily isometric: small changes in the genotype can

lead to major changes in the phenotype, and vice-versa [1, 12]).

Several authors have also noted that the evolutionary progress

using an indirect encoding is slower than that of a direct one (e.g.

[16]). While there have been several studies that have compared

direct and indirect encodings for jointly optimising design and

control in terms of the level of performance reached (i.e. objective

fitness) and the diversity of designs of evolved robots [8, 26, 48–50],

to the best of our knowledge there has been no attempt to explain
these empirical observations. That is, there has been no attempt

to study the fitness landscapes induced by a choice of encoding to

shed light on the ease by which these landscapes can be traversed

during a search process. Understanding these landscapes could help

explain empirical observations regarding performance or diversity,

but could also facilitate the design of new algorithms or operators

that are customised to the type of landscapes found.

The novel contribution of this paper is to apply Local Optima
Network (LON) analysis [36] to analyse the structure of the fitness

landscapes created by different encodings when jointly optimising

the body and control of a simulated robot. LONs are a technique first

introduced in 2008 [32] which enables the information contained in

a search space to be compressed into a single graph. Analysis of the

graph enables the calculation of a set of metrics which characterise

the structure of a landscape. The technique has proved very popular

in the combinatorial optimisation community [28, 30, 33], and more

114

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3638529.3654059
https://doi.org/10.1145/3638529.3654059
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3638529.3654059&domain=pdf&date_stamp=2024-07-14


GECCO ’24, July 14–18, 2024, Melbourne, VIC, Australia Thomson et al.

recently with continuous functions [27] but has not been used in

evolutionary robotics. We pose the question "To what extent can
applying LON analysis to fitness landscapes induced by different en-
codings in morpho-evolution provide an explanation for (1) observed
performance and (2) the extent to which the search-space is explored".
To answer this, we apply LON analysis to landscapes induced by

three different encodings (a direct encoding producing a tree, L-

System, CPPN) for an ME locomotion task, shedding new light on

the effect of solution encoding on search-space navigability. We

define navigability as the ability for the search to a) consistently

escape local optima, and b) explore a large number of genotypes.

This is the first time that LON analysis has been applied within

Evolutionary Robotics (ER). Furthermore, it is also novel in apply-

ing LON analysis to representations in which there is no direct

equivalence between genotype and phenotype: there is only one

other attempt at this that we are aware of in which LON analysis is

applied to Linear Genetic Programming [13]. The results indicate

that L-System indirect encoding leads to better fitness landscape

navigability; this helps to explain its superior performance in terms

of fitness in some empirical studies [49, 50]. In contrast, the CPPN

encoding is shown to induce lower navigability — in fact, it seems

to have landscapes which exhibit large numbers of low-quality local

optima which are difficult to escape.

2 RELATEDWORK
Recent years have seen a significant increase in efforts focused on

the joint optimisation of both design and control of robots using

evolutionary methods [2, 5, 11, 17, 19, 24]. Much of this work is

inspired by the seminal work of Pfiefer & Bongard [38] ‘How the

Body Shapes the Way We Think’ which argues that thought is not

independent of the body but is tightly constrained, and at the same

time enabled, by it — suggesting the evolution of design and control

cannot be considered independently. Several evolutionary frame-

works have been proposed to simultaneously evolve design and

control [10, 11, 17, 24, 26]. Regardless of the choice of framework,

a decision must be made regarding how to encode both design and

control on a single genome. A number of encodings have been

suggested, which can be categorised as direct or indirect. In the

former, typical examples include the use of directed trees [2, 48, 49]

which for example specify how modules are connected to create a

design, as well as the control parameters of each module. Indirect

encodings require a mapping from genotype to phenotype. The

use of CPPN [6, 15, 42] is common here: a particular advantage

of this type of encoding is that it can produce repeating patterns,

a characteristic which is often beneficial in producing symmetric

robots which facilitate locomotion. An alternative indirect encoding

is an L-System [18] in which an evolved grammar produces rules

that specify the robot [23, 25]. A number of studies have examined

the effect of the choice of encoding on performance (i.e. objective

fitness) in joint optimisation of design and control [48, 50]. In [49],

the effect of the encoding on solution diversity is also examined.

Miras et. al. [22] compare two generative encodings in terms of

how the choice of encoding influences the phenotype of evolved

robots. In [39], the extent to which the encoding influences learning

ability in joint optimisation. However, there have been very few

attempts to relate observed empirical performance metrics to the

underlying fitness landscape induced by the choice of encoding,

particularly in morpho-evolution. Some early literature in fitness

landscape analysis in ER focused solely on the controller of the

robot [9]. In [41] a simple form of morpho-evolution was inves-

tigated in which the sensor placement of a fixed robot body is

evolved along with the controller. The authors investigate rugged-

ness and neutrality within this landscape. Naya-Varela et. al. [29]
propose an evolutionary algorithm for growth-based morpholog-
ical development in which the robot structure ‘grows’ overtime

following a fixed developmental schedule. In this work, the authors

employed a graph-based tool called Search Trajectory Networks

(STN) [31] which enables the trajectory of the best solutions found

by a population-based algorithm to be visualised over time. The

STN reveals information about how the algorithm traverses the

underlying fitness landscape. However, this algorithm does not fall

in the class of ‘morpho-evolution’ algorithms considered in this ar-

ticle as the design changes according to a pre-determined schedule,

rather than being evolved. Outside of ER, LONs have been used to

bring new insights into the optimisation dynamics of a wide variety

of different problems e.g. in combinatorial optimisation [32, 37],

neural architecture search (NAS) [34], in algorithm-selection [3]

and in continuous landscapes [36]. All of the aforementioned exam-

ples apply LON analysis to encodings in which there is a one-to-one

mapping between genotype and phenotype. The only example of

which we are aware in which LON analysis is applied to a scenario

in which there is a many-to-one mapping is a recent analysis of

Linear Genetic Programming [13]. In summary, this article adds

to the field of ER by using LONs for the first time to understand

fitness landscapes, in the context of jointly optimising design and

control using different encodings.

3 PRELIMINARIES
This section provides a brief primer on LONs and defines the terms

that are used throughout the remainder of the article in this respect,

given that this is the first time they have been used in the con-

text of Evolutionary Robotics. LONs [32] are a means to study the

global structure of a fitness landscape. In a LON, nodes represent

local optima in a fitness landscape, and edges between nodes are

search transitions between them. By search transition, we mean

that two locations in the configuration space were linked during

a metaheuristic search: in our study, a search transition between

nodes is an application of perturbation followed by hill climbing. It

is therefore a sequence of search operations applied to the source

node which results in the destination node. LONs can be created by

sampling local optima in a fitness landscape using Iterated Local

Search (ILS) [20]. We now define some key terminology:

Neighbourhood. The neighbourhood of a solution, 𝑠𝑖 , are the so-

lutions which are adjacent to 𝑠𝑖 according to a neighbourhood

function: 𝑁 (𝑠). In this work, the notion of adjacency depends on

the design encoding type: the particulars of these are detailed in

Section 4.4.1.

LON nodes. A local optimum has superior or equal fitness to its

neighbours according to a fitness function f. In this work, we do not

exhaustively search the neighbourhood: this would be computa-

tionally infeasible. Instead, we consider that a solution 𝑙𝑜𝑖 is a local
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optimum if it has superior or equal fitness to its sampled neigh-

bourhood 𝑆𝑁 . Formally: ∀𝑛 ∈ 𝑆𝑁 (𝑙𝑜𝑖 ) : 𝑓 (𝑙𝑜𝑖 ) >= 𝑓 (𝑛) (assuming

maximisation, as is the case for this study) where 𝑆𝑁 (𝑙𝑜𝑖 ) is the
sampled neighbourhood, 𝑛 is a particular neighbour. The nodes in

a LON, 𝐿𝑂 , are the local optima as just defined.

LON edges. There is an edge from local optimum 𝑙𝑜𝑖 to local

optimum 𝑙𝑜 𝑗 , if 𝑙𝑜 𝑗 can be obtained after applying a random pertur-

bation to 𝑙𝑜𝑖 followed by local search, and 𝑓 (𝑙𝑜 𝑗 ) ≥ 𝑓 (𝑙𝑜𝑖 ). In LON

terminology, these are called escape edges [52]. The edges are called
monotonic because they record only non-deteriorating, directed

connections between local optima. Edges are weighted with the

frequency of transition: the number of times during searches that

𝑙𝑜 𝑗 was reached by applying perturbation then local search to 𝑙𝑜𝑖 .

The set of edges is denoted by 𝐸.

Local optima network (LON).. A local optima network, LON =

(𝐿𝑂, 𝐸), consists of nodes 𝑙𝑜𝑖 ∈ 𝐿𝑂 which are the local optima,

and edges 𝑒𝑖 𝑗 ∈ 𝐸 between pairs of nodes 𝑙𝑜𝑖 and 𝑙𝑜 𝑗 with weight

𝑤𝑖 𝑗 iff𝑤𝑖 𝑗 > 0. A LON which only includes neutral or improving

transitions between local optima is a monotonic LON, or MLON;

we construct these for the present work. For the interested reader,

detailed descriptions of MLONs can be found in previous litera-

ture [35].

4 METHODOLOGY
4.1 Task and Environment
We conduct LON analysis on a joint optimisation task taken from

Veenstra et al. [50] which focused on empirical performance com-

parisons of robots evolved using different encodings. The goal is to

evolve a robot that needs to traverse a virtual landscape consisting

of a set of gentle hills. The objective is to maximise the distance

travelled. We use an environment called gym2D which facilitates

robot design evolution for OpenAI Gym [4]; its foundation was

the bipedal walker environment
1
. The beginning section of the

environment we use is depicted in Figure 1. A virtual robot begins

at the left of a rectangular box containing a virtual 2D landscape

and the objective is to move as far to the right of the box as possible;

the horizontal axis for the box is associated with a scale between 0

and 100 (0 is no movement; 100 is reaching the end) and the fitness

of a robot is how far along this axis it travels. There is also a "kill-

switch" implemented to reduce the computational cost: if a robot

travels slower than a minimum speed (set at 0.04) then the attempt

terminates and the robot is ascribed a default fitness of 5.0. The

same environment configuration is used across all the experiments.

A robot can be seen attempting to travel across the landscape in

Figure 1.

4.2 Robots
A robot is defined by a set of modules combined to produce a

2D shape. Modules are either circular or rectangular and each has

parameters defining its size. The allowable size ranges for modules

are as follows: a width and height between 0.5 and 1, and (in the

case of circle shapes) a radius between 0.25 and 0.5. Modules also

each have a controller, as described shortly. A list of eight modules

1
https://github.com/openai/gym/blob/master/gym/envs/box2d/bipedal_walker.py

Figure 1: An example robot attempting to move horizontally
through the virtual environment. Each shape is a module,
and each module has its own controller.

is kept in memory and these are selected to be used as nodes to

build the robot. For each individual run, a new initial module list
is generated of four circles and four rectangles. The radius of the

circles is randomly generated between the bounds just mentioned;

similarly, the width and height of the rectangles are randomised.

The parameters of the modules are mutated during the evolutionary

runs. Each virtual robot has one controller per module. A controller

is encoded as a sine wave with parameters: amplitude (𝛼 , frequency

𝜃 , phase 𝛿 , and offset 𝜀,

𝑦 (𝑡) = 𝛼𝑠𝑖𝑛(𝜃𝑡 + 𝛿) + 𝜀 (1)

The ranges for the parameters are: 𝛼 and 𝛿 can vary between -1

and +1; 𝜃 between -0.1 and +0.1; and 𝜀 between −𝜋 to +𝜋 . These
parameters are also subject to mutation (details of mutation are

found later in Section 4.4.1. Finally, the maximum depth of the tree

which represents a robot is seven, while the maximum size (number

of allowable modules) is 40. These parameters are taken directly

from the literature [50].

4.3 Encodings
The phenotype of every virtual creature in Gym2D is represented

as a tree (see the left sub-plot of Figure 2). We evaluate three dif-

ferent encodings to produce this tree. The first encoding is direct,

therefore exactly represents the tree. Two encodings are indirect

therefore there is a mapping from genotype to phenotype. The

same three encodings were used in [49]. For the indirect encoding,

the tree starts from an axiom and then expand iteratively until

reaching a maximum depth. Each node can have a maximum of

three nodes attached. The following section describes how each

encoding generates a tree.

Figure 2: On the left: directed tree created by an L-System
encoding after two iterations. The nodes labelled 𝐶1 and 𝑅1
show a circle and rectanglemodule, respectively. On the right:
an example of a virtual 2D robot; its graph is visualised in
the top right. Figure is from [50]
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Direct encoding. The direct robot design encoding is a directed

tree structure which represents the topology of the robot’s design.

For each node that makes up a robot, the encoding describes: the

node’s index in the tree; the index of themodule from themodule list

it represents; the index of its parent node; and the parent connection

coordinates.

Figure 3: Diagram representing how an L-system works

L-System. For the L-System encoding, a parametric approach is

used where symbols and grammar rules are used (see figure 3). A set

of symbols is specified via an alphabet. The alphabet is composed of

eight symbols, each of which corresponds to a module in the mod-

ules list. A set of rules, known as grammar rewrite rules, are applied
to the symbols in order to construct the tree. A rule is composed of

an input symbol and substitution symbols, traditionally, the input

symbols are replaced by the substitution symbols. In this system,

starting from an axiom symbol, the rules are used to add new leaves

(each leaf corresponds to one of the substitution symbols) to the

tree from a previously created node (the input symbol).

Figure 4: Diagram representing a CPPN network

CPPN. CPPNs are neural networks specifically designed to pro-

duce patterns where the inputs are spatial coordinates. Each net-

work node is a function representing a basic pattern such as Gauss-

ian for axial symmetry, sinusoidal for repetition, or sigmoid for

central symmetry. As CPPN is similar to a feed-forward neural net-

work it is classically trained using neuro-evolution. In this study, we

make use of the Neuro-evolution through Augmenting Topologies

(NEAT) [43]. To create the tree, the CPPN is queried incrementally

for each connection site, i.e. where a node can be potentially at-

tached. The CPPN takes three inputs: the depth of the connection

site in the tree, the parent index in the module list and the angle of

connection. Thus, the CPPN produces 6 outputs: whether a module

should be attached or not, the type of module, i.e. the index in

the modules list, and four outputs corresponding to the controller

parameters (see figure 4).

4.4 LON Construction
Following the convention in the LON literature (see, for example:

[37, 46, 47, 51]), we sample local optima by executing runs of It-

erated Local Search (ILS). ILS [20] is a single-point meta-heuristic

which conducts repeated cycles of applying large perturbations

followed by local search. Although algorithms with recombination

are typical in evolutionary robotics and neuro-evolution, here we

use mutation only — following the majority of work in LONs — but

return to the question of whether crossover should be used later.

At each iteration during the LON construction process, a local opti-

mum is obtained; an acceptance condition then dictates whether it

is accepted as the new incumbent solution, or whether the previous

local optimum should be obtained. In this way, a process reminis-

cent of a Markov chain is followed. We gather data from 30 runs of

ILS, each commenced from random starting solutions during the

LON construction process. ILS combines local search with random

perturbations. The local search employs a first-improvement pivot

rule. This means that whenever an improving (or equal) neighbour

is found, it immediately becomes the incumbent genotype [44];

this is in contrast to best improvement, where the best possible

neighbour is found. This would require too much computation here.

In the experiments, the local search process stops when there has

been 100 operations applied with no improvement. Each of the

runs terminates after 30 iterations with no improvement in local

optimum quality or after 100 iterations in total. The local search

conducts random mutation on both the robot controller and the

robot design according to pre-defined probabilities described in

the next section. During the runs, every accepted local optimum is

hashed and logged as a network node, and any transition between

local optima is logged as network edges. When a local optimum

is added, its fitness, an index, and its hashed phenotype are noted

too, in addition to the hashed genotype. Edges are recorded as the

combination of the source node index and the destination node

index, and weight is logged as well. Edge weights are the number

of times a transition was followed. The LON is an amalgamation of

the nodes and edges from the separate runs.

4.4.1 Mutation operators. We use the mutation settings which

were tuned in previous literature [49]; these are provided in Table 1.

Perturbation is the mutation operation applied three times. Only

improving or equal local optima are accepted during the search. As

mentioned, both the controllers and the designs are mutated and

each has a separate application rate (see Table 1). For the design,

the approach to mutation depends on the encoding type:

Direct encoding. Mutation on the direct robot design encoding

has three possible operations: removing a node, adding a node

to the tree structure, and modifying a module’s node. For each
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possible location for adding a node, a node is added according to

the mutation rate; for removals, the mutation rate is halved (owing

to the fact that sub-nodes are removed alongside the original node;

that is, it is a more dramatic mutation). Finally, the module’s nodes

are modified by mutating the shape (width, height, radius) and

connection angle using Gaussian mutation.

L-System. Mutation on the L-System robot design encoding takes

place in the following way: the rules are changed by adding or

removing substitution symbols and the shape (width, height, radius)

and angle of the modules in the list are mutated using Gaussian

mutation.

CPPN. For the CPPN encoding, the mutation is the default NEAT

mutation from the neat-python
2
library. This has several opera-

tions modifying the network structure: adding a connection; delet-

ing a connection; adding a node; deleting a node; and replacing bias.

All of these are carried out according to the robot design mutation

rate. There are a large number of parameters associated with the

CPPN encoding. We use the values provided in a configuration file
3

and associated with previous literature [50]. As well as the CPPN

mutation, the shape (width, height, radius) and angle of the modules

in the list are mutated according to the mutation probability.

Controller mutation. For all three encodings, the same controller

representation is used (recall Equation 4.2). For the direct and L-

System encodings, controllers’ parameters are mutated according to

a mutation rate (controller rate in Table 1) using Gaussian mutation.

The standard deviation of the Gaussian distribution is set at 0.2 (the

same as in [49]). For the CPPN, the process is different: in that case,

each of the four parameters which define a controller is an output

from the network (as described in Section 4.3 and with Figure 4);

they are therefore affected when the NEAT mutation is carried out

on the CPPN.

Table 1: Mutation rates in the LON construction algorithm

parameter direct L-System CPPN

rate (controller) 0.32 0.16 0.02

rate (design) 0.16 0.04 0.02

4.5 Experimental Setup
The majority of our experimental setup matches that of Veenstra et.
al, who compared morphological encodings [49, 50]. We begin from

the associated online repository
4
as a base for our implementation;

from now on, we will refer to this as veenstra-repository. All parame-

ters associated with the encodings and environment are from there.

For each of the three encodings, we conducted 30 independent ILS

runs to log local optima and their edges; these were amalgamated

to form a single LON object for each encoding.

Statistics are calculated using the Mann-Whitney u-test [21] to

reject the hypothesis that two distributions are statistically the same

2
https://neat-python.readthedocs.io/en/latest/

3
https://github.com/FrankVeenstra/gym_rem2D/blob/master/ModularER_2D/

NeuralNetwork/config

4
https://github.com/FrankVeenstra/gym_rem2D

where * means 𝑝 < 0.05, ** means 𝑝 < 0.005, *** means 𝑝 < 0.0005

and **** means 𝑝 < 0.00005 and 𝑝 represent the probability.

Analysis of the LONs includes considering their weakly con-

nected components. In directed networks, a weakly connected com-
ponent (WCC) is a group of nodes which are all reachable from each

other, even if edges are uni-directional or in different directions;

WCCs are identified in the analysis using Tarjan’s algorithm [45]

and are referred to as components from now on.

5 RESULTS
5.1 Visualisation
Figures 5a-5d display visualisations of the extracted LONs; there

is a separate Figure for each of the three robot design encoding

types. In the plots, larger size and darker colour of nodes indicate

better fitness. Node size is proportional to fitness. For colour, we

took the approach of separating nodes into three fitness levels

according to the overall distribution of fitness across all three LONs:
nodes with fitness in the first quartile (below 9.59) are low-fitness

and are coloured very pale purple. Nodes within the interquartile

range are middle-fitness and are light purple in colour. Finally,

nodes with fitness in the upper quartile — which is 24.48 or above

— are high-fitness and are dark purple. Self-loops are represented

by edges which curve out of and back into the left of a node. The

force-directed network layout algorithm kamada kawai [14] in R

has been used to layout the LONs. Let us first consider the direct

encoding LON shown in Figures 5a (with self-loops) and 5b (without

self-loops). It is immediately evident from the latter that this is a

network containing several isolated components; in fact, there are

30, equal to the number of ILS runs used to construct the LON.

This is not a typical phenomenon seen in other domains where

LON analysis has been used, e.g. [7, 27, 47] which usually result in

more densely connected graphs. This is likely due to the vastness

of the search space. In evolutionary robotics, the search space can

be essentially infinite (most controllers are encoded as real-valued

numbers) and the goal is not necessarily to find a global optimum.

Instead, algorithms are typically applied to find a good enough robot
that functions well.

In Figure 5b we can see that the 30 components are chains — each

node has either zero or one outgoing directed edges, and either zero

or one incoming directed edges. We note from Figure 5a that the

direct encoding LON exhibits several self-loops: these are recorded

when an escape attempt from a local optimum is made, but returns

to the same local optimum. Self-loops are not present for the LONs

of the other two encodings, indicating that it may sometimes be

difficult to escape local optima when using the direct encoding

(i.e., there are strong attractors present). Additionally, the chains of

the direct encoding (Figure 5b) seem to be shorter when compared

to the other two encodings. This indicates a lack of navigability
associated with this encoding: it may struggle to explore genotypes

(indeed, we can see from Table 2 that this encoding resulted in far

fewer unique designs being considered than the L-System). Despite

this, we notice from Figure 5b that the direct encoding chains often

terminate with a good-fitness (dark purple) local optimum. Looking

across Figures 5a-5d, the divergence in fitness distributions can be

seen. The CPPN LON in Figure 5d contains a lot of nodes which

are very pale purple, indicating their fitness is in the first quartile
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(a) Direct encoding with self-loops (b) Direct encoding without self-loops

(c) L-System encoding (d) CPPN encoding

Figure 5: LONs for the three robot design encodings. larger size and darker colour of nodes indicate better fitness. Node size is
proportional to fitness. For colour: nodes with fitness in the first quartile of the overall fitness distribution across the three
LONs (this is a fitness of less than 9.59) are low-fitness and are coloured very pale purple. Nodes within the interquartile range
are middle-fitness and are light purple in colour. Finally, nodes with fitness in the upper quartile — which is 24.48 or above —
are high-fitness and are dark purple. Self-loops are represented with edges which curve out of and back into the right of a node.

of the three-LON fitness distribution. Comparing that observation

with Figure 5c, where the LON for the L-System encoding is shown,

we note that there are more chains which contain the dark purple;

that is, high-fitness (in the upper quartile) nodes are reached in

more searches. The chains for this LON appear to be longer than

those evident in the direct encoding LON (Figure 5a), and they

very often end up with fitness in the third quartile (above 24.48).

These observations, when taken together, indicate the navigability
associated with an L-System encoding.

Another observation from the CPPN LON in Figure 5d is that

some of the chains are lengthy but do not display any notable

improvement in fitness. This tells us that the fitness landscape

associated with using this encoding is not easily navigable: there

appear to be large poor-quality (where poor-quality is having a

fitness in the first quartile: less than 9.59) local optima plateaus

which are difficult to escape (under the studied search operations

and parameters). Looking at the direct and L-System encodings in

Figures 5a and 5c, and remark that they appear to be associated

with better fitness landscape navigability than the CPPN: the chains

in their LONs more often display incremental improvements in

fitness, which can be seen in the increase in size of node throughout

a chain. This is particularly evident with the L-System LON in

Figure 5c. It seems that the search becomes trapped at low-quality

local optima with these encoding less often. This helps to explain

the higher performance which has been observed using L-System

design encoding in the literature [50].

5.2 Features
In this Section we will first consider statistics about the ILS runs

conducted with the different encodings. Table 2 shows the rate of

mutation acceptance; the rate of design acceptance (this is com-

puted as the number of accepted mutations which were associated
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with a changed design); the number of unique designs present; and

the total number of attempted mutations. From Table 2, we notice

that the mutation acceptance is lowest for direct encoding and the

CPPN encoding has the lowest design acceptance. The highest rates

are associated with the L-System encoding. The other two encod-

ings tried out substantially lower numbers of unique designs than

the L-System, despite having a larger number of attempted muta-

tions. These facts, taken together, help to ratify the observations in

the previous section that the direct encoding struggles to widely

explore and find fitness improvement, while the L-System encoding

facilitates wide exploration and moving towards better fitness.

Table 2: ILS run statistics for the three encodings

metric direct L-System CPPN

mutation acceptance 10.52% 47.65% 33.77%

design acceptance 32.15% 38.10% 19.38%

unique designs 165 800 227 411 147 443

attempted mutations 352 438 297 964 328 970

Table 3 reports measurements for the LONs associated with

each encoding type. We introduce now the metrics whose names or

meanings may not be intuitive: components is the number of weakly

connected components in the network. The metric path length is

the average edge distance between any two nodes in the network

(excluding nodes which are unreachable to each other); degree is
the average degree of a node, including self-loops; and infeasible is
the percentage of nodes which had fitness indicating that the robot

activated the killswitch and can therefore be considered infeasible.

Table 3: LON statistics

metric direct L-System CPPN

nodes 269 360 546

edges 248 330 516

components 30 30 30

path length 4.37 6.32 12.66

degree 1.84 1.83 1.89

infeasible 0% 0.003% 34.43%

The plots in Figure 6 show distributions for run and LONmetrics

across the three encoding types. For each, there is a boxplot with a

horizontal line indicating the median. We also overlay as a swarm

the actual data points. For each pair of distributions, the u-test

result is shown. Figure 6a displays the distribution of all fitnesses

in the sampled LON nodes (local optima) of each of the three robot

design encoding choices: direct, L-System, and CPPN.

We can notice from visual inspection that the three distributions

have very different medians, and the swarms show that the overall

shape of the distributions are divergent to one another as well. In

terms of IQR and median, the L-System has the best fitness range,

with the direct encoding being next-best. This was also shown in

a previous study [50]. The CPPN encoding is especially distinct

from the other two; when including outliers, it has a much wider

range, and includes more lower-quality fitnesses than those of the

other two. Another interesting phenomenon is that in the case of

L-System and CPPN, there appear to be groups of local optima with

the same fitness: at approximately 25 for the L-System and direct

encodings, and approximately 10 for the CPPN. Despite having the

lowest IQR (a finding which ratifies those in the literature [49]), the

CPPN encoding resulted in the highest fitness sampled. Figure 6b

shows distributions for themaximum fitness found in each run. We

can see from visual inspection that the CPPN is associated with the

widest range. Indeed, it has both the highest value and the lowest.

The encoding which shows the highest (best) IQR and median is the

L-System type. The plot in Figure 6c shows, for each of the three

encodings, the distribution for the number of fitness evaluations

used by the 30 runs. Notice from comparing the boxes visually that

the distributions are similar for all three encodings.

In Figure 6d we present the data concerning fitness deltas. A delta

is here defined as the fitness increase associated with a directed

LON edge (recall that the edges are always directed towards equal

or better fitness, so the delta is always zero or above). For the plot,

we compute the median delta within each component in the LON;

these correspond to the 30 runs. Those medians are the data shown

in the Figure. Observing the three encodings, we note that the direct

encoding is associated with the largest fitness deltas. This can be

seen with its higher IQR and median line. Additionally, the largest

value in across all encodings is achieved by the direct encoding. The

L-System distribution has the lowest and narrowest IQR, implying

that the fitness deltas are the smallest (but perhaps most consistent

in magnitude) of the three. In terms of significant difference, the

L-System and CPPN pair are statistically the same; however, the

direct/L-System and direct-CPPN pairs differ, with 𝑝 < 0.005 and

𝑝 < 0.05 respectively. Finally, the distributions of chain lengths in

the LON (there is one for each of the 30 runs) are captured in Figure

6e. A chain is the path of local optima followed by one run of the

ILS. We observe from the plot that the direct encodings had the

shortest chains; this was followed by the L-System, and then CPPN

with the longest chains. The direct-L-system pair has an associated

𝑝 < 0.05, the L-system-CPPN pair are 𝑝 < 0.05 different and the

direct-CPPN are statistically different with 𝑝 < 0.0005.

5.3 The Elephants in the Room
One consideration of our approach is that we did not use a crossover

operator. The reader may wonder whether the ILS used here ac-

tually explores promising regions of the search space, or whether

instead all the sampled local optima are poor when compared to

those that might be found by crossover-based approaches. To this

end, we note that the fitness levels reached as shown in Figure 6b are

similar to those shown in previous literature — where an evolution-

ary algorithm with crossover was used [50] with the same virtual

environment and both direct and L-System encoding. It is therefore

reasonable to assume that the ILS approach reaches fitness levels

approximately equivalent to those achieved by a crossover-based

algorithm, and that at least some of the local optima sampled are

of acceptable quality. Another factor to consider when interpreting

the results is that we used mutation parameters from the litera-

ture ([49]). Those were tuned for an algorithm which also included

crossover, so it is probable that they are not the optimal settings

when applied in an iterated local search. This being said, being

consistent with the parameters from previous work is a reasonable

place to start when beginning a new line of research. In this study,

we looked at different possible genotype encoding to explore one
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(a) All fitnesses in the LON (b) Maximum fitness per run (c) Number of evaluations

(d) Fitness delta (e) Chain length

Figure 6: Distribution for various run and LON metrics across the three three encoding types. If there is a significant difference
(according to a u-test) between two distributions, this is indicated with a horizontal bar and 𝑝-value level: *𝑝 < 0.05; **𝑝 < 0.005;
***𝑝 < 0.0005; ****𝑝 < 0.00005

phenotype space: a tree-based structure. Therefore, the present

findings are limited to this phenotype space. In future work, it will

be interesting to look at how different encodings explore different

design representations such as voxel-based.

6 CONCLUSIONS
We have conducted a study with the aim of providing insight into

performance differences associated with different robot design en-

codings which have been observed in the literature. To this end, we

carried out fitness landscape analysis with local optima networks

(LONs). Three design encodings for a virtual 2D robot were con-

sidered: a direct tree structure representation, an L-System, and a

type of neural network (a CPPN). We sampled the LONs associated

with each of these, visualising them and comparing their features.

The results showed that an L-System encoding is associated with

good fitness landscape navigability: search has the ability to escape

local optima and discover a large number of unique designs. In

contrast, although being able to produce a large number of unique

designs, the CPPN encoding appears to be linked with low-quality

local optima from which it is hard to escape towards better fitness.

This observation indicates that CPPN encoding is not suited for

creating the structure used to define a robot morphology in this

study: a tree-based structure. We also found that a direct encoding

can lead to search struggling to leave local optima; however, good

fitnesses can sometimes be found when it does. These findings

provide insight into previously-observed performance differences

between encodings in the literature. We therefore propose that

LONs can be a valuable tool for explaining phenomena seen in

observed in evolutionary robotics search can inform the result of

better algorithms and operators in future. LONs bring additional

benefit compared to simply running evolution under different en-

codings: they facilitate visualisation of high-dimensional spaces

and an understanding of the local optima level in the genotype

space. Code and data associated with this work are available in a

public Zenodo repository
5
.
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